xref: /freebsd/sys/vm/vm_phys.c (revision f2b7bf8afcfd630e0fbd8417f1ce974de79feaf0)
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *	Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/queue.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sysctl.h>
56 #include <sys/tree.h>
57 #include <sys/vmmeter.h>
58 #include <sys/seq.h>
59 
60 #include <ddb/ddb.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_phys.h>
68 
69 #include <vm/vm_domain.h>
70 
71 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
72     "Too many physsegs.");
73 
74 #ifdef VM_NUMA_ALLOC
75 struct mem_affinity *mem_affinity;
76 int *mem_locality;
77 #endif
78 
79 int vm_ndomains = 1;
80 
81 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
82 int vm_phys_nsegs;
83 
84 struct vm_phys_fictitious_seg;
85 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
86     struct vm_phys_fictitious_seg *);
87 
88 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
89     RB_INITIALIZER(_vm_phys_fictitious_tree);
90 
91 struct vm_phys_fictitious_seg {
92 	RB_ENTRY(vm_phys_fictitious_seg) node;
93 	/* Memory region data */
94 	vm_paddr_t	start;
95 	vm_paddr_t	end;
96 	vm_page_t	first_page;
97 };
98 
99 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
100     vm_phys_fictitious_cmp);
101 
102 static struct rwlock vm_phys_fictitious_reg_lock;
103 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
104 
105 static struct vm_freelist
106     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
107 
108 static int vm_nfreelists;
109 
110 /*
111  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
112  */
113 static int vm_freelist_to_flind[VM_NFREELIST];
114 
115 CTASSERT(VM_FREELIST_DEFAULT == 0);
116 
117 #ifdef VM_FREELIST_ISADMA
118 #define	VM_ISADMA_BOUNDARY	16777216
119 #endif
120 #ifdef VM_FREELIST_DMA32
121 #define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
122 #endif
123 
124 /*
125  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
126  * the ordering of the free list boundaries.
127  */
128 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
129 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
130 #endif
131 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
132 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
133 #endif
134 
135 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
136 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
137     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
138 
139 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
140 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
141     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
142 
143 #ifdef VM_NUMA_ALLOC
144 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
145 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
146     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
147 #endif
148 
149 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
150     &vm_ndomains, 0, "Number of physical memory domains available.");
151 
152 /*
153  * Default to first-touch + round-robin.
154  */
155 static struct mtx vm_default_policy_mtx;
156 MTX_SYSINIT(vm_default_policy, &vm_default_policy_mtx, "default policy mutex",
157     MTX_DEF);
158 #ifdef VM_NUMA_ALLOC
159 static struct vm_domain_policy vm_default_policy =
160     VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
161 #else
162 /* Use round-robin so the domain policy code will only try once per allocation */
163 static struct vm_domain_policy vm_default_policy =
164     VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_ROUND_ROBIN, 0);
165 #endif
166 
167 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
168     int order);
169 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
170     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
171     vm_paddr_t boundary);
172 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
173 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
174 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
175 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
176     int order);
177 
178 static int
179 sysctl_vm_default_policy(SYSCTL_HANDLER_ARGS)
180 {
181 	char policy_name[32];
182 	int error;
183 
184 	mtx_lock(&vm_default_policy_mtx);
185 
186 	/* Map policy to output string */
187 	switch (vm_default_policy.p.policy) {
188 	case VM_POLICY_FIRST_TOUCH:
189 		strcpy(policy_name, "first-touch");
190 		break;
191 	case VM_POLICY_FIRST_TOUCH_ROUND_ROBIN:
192 		strcpy(policy_name, "first-touch-rr");
193 		break;
194 	case VM_POLICY_ROUND_ROBIN:
195 	default:
196 		strcpy(policy_name, "rr");
197 		break;
198 	}
199 	mtx_unlock(&vm_default_policy_mtx);
200 
201 	error = sysctl_handle_string(oidp, &policy_name[0],
202 	    sizeof(policy_name), req);
203 	if (error != 0 || req->newptr == NULL)
204 		return (error);
205 
206 	mtx_lock(&vm_default_policy_mtx);
207 	/* Set: match on the subset of policies that make sense as a default */
208 	if (strcmp("first-touch-rr", policy_name) == 0) {
209 		vm_domain_policy_set(&vm_default_policy,
210 		    VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
211 	} else if (strcmp("first-touch", policy_name) == 0) {
212 		vm_domain_policy_set(&vm_default_policy,
213 		    VM_POLICY_FIRST_TOUCH, 0);
214 	} else if (strcmp("rr", policy_name) == 0) {
215 		vm_domain_policy_set(&vm_default_policy,
216 		    VM_POLICY_ROUND_ROBIN, 0);
217 	} else {
218 		error = EINVAL;
219 		goto finish;
220 	}
221 
222 	error = 0;
223 finish:
224 	mtx_unlock(&vm_default_policy_mtx);
225 	return (error);
226 }
227 
228 SYSCTL_PROC(_vm, OID_AUTO, default_policy, CTLTYPE_STRING | CTLFLAG_RW,
229     0, 0, sysctl_vm_default_policy, "A",
230     "Default policy (rr, first-touch, first-touch-rr");
231 
232 /*
233  * Red-black tree helpers for vm fictitious range management.
234  */
235 static inline int
236 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
237     struct vm_phys_fictitious_seg *range)
238 {
239 
240 	KASSERT(range->start != 0 && range->end != 0,
241 	    ("Invalid range passed on search for vm_fictitious page"));
242 	if (p->start >= range->end)
243 		return (1);
244 	if (p->start < range->start)
245 		return (-1);
246 
247 	return (0);
248 }
249 
250 static int
251 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
252     struct vm_phys_fictitious_seg *p2)
253 {
254 
255 	/* Check if this is a search for a page */
256 	if (p1->end == 0)
257 		return (vm_phys_fictitious_in_range(p1, p2));
258 
259 	KASSERT(p2->end != 0,
260     ("Invalid range passed as second parameter to vm fictitious comparison"));
261 
262 	/* Searching to add a new range */
263 	if (p1->end <= p2->start)
264 		return (-1);
265 	if (p1->start >= p2->end)
266 		return (1);
267 
268 	panic("Trying to add overlapping vm fictitious ranges:\n"
269 	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
270 	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
271 }
272 
273 #ifdef notyet
274 static __inline int
275 vm_rr_selectdomain(void)
276 {
277 #ifdef VM_NUMA_ALLOC
278 	struct thread *td;
279 
280 	td = curthread;
281 
282 	td->td_dom_rr_idx++;
283 	td->td_dom_rr_idx %= vm_ndomains;
284 	return (td->td_dom_rr_idx);
285 #else
286 	return (0);
287 #endif
288 }
289 #endif /* notyet */
290 
291 /*
292  * Initialise a VM domain iterator.
293  *
294  * Check the thread policy, then the proc policy,
295  * then default to the system policy.
296  *
297  * Later on the various layers will have this logic
298  * plumbed into them and the phys code will be explicitly
299  * handed a VM domain policy to use.
300  */
301 static void
302 vm_policy_iterator_init(struct vm_domain_iterator *vi)
303 {
304 #ifdef VM_NUMA_ALLOC
305 	struct vm_domain_policy lcl;
306 #endif
307 
308 	vm_domain_iterator_init(vi);
309 
310 #ifdef VM_NUMA_ALLOC
311 	/* Copy out the thread policy */
312 	vm_domain_policy_localcopy(&lcl, &curthread->td_vm_dom_policy);
313 	if (lcl.p.policy != VM_POLICY_NONE) {
314 		/* Thread policy is present; use it */
315 		vm_domain_iterator_set_policy(vi, &lcl);
316 		return;
317 	}
318 
319 	vm_domain_policy_localcopy(&lcl,
320 	    &curthread->td_proc->p_vm_dom_policy);
321 	if (lcl.p.policy != VM_POLICY_NONE) {
322 		/* Process policy is present; use it */
323 		vm_domain_iterator_set_policy(vi, &lcl);
324 		return;
325 	}
326 #endif
327 	/* Use system default policy */
328 	vm_domain_iterator_set_policy(vi, &vm_default_policy);
329 }
330 
331 static void
332 vm_policy_iterator_finish(struct vm_domain_iterator *vi)
333 {
334 
335 	vm_domain_iterator_cleanup(vi);
336 }
337 
338 boolean_t
339 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
340 {
341 	struct vm_phys_seg *s;
342 	int idx;
343 
344 	while ((idx = ffsl(mask)) != 0) {
345 		idx--;	/* ffsl counts from 1 */
346 		mask &= ~(1UL << idx);
347 		s = &vm_phys_segs[idx];
348 		if (low < s->end && high > s->start)
349 			return (TRUE);
350 	}
351 	return (FALSE);
352 }
353 
354 /*
355  * Outputs the state of the physical memory allocator, specifically,
356  * the amount of physical memory in each free list.
357  */
358 static int
359 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
360 {
361 	struct sbuf sbuf;
362 	struct vm_freelist *fl;
363 	int dom, error, flind, oind, pind;
364 
365 	error = sysctl_wire_old_buffer(req, 0);
366 	if (error != 0)
367 		return (error);
368 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
369 	for (dom = 0; dom < vm_ndomains; dom++) {
370 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
371 		for (flind = 0; flind < vm_nfreelists; flind++) {
372 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
373 			    "\n  ORDER (SIZE)  |  NUMBER"
374 			    "\n              ", flind);
375 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
376 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
377 			sbuf_printf(&sbuf, "\n--            ");
378 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
379 				sbuf_printf(&sbuf, "-- --      ");
380 			sbuf_printf(&sbuf, "--\n");
381 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
382 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
383 				    1 << (PAGE_SHIFT - 10 + oind));
384 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
385 				fl = vm_phys_free_queues[dom][flind][pind];
386 					sbuf_printf(&sbuf, "  |  %6d",
387 					    fl[oind].lcnt);
388 				}
389 				sbuf_printf(&sbuf, "\n");
390 			}
391 		}
392 	}
393 	error = sbuf_finish(&sbuf);
394 	sbuf_delete(&sbuf);
395 	return (error);
396 }
397 
398 /*
399  * Outputs the set of physical memory segments.
400  */
401 static int
402 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
403 {
404 	struct sbuf sbuf;
405 	struct vm_phys_seg *seg;
406 	int error, segind;
407 
408 	error = sysctl_wire_old_buffer(req, 0);
409 	if (error != 0)
410 		return (error);
411 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
412 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
413 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
414 		seg = &vm_phys_segs[segind];
415 		sbuf_printf(&sbuf, "start:     %#jx\n",
416 		    (uintmax_t)seg->start);
417 		sbuf_printf(&sbuf, "end:       %#jx\n",
418 		    (uintmax_t)seg->end);
419 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
420 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
421 	}
422 	error = sbuf_finish(&sbuf);
423 	sbuf_delete(&sbuf);
424 	return (error);
425 }
426 
427 /*
428  * Return affinity, or -1 if there's no affinity information.
429  */
430 int
431 vm_phys_mem_affinity(int f, int t)
432 {
433 
434 #ifdef VM_NUMA_ALLOC
435 	if (mem_locality == NULL)
436 		return (-1);
437 	if (f >= vm_ndomains || t >= vm_ndomains)
438 		return (-1);
439 	return (mem_locality[f * vm_ndomains + t]);
440 #else
441 	return (-1);
442 #endif
443 }
444 
445 #ifdef VM_NUMA_ALLOC
446 /*
447  * Outputs the VM locality table.
448  */
449 static int
450 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
451 {
452 	struct sbuf sbuf;
453 	int error, i, j;
454 
455 	error = sysctl_wire_old_buffer(req, 0);
456 	if (error != 0)
457 		return (error);
458 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
459 
460 	sbuf_printf(&sbuf, "\n");
461 
462 	for (i = 0; i < vm_ndomains; i++) {
463 		sbuf_printf(&sbuf, "%d: ", i);
464 		for (j = 0; j < vm_ndomains; j++) {
465 			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
466 		}
467 		sbuf_printf(&sbuf, "\n");
468 	}
469 	error = sbuf_finish(&sbuf);
470 	sbuf_delete(&sbuf);
471 	return (error);
472 }
473 #endif
474 
475 static void
476 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
477 {
478 
479 	m->order = order;
480 	if (tail)
481 		TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
482 	else
483 		TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
484 	fl[order].lcnt++;
485 }
486 
487 static void
488 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
489 {
490 
491 	TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
492 	fl[order].lcnt--;
493 	m->order = VM_NFREEORDER;
494 }
495 
496 /*
497  * Create a physical memory segment.
498  */
499 static void
500 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
501 {
502 	struct vm_phys_seg *seg;
503 
504 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
505 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
506 	KASSERT(domain < vm_ndomains,
507 	    ("vm_phys_create_seg: invalid domain provided"));
508 	seg = &vm_phys_segs[vm_phys_nsegs++];
509 	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
510 		*seg = *(seg - 1);
511 		seg--;
512 	}
513 	seg->start = start;
514 	seg->end = end;
515 	seg->domain = domain;
516 }
517 
518 static void
519 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
520 {
521 #ifdef VM_NUMA_ALLOC
522 	int i;
523 
524 	if (mem_affinity == NULL) {
525 		_vm_phys_create_seg(start, end, 0);
526 		return;
527 	}
528 
529 	for (i = 0;; i++) {
530 		if (mem_affinity[i].end == 0)
531 			panic("Reached end of affinity info");
532 		if (mem_affinity[i].end <= start)
533 			continue;
534 		if (mem_affinity[i].start > start)
535 			panic("No affinity info for start %jx",
536 			    (uintmax_t)start);
537 		if (mem_affinity[i].end >= end) {
538 			_vm_phys_create_seg(start, end,
539 			    mem_affinity[i].domain);
540 			break;
541 		}
542 		_vm_phys_create_seg(start, mem_affinity[i].end,
543 		    mem_affinity[i].domain);
544 		start = mem_affinity[i].end;
545 	}
546 #else
547 	_vm_phys_create_seg(start, end, 0);
548 #endif
549 }
550 
551 /*
552  * Add a physical memory segment.
553  */
554 void
555 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
556 {
557 	vm_paddr_t paddr;
558 
559 	KASSERT((start & PAGE_MASK) == 0,
560 	    ("vm_phys_define_seg: start is not page aligned"));
561 	KASSERT((end & PAGE_MASK) == 0,
562 	    ("vm_phys_define_seg: end is not page aligned"));
563 
564 	/*
565 	 * Split the physical memory segment if it spans two or more free
566 	 * list boundaries.
567 	 */
568 	paddr = start;
569 #ifdef	VM_FREELIST_ISADMA
570 	if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
571 		vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
572 		paddr = VM_ISADMA_BOUNDARY;
573 	}
574 #endif
575 #ifdef	VM_FREELIST_LOWMEM
576 	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
577 		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
578 		paddr = VM_LOWMEM_BOUNDARY;
579 	}
580 #endif
581 #ifdef	VM_FREELIST_DMA32
582 	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
583 		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
584 		paddr = VM_DMA32_BOUNDARY;
585 	}
586 #endif
587 	vm_phys_create_seg(paddr, end);
588 }
589 
590 /*
591  * Initialize the physical memory allocator.
592  *
593  * Requires that vm_page_array is initialized!
594  */
595 void
596 vm_phys_init(void)
597 {
598 	struct vm_freelist *fl;
599 	struct vm_phys_seg *seg;
600 	u_long npages;
601 	int dom, flind, freelist, oind, pind, segind;
602 
603 	/*
604 	 * Compute the number of free lists, and generate the mapping from the
605 	 * manifest constants VM_FREELIST_* to the free list indices.
606 	 *
607 	 * Initially, the entries of vm_freelist_to_flind[] are set to either
608 	 * 0 or 1 to indicate which free lists should be created.
609 	 */
610 	npages = 0;
611 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
612 		seg = &vm_phys_segs[segind];
613 #ifdef	VM_FREELIST_ISADMA
614 		if (seg->end <= VM_ISADMA_BOUNDARY)
615 			vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
616 		else
617 #endif
618 #ifdef	VM_FREELIST_LOWMEM
619 		if (seg->end <= VM_LOWMEM_BOUNDARY)
620 			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
621 		else
622 #endif
623 #ifdef	VM_FREELIST_DMA32
624 		if (
625 #ifdef	VM_DMA32_NPAGES_THRESHOLD
626 		    /*
627 		     * Create the DMA32 free list only if the amount of
628 		     * physical memory above physical address 4G exceeds the
629 		     * given threshold.
630 		     */
631 		    npages > VM_DMA32_NPAGES_THRESHOLD &&
632 #endif
633 		    seg->end <= VM_DMA32_BOUNDARY)
634 			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
635 		else
636 #endif
637 		{
638 			npages += atop(seg->end - seg->start);
639 			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
640 		}
641 	}
642 	/* Change each entry into a running total of the free lists. */
643 	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
644 		vm_freelist_to_flind[freelist] +=
645 		    vm_freelist_to_flind[freelist - 1];
646 	}
647 	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
648 	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
649 	/* Change each entry into a free list index. */
650 	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
651 		vm_freelist_to_flind[freelist]--;
652 
653 	/*
654 	 * Initialize the first_page and free_queues fields of each physical
655 	 * memory segment.
656 	 */
657 #ifdef VM_PHYSSEG_SPARSE
658 	npages = 0;
659 #endif
660 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
661 		seg = &vm_phys_segs[segind];
662 #ifdef VM_PHYSSEG_SPARSE
663 		seg->first_page = &vm_page_array[npages];
664 		npages += atop(seg->end - seg->start);
665 #else
666 		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
667 #endif
668 #ifdef	VM_FREELIST_ISADMA
669 		if (seg->end <= VM_ISADMA_BOUNDARY) {
670 			flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
671 			KASSERT(flind >= 0,
672 			    ("vm_phys_init: ISADMA flind < 0"));
673 		} else
674 #endif
675 #ifdef	VM_FREELIST_LOWMEM
676 		if (seg->end <= VM_LOWMEM_BOUNDARY) {
677 			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
678 			KASSERT(flind >= 0,
679 			    ("vm_phys_init: LOWMEM flind < 0"));
680 		} else
681 #endif
682 #ifdef	VM_FREELIST_DMA32
683 		if (seg->end <= VM_DMA32_BOUNDARY) {
684 			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
685 			KASSERT(flind >= 0,
686 			    ("vm_phys_init: DMA32 flind < 0"));
687 		} else
688 #endif
689 		{
690 			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
691 			KASSERT(flind >= 0,
692 			    ("vm_phys_init: DEFAULT flind < 0"));
693 		}
694 		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
695 	}
696 
697 	/*
698 	 * Initialize the free queues.
699 	 */
700 	for (dom = 0; dom < vm_ndomains; dom++) {
701 		for (flind = 0; flind < vm_nfreelists; flind++) {
702 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
703 				fl = vm_phys_free_queues[dom][flind][pind];
704 				for (oind = 0; oind < VM_NFREEORDER; oind++)
705 					TAILQ_INIT(&fl[oind].pl);
706 			}
707 		}
708 	}
709 
710 	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
711 }
712 
713 /*
714  * Split a contiguous, power of two-sized set of physical pages.
715  */
716 static __inline void
717 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
718 {
719 	vm_page_t m_buddy;
720 
721 	while (oind > order) {
722 		oind--;
723 		m_buddy = &m[1 << oind];
724 		KASSERT(m_buddy->order == VM_NFREEORDER,
725 		    ("vm_phys_split_pages: page %p has unexpected order %d",
726 		    m_buddy, m_buddy->order));
727 		vm_freelist_add(fl, m_buddy, oind, 0);
728         }
729 }
730 
731 /*
732  * Initialize a physical page and add it to the free lists.
733  */
734 void
735 vm_phys_add_page(vm_paddr_t pa)
736 {
737 	vm_page_t m;
738 	struct vm_domain *vmd;
739 
740 	vm_cnt.v_page_count++;
741 	m = vm_phys_paddr_to_vm_page(pa);
742 	m->busy_lock = VPB_UNBUSIED;
743 	m->phys_addr = pa;
744 	m->queue = PQ_NONE;
745 	m->segind = vm_phys_paddr_to_segind(pa);
746 	vmd = vm_phys_domain(m);
747 	vmd->vmd_page_count++;
748 	vmd->vmd_segs |= 1UL << m->segind;
749 	KASSERT(m->order == VM_NFREEORDER,
750 	    ("vm_phys_add_page: page %p has unexpected order %d",
751 	    m, m->order));
752 	m->pool = VM_FREEPOOL_DEFAULT;
753 	pmap_page_init(m);
754 	mtx_lock(&vm_page_queue_free_mtx);
755 	vm_phys_freecnt_adj(m, 1);
756 	vm_phys_free_pages(m, 0);
757 	mtx_unlock(&vm_page_queue_free_mtx);
758 }
759 
760 /*
761  * Allocate a contiguous, power of two-sized set of physical pages
762  * from the free lists.
763  *
764  * The free page queues must be locked.
765  */
766 vm_page_t
767 vm_phys_alloc_pages(int pool, int order)
768 {
769 	vm_page_t m;
770 	int domain, flind;
771 	struct vm_domain_iterator vi;
772 
773 	KASSERT(pool < VM_NFREEPOOL,
774 	    ("vm_phys_alloc_pages: pool %d is out of range", pool));
775 	KASSERT(order < VM_NFREEORDER,
776 	    ("vm_phys_alloc_pages: order %d is out of range", order));
777 
778 	vm_policy_iterator_init(&vi);
779 
780 	while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
781 		for (flind = 0; flind < vm_nfreelists; flind++) {
782 			m = vm_phys_alloc_domain_pages(domain, flind, pool,
783 			    order);
784 			if (m != NULL)
785 				return (m);
786 		}
787 	}
788 
789 	vm_policy_iterator_finish(&vi);
790 	return (NULL);
791 }
792 
793 /*
794  * Allocate a contiguous, power of two-sized set of physical pages from the
795  * specified free list.  The free list must be specified using one of the
796  * manifest constants VM_FREELIST_*.
797  *
798  * The free page queues must be locked.
799  */
800 vm_page_t
801 vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
802 {
803 	vm_page_t m;
804 	struct vm_domain_iterator vi;
805 	int domain;
806 
807 	KASSERT(freelist < VM_NFREELIST,
808 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
809 	    freelist));
810 	KASSERT(pool < VM_NFREEPOOL,
811 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
812 	KASSERT(order < VM_NFREEORDER,
813 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
814 
815 	vm_policy_iterator_init(&vi);
816 
817 	while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
818 		m = vm_phys_alloc_domain_pages(domain,
819 		    vm_freelist_to_flind[freelist], pool, order);
820 		if (m != NULL)
821 			return (m);
822 	}
823 
824 	vm_policy_iterator_finish(&vi);
825 	return (NULL);
826 }
827 
828 static vm_page_t
829 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
830 {
831 	struct vm_freelist *fl;
832 	struct vm_freelist *alt;
833 	int oind, pind;
834 	vm_page_t m;
835 
836 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
837 	fl = &vm_phys_free_queues[domain][flind][pool][0];
838 	for (oind = order; oind < VM_NFREEORDER; oind++) {
839 		m = TAILQ_FIRST(&fl[oind].pl);
840 		if (m != NULL) {
841 			vm_freelist_rem(fl, m, oind);
842 			vm_phys_split_pages(m, oind, fl, order);
843 			return (m);
844 		}
845 	}
846 
847 	/*
848 	 * The given pool was empty.  Find the largest
849 	 * contiguous, power-of-two-sized set of pages in any
850 	 * pool.  Transfer these pages to the given pool, and
851 	 * use them to satisfy the allocation.
852 	 */
853 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
854 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
855 			alt = &vm_phys_free_queues[domain][flind][pind][0];
856 			m = TAILQ_FIRST(&alt[oind].pl);
857 			if (m != NULL) {
858 				vm_freelist_rem(alt, m, oind);
859 				vm_phys_set_pool(pool, m, oind);
860 				vm_phys_split_pages(m, oind, fl, order);
861 				return (m);
862 			}
863 		}
864 	}
865 	return (NULL);
866 }
867 
868 /*
869  * Find the vm_page corresponding to the given physical address.
870  */
871 vm_page_t
872 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
873 {
874 	struct vm_phys_seg *seg;
875 	int segind;
876 
877 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
878 		seg = &vm_phys_segs[segind];
879 		if (pa >= seg->start && pa < seg->end)
880 			return (&seg->first_page[atop(pa - seg->start)]);
881 	}
882 	return (NULL);
883 }
884 
885 vm_page_t
886 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
887 {
888 	struct vm_phys_fictitious_seg tmp, *seg;
889 	vm_page_t m;
890 
891 	m = NULL;
892 	tmp.start = pa;
893 	tmp.end = 0;
894 
895 	rw_rlock(&vm_phys_fictitious_reg_lock);
896 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
897 	rw_runlock(&vm_phys_fictitious_reg_lock);
898 	if (seg == NULL)
899 		return (NULL);
900 
901 	m = &seg->first_page[atop(pa - seg->start)];
902 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
903 
904 	return (m);
905 }
906 
907 static inline void
908 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
909     long page_count, vm_memattr_t memattr)
910 {
911 	long i;
912 
913 	for (i = 0; i < page_count; i++) {
914 		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
915 		range[i].oflags &= ~VPO_UNMANAGED;
916 		range[i].busy_lock = VPB_UNBUSIED;
917 	}
918 }
919 
920 int
921 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
922     vm_memattr_t memattr)
923 {
924 	struct vm_phys_fictitious_seg *seg;
925 	vm_page_t fp;
926 	long page_count;
927 #ifdef VM_PHYSSEG_DENSE
928 	long pi, pe;
929 	long dpage_count;
930 #endif
931 
932 	KASSERT(start < end,
933 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
934 	    (uintmax_t)start, (uintmax_t)end));
935 
936 	page_count = (end - start) / PAGE_SIZE;
937 
938 #ifdef VM_PHYSSEG_DENSE
939 	pi = atop(start);
940 	pe = atop(end);
941 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
942 		fp = &vm_page_array[pi - first_page];
943 		if ((pe - first_page) > vm_page_array_size) {
944 			/*
945 			 * We have a segment that starts inside
946 			 * of vm_page_array, but ends outside of it.
947 			 *
948 			 * Use vm_page_array pages for those that are
949 			 * inside of the vm_page_array range, and
950 			 * allocate the remaining ones.
951 			 */
952 			dpage_count = vm_page_array_size - (pi - first_page);
953 			vm_phys_fictitious_init_range(fp, start, dpage_count,
954 			    memattr);
955 			page_count -= dpage_count;
956 			start += ptoa(dpage_count);
957 			goto alloc;
958 		}
959 		/*
960 		 * We can allocate the full range from vm_page_array,
961 		 * so there's no need to register the range in the tree.
962 		 */
963 		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
964 		return (0);
965 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
966 		/*
967 		 * We have a segment that ends inside of vm_page_array,
968 		 * but starts outside of it.
969 		 */
970 		fp = &vm_page_array[0];
971 		dpage_count = pe - first_page;
972 		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
973 		    memattr);
974 		end -= ptoa(dpage_count);
975 		page_count -= dpage_count;
976 		goto alloc;
977 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
978 		/*
979 		 * Trying to register a fictitious range that expands before
980 		 * and after vm_page_array.
981 		 */
982 		return (EINVAL);
983 	} else {
984 alloc:
985 #endif
986 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
987 		    M_WAITOK | M_ZERO);
988 #ifdef VM_PHYSSEG_DENSE
989 	}
990 #endif
991 	vm_phys_fictitious_init_range(fp, start, page_count, memattr);
992 
993 	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
994 	seg->start = start;
995 	seg->end = end;
996 	seg->first_page = fp;
997 
998 	rw_wlock(&vm_phys_fictitious_reg_lock);
999 	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1000 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1001 
1002 	return (0);
1003 }
1004 
1005 void
1006 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1007 {
1008 	struct vm_phys_fictitious_seg *seg, tmp;
1009 #ifdef VM_PHYSSEG_DENSE
1010 	long pi, pe;
1011 #endif
1012 
1013 	KASSERT(start < end,
1014 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
1015 	    (uintmax_t)start, (uintmax_t)end));
1016 
1017 #ifdef VM_PHYSSEG_DENSE
1018 	pi = atop(start);
1019 	pe = atop(end);
1020 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1021 		if ((pe - first_page) <= vm_page_array_size) {
1022 			/*
1023 			 * This segment was allocated using vm_page_array
1024 			 * only, there's nothing to do since those pages
1025 			 * were never added to the tree.
1026 			 */
1027 			return;
1028 		}
1029 		/*
1030 		 * We have a segment that starts inside
1031 		 * of vm_page_array, but ends outside of it.
1032 		 *
1033 		 * Calculate how many pages were added to the
1034 		 * tree and free them.
1035 		 */
1036 		start = ptoa(first_page + vm_page_array_size);
1037 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1038 		/*
1039 		 * We have a segment that ends inside of vm_page_array,
1040 		 * but starts outside of it.
1041 		 */
1042 		end = ptoa(first_page);
1043 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1044 		/* Since it's not possible to register such a range, panic. */
1045 		panic(
1046 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1047 		    (uintmax_t)start, (uintmax_t)end);
1048 	}
1049 #endif
1050 	tmp.start = start;
1051 	tmp.end = 0;
1052 
1053 	rw_wlock(&vm_phys_fictitious_reg_lock);
1054 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1055 	if (seg->start != start || seg->end != end) {
1056 		rw_wunlock(&vm_phys_fictitious_reg_lock);
1057 		panic(
1058 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1059 		    (uintmax_t)start, (uintmax_t)end);
1060 	}
1061 	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1062 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1063 	free(seg->first_page, M_FICT_PAGES);
1064 	free(seg, M_FICT_PAGES);
1065 }
1066 
1067 /*
1068  * Find the segment containing the given physical address.
1069  */
1070 static int
1071 vm_phys_paddr_to_segind(vm_paddr_t pa)
1072 {
1073 	struct vm_phys_seg *seg;
1074 	int segind;
1075 
1076 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1077 		seg = &vm_phys_segs[segind];
1078 		if (pa >= seg->start && pa < seg->end)
1079 			return (segind);
1080 	}
1081 	panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
1082 	    (uintmax_t)pa);
1083 }
1084 
1085 /*
1086  * Free a contiguous, power of two-sized set of physical pages.
1087  *
1088  * The free page queues must be locked.
1089  */
1090 void
1091 vm_phys_free_pages(vm_page_t m, int order)
1092 {
1093 	struct vm_freelist *fl;
1094 	struct vm_phys_seg *seg;
1095 	vm_paddr_t pa;
1096 	vm_page_t m_buddy;
1097 
1098 	KASSERT(m->order == VM_NFREEORDER,
1099 	    ("vm_phys_free_pages: page %p has unexpected order %d",
1100 	    m, m->order));
1101 	KASSERT(m->pool < VM_NFREEPOOL,
1102 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
1103 	    m, m->pool));
1104 	KASSERT(order < VM_NFREEORDER,
1105 	    ("vm_phys_free_pages: order %d is out of range", order));
1106 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1107 	seg = &vm_phys_segs[m->segind];
1108 	if (order < VM_NFREEORDER - 1) {
1109 		pa = VM_PAGE_TO_PHYS(m);
1110 		do {
1111 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1112 			if (pa < seg->start || pa >= seg->end)
1113 				break;
1114 			m_buddy = &seg->first_page[atop(pa - seg->start)];
1115 			if (m_buddy->order != order)
1116 				break;
1117 			fl = (*seg->free_queues)[m_buddy->pool];
1118 			vm_freelist_rem(fl, m_buddy, order);
1119 			if (m_buddy->pool != m->pool)
1120 				vm_phys_set_pool(m->pool, m_buddy, order);
1121 			order++;
1122 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1123 			m = &seg->first_page[atop(pa - seg->start)];
1124 		} while (order < VM_NFREEORDER - 1);
1125 	}
1126 	fl = (*seg->free_queues)[m->pool];
1127 	vm_freelist_add(fl, m, order, 1);
1128 }
1129 
1130 /*
1131  * Free a contiguous, arbitrarily sized set of physical pages.
1132  *
1133  * The free page queues must be locked.
1134  */
1135 void
1136 vm_phys_free_contig(vm_page_t m, u_long npages)
1137 {
1138 	u_int n;
1139 	int order;
1140 
1141 	/*
1142 	 * Avoid unnecessary coalescing by freeing the pages in the largest
1143 	 * possible power-of-two-sized subsets.
1144 	 */
1145 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1146 	for (;; npages -= n) {
1147 		/*
1148 		 * Unsigned "min" is used here so that "order" is assigned
1149 		 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1150 		 * or the low-order bits of its physical address are zero
1151 		 * because the size of a physical address exceeds the size of
1152 		 * a long.
1153 		 */
1154 		order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1155 		    VM_NFREEORDER - 1);
1156 		n = 1 << order;
1157 		if (npages < n)
1158 			break;
1159 		vm_phys_free_pages(m, order);
1160 		m += n;
1161 	}
1162 	/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
1163 	for (; npages > 0; npages -= n) {
1164 		order = flsl(npages) - 1;
1165 		n = 1 << order;
1166 		vm_phys_free_pages(m, order);
1167 		m += n;
1168 	}
1169 }
1170 
1171 /*
1172  * Scan physical memory between the specified addresses "low" and "high" for a
1173  * run of contiguous physical pages that satisfy the specified conditions, and
1174  * return the lowest page in the run.  The specified "alignment" determines
1175  * the alignment of the lowest physical page in the run.  If the specified
1176  * "boundary" is non-zero, then the run of physical pages cannot span a
1177  * physical address that is a multiple of "boundary".
1178  *
1179  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
1180  * be a power of two.
1181  */
1182 vm_page_t
1183 vm_phys_scan_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1184     u_long alignment, vm_paddr_t boundary, int options)
1185 {
1186 	vm_paddr_t pa_end;
1187 	vm_page_t m_end, m_run, m_start;
1188 	struct vm_phys_seg *seg;
1189 	int segind;
1190 
1191 	KASSERT(npages > 0, ("npages is 0"));
1192 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1193 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1194 	if (low >= high)
1195 		return (NULL);
1196 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1197 		seg = &vm_phys_segs[segind];
1198 		if (seg->start >= high)
1199 			break;
1200 		if (low >= seg->end)
1201 			continue;
1202 		if (low <= seg->start)
1203 			m_start = seg->first_page;
1204 		else
1205 			m_start = &seg->first_page[atop(low - seg->start)];
1206 		if (high < seg->end)
1207 			pa_end = high;
1208 		else
1209 			pa_end = seg->end;
1210 		if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1211 			continue;
1212 		m_end = &seg->first_page[atop(pa_end - seg->start)];
1213 		m_run = vm_page_scan_contig(npages, m_start, m_end,
1214 		    alignment, boundary, options);
1215 		if (m_run != NULL)
1216 			return (m_run);
1217 	}
1218 	return (NULL);
1219 }
1220 
1221 /*
1222  * Set the pool for a contiguous, power of two-sized set of physical pages.
1223  */
1224 void
1225 vm_phys_set_pool(int pool, vm_page_t m, int order)
1226 {
1227 	vm_page_t m_tmp;
1228 
1229 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1230 		m_tmp->pool = pool;
1231 }
1232 
1233 /*
1234  * Search for the given physical page "m" in the free lists.  If the search
1235  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1236  * FALSE, indicating that "m" is not in the free lists.
1237  *
1238  * The free page queues must be locked.
1239  */
1240 boolean_t
1241 vm_phys_unfree_page(vm_page_t m)
1242 {
1243 	struct vm_freelist *fl;
1244 	struct vm_phys_seg *seg;
1245 	vm_paddr_t pa, pa_half;
1246 	vm_page_t m_set, m_tmp;
1247 	int order;
1248 
1249 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1250 
1251 	/*
1252 	 * First, find the contiguous, power of two-sized set of free
1253 	 * physical pages containing the given physical page "m" and
1254 	 * assign it to "m_set".
1255 	 */
1256 	seg = &vm_phys_segs[m->segind];
1257 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1258 	    order < VM_NFREEORDER - 1; ) {
1259 		order++;
1260 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1261 		if (pa >= seg->start)
1262 			m_set = &seg->first_page[atop(pa - seg->start)];
1263 		else
1264 			return (FALSE);
1265 	}
1266 	if (m_set->order < order)
1267 		return (FALSE);
1268 	if (m_set->order == VM_NFREEORDER)
1269 		return (FALSE);
1270 	KASSERT(m_set->order < VM_NFREEORDER,
1271 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
1272 	    m_set, m_set->order));
1273 
1274 	/*
1275 	 * Next, remove "m_set" from the free lists.  Finally, extract
1276 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
1277 	 * is larger than a page, shrink "m_set" by returning the half
1278 	 * of "m_set" that does not contain "m" to the free lists.
1279 	 */
1280 	fl = (*seg->free_queues)[m_set->pool];
1281 	order = m_set->order;
1282 	vm_freelist_rem(fl, m_set, order);
1283 	while (order > 0) {
1284 		order--;
1285 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1286 		if (m->phys_addr < pa_half)
1287 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1288 		else {
1289 			m_tmp = m_set;
1290 			m_set = &seg->first_page[atop(pa_half - seg->start)];
1291 		}
1292 		vm_freelist_add(fl, m_tmp, order, 0);
1293 	}
1294 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1295 	return (TRUE);
1296 }
1297 
1298 /*
1299  * Allocate a contiguous set of physical pages of the given size
1300  * "npages" from the free lists.  All of the physical pages must be at
1301  * or above the given physical address "low" and below the given
1302  * physical address "high".  The given value "alignment" determines the
1303  * alignment of the first physical page in the set.  If the given value
1304  * "boundary" is non-zero, then the set of physical pages cannot cross
1305  * any physical address boundary that is a multiple of that value.  Both
1306  * "alignment" and "boundary" must be a power of two.
1307  */
1308 vm_page_t
1309 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1310     u_long alignment, vm_paddr_t boundary)
1311 {
1312 	vm_paddr_t pa_end, pa_start;
1313 	vm_page_t m_run;
1314 	struct vm_domain_iterator vi;
1315 	struct vm_phys_seg *seg;
1316 	int domain, segind;
1317 
1318 	KASSERT(npages > 0, ("npages is 0"));
1319 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1320 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1321 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1322 	if (low >= high)
1323 		return (NULL);
1324 	vm_policy_iterator_init(&vi);
1325 restartdom:
1326 	if (vm_domain_iterator_run(&vi, &domain) != 0) {
1327 		vm_policy_iterator_finish(&vi);
1328 		return (NULL);
1329 	}
1330 	m_run = NULL;
1331 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1332 		seg = &vm_phys_segs[segind];
1333 		if (seg->start >= high || seg->domain != domain)
1334 			continue;
1335 		if (low >= seg->end)
1336 			break;
1337 		if (low <= seg->start)
1338 			pa_start = seg->start;
1339 		else
1340 			pa_start = low;
1341 		if (high < seg->end)
1342 			pa_end = high;
1343 		else
1344 			pa_end = seg->end;
1345 		if (pa_end - pa_start < ptoa(npages))
1346 			continue;
1347 		m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1348 		    alignment, boundary);
1349 		if (m_run != NULL)
1350 			break;
1351 	}
1352 	if (m_run == NULL && !vm_domain_iterator_isdone(&vi))
1353 		goto restartdom;
1354 	vm_policy_iterator_finish(&vi);
1355 	return (m_run);
1356 }
1357 
1358 /*
1359  * Allocate a run of contiguous physical pages from the free list for the
1360  * specified segment.
1361  */
1362 static vm_page_t
1363 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1364     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1365 {
1366 	struct vm_freelist *fl;
1367 	vm_paddr_t pa, pa_end, size;
1368 	vm_page_t m, m_ret;
1369 	u_long npages_end;
1370 	int oind, order, pind;
1371 
1372 	KASSERT(npages > 0, ("npages is 0"));
1373 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1374 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1375 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1376 	/* Compute the queue that is the best fit for npages. */
1377 	for (order = 0; (1 << order) < npages; order++);
1378 	/* Search for a run satisfying the specified conditions. */
1379 	size = npages << PAGE_SHIFT;
1380 	for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1381 	    oind++) {
1382 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1383 			fl = (*seg->free_queues)[pind];
1384 			TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1385 				/*
1386 				 * Is the size of this allocation request
1387 				 * larger than the largest block size?
1388 				 */
1389 				if (order >= VM_NFREEORDER) {
1390 					/*
1391 					 * Determine if a sufficient number of
1392 					 * subsequent blocks to satisfy the
1393 					 * allocation request are free.
1394 					 */
1395 					pa = VM_PAGE_TO_PHYS(m_ret);
1396 					pa_end = pa + size;
1397 					for (;;) {
1398 						pa += 1 << (PAGE_SHIFT +
1399 						    VM_NFREEORDER - 1);
1400 						if (pa >= pa_end ||
1401 						    pa < seg->start ||
1402 						    pa >= seg->end)
1403 							break;
1404 						m = &seg->first_page[atop(pa -
1405 						    seg->start)];
1406 						if (m->order != VM_NFREEORDER -
1407 						    1)
1408 							break;
1409 					}
1410 					/* If not, go to the next block. */
1411 					if (pa < pa_end)
1412 						continue;
1413 				}
1414 
1415 				/*
1416 				 * Determine if the blocks are within the
1417 				 * given range, satisfy the given alignment,
1418 				 * and do not cross the given boundary.
1419 				 */
1420 				pa = VM_PAGE_TO_PHYS(m_ret);
1421 				pa_end = pa + size;
1422 				if (pa >= low && pa_end <= high &&
1423 				    (pa & (alignment - 1)) == 0 &&
1424 				    rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1425 					goto done;
1426 			}
1427 		}
1428 	}
1429 	return (NULL);
1430 done:
1431 	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1432 		fl = (*seg->free_queues)[m->pool];
1433 		vm_freelist_rem(fl, m, m->order);
1434 	}
1435 	if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1436 		vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1437 	fl = (*seg->free_queues)[m_ret->pool];
1438 	vm_phys_split_pages(m_ret, oind, fl, order);
1439 	/* Return excess pages to the free lists. */
1440 	npages_end = roundup2(npages, 1 << imin(oind, order));
1441 	if (npages < npages_end)
1442 		vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1443 	return (m_ret);
1444 }
1445 
1446 #ifdef DDB
1447 /*
1448  * Show the number of physical pages in each of the free lists.
1449  */
1450 DB_SHOW_COMMAND(freepages, db_show_freepages)
1451 {
1452 	struct vm_freelist *fl;
1453 	int flind, oind, pind, dom;
1454 
1455 	for (dom = 0; dom < vm_ndomains; dom++) {
1456 		db_printf("DOMAIN: %d\n", dom);
1457 		for (flind = 0; flind < vm_nfreelists; flind++) {
1458 			db_printf("FREE LIST %d:\n"
1459 			    "\n  ORDER (SIZE)  |  NUMBER"
1460 			    "\n              ", flind);
1461 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1462 				db_printf("  |  POOL %d", pind);
1463 			db_printf("\n--            ");
1464 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1465 				db_printf("-- --      ");
1466 			db_printf("--\n");
1467 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1468 				db_printf("  %2.2d (%6.6dK)", oind,
1469 				    1 << (PAGE_SHIFT - 10 + oind));
1470 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1471 				fl = vm_phys_free_queues[dom][flind][pind];
1472 					db_printf("  |  %6.6d", fl[oind].lcnt);
1473 				}
1474 				db_printf("\n");
1475 			}
1476 			db_printf("\n");
1477 		}
1478 		db_printf("\n");
1479 	}
1480 }
1481 #endif
1482