1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Physical memory system implementation 34 * 35 * Any external functions defined by this module are only to be used by the 36 * virtual memory system. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ddb.h" 43 #include "opt_vm.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/lock.h> 48 #include <sys/kernel.h> 49 #include <sys/malloc.h> 50 #include <sys/mutex.h> 51 #include <sys/queue.h> 52 #include <sys/sbuf.h> 53 #include <sys/sysctl.h> 54 #include <sys/vmmeter.h> 55 56 #include <ddb/ddb.h> 57 58 #include <vm/vm.h> 59 #include <vm/vm_param.h> 60 #include <vm/vm_kern.h> 61 #include <vm/vm_object.h> 62 #include <vm/vm_page.h> 63 #include <vm/vm_phys.h> 64 65 /* 66 * VM_FREELIST_DEFAULT is split into VM_NDOMAIN lists, one for each 67 * domain. These extra lists are stored at the end of the regular 68 * free lists starting with VM_NFREELIST. 69 */ 70 #define VM_RAW_NFREELIST (VM_NFREELIST + VM_NDOMAIN - 1) 71 72 struct vm_freelist { 73 struct pglist pl; 74 int lcnt; 75 }; 76 77 struct vm_phys_seg { 78 vm_paddr_t start; 79 vm_paddr_t end; 80 vm_page_t first_page; 81 int domain; 82 struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER]; 83 }; 84 85 struct mem_affinity *mem_affinity; 86 87 static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX]; 88 89 static int vm_phys_nsegs; 90 91 #define VM_PHYS_FICTITIOUS_NSEGS 8 92 static struct vm_phys_fictitious_seg { 93 vm_paddr_t start; 94 vm_paddr_t end; 95 vm_page_t first_page; 96 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS]; 97 static struct mtx vm_phys_fictitious_reg_mtx; 98 MALLOC_DEFINE(M_FICT_PAGES, "", ""); 99 100 static struct vm_freelist 101 vm_phys_free_queues[VM_RAW_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER]; 102 static struct vm_freelist 103 (*vm_phys_lookup_lists[VM_NDOMAIN][VM_RAW_NFREELIST])[VM_NFREEPOOL][VM_NFREEORDER]; 104 105 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1; 106 107 static int cnt_prezero; 108 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD, 109 &cnt_prezero, 0, "The number of physical pages prezeroed at idle time"); 110 111 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS); 112 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD, 113 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info"); 114 115 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS); 116 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD, 117 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info"); 118 119 #if VM_NDOMAIN > 1 120 static int sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS); 121 SYSCTL_OID(_vm, OID_AUTO, phys_lookup_lists, CTLTYPE_STRING | CTLFLAG_RD, 122 NULL, 0, sysctl_vm_phys_lookup_lists, "A", "Phys Lookup Lists"); 123 #endif 124 125 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, 126 int domain); 127 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind); 128 static int vm_phys_paddr_to_segind(vm_paddr_t pa); 129 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, 130 int order); 131 132 /* 133 * Outputs the state of the physical memory allocator, specifically, 134 * the amount of physical memory in each free list. 135 */ 136 static int 137 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS) 138 { 139 struct sbuf sbuf; 140 struct vm_freelist *fl; 141 int error, flind, oind, pind; 142 143 error = sysctl_wire_old_buffer(req, 0); 144 if (error != 0) 145 return (error); 146 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 147 for (flind = 0; flind < vm_nfreelists; flind++) { 148 sbuf_printf(&sbuf, "\nFREE LIST %d:\n" 149 "\n ORDER (SIZE) | NUMBER" 150 "\n ", flind); 151 for (pind = 0; pind < VM_NFREEPOOL; pind++) 152 sbuf_printf(&sbuf, " | POOL %d", pind); 153 sbuf_printf(&sbuf, "\n-- "); 154 for (pind = 0; pind < VM_NFREEPOOL; pind++) 155 sbuf_printf(&sbuf, "-- -- "); 156 sbuf_printf(&sbuf, "--\n"); 157 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 158 sbuf_printf(&sbuf, " %2d (%6dK)", oind, 159 1 << (PAGE_SHIFT - 10 + oind)); 160 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 161 fl = vm_phys_free_queues[flind][pind]; 162 sbuf_printf(&sbuf, " | %6d", fl[oind].lcnt); 163 } 164 sbuf_printf(&sbuf, "\n"); 165 } 166 } 167 error = sbuf_finish(&sbuf); 168 sbuf_delete(&sbuf); 169 return (error); 170 } 171 172 /* 173 * Outputs the set of physical memory segments. 174 */ 175 static int 176 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS) 177 { 178 struct sbuf sbuf; 179 struct vm_phys_seg *seg; 180 int error, segind; 181 182 error = sysctl_wire_old_buffer(req, 0); 183 if (error != 0) 184 return (error); 185 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 186 for (segind = 0; segind < vm_phys_nsegs; segind++) { 187 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind); 188 seg = &vm_phys_segs[segind]; 189 sbuf_printf(&sbuf, "start: %#jx\n", 190 (uintmax_t)seg->start); 191 sbuf_printf(&sbuf, "end: %#jx\n", 192 (uintmax_t)seg->end); 193 sbuf_printf(&sbuf, "domain: %d\n", seg->domain); 194 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues); 195 } 196 error = sbuf_finish(&sbuf); 197 sbuf_delete(&sbuf); 198 return (error); 199 } 200 201 #if VM_NDOMAIN > 1 202 /* 203 * Outputs the set of free list lookup lists. 204 */ 205 static int 206 sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS) 207 { 208 struct sbuf sbuf; 209 int domain, error, flind, ndomains; 210 211 error = sysctl_wire_old_buffer(req, 0); 212 if (error != 0) 213 return (error); 214 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 215 ndomains = vm_nfreelists - VM_NFREELIST + 1; 216 for (domain = 0; domain < ndomains; domain++) { 217 sbuf_printf(&sbuf, "\nDOMAIN %d:\n\n", domain); 218 for (flind = 0; flind < vm_nfreelists; flind++) 219 sbuf_printf(&sbuf, " [%d]:\t%p\n", flind, 220 vm_phys_lookup_lists[domain][flind]); 221 } 222 error = sbuf_finish(&sbuf); 223 sbuf_delete(&sbuf); 224 return (error); 225 } 226 #endif 227 228 /* 229 * Create a physical memory segment. 230 */ 231 static void 232 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain) 233 { 234 struct vm_phys_seg *seg; 235 #ifdef VM_PHYSSEG_SPARSE 236 long pages; 237 int segind; 238 239 pages = 0; 240 for (segind = 0; segind < vm_phys_nsegs; segind++) { 241 seg = &vm_phys_segs[segind]; 242 pages += atop(seg->end - seg->start); 243 } 244 #endif 245 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX, 246 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX")); 247 seg = &vm_phys_segs[vm_phys_nsegs++]; 248 seg->start = start; 249 seg->end = end; 250 seg->domain = domain; 251 #ifdef VM_PHYSSEG_SPARSE 252 seg->first_page = &vm_page_array[pages]; 253 #else 254 seg->first_page = PHYS_TO_VM_PAGE(start); 255 #endif 256 #if VM_NDOMAIN > 1 257 if (flind == VM_FREELIST_DEFAULT && domain != 0) { 258 flind = VM_NFREELIST + (domain - 1); 259 if (flind >= vm_nfreelists) 260 vm_nfreelists = flind + 1; 261 } 262 #endif 263 seg->free_queues = &vm_phys_free_queues[flind]; 264 } 265 266 static void 267 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind) 268 { 269 int i; 270 271 if (mem_affinity == NULL) { 272 _vm_phys_create_seg(start, end, flind, 0); 273 return; 274 } 275 276 for (i = 0;; i++) { 277 if (mem_affinity[i].end == 0) 278 panic("Reached end of affinity info"); 279 if (mem_affinity[i].end <= start) 280 continue; 281 if (mem_affinity[i].start > start) 282 panic("No affinity info for start %jx", 283 (uintmax_t)start); 284 if (mem_affinity[i].end >= end) { 285 _vm_phys_create_seg(start, end, flind, 286 mem_affinity[i].domain); 287 break; 288 } 289 _vm_phys_create_seg(start, mem_affinity[i].end, flind, 290 mem_affinity[i].domain); 291 start = mem_affinity[i].end; 292 } 293 } 294 295 /* 296 * Initialize the physical memory allocator. 297 */ 298 void 299 vm_phys_init(void) 300 { 301 struct vm_freelist *fl; 302 int flind, i, oind, pind; 303 #if VM_NDOMAIN > 1 304 int ndomains, j; 305 #endif 306 307 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 308 #ifdef VM_FREELIST_ISADMA 309 if (phys_avail[i] < 16777216) { 310 if (phys_avail[i + 1] > 16777216) { 311 vm_phys_create_seg(phys_avail[i], 16777216, 312 VM_FREELIST_ISADMA); 313 vm_phys_create_seg(16777216, phys_avail[i + 1], 314 VM_FREELIST_DEFAULT); 315 } else { 316 vm_phys_create_seg(phys_avail[i], 317 phys_avail[i + 1], VM_FREELIST_ISADMA); 318 } 319 if (VM_FREELIST_ISADMA >= vm_nfreelists) 320 vm_nfreelists = VM_FREELIST_ISADMA + 1; 321 } else 322 #endif 323 #ifdef VM_FREELIST_HIGHMEM 324 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) { 325 if (phys_avail[i] < VM_HIGHMEM_ADDRESS) { 326 vm_phys_create_seg(phys_avail[i], 327 VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT); 328 vm_phys_create_seg(VM_HIGHMEM_ADDRESS, 329 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 330 } else { 331 vm_phys_create_seg(phys_avail[i], 332 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 333 } 334 if (VM_FREELIST_HIGHMEM >= vm_nfreelists) 335 vm_nfreelists = VM_FREELIST_HIGHMEM + 1; 336 } else 337 #endif 338 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1], 339 VM_FREELIST_DEFAULT); 340 } 341 for (flind = 0; flind < vm_nfreelists; flind++) { 342 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 343 fl = vm_phys_free_queues[flind][pind]; 344 for (oind = 0; oind < VM_NFREEORDER; oind++) 345 TAILQ_INIT(&fl[oind].pl); 346 } 347 } 348 #if VM_NDOMAIN > 1 349 /* 350 * Build a free list lookup list for each domain. All of the 351 * memory domain lists are inserted at the VM_FREELIST_DEFAULT 352 * index in a round-robin order starting with the current 353 * domain. 354 */ 355 ndomains = vm_nfreelists - VM_NFREELIST + 1; 356 for (flind = 0; flind < VM_FREELIST_DEFAULT; flind++) 357 for (i = 0; i < ndomains; i++) 358 vm_phys_lookup_lists[i][flind] = 359 &vm_phys_free_queues[flind]; 360 for (i = 0; i < ndomains; i++) 361 for (j = 0; j < ndomains; j++) { 362 flind = (i + j) % ndomains; 363 if (flind == 0) 364 flind = VM_FREELIST_DEFAULT; 365 else 366 flind += VM_NFREELIST - 1; 367 vm_phys_lookup_lists[i][VM_FREELIST_DEFAULT + j] = 368 &vm_phys_free_queues[flind]; 369 } 370 for (flind = VM_FREELIST_DEFAULT + 1; flind < VM_NFREELIST; 371 flind++) 372 for (i = 0; i < ndomains; i++) 373 vm_phys_lookup_lists[i][flind + ndomains - 1] = 374 &vm_phys_free_queues[flind]; 375 #else 376 for (flind = 0; flind < vm_nfreelists; flind++) 377 vm_phys_lookup_lists[0][flind] = &vm_phys_free_queues[flind]; 378 #endif 379 380 mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF); 381 } 382 383 /* 384 * Split a contiguous, power of two-sized set of physical pages. 385 */ 386 static __inline void 387 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order) 388 { 389 vm_page_t m_buddy; 390 391 while (oind > order) { 392 oind--; 393 m_buddy = &m[1 << oind]; 394 KASSERT(m_buddy->order == VM_NFREEORDER, 395 ("vm_phys_split_pages: page %p has unexpected order %d", 396 m_buddy, m_buddy->order)); 397 m_buddy->order = oind; 398 TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq); 399 fl[oind].lcnt++; 400 } 401 } 402 403 /* 404 * Initialize a physical page and add it to the free lists. 405 */ 406 void 407 vm_phys_add_page(vm_paddr_t pa) 408 { 409 vm_page_t m; 410 411 cnt.v_page_count++; 412 m = vm_phys_paddr_to_vm_page(pa); 413 m->phys_addr = pa; 414 m->queue = PQ_NONE; 415 m->segind = vm_phys_paddr_to_segind(pa); 416 m->flags = PG_FREE; 417 KASSERT(m->order == VM_NFREEORDER, 418 ("vm_phys_add_page: page %p has unexpected order %d", 419 m, m->order)); 420 m->pool = VM_FREEPOOL_DEFAULT; 421 pmap_page_init(m); 422 mtx_lock(&vm_page_queue_free_mtx); 423 cnt.v_free_count++; 424 vm_phys_free_pages(m, 0); 425 mtx_unlock(&vm_page_queue_free_mtx); 426 } 427 428 /* 429 * Allocate a contiguous, power of two-sized set of physical pages 430 * from the free lists. 431 * 432 * The free page queues must be locked. 433 */ 434 vm_page_t 435 vm_phys_alloc_pages(int pool, int order) 436 { 437 vm_page_t m; 438 int flind; 439 440 for (flind = 0; flind < vm_nfreelists; flind++) { 441 m = vm_phys_alloc_freelist_pages(flind, pool, order); 442 if (m != NULL) 443 return (m); 444 } 445 return (NULL); 446 } 447 448 /* 449 * Find and dequeue a free page on the given free list, with the 450 * specified pool and order 451 */ 452 vm_page_t 453 vm_phys_alloc_freelist_pages(int flind, int pool, int order) 454 { 455 struct vm_freelist *fl; 456 struct vm_freelist *alt; 457 int domain, oind, pind; 458 vm_page_t m; 459 460 KASSERT(flind < VM_NFREELIST, 461 ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind)); 462 KASSERT(pool < VM_NFREEPOOL, 463 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool)); 464 KASSERT(order < VM_NFREEORDER, 465 ("vm_phys_alloc_freelist_pages: order %d is out of range", order)); 466 467 #if VM_NDOMAIN > 1 468 domain = PCPU_GET(domain); 469 #else 470 domain = 0; 471 #endif 472 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 473 fl = (*vm_phys_lookup_lists[domain][flind])[pool]; 474 for (oind = order; oind < VM_NFREEORDER; oind++) { 475 m = TAILQ_FIRST(&fl[oind].pl); 476 if (m != NULL) { 477 TAILQ_REMOVE(&fl[oind].pl, m, pageq); 478 fl[oind].lcnt--; 479 m->order = VM_NFREEORDER; 480 vm_phys_split_pages(m, oind, fl, order); 481 return (m); 482 } 483 } 484 485 /* 486 * The given pool was empty. Find the largest 487 * contiguous, power-of-two-sized set of pages in any 488 * pool. Transfer these pages to the given pool, and 489 * use them to satisfy the allocation. 490 */ 491 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) { 492 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 493 alt = (*vm_phys_lookup_lists[domain][flind])[pind]; 494 m = TAILQ_FIRST(&alt[oind].pl); 495 if (m != NULL) { 496 TAILQ_REMOVE(&alt[oind].pl, m, pageq); 497 alt[oind].lcnt--; 498 m->order = VM_NFREEORDER; 499 vm_phys_set_pool(pool, m, oind); 500 vm_phys_split_pages(m, oind, fl, order); 501 return (m); 502 } 503 } 504 } 505 return (NULL); 506 } 507 508 /* 509 * Find the vm_page corresponding to the given physical address. 510 */ 511 vm_page_t 512 vm_phys_paddr_to_vm_page(vm_paddr_t pa) 513 { 514 struct vm_phys_seg *seg; 515 int segind; 516 517 for (segind = 0; segind < vm_phys_nsegs; segind++) { 518 seg = &vm_phys_segs[segind]; 519 if (pa >= seg->start && pa < seg->end) 520 return (&seg->first_page[atop(pa - seg->start)]); 521 } 522 return (NULL); 523 } 524 525 vm_page_t 526 vm_phys_fictitious_to_vm_page(vm_paddr_t pa) 527 { 528 struct vm_phys_fictitious_seg *seg; 529 vm_page_t m; 530 int segind; 531 532 m = NULL; 533 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) { 534 seg = &vm_phys_fictitious_segs[segind]; 535 if (pa >= seg->start && pa < seg->end) { 536 m = &seg->first_page[atop(pa - seg->start)]; 537 KASSERT((m->flags & PG_FICTITIOUS) != 0, 538 ("%p not fictitious", m)); 539 break; 540 } 541 } 542 return (m); 543 } 544 545 int 546 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end, 547 vm_memattr_t memattr) 548 { 549 struct vm_phys_fictitious_seg *seg; 550 vm_page_t fp; 551 long i, page_count; 552 int segind; 553 #ifdef VM_PHYSSEG_DENSE 554 long pi; 555 boolean_t malloced; 556 #endif 557 558 page_count = (end - start) / PAGE_SIZE; 559 560 #ifdef VM_PHYSSEG_DENSE 561 pi = atop(start); 562 if (pi >= first_page && atop(end) < vm_page_array_size) { 563 fp = &vm_page_array[pi - first_page]; 564 malloced = FALSE; 565 } else 566 #endif 567 { 568 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES, 569 M_WAITOK | M_ZERO); 570 #ifdef VM_PHYSSEG_DENSE 571 malloced = TRUE; 572 #endif 573 } 574 for (i = 0; i < page_count; i++) { 575 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr); 576 pmap_page_init(&fp[i]); 577 fp[i].oflags &= ~(VPO_BUSY | VPO_UNMANAGED); 578 } 579 mtx_lock(&vm_phys_fictitious_reg_mtx); 580 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) { 581 seg = &vm_phys_fictitious_segs[segind]; 582 if (seg->start == 0 && seg->end == 0) { 583 seg->start = start; 584 seg->end = end; 585 seg->first_page = fp; 586 mtx_unlock(&vm_phys_fictitious_reg_mtx); 587 return (0); 588 } 589 } 590 mtx_unlock(&vm_phys_fictitious_reg_mtx); 591 #ifdef VM_PHYSSEG_DENSE 592 if (malloced) 593 #endif 594 free(fp, M_FICT_PAGES); 595 return (EBUSY); 596 } 597 598 void 599 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end) 600 { 601 struct vm_phys_fictitious_seg *seg; 602 vm_page_t fp; 603 int segind; 604 #ifdef VM_PHYSSEG_DENSE 605 long pi; 606 #endif 607 608 #ifdef VM_PHYSSEG_DENSE 609 pi = atop(start); 610 #endif 611 612 mtx_lock(&vm_phys_fictitious_reg_mtx); 613 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) { 614 seg = &vm_phys_fictitious_segs[segind]; 615 if (seg->start == start && seg->end == end) { 616 seg->start = seg->end = 0; 617 fp = seg->first_page; 618 seg->first_page = NULL; 619 mtx_unlock(&vm_phys_fictitious_reg_mtx); 620 #ifdef VM_PHYSSEG_DENSE 621 if (pi < first_page || atop(end) >= vm_page_array_size) 622 #endif 623 free(fp, M_FICT_PAGES); 624 return; 625 } 626 } 627 mtx_unlock(&vm_phys_fictitious_reg_mtx); 628 KASSERT(0, ("Unregistering not registered fictitious range")); 629 } 630 631 /* 632 * Find the segment containing the given physical address. 633 */ 634 static int 635 vm_phys_paddr_to_segind(vm_paddr_t pa) 636 { 637 struct vm_phys_seg *seg; 638 int segind; 639 640 for (segind = 0; segind < vm_phys_nsegs; segind++) { 641 seg = &vm_phys_segs[segind]; 642 if (pa >= seg->start && pa < seg->end) 643 return (segind); 644 } 645 panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" , 646 (uintmax_t)pa); 647 } 648 649 /* 650 * Free a contiguous, power of two-sized set of physical pages. 651 * 652 * The free page queues must be locked. 653 */ 654 void 655 vm_phys_free_pages(vm_page_t m, int order) 656 { 657 struct vm_freelist *fl; 658 struct vm_phys_seg *seg; 659 vm_paddr_t pa; 660 vm_page_t m_buddy; 661 662 KASSERT(m->order == VM_NFREEORDER, 663 ("vm_phys_free_pages: page %p has unexpected order %d", 664 m, m->order)); 665 KASSERT(m->pool < VM_NFREEPOOL, 666 ("vm_phys_free_pages: page %p has unexpected pool %d", 667 m, m->pool)); 668 KASSERT(order < VM_NFREEORDER, 669 ("vm_phys_free_pages: order %d is out of range", order)); 670 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 671 seg = &vm_phys_segs[m->segind]; 672 if (order < VM_NFREEORDER - 1) { 673 pa = VM_PAGE_TO_PHYS(m); 674 do { 675 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order)); 676 if (pa < seg->start || pa >= seg->end) 677 break; 678 m_buddy = &seg->first_page[atop(pa - seg->start)]; 679 if (m_buddy->order != order) 680 break; 681 fl = (*seg->free_queues)[m_buddy->pool]; 682 TAILQ_REMOVE(&fl[order].pl, m_buddy, pageq); 683 fl[order].lcnt--; 684 m_buddy->order = VM_NFREEORDER; 685 if (m_buddy->pool != m->pool) 686 vm_phys_set_pool(m->pool, m_buddy, order); 687 order++; 688 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1); 689 m = &seg->first_page[atop(pa - seg->start)]; 690 } while (order < VM_NFREEORDER - 1); 691 } 692 m->order = order; 693 fl = (*seg->free_queues)[m->pool]; 694 TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq); 695 fl[order].lcnt++; 696 } 697 698 /* 699 * Free a contiguous, arbitrarily sized set of physical pages. 700 * 701 * The free page queues must be locked. 702 */ 703 void 704 vm_phys_free_contig(vm_page_t m, u_long npages) 705 { 706 u_int n; 707 int order; 708 709 /* 710 * Avoid unnecessary coalescing by freeing the pages in the largest 711 * possible power-of-two-sized subsets. 712 */ 713 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 714 for (;; npages -= n) { 715 /* 716 * Unsigned "min" is used here so that "order" is assigned 717 * "VM_NFREEORDER - 1" when "m"'s physical address is zero 718 * or the low-order bits of its physical address are zero 719 * because the size of a physical address exceeds the size of 720 * a long. 721 */ 722 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1, 723 VM_NFREEORDER - 1); 724 n = 1 << order; 725 if (npages < n) 726 break; 727 vm_phys_free_pages(m, order); 728 m += n; 729 } 730 /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */ 731 for (; npages > 0; npages -= n) { 732 order = flsl(npages) - 1; 733 n = 1 << order; 734 vm_phys_free_pages(m, order); 735 m += n; 736 } 737 } 738 739 /* 740 * Set the pool for a contiguous, power of two-sized set of physical pages. 741 */ 742 void 743 vm_phys_set_pool(int pool, vm_page_t m, int order) 744 { 745 vm_page_t m_tmp; 746 747 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++) 748 m_tmp->pool = pool; 749 } 750 751 /* 752 * Search for the given physical page "m" in the free lists. If the search 753 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return 754 * FALSE, indicating that "m" is not in the free lists. 755 * 756 * The free page queues must be locked. 757 */ 758 boolean_t 759 vm_phys_unfree_page(vm_page_t m) 760 { 761 struct vm_freelist *fl; 762 struct vm_phys_seg *seg; 763 vm_paddr_t pa, pa_half; 764 vm_page_t m_set, m_tmp; 765 int order; 766 767 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 768 769 /* 770 * First, find the contiguous, power of two-sized set of free 771 * physical pages containing the given physical page "m" and 772 * assign it to "m_set". 773 */ 774 seg = &vm_phys_segs[m->segind]; 775 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER && 776 order < VM_NFREEORDER - 1; ) { 777 order++; 778 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order)); 779 if (pa >= seg->start) 780 m_set = &seg->first_page[atop(pa - seg->start)]; 781 else 782 return (FALSE); 783 } 784 if (m_set->order < order) 785 return (FALSE); 786 if (m_set->order == VM_NFREEORDER) 787 return (FALSE); 788 KASSERT(m_set->order < VM_NFREEORDER, 789 ("vm_phys_unfree_page: page %p has unexpected order %d", 790 m_set, m_set->order)); 791 792 /* 793 * Next, remove "m_set" from the free lists. Finally, extract 794 * "m" from "m_set" using an iterative algorithm: While "m_set" 795 * is larger than a page, shrink "m_set" by returning the half 796 * of "m_set" that does not contain "m" to the free lists. 797 */ 798 fl = (*seg->free_queues)[m_set->pool]; 799 order = m_set->order; 800 TAILQ_REMOVE(&fl[order].pl, m_set, pageq); 801 fl[order].lcnt--; 802 m_set->order = VM_NFREEORDER; 803 while (order > 0) { 804 order--; 805 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order)); 806 if (m->phys_addr < pa_half) 807 m_tmp = &seg->first_page[atop(pa_half - seg->start)]; 808 else { 809 m_tmp = m_set; 810 m_set = &seg->first_page[atop(pa_half - seg->start)]; 811 } 812 m_tmp->order = order; 813 TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq); 814 fl[order].lcnt++; 815 } 816 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency")); 817 return (TRUE); 818 } 819 820 /* 821 * Try to zero one physical page. Used by an idle priority thread. 822 */ 823 boolean_t 824 vm_phys_zero_pages_idle(void) 825 { 826 static struct vm_freelist *fl = vm_phys_free_queues[0][0]; 827 static int flind, oind, pind; 828 vm_page_t m, m_tmp; 829 830 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 831 for (;;) { 832 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) { 833 for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) { 834 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) { 835 vm_phys_unfree_page(m_tmp); 836 cnt.v_free_count--; 837 mtx_unlock(&vm_page_queue_free_mtx); 838 pmap_zero_page_idle(m_tmp); 839 m_tmp->flags |= PG_ZERO; 840 mtx_lock(&vm_page_queue_free_mtx); 841 cnt.v_free_count++; 842 vm_phys_free_pages(m_tmp, 0); 843 vm_page_zero_count++; 844 cnt_prezero++; 845 return (TRUE); 846 } 847 } 848 } 849 oind++; 850 if (oind == VM_NFREEORDER) { 851 oind = 0; 852 pind++; 853 if (pind == VM_NFREEPOOL) { 854 pind = 0; 855 flind++; 856 if (flind == vm_nfreelists) 857 flind = 0; 858 } 859 fl = vm_phys_free_queues[flind][pind]; 860 } 861 } 862 } 863 864 /* 865 * Allocate a contiguous set of physical pages of the given size 866 * "npages" from the free lists. All of the physical pages must be at 867 * or above the given physical address "low" and below the given 868 * physical address "high". The given value "alignment" determines the 869 * alignment of the first physical page in the set. If the given value 870 * "boundary" is non-zero, then the set of physical pages cannot cross 871 * any physical address boundary that is a multiple of that value. Both 872 * "alignment" and "boundary" must be a power of two. 873 */ 874 vm_page_t 875 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 876 u_long alignment, vm_paddr_t boundary) 877 { 878 struct vm_freelist *fl; 879 struct vm_phys_seg *seg; 880 vm_paddr_t pa, pa_last, size; 881 vm_page_t m, m_ret; 882 u_long npages_end; 883 int domain, flind, oind, order, pind; 884 885 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 886 #if VM_NDOMAIN > 1 887 domain = PCPU_GET(domain); 888 #else 889 domain = 0; 890 #endif 891 size = npages << PAGE_SHIFT; 892 KASSERT(size != 0, 893 ("vm_phys_alloc_contig: size must not be 0")); 894 KASSERT((alignment & (alignment - 1)) == 0, 895 ("vm_phys_alloc_contig: alignment must be a power of 2")); 896 KASSERT((boundary & (boundary - 1)) == 0, 897 ("vm_phys_alloc_contig: boundary must be a power of 2")); 898 /* Compute the queue that is the best fit for npages. */ 899 for (order = 0; (1 << order) < npages; order++); 900 for (flind = 0; flind < vm_nfreelists; flind++) { 901 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) { 902 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 903 fl = (*vm_phys_lookup_lists[domain][flind]) 904 [pind]; 905 TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) { 906 /* 907 * A free list may contain physical pages 908 * from one or more segments. 909 */ 910 seg = &vm_phys_segs[m_ret->segind]; 911 if (seg->start > high || 912 low >= seg->end) 913 continue; 914 915 /* 916 * Is the size of this allocation request 917 * larger than the largest block size? 918 */ 919 if (order >= VM_NFREEORDER) { 920 /* 921 * Determine if a sufficient number 922 * of subsequent blocks to satisfy 923 * the allocation request are free. 924 */ 925 pa = VM_PAGE_TO_PHYS(m_ret); 926 pa_last = pa + size; 927 for (;;) { 928 pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1); 929 if (pa >= pa_last) 930 break; 931 if (pa < seg->start || 932 pa >= seg->end) 933 break; 934 m = &seg->first_page[atop(pa - seg->start)]; 935 if (m->order != VM_NFREEORDER - 1) 936 break; 937 } 938 /* If not, continue to the next block. */ 939 if (pa < pa_last) 940 continue; 941 } 942 943 /* 944 * Determine if the blocks are within the given range, 945 * satisfy the given alignment, and do not cross the 946 * given boundary. 947 */ 948 pa = VM_PAGE_TO_PHYS(m_ret); 949 if (pa >= low && 950 pa + size <= high && 951 (pa & (alignment - 1)) == 0 && 952 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0) 953 goto done; 954 } 955 } 956 } 957 } 958 return (NULL); 959 done: 960 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) { 961 fl = (*seg->free_queues)[m->pool]; 962 TAILQ_REMOVE(&fl[m->order].pl, m, pageq); 963 fl[m->order].lcnt--; 964 m->order = VM_NFREEORDER; 965 } 966 if (m_ret->pool != VM_FREEPOOL_DEFAULT) 967 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind); 968 fl = (*seg->free_queues)[m_ret->pool]; 969 vm_phys_split_pages(m_ret, oind, fl, order); 970 /* Return excess pages to the free lists. */ 971 npages_end = roundup2(npages, 1 << imin(oind, order)); 972 if (npages < npages_end) 973 vm_phys_free_contig(&m_ret[npages], npages_end - npages); 974 return (m_ret); 975 } 976 977 #ifdef DDB 978 /* 979 * Show the number of physical pages in each of the free lists. 980 */ 981 DB_SHOW_COMMAND(freepages, db_show_freepages) 982 { 983 struct vm_freelist *fl; 984 int flind, oind, pind; 985 986 for (flind = 0; flind < vm_nfreelists; flind++) { 987 db_printf("FREE LIST %d:\n" 988 "\n ORDER (SIZE) | NUMBER" 989 "\n ", flind); 990 for (pind = 0; pind < VM_NFREEPOOL; pind++) 991 db_printf(" | POOL %d", pind); 992 db_printf("\n-- "); 993 for (pind = 0; pind < VM_NFREEPOOL; pind++) 994 db_printf("-- -- "); 995 db_printf("--\n"); 996 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 997 db_printf(" %2.2d (%6.6dK)", oind, 998 1 << (PAGE_SHIFT - 10 + oind)); 999 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 1000 fl = vm_phys_free_queues[flind][pind]; 1001 db_printf(" | %6.6d", fl[oind].lcnt); 1002 } 1003 db_printf("\n"); 1004 } 1005 db_printf("\n"); 1006 } 1007 } 1008 #endif 1009