xref: /freebsd/sys/vm/vm_phys.c (revision ec0e626bafb335b30c499d06066997f54b10c092)
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *	Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/rwlock.h>
56 #include <sys/sbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/tree.h>
59 #include <sys/vmmeter.h>
60 
61 #include <ddb/ddb.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_phys.h>
69 
70 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
71     "Too many physsegs.");
72 
73 struct mem_affinity *mem_affinity;
74 
75 int vm_ndomains = 1;
76 
77 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
78 int vm_phys_nsegs;
79 
80 struct vm_phys_fictitious_seg;
81 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
82     struct vm_phys_fictitious_seg *);
83 
84 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
85     RB_INITIALIZER(_vm_phys_fictitious_tree);
86 
87 struct vm_phys_fictitious_seg {
88 	RB_ENTRY(vm_phys_fictitious_seg) node;
89 	/* Memory region data */
90 	vm_paddr_t	start;
91 	vm_paddr_t	end;
92 	vm_page_t	first_page;
93 };
94 
95 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
96     vm_phys_fictitious_cmp);
97 
98 static struct rwlock vm_phys_fictitious_reg_lock;
99 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
100 
101 static struct vm_freelist
102     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
103 
104 static int vm_nfreelists;
105 
106 /*
107  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
108  */
109 static int vm_freelist_to_flind[VM_NFREELIST];
110 
111 CTASSERT(VM_FREELIST_DEFAULT == 0);
112 
113 #ifdef VM_FREELIST_ISADMA
114 #define	VM_ISADMA_BOUNDARY	16777216
115 #endif
116 #ifdef VM_FREELIST_DMA32
117 #define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
118 #endif
119 
120 /*
121  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
122  * the ordering of the free list boundaries.
123  */
124 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
125 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
126 #endif
127 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
128 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
129 #endif
130 
131 static int cnt_prezero;
132 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
133     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
134 
135 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
136 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
137     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
138 
139 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
140 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
141     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
142 
143 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
144     &vm_ndomains, 0, "Number of physical memory domains available.");
145 
146 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
147     int order);
148 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
149 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
150 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
151 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
152     int order);
153 
154 /*
155  * Red-black tree helpers for vm fictitious range management.
156  */
157 static inline int
158 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
159     struct vm_phys_fictitious_seg *range)
160 {
161 
162 	KASSERT(range->start != 0 && range->end != 0,
163 	    ("Invalid range passed on search for vm_fictitious page"));
164 	if (p->start >= range->end)
165 		return (1);
166 	if (p->start < range->start)
167 		return (-1);
168 
169 	return (0);
170 }
171 
172 static int
173 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
174     struct vm_phys_fictitious_seg *p2)
175 {
176 
177 	/* Check if this is a search for a page */
178 	if (p1->end == 0)
179 		return (vm_phys_fictitious_in_range(p1, p2));
180 
181 	KASSERT(p2->end != 0,
182     ("Invalid range passed as second parameter to vm fictitious comparison"));
183 
184 	/* Searching to add a new range */
185 	if (p1->end <= p2->start)
186 		return (-1);
187 	if (p1->start >= p2->end)
188 		return (1);
189 
190 	panic("Trying to add overlapping vm fictitious ranges:\n"
191 	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
192 	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
193 }
194 
195 static __inline int
196 vm_rr_selectdomain(void)
197 {
198 #if MAXMEMDOM > 1
199 	struct thread *td;
200 
201 	td = curthread;
202 
203 	td->td_dom_rr_idx++;
204 	td->td_dom_rr_idx %= vm_ndomains;
205 	return (td->td_dom_rr_idx);
206 #else
207 	return (0);
208 #endif
209 }
210 
211 boolean_t
212 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
213 {
214 	struct vm_phys_seg *s;
215 	int idx;
216 
217 	while ((idx = ffsl(mask)) != 0) {
218 		idx--;	/* ffsl counts from 1 */
219 		mask &= ~(1UL << idx);
220 		s = &vm_phys_segs[idx];
221 		if (low < s->end && high > s->start)
222 			return (TRUE);
223 	}
224 	return (FALSE);
225 }
226 
227 /*
228  * Outputs the state of the physical memory allocator, specifically,
229  * the amount of physical memory in each free list.
230  */
231 static int
232 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
233 {
234 	struct sbuf sbuf;
235 	struct vm_freelist *fl;
236 	int dom, error, flind, oind, pind;
237 
238 	error = sysctl_wire_old_buffer(req, 0);
239 	if (error != 0)
240 		return (error);
241 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
242 	for (dom = 0; dom < vm_ndomains; dom++) {
243 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
244 		for (flind = 0; flind < vm_nfreelists; flind++) {
245 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
246 			    "\n  ORDER (SIZE)  |  NUMBER"
247 			    "\n              ", flind);
248 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
249 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
250 			sbuf_printf(&sbuf, "\n--            ");
251 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
252 				sbuf_printf(&sbuf, "-- --      ");
253 			sbuf_printf(&sbuf, "--\n");
254 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
255 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
256 				    1 << (PAGE_SHIFT - 10 + oind));
257 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
258 				fl = vm_phys_free_queues[dom][flind][pind];
259 					sbuf_printf(&sbuf, "  |  %6d",
260 					    fl[oind].lcnt);
261 				}
262 				sbuf_printf(&sbuf, "\n");
263 			}
264 		}
265 	}
266 	error = sbuf_finish(&sbuf);
267 	sbuf_delete(&sbuf);
268 	return (error);
269 }
270 
271 /*
272  * Outputs the set of physical memory segments.
273  */
274 static int
275 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
276 {
277 	struct sbuf sbuf;
278 	struct vm_phys_seg *seg;
279 	int error, segind;
280 
281 	error = sysctl_wire_old_buffer(req, 0);
282 	if (error != 0)
283 		return (error);
284 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
285 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
286 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
287 		seg = &vm_phys_segs[segind];
288 		sbuf_printf(&sbuf, "start:     %#jx\n",
289 		    (uintmax_t)seg->start);
290 		sbuf_printf(&sbuf, "end:       %#jx\n",
291 		    (uintmax_t)seg->end);
292 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
293 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
294 	}
295 	error = sbuf_finish(&sbuf);
296 	sbuf_delete(&sbuf);
297 	return (error);
298 }
299 
300 static void
301 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
302 {
303 
304 	m->order = order;
305 	if (tail)
306 		TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
307 	else
308 		TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
309 	fl[order].lcnt++;
310 }
311 
312 static void
313 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
314 {
315 
316 	TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
317 	fl[order].lcnt--;
318 	m->order = VM_NFREEORDER;
319 }
320 
321 /*
322  * Create a physical memory segment.
323  */
324 static void
325 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
326 {
327 	struct vm_phys_seg *seg;
328 
329 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
330 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
331 	KASSERT(domain < vm_ndomains,
332 	    ("vm_phys_create_seg: invalid domain provided"));
333 	seg = &vm_phys_segs[vm_phys_nsegs++];
334 	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
335 		*seg = *(seg - 1);
336 		seg--;
337 	}
338 	seg->start = start;
339 	seg->end = end;
340 	seg->domain = domain;
341 }
342 
343 static void
344 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
345 {
346 	int i;
347 
348 	if (mem_affinity == NULL) {
349 		_vm_phys_create_seg(start, end, 0);
350 		return;
351 	}
352 
353 	for (i = 0;; i++) {
354 		if (mem_affinity[i].end == 0)
355 			panic("Reached end of affinity info");
356 		if (mem_affinity[i].end <= start)
357 			continue;
358 		if (mem_affinity[i].start > start)
359 			panic("No affinity info for start %jx",
360 			    (uintmax_t)start);
361 		if (mem_affinity[i].end >= end) {
362 			_vm_phys_create_seg(start, end,
363 			    mem_affinity[i].domain);
364 			break;
365 		}
366 		_vm_phys_create_seg(start, mem_affinity[i].end,
367 		    mem_affinity[i].domain);
368 		start = mem_affinity[i].end;
369 	}
370 }
371 
372 /*
373  * Add a physical memory segment.
374  */
375 void
376 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
377 {
378 	vm_paddr_t paddr;
379 
380 	KASSERT((start & PAGE_MASK) == 0,
381 	    ("vm_phys_define_seg: start is not page aligned"));
382 	KASSERT((end & PAGE_MASK) == 0,
383 	    ("vm_phys_define_seg: end is not page aligned"));
384 
385 	/*
386 	 * Split the physical memory segment if it spans two or more free
387 	 * list boundaries.
388 	 */
389 	paddr = start;
390 #ifdef	VM_FREELIST_ISADMA
391 	if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
392 		vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
393 		paddr = VM_ISADMA_BOUNDARY;
394 	}
395 #endif
396 #ifdef	VM_FREELIST_LOWMEM
397 	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
398 		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
399 		paddr = VM_LOWMEM_BOUNDARY;
400 	}
401 #endif
402 #ifdef	VM_FREELIST_DMA32
403 	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
404 		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
405 		paddr = VM_DMA32_BOUNDARY;
406 	}
407 #endif
408 	vm_phys_create_seg(paddr, end);
409 }
410 
411 /*
412  * Initialize the physical memory allocator.
413  *
414  * Requires that vm_page_array is initialized!
415  */
416 void
417 vm_phys_init(void)
418 {
419 	struct vm_freelist *fl;
420 	struct vm_phys_seg *seg;
421 	u_long npages;
422 	int dom, flind, freelist, oind, pind, segind;
423 
424 	/*
425 	 * Compute the number of free lists, and generate the mapping from the
426 	 * manifest constants VM_FREELIST_* to the free list indices.
427 	 *
428 	 * Initially, the entries of vm_freelist_to_flind[] are set to either
429 	 * 0 or 1 to indicate which free lists should be created.
430 	 */
431 	npages = 0;
432 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
433 		seg = &vm_phys_segs[segind];
434 #ifdef	VM_FREELIST_ISADMA
435 		if (seg->end <= VM_ISADMA_BOUNDARY)
436 			vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
437 		else
438 #endif
439 #ifdef	VM_FREELIST_LOWMEM
440 		if (seg->end <= VM_LOWMEM_BOUNDARY)
441 			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
442 		else
443 #endif
444 #ifdef	VM_FREELIST_DMA32
445 		if (
446 #ifdef	VM_DMA32_NPAGES_THRESHOLD
447 		    /*
448 		     * Create the DMA32 free list only if the amount of
449 		     * physical memory above physical address 4G exceeds the
450 		     * given threshold.
451 		     */
452 		    npages > VM_DMA32_NPAGES_THRESHOLD &&
453 #endif
454 		    seg->end <= VM_DMA32_BOUNDARY)
455 			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
456 		else
457 #endif
458 		{
459 			npages += atop(seg->end - seg->start);
460 			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
461 		}
462 	}
463 	/* Change each entry into a running total of the free lists. */
464 	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
465 		vm_freelist_to_flind[freelist] +=
466 		    vm_freelist_to_flind[freelist - 1];
467 	}
468 	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
469 	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
470 	/* Change each entry into a free list index. */
471 	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
472 		vm_freelist_to_flind[freelist]--;
473 
474 	/*
475 	 * Initialize the first_page and free_queues fields of each physical
476 	 * memory segment.
477 	 */
478 #ifdef VM_PHYSSEG_SPARSE
479 	npages = 0;
480 #endif
481 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
482 		seg = &vm_phys_segs[segind];
483 #ifdef VM_PHYSSEG_SPARSE
484 		seg->first_page = &vm_page_array[npages];
485 		npages += atop(seg->end - seg->start);
486 #else
487 		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
488 #endif
489 #ifdef	VM_FREELIST_ISADMA
490 		if (seg->end <= VM_ISADMA_BOUNDARY) {
491 			flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
492 			KASSERT(flind >= 0,
493 			    ("vm_phys_init: ISADMA flind < 0"));
494 		} else
495 #endif
496 #ifdef	VM_FREELIST_LOWMEM
497 		if (seg->end <= VM_LOWMEM_BOUNDARY) {
498 			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
499 			KASSERT(flind >= 0,
500 			    ("vm_phys_init: LOWMEM flind < 0"));
501 		} else
502 #endif
503 #ifdef	VM_FREELIST_DMA32
504 		if (seg->end <= VM_DMA32_BOUNDARY) {
505 			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
506 			KASSERT(flind >= 0,
507 			    ("vm_phys_init: DMA32 flind < 0"));
508 		} else
509 #endif
510 		{
511 			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
512 			KASSERT(flind >= 0,
513 			    ("vm_phys_init: DEFAULT flind < 0"));
514 		}
515 		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
516 	}
517 
518 	/*
519 	 * Initialize the free queues.
520 	 */
521 	for (dom = 0; dom < vm_ndomains; dom++) {
522 		for (flind = 0; flind < vm_nfreelists; flind++) {
523 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
524 				fl = vm_phys_free_queues[dom][flind][pind];
525 				for (oind = 0; oind < VM_NFREEORDER; oind++)
526 					TAILQ_INIT(&fl[oind].pl);
527 			}
528 		}
529 	}
530 
531 	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
532 }
533 
534 /*
535  * Split a contiguous, power of two-sized set of physical pages.
536  */
537 static __inline void
538 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
539 {
540 	vm_page_t m_buddy;
541 
542 	while (oind > order) {
543 		oind--;
544 		m_buddy = &m[1 << oind];
545 		KASSERT(m_buddy->order == VM_NFREEORDER,
546 		    ("vm_phys_split_pages: page %p has unexpected order %d",
547 		    m_buddy, m_buddy->order));
548 		vm_freelist_add(fl, m_buddy, oind, 0);
549         }
550 }
551 
552 /*
553  * Initialize a physical page and add it to the free lists.
554  */
555 void
556 vm_phys_add_page(vm_paddr_t pa)
557 {
558 	vm_page_t m;
559 	struct vm_domain *vmd;
560 
561 	vm_cnt.v_page_count++;
562 	m = vm_phys_paddr_to_vm_page(pa);
563 	m->phys_addr = pa;
564 	m->queue = PQ_NONE;
565 	m->segind = vm_phys_paddr_to_segind(pa);
566 	vmd = vm_phys_domain(m);
567 	vmd->vmd_page_count++;
568 	vmd->vmd_segs |= 1UL << m->segind;
569 	KASSERT(m->order == VM_NFREEORDER,
570 	    ("vm_phys_add_page: page %p has unexpected order %d",
571 	    m, m->order));
572 	m->pool = VM_FREEPOOL_DEFAULT;
573 	pmap_page_init(m);
574 	mtx_lock(&vm_page_queue_free_mtx);
575 	vm_phys_freecnt_adj(m, 1);
576 	vm_phys_free_pages(m, 0);
577 	mtx_unlock(&vm_page_queue_free_mtx);
578 }
579 
580 /*
581  * Allocate a contiguous, power of two-sized set of physical pages
582  * from the free lists.
583  *
584  * The free page queues must be locked.
585  */
586 vm_page_t
587 vm_phys_alloc_pages(int pool, int order)
588 {
589 	vm_page_t m;
590 	int dom, domain, flind;
591 
592 	KASSERT(pool < VM_NFREEPOOL,
593 	    ("vm_phys_alloc_pages: pool %d is out of range", pool));
594 	KASSERT(order < VM_NFREEORDER,
595 	    ("vm_phys_alloc_pages: order %d is out of range", order));
596 
597 	for (dom = 0; dom < vm_ndomains; dom++) {
598 		domain = vm_rr_selectdomain();
599 		for (flind = 0; flind < vm_nfreelists; flind++) {
600 			m = vm_phys_alloc_domain_pages(domain, flind, pool,
601 			    order);
602 			if (m != NULL)
603 				return (m);
604 		}
605 	}
606 	return (NULL);
607 }
608 
609 /*
610  * Allocate a contiguous, power of two-sized set of physical pages from the
611  * specified free list.  The free list must be specified using one of the
612  * manifest constants VM_FREELIST_*.
613  *
614  * The free page queues must be locked.
615  */
616 vm_page_t
617 vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
618 {
619 	vm_page_t m;
620 	int dom, domain;
621 
622 	KASSERT(freelist < VM_NFREELIST,
623 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
624 	    freelist));
625 	KASSERT(pool < VM_NFREEPOOL,
626 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
627 	KASSERT(order < VM_NFREEORDER,
628 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
629 	for (dom = 0; dom < vm_ndomains; dom++) {
630 		domain = vm_rr_selectdomain();
631 		m = vm_phys_alloc_domain_pages(domain,
632 		    vm_freelist_to_flind[freelist], pool, order);
633 		if (m != NULL)
634 			return (m);
635 	}
636 	return (NULL);
637 }
638 
639 static vm_page_t
640 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
641 {
642 	struct vm_freelist *fl;
643 	struct vm_freelist *alt;
644 	int oind, pind;
645 	vm_page_t m;
646 
647 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
648 	fl = &vm_phys_free_queues[domain][flind][pool][0];
649 	for (oind = order; oind < VM_NFREEORDER; oind++) {
650 		m = TAILQ_FIRST(&fl[oind].pl);
651 		if (m != NULL) {
652 			vm_freelist_rem(fl, m, oind);
653 			vm_phys_split_pages(m, oind, fl, order);
654 			return (m);
655 		}
656 	}
657 
658 	/*
659 	 * The given pool was empty.  Find the largest
660 	 * contiguous, power-of-two-sized set of pages in any
661 	 * pool.  Transfer these pages to the given pool, and
662 	 * use them to satisfy the allocation.
663 	 */
664 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
665 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
666 			alt = &vm_phys_free_queues[domain][flind][pind][0];
667 			m = TAILQ_FIRST(&alt[oind].pl);
668 			if (m != NULL) {
669 				vm_freelist_rem(alt, m, oind);
670 				vm_phys_set_pool(pool, m, oind);
671 				vm_phys_split_pages(m, oind, fl, order);
672 				return (m);
673 			}
674 		}
675 	}
676 	return (NULL);
677 }
678 
679 /*
680  * Find the vm_page corresponding to the given physical address.
681  */
682 vm_page_t
683 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
684 {
685 	struct vm_phys_seg *seg;
686 	int segind;
687 
688 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
689 		seg = &vm_phys_segs[segind];
690 		if (pa >= seg->start && pa < seg->end)
691 			return (&seg->first_page[atop(pa - seg->start)]);
692 	}
693 	return (NULL);
694 }
695 
696 vm_page_t
697 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
698 {
699 	struct vm_phys_fictitious_seg tmp, *seg;
700 	vm_page_t m;
701 
702 	m = NULL;
703 	tmp.start = pa;
704 	tmp.end = 0;
705 
706 	rw_rlock(&vm_phys_fictitious_reg_lock);
707 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
708 	rw_runlock(&vm_phys_fictitious_reg_lock);
709 	if (seg == NULL)
710 		return (NULL);
711 
712 	m = &seg->first_page[atop(pa - seg->start)];
713 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
714 
715 	return (m);
716 }
717 
718 static inline void
719 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
720     long page_count, vm_memattr_t memattr)
721 {
722 	long i;
723 
724 	for (i = 0; i < page_count; i++) {
725 		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
726 		range[i].oflags &= ~VPO_UNMANAGED;
727 		range[i].busy_lock = VPB_UNBUSIED;
728 	}
729 }
730 
731 int
732 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
733     vm_memattr_t memattr)
734 {
735 	struct vm_phys_fictitious_seg *seg;
736 	vm_page_t fp;
737 	long page_count;
738 #ifdef VM_PHYSSEG_DENSE
739 	long pi, pe;
740 	long dpage_count;
741 #endif
742 
743 	KASSERT(start < end,
744 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
745 	    (uintmax_t)start, (uintmax_t)end));
746 
747 	page_count = (end - start) / PAGE_SIZE;
748 
749 #ifdef VM_PHYSSEG_DENSE
750 	pi = atop(start);
751 	pe = atop(end);
752 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
753 		fp = &vm_page_array[pi - first_page];
754 		if ((pe - first_page) > vm_page_array_size) {
755 			/*
756 			 * We have a segment that starts inside
757 			 * of vm_page_array, but ends outside of it.
758 			 *
759 			 * Use vm_page_array pages for those that are
760 			 * inside of the vm_page_array range, and
761 			 * allocate the remaining ones.
762 			 */
763 			dpage_count = vm_page_array_size - (pi - first_page);
764 			vm_phys_fictitious_init_range(fp, start, dpage_count,
765 			    memattr);
766 			page_count -= dpage_count;
767 			start += ptoa(dpage_count);
768 			goto alloc;
769 		}
770 		/*
771 		 * We can allocate the full range from vm_page_array,
772 		 * so there's no need to register the range in the tree.
773 		 */
774 		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
775 		return (0);
776 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
777 		/*
778 		 * We have a segment that ends inside of vm_page_array,
779 		 * but starts outside of it.
780 		 */
781 		fp = &vm_page_array[0];
782 		dpage_count = pe - first_page;
783 		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
784 		    memattr);
785 		end -= ptoa(dpage_count);
786 		page_count -= dpage_count;
787 		goto alloc;
788 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
789 		/*
790 		 * Trying to register a fictitious range that expands before
791 		 * and after vm_page_array.
792 		 */
793 		return (EINVAL);
794 	} else {
795 alloc:
796 #endif
797 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
798 		    M_WAITOK | M_ZERO);
799 #ifdef VM_PHYSSEG_DENSE
800 	}
801 #endif
802 	vm_phys_fictitious_init_range(fp, start, page_count, memattr);
803 
804 	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
805 	seg->start = start;
806 	seg->end = end;
807 	seg->first_page = fp;
808 
809 	rw_wlock(&vm_phys_fictitious_reg_lock);
810 	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
811 	rw_wunlock(&vm_phys_fictitious_reg_lock);
812 
813 	return (0);
814 }
815 
816 void
817 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
818 {
819 	struct vm_phys_fictitious_seg *seg, tmp;
820 #ifdef VM_PHYSSEG_DENSE
821 	long pi, pe;
822 #endif
823 
824 	KASSERT(start < end,
825 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
826 	    (uintmax_t)start, (uintmax_t)end));
827 
828 #ifdef VM_PHYSSEG_DENSE
829 	pi = atop(start);
830 	pe = atop(end);
831 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
832 		if ((pe - first_page) <= vm_page_array_size) {
833 			/*
834 			 * This segment was allocated using vm_page_array
835 			 * only, there's nothing to do since those pages
836 			 * were never added to the tree.
837 			 */
838 			return;
839 		}
840 		/*
841 		 * We have a segment that starts inside
842 		 * of vm_page_array, but ends outside of it.
843 		 *
844 		 * Calculate how many pages were added to the
845 		 * tree and free them.
846 		 */
847 		start = ptoa(first_page + vm_page_array_size);
848 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
849 		/*
850 		 * We have a segment that ends inside of vm_page_array,
851 		 * but starts outside of it.
852 		 */
853 		end = ptoa(first_page);
854 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
855 		/* Since it's not possible to register such a range, panic. */
856 		panic(
857 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
858 		    (uintmax_t)start, (uintmax_t)end);
859 	}
860 #endif
861 	tmp.start = start;
862 	tmp.end = 0;
863 
864 	rw_wlock(&vm_phys_fictitious_reg_lock);
865 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
866 	if (seg->start != start || seg->end != end) {
867 		rw_wunlock(&vm_phys_fictitious_reg_lock);
868 		panic(
869 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
870 		    (uintmax_t)start, (uintmax_t)end);
871 	}
872 	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
873 	rw_wunlock(&vm_phys_fictitious_reg_lock);
874 	free(seg->first_page, M_FICT_PAGES);
875 	free(seg, M_FICT_PAGES);
876 }
877 
878 /*
879  * Find the segment containing the given physical address.
880  */
881 static int
882 vm_phys_paddr_to_segind(vm_paddr_t pa)
883 {
884 	struct vm_phys_seg *seg;
885 	int segind;
886 
887 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
888 		seg = &vm_phys_segs[segind];
889 		if (pa >= seg->start && pa < seg->end)
890 			return (segind);
891 	}
892 	panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
893 	    (uintmax_t)pa);
894 }
895 
896 /*
897  * Free a contiguous, power of two-sized set of physical pages.
898  *
899  * The free page queues must be locked.
900  */
901 void
902 vm_phys_free_pages(vm_page_t m, int order)
903 {
904 	struct vm_freelist *fl;
905 	struct vm_phys_seg *seg;
906 	vm_paddr_t pa;
907 	vm_page_t m_buddy;
908 
909 	KASSERT(m->order == VM_NFREEORDER,
910 	    ("vm_phys_free_pages: page %p has unexpected order %d",
911 	    m, m->order));
912 	KASSERT(m->pool < VM_NFREEPOOL,
913 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
914 	    m, m->pool));
915 	KASSERT(order < VM_NFREEORDER,
916 	    ("vm_phys_free_pages: order %d is out of range", order));
917 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
918 	seg = &vm_phys_segs[m->segind];
919 	if (order < VM_NFREEORDER - 1) {
920 		pa = VM_PAGE_TO_PHYS(m);
921 		do {
922 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
923 			if (pa < seg->start || pa >= seg->end)
924 				break;
925 			m_buddy = &seg->first_page[atop(pa - seg->start)];
926 			if (m_buddy->order != order)
927 				break;
928 			fl = (*seg->free_queues)[m_buddy->pool];
929 			vm_freelist_rem(fl, m_buddy, order);
930 			if (m_buddy->pool != m->pool)
931 				vm_phys_set_pool(m->pool, m_buddy, order);
932 			order++;
933 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
934 			m = &seg->first_page[atop(pa - seg->start)];
935 		} while (order < VM_NFREEORDER - 1);
936 	}
937 	fl = (*seg->free_queues)[m->pool];
938 	vm_freelist_add(fl, m, order, 1);
939 }
940 
941 /*
942  * Free a contiguous, arbitrarily sized set of physical pages.
943  *
944  * The free page queues must be locked.
945  */
946 void
947 vm_phys_free_contig(vm_page_t m, u_long npages)
948 {
949 	u_int n;
950 	int order;
951 
952 	/*
953 	 * Avoid unnecessary coalescing by freeing the pages in the largest
954 	 * possible power-of-two-sized subsets.
955 	 */
956 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
957 	for (;; npages -= n) {
958 		/*
959 		 * Unsigned "min" is used here so that "order" is assigned
960 		 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
961 		 * or the low-order bits of its physical address are zero
962 		 * because the size of a physical address exceeds the size of
963 		 * a long.
964 		 */
965 		order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
966 		    VM_NFREEORDER - 1);
967 		n = 1 << order;
968 		if (npages < n)
969 			break;
970 		vm_phys_free_pages(m, order);
971 		m += n;
972 	}
973 	/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
974 	for (; npages > 0; npages -= n) {
975 		order = flsl(npages) - 1;
976 		n = 1 << order;
977 		vm_phys_free_pages(m, order);
978 		m += n;
979 	}
980 }
981 
982 /*
983  * Set the pool for a contiguous, power of two-sized set of physical pages.
984  */
985 void
986 vm_phys_set_pool(int pool, vm_page_t m, int order)
987 {
988 	vm_page_t m_tmp;
989 
990 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
991 		m_tmp->pool = pool;
992 }
993 
994 /*
995  * Search for the given physical page "m" in the free lists.  If the search
996  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
997  * FALSE, indicating that "m" is not in the free lists.
998  *
999  * The free page queues must be locked.
1000  */
1001 boolean_t
1002 vm_phys_unfree_page(vm_page_t m)
1003 {
1004 	struct vm_freelist *fl;
1005 	struct vm_phys_seg *seg;
1006 	vm_paddr_t pa, pa_half;
1007 	vm_page_t m_set, m_tmp;
1008 	int order;
1009 
1010 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1011 
1012 	/*
1013 	 * First, find the contiguous, power of two-sized set of free
1014 	 * physical pages containing the given physical page "m" and
1015 	 * assign it to "m_set".
1016 	 */
1017 	seg = &vm_phys_segs[m->segind];
1018 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1019 	    order < VM_NFREEORDER - 1; ) {
1020 		order++;
1021 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1022 		if (pa >= seg->start)
1023 			m_set = &seg->first_page[atop(pa - seg->start)];
1024 		else
1025 			return (FALSE);
1026 	}
1027 	if (m_set->order < order)
1028 		return (FALSE);
1029 	if (m_set->order == VM_NFREEORDER)
1030 		return (FALSE);
1031 	KASSERT(m_set->order < VM_NFREEORDER,
1032 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
1033 	    m_set, m_set->order));
1034 
1035 	/*
1036 	 * Next, remove "m_set" from the free lists.  Finally, extract
1037 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
1038 	 * is larger than a page, shrink "m_set" by returning the half
1039 	 * of "m_set" that does not contain "m" to the free lists.
1040 	 */
1041 	fl = (*seg->free_queues)[m_set->pool];
1042 	order = m_set->order;
1043 	vm_freelist_rem(fl, m_set, order);
1044 	while (order > 0) {
1045 		order--;
1046 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1047 		if (m->phys_addr < pa_half)
1048 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1049 		else {
1050 			m_tmp = m_set;
1051 			m_set = &seg->first_page[atop(pa_half - seg->start)];
1052 		}
1053 		vm_freelist_add(fl, m_tmp, order, 0);
1054 	}
1055 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1056 	return (TRUE);
1057 }
1058 
1059 /*
1060  * Try to zero one physical page.  Used by an idle priority thread.
1061  */
1062 boolean_t
1063 vm_phys_zero_pages_idle(void)
1064 {
1065 	static struct vm_freelist *fl;
1066 	static int flind, oind, pind;
1067 	vm_page_t m, m_tmp;
1068 	int domain;
1069 
1070 	domain = vm_rr_selectdomain();
1071 	fl = vm_phys_free_queues[domain][0][0];
1072 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1073 	for (;;) {
1074 		TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
1075 			for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
1076 				if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
1077 					vm_phys_unfree_page(m_tmp);
1078 					vm_phys_freecnt_adj(m, -1);
1079 					mtx_unlock(&vm_page_queue_free_mtx);
1080 					pmap_zero_page_idle(m_tmp);
1081 					m_tmp->flags |= PG_ZERO;
1082 					mtx_lock(&vm_page_queue_free_mtx);
1083 					vm_phys_freecnt_adj(m, 1);
1084 					vm_phys_free_pages(m_tmp, 0);
1085 					vm_page_zero_count++;
1086 					cnt_prezero++;
1087 					return (TRUE);
1088 				}
1089 			}
1090 		}
1091 		oind++;
1092 		if (oind == VM_NFREEORDER) {
1093 			oind = 0;
1094 			pind++;
1095 			if (pind == VM_NFREEPOOL) {
1096 				pind = 0;
1097 				flind++;
1098 				if (flind == vm_nfreelists)
1099 					flind = 0;
1100 			}
1101 			fl = vm_phys_free_queues[domain][flind][pind];
1102 		}
1103 	}
1104 }
1105 
1106 /*
1107  * Allocate a contiguous set of physical pages of the given size
1108  * "npages" from the free lists.  All of the physical pages must be at
1109  * or above the given physical address "low" and below the given
1110  * physical address "high".  The given value "alignment" determines the
1111  * alignment of the first physical page in the set.  If the given value
1112  * "boundary" is non-zero, then the set of physical pages cannot cross
1113  * any physical address boundary that is a multiple of that value.  Both
1114  * "alignment" and "boundary" must be a power of two.
1115  */
1116 vm_page_t
1117 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1118     u_long alignment, vm_paddr_t boundary)
1119 {
1120 	struct vm_freelist *fl;
1121 	struct vm_phys_seg *seg;
1122 	vm_paddr_t pa, pa_last, size;
1123 	vm_page_t m, m_ret;
1124 	u_long npages_end;
1125 	int dom, domain, flind, oind, order, pind;
1126 
1127 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1128 	size = npages << PAGE_SHIFT;
1129 	KASSERT(size != 0,
1130 	    ("vm_phys_alloc_contig: size must not be 0"));
1131 	KASSERT((alignment & (alignment - 1)) == 0,
1132 	    ("vm_phys_alloc_contig: alignment must be a power of 2"));
1133 	KASSERT((boundary & (boundary - 1)) == 0,
1134 	    ("vm_phys_alloc_contig: boundary must be a power of 2"));
1135 	/* Compute the queue that is the best fit for npages. */
1136 	for (order = 0; (1 << order) < npages; order++);
1137 	dom = 0;
1138 restartdom:
1139 	domain = vm_rr_selectdomain();
1140 	for (flind = 0; flind < vm_nfreelists; flind++) {
1141 		for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
1142 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1143 				fl = &vm_phys_free_queues[domain][flind][pind][0];
1144 				TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1145 					/*
1146 					 * A free list may contain physical pages
1147 					 * from one or more segments.
1148 					 */
1149 					seg = &vm_phys_segs[m_ret->segind];
1150 					if (seg->start > high ||
1151 					    low >= seg->end)
1152 						continue;
1153 
1154 					/*
1155 					 * Is the size of this allocation request
1156 					 * larger than the largest block size?
1157 					 */
1158 					if (order >= VM_NFREEORDER) {
1159 						/*
1160 						 * Determine if a sufficient number
1161 						 * of subsequent blocks to satisfy
1162 						 * the allocation request are free.
1163 						 */
1164 						pa = VM_PAGE_TO_PHYS(m_ret);
1165 						pa_last = pa + size;
1166 						for (;;) {
1167 							pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
1168 							if (pa >= pa_last)
1169 								break;
1170 							if (pa < seg->start ||
1171 							    pa >= seg->end)
1172 								break;
1173 							m = &seg->first_page[atop(pa - seg->start)];
1174 							if (m->order != VM_NFREEORDER - 1)
1175 								break;
1176 						}
1177 						/* If not, continue to the next block. */
1178 						if (pa < pa_last)
1179 							continue;
1180 					}
1181 
1182 					/*
1183 					 * Determine if the blocks are within the given range,
1184 					 * satisfy the given alignment, and do not cross the
1185 					 * given boundary.
1186 					 */
1187 					pa = VM_PAGE_TO_PHYS(m_ret);
1188 					if (pa >= low &&
1189 					    pa + size <= high &&
1190 					    (pa & (alignment - 1)) == 0 &&
1191 					    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
1192 						goto done;
1193 				}
1194 			}
1195 		}
1196 	}
1197 	if (++dom < vm_ndomains)
1198 		goto restartdom;
1199 	return (NULL);
1200 done:
1201 	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1202 		fl = (*seg->free_queues)[m->pool];
1203 		vm_freelist_rem(fl, m, m->order);
1204 	}
1205 	if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1206 		vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1207 	fl = (*seg->free_queues)[m_ret->pool];
1208 	vm_phys_split_pages(m_ret, oind, fl, order);
1209 	/* Return excess pages to the free lists. */
1210 	npages_end = roundup2(npages, 1 << imin(oind, order));
1211 	if (npages < npages_end)
1212 		vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1213 	return (m_ret);
1214 }
1215 
1216 #ifdef DDB
1217 /*
1218  * Show the number of physical pages in each of the free lists.
1219  */
1220 DB_SHOW_COMMAND(freepages, db_show_freepages)
1221 {
1222 	struct vm_freelist *fl;
1223 	int flind, oind, pind, dom;
1224 
1225 	for (dom = 0; dom < vm_ndomains; dom++) {
1226 		db_printf("DOMAIN: %d\n", dom);
1227 		for (flind = 0; flind < vm_nfreelists; flind++) {
1228 			db_printf("FREE LIST %d:\n"
1229 			    "\n  ORDER (SIZE)  |  NUMBER"
1230 			    "\n              ", flind);
1231 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1232 				db_printf("  |  POOL %d", pind);
1233 			db_printf("\n--            ");
1234 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1235 				db_printf("-- --      ");
1236 			db_printf("--\n");
1237 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1238 				db_printf("  %2.2d (%6.6dK)", oind,
1239 				    1 << (PAGE_SHIFT - 10 + oind));
1240 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1241 				fl = vm_phys_free_queues[dom][flind][pind];
1242 					db_printf("  |  %6.6d", fl[oind].lcnt);
1243 				}
1244 				db_printf("\n");
1245 			}
1246 			db_printf("\n");
1247 		}
1248 		db_printf("\n");
1249 	}
1250 }
1251 #endif
1252