1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_ddb.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 #include <sys/mutex.h> 43 #include <sys/queue.h> 44 #include <sys/sbuf.h> 45 #include <sys/sysctl.h> 46 #include <sys/vmmeter.h> 47 #include <sys/vnode.h> 48 49 #include <ddb/ddb.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_param.h> 53 #include <vm/vm_kern.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_page.h> 56 #include <vm/vm_phys.h> 57 #include <vm/vm_reserv.h> 58 59 /* 60 * VM_FREELIST_DEFAULT is split into VM_NDOMAIN lists, one for each 61 * domain. These extra lists are stored at the end of the regular 62 * free lists starting with VM_NFREELIST. 63 */ 64 #define VM_RAW_NFREELIST (VM_NFREELIST + VM_NDOMAIN - 1) 65 66 struct vm_freelist { 67 struct pglist pl; 68 int lcnt; 69 }; 70 71 struct vm_phys_seg { 72 vm_paddr_t start; 73 vm_paddr_t end; 74 vm_page_t first_page; 75 int domain; 76 struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER]; 77 }; 78 79 struct mem_affinity *mem_affinity; 80 81 static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX]; 82 83 static int vm_phys_nsegs; 84 85 static struct vm_freelist 86 vm_phys_free_queues[VM_RAW_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER]; 87 static struct vm_freelist 88 (*vm_phys_lookup_lists[VM_NDOMAIN][VM_RAW_NFREELIST])[VM_NFREEPOOL][VM_NFREEORDER]; 89 90 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1; 91 92 static int cnt_prezero; 93 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD, 94 &cnt_prezero, 0, "The number of physical pages prezeroed at idle time"); 95 96 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS); 97 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD, 98 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info"); 99 100 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS); 101 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD, 102 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info"); 103 104 #if VM_NDOMAIN > 1 105 static int sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS); 106 SYSCTL_OID(_vm, OID_AUTO, phys_lookup_lists, CTLTYPE_STRING | CTLFLAG_RD, 107 NULL, 0, sysctl_vm_phys_lookup_lists, "A", "Phys Lookup Lists"); 108 #endif 109 110 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, 111 int domain); 112 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind); 113 static int vm_phys_paddr_to_segind(vm_paddr_t pa); 114 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, 115 int order); 116 117 /* 118 * Outputs the state of the physical memory allocator, specifically, 119 * the amount of physical memory in each free list. 120 */ 121 static int 122 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS) 123 { 124 struct sbuf sbuf; 125 struct vm_freelist *fl; 126 int error, flind, oind, pind; 127 128 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 129 for (flind = 0; flind < vm_nfreelists; flind++) { 130 sbuf_printf(&sbuf, "\nFREE LIST %d:\n" 131 "\n ORDER (SIZE) | NUMBER" 132 "\n ", flind); 133 for (pind = 0; pind < VM_NFREEPOOL; pind++) 134 sbuf_printf(&sbuf, " | POOL %d", pind); 135 sbuf_printf(&sbuf, "\n-- "); 136 for (pind = 0; pind < VM_NFREEPOOL; pind++) 137 sbuf_printf(&sbuf, "-- -- "); 138 sbuf_printf(&sbuf, "--\n"); 139 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 140 sbuf_printf(&sbuf, " %2d (%6dK)", oind, 141 1 << (PAGE_SHIFT - 10 + oind)); 142 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 143 fl = vm_phys_free_queues[flind][pind]; 144 sbuf_printf(&sbuf, " | %6d", fl[oind].lcnt); 145 } 146 sbuf_printf(&sbuf, "\n"); 147 } 148 } 149 error = sbuf_finish(&sbuf); 150 sbuf_delete(&sbuf); 151 return (error); 152 } 153 154 /* 155 * Outputs the set of physical memory segments. 156 */ 157 static int 158 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS) 159 { 160 struct sbuf sbuf; 161 struct vm_phys_seg *seg; 162 int error, segind; 163 164 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 165 for (segind = 0; segind < vm_phys_nsegs; segind++) { 166 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind); 167 seg = &vm_phys_segs[segind]; 168 sbuf_printf(&sbuf, "start: %#jx\n", 169 (uintmax_t)seg->start); 170 sbuf_printf(&sbuf, "end: %#jx\n", 171 (uintmax_t)seg->end); 172 sbuf_printf(&sbuf, "domain: %d\n", seg->domain); 173 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues); 174 } 175 error = sbuf_finish(&sbuf); 176 sbuf_delete(&sbuf); 177 return (error); 178 } 179 180 #if VM_NDOMAIN > 1 181 /* 182 * Outputs the set of free list lookup lists. 183 */ 184 static int 185 sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS) 186 { 187 struct sbuf sbuf; 188 int domain, error, flind, ndomains; 189 190 ndomains = vm_nfreelists - VM_NFREELIST + 1; 191 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 192 for (domain = 0; domain < ndomains; domain++) { 193 sbuf_printf(&sbuf, "\nDOMAIN %d:\n\n", domain); 194 for (flind = 0; flind < vm_nfreelists; flind++) 195 sbuf_printf(&sbuf, " [%d]:\t%p\n", flind, 196 vm_phys_lookup_lists[domain][flind]); 197 } 198 error = sbuf_finish(&sbuf); 199 sbuf_delete(&sbuf); 200 return (error); 201 } 202 #endif 203 204 /* 205 * Create a physical memory segment. 206 */ 207 static void 208 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain) 209 { 210 struct vm_phys_seg *seg; 211 #ifdef VM_PHYSSEG_SPARSE 212 long pages; 213 int segind; 214 215 pages = 0; 216 for (segind = 0; segind < vm_phys_nsegs; segind++) { 217 seg = &vm_phys_segs[segind]; 218 pages += atop(seg->end - seg->start); 219 } 220 #endif 221 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX, 222 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX")); 223 seg = &vm_phys_segs[vm_phys_nsegs++]; 224 seg->start = start; 225 seg->end = end; 226 seg->domain = domain; 227 #ifdef VM_PHYSSEG_SPARSE 228 seg->first_page = &vm_page_array[pages]; 229 #else 230 seg->first_page = PHYS_TO_VM_PAGE(start); 231 #endif 232 #if VM_NDOMAIN > 1 233 if (flind == VM_FREELIST_DEFAULT && domain != 0) { 234 flind = VM_NFREELIST + (domain - 1); 235 if (flind >= vm_nfreelists) 236 vm_nfreelists = flind + 1; 237 } 238 #endif 239 seg->free_queues = &vm_phys_free_queues[flind]; 240 } 241 242 static void 243 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind) 244 { 245 int i; 246 247 if (mem_affinity == NULL) { 248 _vm_phys_create_seg(start, end, flind, 0); 249 return; 250 } 251 252 for (i = 0;; i++) { 253 if (mem_affinity[i].end == 0) 254 panic("Reached end of affinity info"); 255 if (mem_affinity[i].end <= start) 256 continue; 257 if (mem_affinity[i].start > start) 258 panic("No affinity info for start %jx", 259 (uintmax_t)start); 260 if (mem_affinity[i].end >= end) { 261 _vm_phys_create_seg(start, end, flind, 262 mem_affinity[i].domain); 263 break; 264 } 265 _vm_phys_create_seg(start, mem_affinity[i].end, flind, 266 mem_affinity[i].domain); 267 start = mem_affinity[i].end; 268 } 269 } 270 271 /* 272 * Initialize the physical memory allocator. 273 */ 274 void 275 vm_phys_init(void) 276 { 277 struct vm_freelist *fl; 278 int flind, i, oind, pind; 279 #if VM_NDOMAIN > 1 280 int ndomains, j; 281 #endif 282 283 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 284 #ifdef VM_FREELIST_ISADMA 285 if (phys_avail[i] < 16777216) { 286 if (phys_avail[i + 1] > 16777216) { 287 vm_phys_create_seg(phys_avail[i], 16777216, 288 VM_FREELIST_ISADMA); 289 vm_phys_create_seg(16777216, phys_avail[i + 1], 290 VM_FREELIST_DEFAULT); 291 } else { 292 vm_phys_create_seg(phys_avail[i], 293 phys_avail[i + 1], VM_FREELIST_ISADMA); 294 } 295 if (VM_FREELIST_ISADMA >= vm_nfreelists) 296 vm_nfreelists = VM_FREELIST_ISADMA + 1; 297 } else 298 #endif 299 #ifdef VM_FREELIST_HIGHMEM 300 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) { 301 if (phys_avail[i] < VM_HIGHMEM_ADDRESS) { 302 vm_phys_create_seg(phys_avail[i], 303 VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT); 304 vm_phys_create_seg(VM_HIGHMEM_ADDRESS, 305 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 306 } else { 307 vm_phys_create_seg(phys_avail[i], 308 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 309 } 310 if (VM_FREELIST_HIGHMEM >= vm_nfreelists) 311 vm_nfreelists = VM_FREELIST_HIGHMEM + 1; 312 } else 313 #endif 314 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1], 315 VM_FREELIST_DEFAULT); 316 } 317 for (flind = 0; flind < vm_nfreelists; flind++) { 318 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 319 fl = vm_phys_free_queues[flind][pind]; 320 for (oind = 0; oind < VM_NFREEORDER; oind++) 321 TAILQ_INIT(&fl[oind].pl); 322 } 323 } 324 #if VM_NDOMAIN > 1 325 /* 326 * Build a free list lookup list for each domain. All of the 327 * memory domain lists are inserted at the VM_FREELIST_DEFAULT 328 * index in a round-robin order starting with the current 329 * domain. 330 */ 331 ndomains = vm_nfreelists - VM_NFREELIST + 1; 332 for (flind = 0; flind < VM_FREELIST_DEFAULT; flind++) 333 for (i = 0; i < ndomains; i++) 334 vm_phys_lookup_lists[i][flind] = 335 &vm_phys_free_queues[flind]; 336 for (i = 0; i < ndomains; i++) 337 for (j = 0; j < ndomains; j++) { 338 flind = (i + j) % ndomains; 339 if (flind == 0) 340 flind = VM_FREELIST_DEFAULT; 341 else 342 flind += VM_NFREELIST - 1; 343 vm_phys_lookup_lists[i][VM_FREELIST_DEFAULT + j] = 344 &vm_phys_free_queues[flind]; 345 } 346 for (flind = VM_FREELIST_DEFAULT + 1; flind < VM_NFREELIST; 347 flind++) 348 for (i = 0; i < ndomains; i++) 349 vm_phys_lookup_lists[i][flind + ndomains - 1] = 350 &vm_phys_free_queues[flind]; 351 #else 352 for (flind = 0; flind < vm_nfreelists; flind++) 353 vm_phys_lookup_lists[0][flind] = &vm_phys_free_queues[flind]; 354 #endif 355 } 356 357 /* 358 * Split a contiguous, power of two-sized set of physical pages. 359 */ 360 static __inline void 361 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order) 362 { 363 vm_page_t m_buddy; 364 365 while (oind > order) { 366 oind--; 367 m_buddy = &m[1 << oind]; 368 KASSERT(m_buddy->order == VM_NFREEORDER, 369 ("vm_phys_split_pages: page %p has unexpected order %d", 370 m_buddy, m_buddy->order)); 371 m_buddy->order = oind; 372 TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq); 373 fl[oind].lcnt++; 374 } 375 } 376 377 /* 378 * Initialize a physical page and add it to the free lists. 379 */ 380 void 381 vm_phys_add_page(vm_paddr_t pa) 382 { 383 vm_page_t m; 384 385 cnt.v_page_count++; 386 m = vm_phys_paddr_to_vm_page(pa); 387 m->phys_addr = pa; 388 m->segind = vm_phys_paddr_to_segind(pa); 389 m->flags = PG_FREE; 390 KASSERT(m->order == VM_NFREEORDER, 391 ("vm_phys_add_page: page %p has unexpected order %d", 392 m, m->order)); 393 m->pool = VM_FREEPOOL_DEFAULT; 394 pmap_page_init(m); 395 mtx_lock(&vm_page_queue_free_mtx); 396 cnt.v_free_count++; 397 vm_phys_free_pages(m, 0); 398 mtx_unlock(&vm_page_queue_free_mtx); 399 } 400 401 /* 402 * Allocate a contiguous, power of two-sized set of physical pages 403 * from the free lists. 404 * 405 * The free page queues must be locked. 406 */ 407 vm_page_t 408 vm_phys_alloc_pages(int pool, int order) 409 { 410 vm_page_t m; 411 int flind; 412 413 for (flind = 0; flind < vm_nfreelists; flind++) { 414 m = vm_phys_alloc_freelist_pages(flind, pool, order); 415 if (m != NULL) 416 return (m); 417 } 418 return (NULL); 419 } 420 421 /* 422 * Find and dequeue a free page on the given free list, with the 423 * specified pool and order 424 */ 425 vm_page_t 426 vm_phys_alloc_freelist_pages(int flind, int pool, int order) 427 { 428 struct vm_freelist *fl; 429 struct vm_freelist *alt; 430 int domain, oind, pind; 431 vm_page_t m; 432 433 KASSERT(flind < VM_NFREELIST, 434 ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind)); 435 KASSERT(pool < VM_NFREEPOOL, 436 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool)); 437 KASSERT(order < VM_NFREEORDER, 438 ("vm_phys_alloc_freelist_pages: order %d is out of range", order)); 439 440 #if VM_NDOMAIN > 1 441 domain = PCPU_GET(domain); 442 #else 443 domain = 0; 444 #endif 445 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 446 fl = (*vm_phys_lookup_lists[domain][flind])[pool]; 447 for (oind = order; oind < VM_NFREEORDER; oind++) { 448 m = TAILQ_FIRST(&fl[oind].pl); 449 if (m != NULL) { 450 TAILQ_REMOVE(&fl[oind].pl, m, pageq); 451 fl[oind].lcnt--; 452 m->order = VM_NFREEORDER; 453 vm_phys_split_pages(m, oind, fl, order); 454 return (m); 455 } 456 } 457 458 /* 459 * The given pool was empty. Find the largest 460 * contiguous, power-of-two-sized set of pages in any 461 * pool. Transfer these pages to the given pool, and 462 * use them to satisfy the allocation. 463 */ 464 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) { 465 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 466 alt = (*vm_phys_lookup_lists[domain][flind])[pind]; 467 m = TAILQ_FIRST(&alt[oind].pl); 468 if (m != NULL) { 469 TAILQ_REMOVE(&alt[oind].pl, m, pageq); 470 alt[oind].lcnt--; 471 m->order = VM_NFREEORDER; 472 vm_phys_set_pool(pool, m, oind); 473 vm_phys_split_pages(m, oind, fl, order); 474 return (m); 475 } 476 } 477 } 478 return (NULL); 479 } 480 481 /* 482 * Allocate physical memory from phys_avail[]. 483 */ 484 vm_paddr_t 485 vm_phys_bootstrap_alloc(vm_size_t size, unsigned long alignment) 486 { 487 vm_paddr_t pa; 488 int i; 489 490 size = round_page(size); 491 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 492 if (phys_avail[i + 1] - phys_avail[i] < size) 493 continue; 494 pa = phys_avail[i]; 495 phys_avail[i] += size; 496 return (pa); 497 } 498 panic("vm_phys_bootstrap_alloc"); 499 } 500 501 /* 502 * Find the vm_page corresponding to the given physical address. 503 */ 504 vm_page_t 505 vm_phys_paddr_to_vm_page(vm_paddr_t pa) 506 { 507 struct vm_phys_seg *seg; 508 int segind; 509 510 for (segind = 0; segind < vm_phys_nsegs; segind++) { 511 seg = &vm_phys_segs[segind]; 512 if (pa >= seg->start && pa < seg->end) 513 return (&seg->first_page[atop(pa - seg->start)]); 514 } 515 return (NULL); 516 } 517 518 /* 519 * Find the segment containing the given physical address. 520 */ 521 static int 522 vm_phys_paddr_to_segind(vm_paddr_t pa) 523 { 524 struct vm_phys_seg *seg; 525 int segind; 526 527 for (segind = 0; segind < vm_phys_nsegs; segind++) { 528 seg = &vm_phys_segs[segind]; 529 if (pa >= seg->start && pa < seg->end) 530 return (segind); 531 } 532 panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" , 533 (uintmax_t)pa); 534 } 535 536 /* 537 * Free a contiguous, power of two-sized set of physical pages. 538 * 539 * The free page queues must be locked. 540 */ 541 void 542 vm_phys_free_pages(vm_page_t m, int order) 543 { 544 struct vm_freelist *fl; 545 struct vm_phys_seg *seg; 546 vm_paddr_t pa, pa_buddy; 547 vm_page_t m_buddy; 548 549 KASSERT(m->order == VM_NFREEORDER, 550 ("vm_phys_free_pages: page %p has unexpected order %d", 551 m, m->order)); 552 KASSERT(m->pool < VM_NFREEPOOL, 553 ("vm_phys_free_pages: page %p has unexpected pool %d", 554 m, m->pool)); 555 KASSERT(order < VM_NFREEORDER, 556 ("vm_phys_free_pages: order %d is out of range", order)); 557 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 558 pa = VM_PAGE_TO_PHYS(m); 559 seg = &vm_phys_segs[m->segind]; 560 while (order < VM_NFREEORDER - 1) { 561 pa_buddy = pa ^ (1 << (PAGE_SHIFT + order)); 562 if (pa_buddy < seg->start || 563 pa_buddy >= seg->end) 564 break; 565 m_buddy = &seg->first_page[atop(pa_buddy - seg->start)]; 566 if (m_buddy->order != order) 567 break; 568 fl = (*seg->free_queues)[m_buddy->pool]; 569 TAILQ_REMOVE(&fl[m_buddy->order].pl, m_buddy, pageq); 570 fl[m_buddy->order].lcnt--; 571 m_buddy->order = VM_NFREEORDER; 572 if (m_buddy->pool != m->pool) 573 vm_phys_set_pool(m->pool, m_buddy, order); 574 order++; 575 pa &= ~((1 << (PAGE_SHIFT + order)) - 1); 576 m = &seg->first_page[atop(pa - seg->start)]; 577 } 578 m->order = order; 579 fl = (*seg->free_queues)[m->pool]; 580 TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq); 581 fl[order].lcnt++; 582 } 583 584 /* 585 * Set the pool for a contiguous, power of two-sized set of physical pages. 586 */ 587 void 588 vm_phys_set_pool(int pool, vm_page_t m, int order) 589 { 590 vm_page_t m_tmp; 591 592 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++) 593 m_tmp->pool = pool; 594 } 595 596 /* 597 * Search for the given physical page "m" in the free lists. If the search 598 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return 599 * FALSE, indicating that "m" is not in the free lists. 600 * 601 * The free page queues must be locked. 602 */ 603 boolean_t 604 vm_phys_unfree_page(vm_page_t m) 605 { 606 struct vm_freelist *fl; 607 struct vm_phys_seg *seg; 608 vm_paddr_t pa, pa_half; 609 vm_page_t m_set, m_tmp; 610 int order; 611 612 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 613 614 /* 615 * First, find the contiguous, power of two-sized set of free 616 * physical pages containing the given physical page "m" and 617 * assign it to "m_set". 618 */ 619 seg = &vm_phys_segs[m->segind]; 620 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER && 621 order < VM_NFREEORDER - 1; ) { 622 order++; 623 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order)); 624 if (pa >= seg->start) 625 m_set = &seg->first_page[atop(pa - seg->start)]; 626 else 627 return (FALSE); 628 } 629 if (m_set->order < order) 630 return (FALSE); 631 if (m_set->order == VM_NFREEORDER) 632 return (FALSE); 633 KASSERT(m_set->order < VM_NFREEORDER, 634 ("vm_phys_unfree_page: page %p has unexpected order %d", 635 m_set, m_set->order)); 636 637 /* 638 * Next, remove "m_set" from the free lists. Finally, extract 639 * "m" from "m_set" using an iterative algorithm: While "m_set" 640 * is larger than a page, shrink "m_set" by returning the half 641 * of "m_set" that does not contain "m" to the free lists. 642 */ 643 fl = (*seg->free_queues)[m_set->pool]; 644 order = m_set->order; 645 TAILQ_REMOVE(&fl[order].pl, m_set, pageq); 646 fl[order].lcnt--; 647 m_set->order = VM_NFREEORDER; 648 while (order > 0) { 649 order--; 650 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order)); 651 if (m->phys_addr < pa_half) 652 m_tmp = &seg->first_page[atop(pa_half - seg->start)]; 653 else { 654 m_tmp = m_set; 655 m_set = &seg->first_page[atop(pa_half - seg->start)]; 656 } 657 m_tmp->order = order; 658 TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq); 659 fl[order].lcnt++; 660 } 661 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency")); 662 return (TRUE); 663 } 664 665 /* 666 * Try to zero one physical page. Used by an idle priority thread. 667 */ 668 boolean_t 669 vm_phys_zero_pages_idle(void) 670 { 671 static struct vm_freelist *fl = vm_phys_free_queues[0][0]; 672 static int flind, oind, pind; 673 vm_page_t m, m_tmp; 674 675 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 676 for (;;) { 677 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) { 678 for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) { 679 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) { 680 vm_phys_unfree_page(m_tmp); 681 cnt.v_free_count--; 682 mtx_unlock(&vm_page_queue_free_mtx); 683 pmap_zero_page_idle(m_tmp); 684 m_tmp->flags |= PG_ZERO; 685 mtx_lock(&vm_page_queue_free_mtx); 686 cnt.v_free_count++; 687 vm_phys_free_pages(m_tmp, 0); 688 vm_page_zero_count++; 689 cnt_prezero++; 690 return (TRUE); 691 } 692 } 693 } 694 oind++; 695 if (oind == VM_NFREEORDER) { 696 oind = 0; 697 pind++; 698 if (pind == VM_NFREEPOOL) { 699 pind = 0; 700 flind++; 701 if (flind == vm_nfreelists) 702 flind = 0; 703 } 704 fl = vm_phys_free_queues[flind][pind]; 705 } 706 } 707 } 708 709 /* 710 * Allocate a contiguous set of physical pages of the given size 711 * "npages" from the free lists. All of the physical pages must be at 712 * or above the given physical address "low" and below the given 713 * physical address "high". The given value "alignment" determines the 714 * alignment of the first physical page in the set. If the given value 715 * "boundary" is non-zero, then the set of physical pages cannot cross 716 * any physical address boundary that is a multiple of that value. Both 717 * "alignment" and "boundary" must be a power of two. 718 */ 719 vm_page_t 720 vm_phys_alloc_contig(unsigned long npages, vm_paddr_t low, vm_paddr_t high, 721 unsigned long alignment, unsigned long boundary) 722 { 723 struct vm_freelist *fl; 724 struct vm_phys_seg *seg; 725 struct vnode *vp; 726 vm_paddr_t pa, pa_last, size; 727 vm_page_t deferred_vdrop_list, m, m_ret; 728 int domain, flind, i, oind, order, pind; 729 730 #if VM_NDOMAIN > 1 731 domain = PCPU_GET(domain); 732 #else 733 domain = 0; 734 #endif 735 size = npages << PAGE_SHIFT; 736 KASSERT(size != 0, 737 ("vm_phys_alloc_contig: size must not be 0")); 738 KASSERT((alignment & (alignment - 1)) == 0, 739 ("vm_phys_alloc_contig: alignment must be a power of 2")); 740 KASSERT((boundary & (boundary - 1)) == 0, 741 ("vm_phys_alloc_contig: boundary must be a power of 2")); 742 deferred_vdrop_list = NULL; 743 /* Compute the queue that is the best fit for npages. */ 744 for (order = 0; (1 << order) < npages; order++); 745 mtx_lock(&vm_page_queue_free_mtx); 746 #if VM_NRESERVLEVEL > 0 747 retry: 748 #endif 749 for (flind = 0; flind < vm_nfreelists; flind++) { 750 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) { 751 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 752 fl = (*vm_phys_lookup_lists[domain][flind]) 753 [pind]; 754 TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) { 755 /* 756 * A free list may contain physical pages 757 * from one or more segments. 758 */ 759 seg = &vm_phys_segs[m_ret->segind]; 760 if (seg->start > high || 761 low >= seg->end) 762 continue; 763 764 /* 765 * Is the size of this allocation request 766 * larger than the largest block size? 767 */ 768 if (order >= VM_NFREEORDER) { 769 /* 770 * Determine if a sufficient number 771 * of subsequent blocks to satisfy 772 * the allocation request are free. 773 */ 774 pa = VM_PAGE_TO_PHYS(m_ret); 775 pa_last = pa + size; 776 for (;;) { 777 pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1); 778 if (pa >= pa_last) 779 break; 780 if (pa < seg->start || 781 pa >= seg->end) 782 break; 783 m = &seg->first_page[atop(pa - seg->start)]; 784 if (m->order != VM_NFREEORDER - 1) 785 break; 786 } 787 /* If not, continue to the next block. */ 788 if (pa < pa_last) 789 continue; 790 } 791 792 /* 793 * Determine if the blocks are within the given range, 794 * satisfy the given alignment, and do not cross the 795 * given boundary. 796 */ 797 pa = VM_PAGE_TO_PHYS(m_ret); 798 if (pa >= low && 799 pa + size <= high && 800 (pa & (alignment - 1)) == 0 && 801 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0) 802 goto done; 803 } 804 } 805 } 806 } 807 #if VM_NRESERVLEVEL > 0 808 if (vm_reserv_reclaim_contig(size, low, high, alignment, boundary)) 809 goto retry; 810 #endif 811 mtx_unlock(&vm_page_queue_free_mtx); 812 return (NULL); 813 done: 814 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) { 815 fl = (*seg->free_queues)[m->pool]; 816 TAILQ_REMOVE(&fl[m->order].pl, m, pageq); 817 fl[m->order].lcnt--; 818 m->order = VM_NFREEORDER; 819 } 820 if (m_ret->pool != VM_FREEPOOL_DEFAULT) 821 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind); 822 fl = (*seg->free_queues)[m_ret->pool]; 823 vm_phys_split_pages(m_ret, oind, fl, order); 824 for (i = 0; i < npages; i++) { 825 m = &m_ret[i]; 826 vp = vm_page_alloc_init(m); 827 if (vp != NULL) { 828 /* 829 * Enqueue the vnode for deferred vdrop(). 830 * 831 * Unmanaged pages don't use "pageq", so it 832 * can be safely abused to construct a short- 833 * lived queue of vnodes. 834 */ 835 m->pageq.tqe_prev = (void *)vp; 836 m->pageq.tqe_next = deferred_vdrop_list; 837 deferred_vdrop_list = m; 838 } 839 } 840 for (; i < roundup2(npages, 1 << imin(oind, order)); i++) { 841 m = &m_ret[i]; 842 KASSERT(m->order == VM_NFREEORDER, 843 ("vm_phys_alloc_contig: page %p has unexpected order %d", 844 m, m->order)); 845 vm_phys_free_pages(m, 0); 846 } 847 mtx_unlock(&vm_page_queue_free_mtx); 848 while (deferred_vdrop_list != NULL) { 849 vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev); 850 deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next; 851 } 852 return (m_ret); 853 } 854 855 #ifdef DDB 856 /* 857 * Show the number of physical pages in each of the free lists. 858 */ 859 DB_SHOW_COMMAND(freepages, db_show_freepages) 860 { 861 struct vm_freelist *fl; 862 int flind, oind, pind; 863 864 for (flind = 0; flind < vm_nfreelists; flind++) { 865 db_printf("FREE LIST %d:\n" 866 "\n ORDER (SIZE) | NUMBER" 867 "\n ", flind); 868 for (pind = 0; pind < VM_NFREEPOOL; pind++) 869 db_printf(" | POOL %d", pind); 870 db_printf("\n-- "); 871 for (pind = 0; pind < VM_NFREEPOOL; pind++) 872 db_printf("-- -- "); 873 db_printf("--\n"); 874 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 875 db_printf(" %2.2d (%6.6dK)", oind, 876 1 << (PAGE_SHIFT - 10 + oind)); 877 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 878 fl = vm_phys_free_queues[flind][pind]; 879 db_printf(" | %6.6d", fl[oind].lcnt); 880 } 881 db_printf("\n"); 882 } 883 db_printf("\n"); 884 } 885 } 886 #endif 887