1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Physical memory system implementation 34 * 35 * Any external functions defined by this module are only to be used by the 36 * virtual memory system. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ddb.h" 43 #include "opt_vm.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/lock.h> 48 #include <sys/kernel.h> 49 #include <sys/malloc.h> 50 #include <sys/mutex.h> 51 #if MAXMEMDOM > 1 52 #include <sys/proc.h> 53 #endif 54 #include <sys/queue.h> 55 #include <sys/rwlock.h> 56 #include <sys/sbuf.h> 57 #include <sys/sysctl.h> 58 #include <sys/tree.h> 59 #include <sys/vmmeter.h> 60 61 #include <ddb/ddb.h> 62 63 #include <vm/vm.h> 64 #include <vm/vm_param.h> 65 #include <vm/vm_kern.h> 66 #include <vm/vm_object.h> 67 #include <vm/vm_page.h> 68 #include <vm/vm_phys.h> 69 70 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX, 71 "Too many physsegs."); 72 73 struct mem_affinity *mem_affinity; 74 75 int vm_ndomains = 1; 76 77 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX]; 78 int vm_phys_nsegs; 79 80 struct vm_phys_fictitious_seg; 81 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *, 82 struct vm_phys_fictitious_seg *); 83 84 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree = 85 RB_INITIALIZER(_vm_phys_fictitious_tree); 86 87 struct vm_phys_fictitious_seg { 88 RB_ENTRY(vm_phys_fictitious_seg) node; 89 /* Memory region data */ 90 vm_paddr_t start; 91 vm_paddr_t end; 92 vm_page_t first_page; 93 }; 94 95 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node, 96 vm_phys_fictitious_cmp); 97 98 static struct rwlock vm_phys_fictitious_reg_lock; 99 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages"); 100 101 static struct vm_freelist 102 vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER]; 103 104 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1; 105 106 static int cnt_prezero; 107 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD, 108 &cnt_prezero, 0, "The number of physical pages prezeroed at idle time"); 109 110 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS); 111 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD, 112 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info"); 113 114 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS); 115 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD, 116 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info"); 117 118 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD, 119 &vm_ndomains, 0, "Number of physical memory domains available."); 120 121 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool, 122 int order); 123 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, 124 int domain); 125 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind); 126 static int vm_phys_paddr_to_segind(vm_paddr_t pa); 127 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, 128 int order); 129 130 /* 131 * Red-black tree helpers for vm fictitious range management. 132 */ 133 static inline int 134 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p, 135 struct vm_phys_fictitious_seg *range) 136 { 137 138 KASSERT(range->start != 0 && range->end != 0, 139 ("Invalid range passed on search for vm_fictitious page")); 140 if (p->start >= range->end) 141 return (1); 142 if (p->start < range->start) 143 return (-1); 144 145 return (0); 146 } 147 148 static int 149 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1, 150 struct vm_phys_fictitious_seg *p2) 151 { 152 153 /* Check if this is a search for a page */ 154 if (p1->end == 0) 155 return (vm_phys_fictitious_in_range(p1, p2)); 156 157 KASSERT(p2->end != 0, 158 ("Invalid range passed as second parameter to vm fictitious comparison")); 159 160 /* Searching to add a new range */ 161 if (p1->end <= p2->start) 162 return (-1); 163 if (p1->start >= p2->end) 164 return (1); 165 166 panic("Trying to add overlapping vm fictitious ranges:\n" 167 "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start, 168 (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end); 169 } 170 171 static __inline int 172 vm_rr_selectdomain(void) 173 { 174 #if MAXMEMDOM > 1 175 struct thread *td; 176 177 td = curthread; 178 179 td->td_dom_rr_idx++; 180 td->td_dom_rr_idx %= vm_ndomains; 181 return (td->td_dom_rr_idx); 182 #else 183 return (0); 184 #endif 185 } 186 187 boolean_t 188 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high) 189 { 190 struct vm_phys_seg *s; 191 int idx; 192 193 while ((idx = ffsl(mask)) != 0) { 194 idx--; /* ffsl counts from 1 */ 195 mask &= ~(1UL << idx); 196 s = &vm_phys_segs[idx]; 197 if (low < s->end && high > s->start) 198 return (TRUE); 199 } 200 return (FALSE); 201 } 202 203 /* 204 * Outputs the state of the physical memory allocator, specifically, 205 * the amount of physical memory in each free list. 206 */ 207 static int 208 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS) 209 { 210 struct sbuf sbuf; 211 struct vm_freelist *fl; 212 int dom, error, flind, oind, pind; 213 214 error = sysctl_wire_old_buffer(req, 0); 215 if (error != 0) 216 return (error); 217 sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req); 218 for (dom = 0; dom < vm_ndomains; dom++) { 219 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom); 220 for (flind = 0; flind < vm_nfreelists; flind++) { 221 sbuf_printf(&sbuf, "\nFREE LIST %d:\n" 222 "\n ORDER (SIZE) | NUMBER" 223 "\n ", flind); 224 for (pind = 0; pind < VM_NFREEPOOL; pind++) 225 sbuf_printf(&sbuf, " | POOL %d", pind); 226 sbuf_printf(&sbuf, "\n-- "); 227 for (pind = 0; pind < VM_NFREEPOOL; pind++) 228 sbuf_printf(&sbuf, "-- -- "); 229 sbuf_printf(&sbuf, "--\n"); 230 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 231 sbuf_printf(&sbuf, " %2d (%6dK)", oind, 232 1 << (PAGE_SHIFT - 10 + oind)); 233 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 234 fl = vm_phys_free_queues[dom][flind][pind]; 235 sbuf_printf(&sbuf, " | %6d", 236 fl[oind].lcnt); 237 } 238 sbuf_printf(&sbuf, "\n"); 239 } 240 } 241 } 242 error = sbuf_finish(&sbuf); 243 sbuf_delete(&sbuf); 244 return (error); 245 } 246 247 /* 248 * Outputs the set of physical memory segments. 249 */ 250 static int 251 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS) 252 { 253 struct sbuf sbuf; 254 struct vm_phys_seg *seg; 255 int error, segind; 256 257 error = sysctl_wire_old_buffer(req, 0); 258 if (error != 0) 259 return (error); 260 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 261 for (segind = 0; segind < vm_phys_nsegs; segind++) { 262 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind); 263 seg = &vm_phys_segs[segind]; 264 sbuf_printf(&sbuf, "start: %#jx\n", 265 (uintmax_t)seg->start); 266 sbuf_printf(&sbuf, "end: %#jx\n", 267 (uintmax_t)seg->end); 268 sbuf_printf(&sbuf, "domain: %d\n", seg->domain); 269 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues); 270 } 271 error = sbuf_finish(&sbuf); 272 sbuf_delete(&sbuf); 273 return (error); 274 } 275 276 static void 277 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail) 278 { 279 280 m->order = order; 281 if (tail) 282 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q); 283 else 284 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q); 285 fl[order].lcnt++; 286 } 287 288 static void 289 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order) 290 { 291 292 TAILQ_REMOVE(&fl[order].pl, m, plinks.q); 293 fl[order].lcnt--; 294 m->order = VM_NFREEORDER; 295 } 296 297 /* 298 * Create a physical memory segment. 299 */ 300 static void 301 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain) 302 { 303 struct vm_phys_seg *seg; 304 #ifdef VM_PHYSSEG_SPARSE 305 long pages; 306 int segind; 307 308 pages = 0; 309 for (segind = 0; segind < vm_phys_nsegs; segind++) { 310 seg = &vm_phys_segs[segind]; 311 pages += atop(seg->end - seg->start); 312 } 313 #endif 314 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX, 315 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX")); 316 KASSERT(domain < vm_ndomains, 317 ("vm_phys_create_seg: invalid domain provided")); 318 seg = &vm_phys_segs[vm_phys_nsegs++]; 319 seg->start = start; 320 seg->end = end; 321 seg->domain = domain; 322 #ifdef VM_PHYSSEG_SPARSE 323 seg->first_page = &vm_page_array[pages]; 324 #else 325 seg->first_page = PHYS_TO_VM_PAGE(start); 326 #endif 327 seg->free_queues = &vm_phys_free_queues[domain][flind]; 328 } 329 330 static void 331 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind) 332 { 333 int i; 334 335 if (mem_affinity == NULL) { 336 _vm_phys_create_seg(start, end, flind, 0); 337 return; 338 } 339 340 for (i = 0;; i++) { 341 if (mem_affinity[i].end == 0) 342 panic("Reached end of affinity info"); 343 if (mem_affinity[i].end <= start) 344 continue; 345 if (mem_affinity[i].start > start) 346 panic("No affinity info for start %jx", 347 (uintmax_t)start); 348 if (mem_affinity[i].end >= end) { 349 _vm_phys_create_seg(start, end, flind, 350 mem_affinity[i].domain); 351 break; 352 } 353 _vm_phys_create_seg(start, mem_affinity[i].end, flind, 354 mem_affinity[i].domain); 355 start = mem_affinity[i].end; 356 } 357 } 358 359 /* 360 * Initialize the physical memory allocator. 361 */ 362 void 363 vm_phys_init(void) 364 { 365 struct vm_freelist *fl; 366 int dom, flind, i, oind, pind; 367 368 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 369 #ifdef VM_FREELIST_ISADMA 370 if (phys_avail[i] < 16777216) { 371 if (phys_avail[i + 1] > 16777216) { 372 vm_phys_create_seg(phys_avail[i], 16777216, 373 VM_FREELIST_ISADMA); 374 vm_phys_create_seg(16777216, phys_avail[i + 1], 375 VM_FREELIST_DEFAULT); 376 } else { 377 vm_phys_create_seg(phys_avail[i], 378 phys_avail[i + 1], VM_FREELIST_ISADMA); 379 } 380 if (VM_FREELIST_ISADMA >= vm_nfreelists) 381 vm_nfreelists = VM_FREELIST_ISADMA + 1; 382 } else 383 #endif 384 #ifdef VM_FREELIST_HIGHMEM 385 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) { 386 if (phys_avail[i] < VM_HIGHMEM_ADDRESS) { 387 vm_phys_create_seg(phys_avail[i], 388 VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT); 389 vm_phys_create_seg(VM_HIGHMEM_ADDRESS, 390 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 391 } else { 392 vm_phys_create_seg(phys_avail[i], 393 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 394 } 395 if (VM_FREELIST_HIGHMEM >= vm_nfreelists) 396 vm_nfreelists = VM_FREELIST_HIGHMEM + 1; 397 } else 398 #endif 399 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1], 400 VM_FREELIST_DEFAULT); 401 } 402 for (dom = 0; dom < vm_ndomains; dom++) { 403 for (flind = 0; flind < vm_nfreelists; flind++) { 404 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 405 fl = vm_phys_free_queues[dom][flind][pind]; 406 for (oind = 0; oind < VM_NFREEORDER; oind++) 407 TAILQ_INIT(&fl[oind].pl); 408 } 409 } 410 } 411 rw_init(&vm_phys_fictitious_reg_lock, "vmfctr"); 412 } 413 414 /* 415 * Split a contiguous, power of two-sized set of physical pages. 416 */ 417 static __inline void 418 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order) 419 { 420 vm_page_t m_buddy; 421 422 while (oind > order) { 423 oind--; 424 m_buddy = &m[1 << oind]; 425 KASSERT(m_buddy->order == VM_NFREEORDER, 426 ("vm_phys_split_pages: page %p has unexpected order %d", 427 m_buddy, m_buddy->order)); 428 vm_freelist_add(fl, m_buddy, oind, 0); 429 } 430 } 431 432 /* 433 * Initialize a physical page and add it to the free lists. 434 */ 435 void 436 vm_phys_add_page(vm_paddr_t pa) 437 { 438 vm_page_t m; 439 struct vm_domain *vmd; 440 441 vm_cnt.v_page_count++; 442 m = vm_phys_paddr_to_vm_page(pa); 443 m->phys_addr = pa; 444 m->queue = PQ_NONE; 445 m->segind = vm_phys_paddr_to_segind(pa); 446 vmd = vm_phys_domain(m); 447 vmd->vmd_page_count++; 448 vmd->vmd_segs |= 1UL << m->segind; 449 KASSERT(m->order == VM_NFREEORDER, 450 ("vm_phys_add_page: page %p has unexpected order %d", 451 m, m->order)); 452 m->pool = VM_FREEPOOL_DEFAULT; 453 pmap_page_init(m); 454 mtx_lock(&vm_page_queue_free_mtx); 455 vm_phys_freecnt_adj(m, 1); 456 vm_phys_free_pages(m, 0); 457 mtx_unlock(&vm_page_queue_free_mtx); 458 } 459 460 /* 461 * Allocate a contiguous, power of two-sized set of physical pages 462 * from the free lists. 463 * 464 * The free page queues must be locked. 465 */ 466 vm_page_t 467 vm_phys_alloc_pages(int pool, int order) 468 { 469 vm_page_t m; 470 int dom, domain, flind; 471 472 KASSERT(pool < VM_NFREEPOOL, 473 ("vm_phys_alloc_pages: pool %d is out of range", pool)); 474 KASSERT(order < VM_NFREEORDER, 475 ("vm_phys_alloc_pages: order %d is out of range", order)); 476 477 for (dom = 0; dom < vm_ndomains; dom++) { 478 domain = vm_rr_selectdomain(); 479 for (flind = 0; flind < vm_nfreelists; flind++) { 480 m = vm_phys_alloc_domain_pages(domain, flind, pool, 481 order); 482 if (m != NULL) 483 return (m); 484 } 485 } 486 return (NULL); 487 } 488 489 /* 490 * Find and dequeue a free page on the given free list, with the 491 * specified pool and order 492 */ 493 vm_page_t 494 vm_phys_alloc_freelist_pages(int flind, int pool, int order) 495 { 496 vm_page_t m; 497 int dom, domain; 498 499 KASSERT(flind < VM_NFREELIST, 500 ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind)); 501 KASSERT(pool < VM_NFREEPOOL, 502 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool)); 503 KASSERT(order < VM_NFREEORDER, 504 ("vm_phys_alloc_freelist_pages: order %d is out of range", order)); 505 506 for (dom = 0; dom < vm_ndomains; dom++) { 507 domain = vm_rr_selectdomain(); 508 m = vm_phys_alloc_domain_pages(domain, flind, pool, order); 509 if (m != NULL) 510 return (m); 511 } 512 return (NULL); 513 } 514 515 static vm_page_t 516 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order) 517 { 518 struct vm_freelist *fl; 519 struct vm_freelist *alt; 520 int oind, pind; 521 vm_page_t m; 522 523 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 524 fl = &vm_phys_free_queues[domain][flind][pool][0]; 525 for (oind = order; oind < VM_NFREEORDER; oind++) { 526 m = TAILQ_FIRST(&fl[oind].pl); 527 if (m != NULL) { 528 vm_freelist_rem(fl, m, oind); 529 vm_phys_split_pages(m, oind, fl, order); 530 return (m); 531 } 532 } 533 534 /* 535 * The given pool was empty. Find the largest 536 * contiguous, power-of-two-sized set of pages in any 537 * pool. Transfer these pages to the given pool, and 538 * use them to satisfy the allocation. 539 */ 540 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) { 541 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 542 alt = &vm_phys_free_queues[domain][flind][pind][0]; 543 m = TAILQ_FIRST(&alt[oind].pl); 544 if (m != NULL) { 545 vm_freelist_rem(alt, m, oind); 546 vm_phys_set_pool(pool, m, oind); 547 vm_phys_split_pages(m, oind, fl, order); 548 return (m); 549 } 550 } 551 } 552 return (NULL); 553 } 554 555 /* 556 * Find the vm_page corresponding to the given physical address. 557 */ 558 vm_page_t 559 vm_phys_paddr_to_vm_page(vm_paddr_t pa) 560 { 561 struct vm_phys_seg *seg; 562 int segind; 563 564 for (segind = 0; segind < vm_phys_nsegs; segind++) { 565 seg = &vm_phys_segs[segind]; 566 if (pa >= seg->start && pa < seg->end) 567 return (&seg->first_page[atop(pa - seg->start)]); 568 } 569 return (NULL); 570 } 571 572 vm_page_t 573 vm_phys_fictitious_to_vm_page(vm_paddr_t pa) 574 { 575 struct vm_phys_fictitious_seg tmp, *seg; 576 vm_page_t m; 577 578 m = NULL; 579 tmp.start = pa; 580 tmp.end = 0; 581 582 rw_rlock(&vm_phys_fictitious_reg_lock); 583 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp); 584 rw_runlock(&vm_phys_fictitious_reg_lock); 585 if (seg == NULL) 586 return (NULL); 587 588 m = &seg->first_page[atop(pa - seg->start)]; 589 KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m)); 590 591 return (m); 592 } 593 594 static inline void 595 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start, 596 long page_count, vm_memattr_t memattr) 597 { 598 long i; 599 600 for (i = 0; i < page_count; i++) { 601 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr); 602 range[i].oflags &= ~VPO_UNMANAGED; 603 range[i].busy_lock = VPB_UNBUSIED; 604 } 605 } 606 607 int 608 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end, 609 vm_memattr_t memattr) 610 { 611 struct vm_phys_fictitious_seg *seg; 612 vm_page_t fp; 613 long page_count; 614 #ifdef VM_PHYSSEG_DENSE 615 long pi, pe; 616 long dpage_count; 617 #endif 618 619 KASSERT(start < end, 620 ("Start of segment isn't less than end (start: %jx end: %jx)", 621 (uintmax_t)start, (uintmax_t)end)); 622 623 page_count = (end - start) / PAGE_SIZE; 624 625 #ifdef VM_PHYSSEG_DENSE 626 pi = atop(start); 627 pe = atop(end); 628 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 629 fp = &vm_page_array[pi - first_page]; 630 if ((pe - first_page) > vm_page_array_size) { 631 /* 632 * We have a segment that starts inside 633 * of vm_page_array, but ends outside of it. 634 * 635 * Use vm_page_array pages for those that are 636 * inside of the vm_page_array range, and 637 * allocate the remaining ones. 638 */ 639 dpage_count = vm_page_array_size - (pi - first_page); 640 vm_phys_fictitious_init_range(fp, start, dpage_count, 641 memattr); 642 page_count -= dpage_count; 643 start += ptoa(dpage_count); 644 goto alloc; 645 } 646 /* 647 * We can allocate the full range from vm_page_array, 648 * so there's no need to register the range in the tree. 649 */ 650 vm_phys_fictitious_init_range(fp, start, page_count, memattr); 651 return (0); 652 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) { 653 /* 654 * We have a segment that ends inside of vm_page_array, 655 * but starts outside of it. 656 */ 657 fp = &vm_page_array[0]; 658 dpage_count = pe - first_page; 659 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count, 660 memattr); 661 end -= ptoa(dpage_count); 662 page_count -= dpage_count; 663 goto alloc; 664 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) { 665 /* 666 * Trying to register a fictitious range that expands before 667 * and after vm_page_array. 668 */ 669 return (EINVAL); 670 } else { 671 alloc: 672 #endif 673 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES, 674 M_WAITOK | M_ZERO); 675 #ifdef VM_PHYSSEG_DENSE 676 } 677 #endif 678 vm_phys_fictitious_init_range(fp, start, page_count, memattr); 679 680 seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO); 681 seg->start = start; 682 seg->end = end; 683 seg->first_page = fp; 684 685 rw_wlock(&vm_phys_fictitious_reg_lock); 686 RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg); 687 rw_wunlock(&vm_phys_fictitious_reg_lock); 688 689 return (0); 690 } 691 692 void 693 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end) 694 { 695 struct vm_phys_fictitious_seg *seg, tmp; 696 #ifdef VM_PHYSSEG_DENSE 697 long pi, pe; 698 #endif 699 700 KASSERT(start < end, 701 ("Start of segment isn't less than end (start: %jx end: %jx)", 702 (uintmax_t)start, (uintmax_t)end)); 703 704 #ifdef VM_PHYSSEG_DENSE 705 pi = atop(start); 706 pe = atop(end); 707 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 708 if ((pe - first_page) <= vm_page_array_size) { 709 /* 710 * This segment was allocated using vm_page_array 711 * only, there's nothing to do since those pages 712 * were never added to the tree. 713 */ 714 return; 715 } 716 /* 717 * We have a segment that starts inside 718 * of vm_page_array, but ends outside of it. 719 * 720 * Calculate how many pages were added to the 721 * tree and free them. 722 */ 723 start = ptoa(first_page + vm_page_array_size); 724 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) { 725 /* 726 * We have a segment that ends inside of vm_page_array, 727 * but starts outside of it. 728 */ 729 end = ptoa(first_page); 730 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) { 731 /* Since it's not possible to register such a range, panic. */ 732 panic( 733 "Unregistering not registered fictitious range [%#jx:%#jx]", 734 (uintmax_t)start, (uintmax_t)end); 735 } 736 #endif 737 tmp.start = start; 738 tmp.end = 0; 739 740 rw_wlock(&vm_phys_fictitious_reg_lock); 741 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp); 742 if (seg->start != start || seg->end != end) { 743 rw_wunlock(&vm_phys_fictitious_reg_lock); 744 panic( 745 "Unregistering not registered fictitious range [%#jx:%#jx]", 746 (uintmax_t)start, (uintmax_t)end); 747 } 748 RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg); 749 rw_wunlock(&vm_phys_fictitious_reg_lock); 750 free(seg->first_page, M_FICT_PAGES); 751 free(seg, M_FICT_PAGES); 752 } 753 754 /* 755 * Find the segment containing the given physical address. 756 */ 757 static int 758 vm_phys_paddr_to_segind(vm_paddr_t pa) 759 { 760 struct vm_phys_seg *seg; 761 int segind; 762 763 for (segind = 0; segind < vm_phys_nsegs; segind++) { 764 seg = &vm_phys_segs[segind]; 765 if (pa >= seg->start && pa < seg->end) 766 return (segind); 767 } 768 panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" , 769 (uintmax_t)pa); 770 } 771 772 /* 773 * Free a contiguous, power of two-sized set of physical pages. 774 * 775 * The free page queues must be locked. 776 */ 777 void 778 vm_phys_free_pages(vm_page_t m, int order) 779 { 780 struct vm_freelist *fl; 781 struct vm_phys_seg *seg; 782 vm_paddr_t pa; 783 vm_page_t m_buddy; 784 785 KASSERT(m->order == VM_NFREEORDER, 786 ("vm_phys_free_pages: page %p has unexpected order %d", 787 m, m->order)); 788 KASSERT(m->pool < VM_NFREEPOOL, 789 ("vm_phys_free_pages: page %p has unexpected pool %d", 790 m, m->pool)); 791 KASSERT(order < VM_NFREEORDER, 792 ("vm_phys_free_pages: order %d is out of range", order)); 793 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 794 seg = &vm_phys_segs[m->segind]; 795 if (order < VM_NFREEORDER - 1) { 796 pa = VM_PAGE_TO_PHYS(m); 797 do { 798 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order)); 799 if (pa < seg->start || pa >= seg->end) 800 break; 801 m_buddy = &seg->first_page[atop(pa - seg->start)]; 802 if (m_buddy->order != order) 803 break; 804 fl = (*seg->free_queues)[m_buddy->pool]; 805 vm_freelist_rem(fl, m_buddy, order); 806 if (m_buddy->pool != m->pool) 807 vm_phys_set_pool(m->pool, m_buddy, order); 808 order++; 809 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1); 810 m = &seg->first_page[atop(pa - seg->start)]; 811 } while (order < VM_NFREEORDER - 1); 812 } 813 fl = (*seg->free_queues)[m->pool]; 814 vm_freelist_add(fl, m, order, 1); 815 } 816 817 /* 818 * Free a contiguous, arbitrarily sized set of physical pages. 819 * 820 * The free page queues must be locked. 821 */ 822 void 823 vm_phys_free_contig(vm_page_t m, u_long npages) 824 { 825 u_int n; 826 int order; 827 828 /* 829 * Avoid unnecessary coalescing by freeing the pages in the largest 830 * possible power-of-two-sized subsets. 831 */ 832 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 833 for (;; npages -= n) { 834 /* 835 * Unsigned "min" is used here so that "order" is assigned 836 * "VM_NFREEORDER - 1" when "m"'s physical address is zero 837 * or the low-order bits of its physical address are zero 838 * because the size of a physical address exceeds the size of 839 * a long. 840 */ 841 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1, 842 VM_NFREEORDER - 1); 843 n = 1 << order; 844 if (npages < n) 845 break; 846 vm_phys_free_pages(m, order); 847 m += n; 848 } 849 /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */ 850 for (; npages > 0; npages -= n) { 851 order = flsl(npages) - 1; 852 n = 1 << order; 853 vm_phys_free_pages(m, order); 854 m += n; 855 } 856 } 857 858 /* 859 * Set the pool for a contiguous, power of two-sized set of physical pages. 860 */ 861 void 862 vm_phys_set_pool(int pool, vm_page_t m, int order) 863 { 864 vm_page_t m_tmp; 865 866 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++) 867 m_tmp->pool = pool; 868 } 869 870 /* 871 * Search for the given physical page "m" in the free lists. If the search 872 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return 873 * FALSE, indicating that "m" is not in the free lists. 874 * 875 * The free page queues must be locked. 876 */ 877 boolean_t 878 vm_phys_unfree_page(vm_page_t m) 879 { 880 struct vm_freelist *fl; 881 struct vm_phys_seg *seg; 882 vm_paddr_t pa, pa_half; 883 vm_page_t m_set, m_tmp; 884 int order; 885 886 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 887 888 /* 889 * First, find the contiguous, power of two-sized set of free 890 * physical pages containing the given physical page "m" and 891 * assign it to "m_set". 892 */ 893 seg = &vm_phys_segs[m->segind]; 894 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER && 895 order < VM_NFREEORDER - 1; ) { 896 order++; 897 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order)); 898 if (pa >= seg->start) 899 m_set = &seg->first_page[atop(pa - seg->start)]; 900 else 901 return (FALSE); 902 } 903 if (m_set->order < order) 904 return (FALSE); 905 if (m_set->order == VM_NFREEORDER) 906 return (FALSE); 907 KASSERT(m_set->order < VM_NFREEORDER, 908 ("vm_phys_unfree_page: page %p has unexpected order %d", 909 m_set, m_set->order)); 910 911 /* 912 * Next, remove "m_set" from the free lists. Finally, extract 913 * "m" from "m_set" using an iterative algorithm: While "m_set" 914 * is larger than a page, shrink "m_set" by returning the half 915 * of "m_set" that does not contain "m" to the free lists. 916 */ 917 fl = (*seg->free_queues)[m_set->pool]; 918 order = m_set->order; 919 vm_freelist_rem(fl, m_set, order); 920 while (order > 0) { 921 order--; 922 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order)); 923 if (m->phys_addr < pa_half) 924 m_tmp = &seg->first_page[atop(pa_half - seg->start)]; 925 else { 926 m_tmp = m_set; 927 m_set = &seg->first_page[atop(pa_half - seg->start)]; 928 } 929 vm_freelist_add(fl, m_tmp, order, 0); 930 } 931 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency")); 932 return (TRUE); 933 } 934 935 /* 936 * Try to zero one physical page. Used by an idle priority thread. 937 */ 938 boolean_t 939 vm_phys_zero_pages_idle(void) 940 { 941 static struct vm_freelist *fl; 942 static int flind, oind, pind; 943 vm_page_t m, m_tmp; 944 int domain; 945 946 domain = vm_rr_selectdomain(); 947 fl = vm_phys_free_queues[domain][0][0]; 948 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 949 for (;;) { 950 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) { 951 for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) { 952 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) { 953 vm_phys_unfree_page(m_tmp); 954 vm_phys_freecnt_adj(m, -1); 955 mtx_unlock(&vm_page_queue_free_mtx); 956 pmap_zero_page_idle(m_tmp); 957 m_tmp->flags |= PG_ZERO; 958 mtx_lock(&vm_page_queue_free_mtx); 959 vm_phys_freecnt_adj(m, 1); 960 vm_phys_free_pages(m_tmp, 0); 961 vm_page_zero_count++; 962 cnt_prezero++; 963 return (TRUE); 964 } 965 } 966 } 967 oind++; 968 if (oind == VM_NFREEORDER) { 969 oind = 0; 970 pind++; 971 if (pind == VM_NFREEPOOL) { 972 pind = 0; 973 flind++; 974 if (flind == vm_nfreelists) 975 flind = 0; 976 } 977 fl = vm_phys_free_queues[domain][flind][pind]; 978 } 979 } 980 } 981 982 /* 983 * Allocate a contiguous set of physical pages of the given size 984 * "npages" from the free lists. All of the physical pages must be at 985 * or above the given physical address "low" and below the given 986 * physical address "high". The given value "alignment" determines the 987 * alignment of the first physical page in the set. If the given value 988 * "boundary" is non-zero, then the set of physical pages cannot cross 989 * any physical address boundary that is a multiple of that value. Both 990 * "alignment" and "boundary" must be a power of two. 991 */ 992 vm_page_t 993 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 994 u_long alignment, vm_paddr_t boundary) 995 { 996 struct vm_freelist *fl; 997 struct vm_phys_seg *seg; 998 vm_paddr_t pa, pa_last, size; 999 vm_page_t m, m_ret; 1000 u_long npages_end; 1001 int dom, domain, flind, oind, order, pind; 1002 1003 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1004 size = npages << PAGE_SHIFT; 1005 KASSERT(size != 0, 1006 ("vm_phys_alloc_contig: size must not be 0")); 1007 KASSERT((alignment & (alignment - 1)) == 0, 1008 ("vm_phys_alloc_contig: alignment must be a power of 2")); 1009 KASSERT((boundary & (boundary - 1)) == 0, 1010 ("vm_phys_alloc_contig: boundary must be a power of 2")); 1011 /* Compute the queue that is the best fit for npages. */ 1012 for (order = 0; (1 << order) < npages; order++); 1013 dom = 0; 1014 restartdom: 1015 domain = vm_rr_selectdomain(); 1016 for (flind = 0; flind < vm_nfreelists; flind++) { 1017 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) { 1018 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 1019 fl = &vm_phys_free_queues[domain][flind][pind][0]; 1020 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) { 1021 /* 1022 * A free list may contain physical pages 1023 * from one or more segments. 1024 */ 1025 seg = &vm_phys_segs[m_ret->segind]; 1026 if (seg->start > high || 1027 low >= seg->end) 1028 continue; 1029 1030 /* 1031 * Is the size of this allocation request 1032 * larger than the largest block size? 1033 */ 1034 if (order >= VM_NFREEORDER) { 1035 /* 1036 * Determine if a sufficient number 1037 * of subsequent blocks to satisfy 1038 * the allocation request are free. 1039 */ 1040 pa = VM_PAGE_TO_PHYS(m_ret); 1041 pa_last = pa + size; 1042 for (;;) { 1043 pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1); 1044 if (pa >= pa_last) 1045 break; 1046 if (pa < seg->start || 1047 pa >= seg->end) 1048 break; 1049 m = &seg->first_page[atop(pa - seg->start)]; 1050 if (m->order != VM_NFREEORDER - 1) 1051 break; 1052 } 1053 /* If not, continue to the next block. */ 1054 if (pa < pa_last) 1055 continue; 1056 } 1057 1058 /* 1059 * Determine if the blocks are within the given range, 1060 * satisfy the given alignment, and do not cross the 1061 * given boundary. 1062 */ 1063 pa = VM_PAGE_TO_PHYS(m_ret); 1064 if (pa >= low && 1065 pa + size <= high && 1066 (pa & (alignment - 1)) == 0 && 1067 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0) 1068 goto done; 1069 } 1070 } 1071 } 1072 } 1073 if (++dom < vm_ndomains) 1074 goto restartdom; 1075 return (NULL); 1076 done: 1077 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) { 1078 fl = (*seg->free_queues)[m->pool]; 1079 vm_freelist_rem(fl, m, m->order); 1080 } 1081 if (m_ret->pool != VM_FREEPOOL_DEFAULT) 1082 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind); 1083 fl = (*seg->free_queues)[m_ret->pool]; 1084 vm_phys_split_pages(m_ret, oind, fl, order); 1085 /* Return excess pages to the free lists. */ 1086 npages_end = roundup2(npages, 1 << imin(oind, order)); 1087 if (npages < npages_end) 1088 vm_phys_free_contig(&m_ret[npages], npages_end - npages); 1089 return (m_ret); 1090 } 1091 1092 #ifdef DDB 1093 /* 1094 * Show the number of physical pages in each of the free lists. 1095 */ 1096 DB_SHOW_COMMAND(freepages, db_show_freepages) 1097 { 1098 struct vm_freelist *fl; 1099 int flind, oind, pind, dom; 1100 1101 for (dom = 0; dom < vm_ndomains; dom++) { 1102 db_printf("DOMAIN: %d\n", dom); 1103 for (flind = 0; flind < vm_nfreelists; flind++) { 1104 db_printf("FREE LIST %d:\n" 1105 "\n ORDER (SIZE) | NUMBER" 1106 "\n ", flind); 1107 for (pind = 0; pind < VM_NFREEPOOL; pind++) 1108 db_printf(" | POOL %d", pind); 1109 db_printf("\n-- "); 1110 for (pind = 0; pind < VM_NFREEPOOL; pind++) 1111 db_printf("-- -- "); 1112 db_printf("--\n"); 1113 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 1114 db_printf(" %2.2d (%6.6dK)", oind, 1115 1 << (PAGE_SHIFT - 10 + oind)); 1116 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 1117 fl = vm_phys_free_queues[dom][flind][pind]; 1118 db_printf(" | %6.6d", fl[oind].lcnt); 1119 } 1120 db_printf("\n"); 1121 } 1122 db_printf("\n"); 1123 } 1124 db_printf("\n"); 1125 } 1126 } 1127 #endif 1128