xref: /freebsd/sys/vm/vm_phys.c (revision ddc0daea20280c3a06a910b72b14ffe3f624df71)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_ddb.h"
45 #include "opt_vm.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/domainset.h>
50 #include <sys/lock.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/queue.h>
56 #include <sys/rwlock.h>
57 #include <sys/sbuf.h>
58 #include <sys/sysctl.h>
59 #include <sys/tree.h>
60 #include <sys/vmmeter.h>
61 
62 #include <ddb/ddb.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_phys.h>
70 #include <vm/vm_pagequeue.h>
71 
72 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
73     "Too many physsegs.");
74 
75 #ifdef NUMA
76 struct mem_affinity __read_mostly *mem_affinity;
77 int __read_mostly *mem_locality;
78 #endif
79 
80 int __read_mostly vm_ndomains = 1;
81 domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);
82 
83 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
84 int __read_mostly vm_phys_nsegs;
85 
86 struct vm_phys_fictitious_seg;
87 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
88     struct vm_phys_fictitious_seg *);
89 
90 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
91     RB_INITIALIZER(_vm_phys_fictitious_tree);
92 
93 struct vm_phys_fictitious_seg {
94 	RB_ENTRY(vm_phys_fictitious_seg) node;
95 	/* Memory region data */
96 	vm_paddr_t	start;
97 	vm_paddr_t	end;
98 	vm_page_t	first_page;
99 };
100 
101 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
102     vm_phys_fictitious_cmp);
103 
104 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
105 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
106 
107 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
108     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
109     [VM_NFREEORDER_MAX];
110 
111 static int __read_mostly vm_nfreelists;
112 
113 /*
114  * These "avail lists" are globals used to communicate boot-time physical
115  * memory layout to other parts of the kernel.  Each physically contiguous
116  * region of memory is defined by a start address at an even index and an
117  * end address at the following odd index.  Each list is terminated by a
118  * pair of zero entries.
119  *
120  * dump_avail tells the dump code what regions to include in a crash dump, and
121  * phys_avail is all of the remaining physical memory that is available for
122  * the vm system.
123  *
124  * Initially dump_avail and phys_avail are identical.  Boot time memory
125  * allocations remove extents from phys_avail that may still be included
126  * in dumps.
127  */
128 vm_paddr_t phys_avail[PHYS_AVAIL_COUNT];
129 vm_paddr_t dump_avail[PHYS_AVAIL_COUNT];
130 
131 /*
132  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
133  */
134 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
135 
136 CTASSERT(VM_FREELIST_DEFAULT == 0);
137 
138 #ifdef VM_FREELIST_DMA32
139 #define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
140 #endif
141 
142 /*
143  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
144  * the ordering of the free list boundaries.
145  */
146 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
147 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
148 #endif
149 
150 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
151 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
152     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
153 
154 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
155 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
156     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
157 
158 #ifdef NUMA
159 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
160 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
161     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
162 #endif
163 
164 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
165     &vm_ndomains, 0, "Number of physical memory domains available.");
166 
167 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
168     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
169     vm_paddr_t boundary);
170 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
171 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
172 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
173     int order, int tail);
174 
175 /*
176  * Red-black tree helpers for vm fictitious range management.
177  */
178 static inline int
179 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
180     struct vm_phys_fictitious_seg *range)
181 {
182 
183 	KASSERT(range->start != 0 && range->end != 0,
184 	    ("Invalid range passed on search for vm_fictitious page"));
185 	if (p->start >= range->end)
186 		return (1);
187 	if (p->start < range->start)
188 		return (-1);
189 
190 	return (0);
191 }
192 
193 static int
194 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
195     struct vm_phys_fictitious_seg *p2)
196 {
197 
198 	/* Check if this is a search for a page */
199 	if (p1->end == 0)
200 		return (vm_phys_fictitious_in_range(p1, p2));
201 
202 	KASSERT(p2->end != 0,
203     ("Invalid range passed as second parameter to vm fictitious comparison"));
204 
205 	/* Searching to add a new range */
206 	if (p1->end <= p2->start)
207 		return (-1);
208 	if (p1->start >= p2->end)
209 		return (1);
210 
211 	panic("Trying to add overlapping vm fictitious ranges:\n"
212 	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
213 	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
214 }
215 
216 int
217 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
218 {
219 #ifdef NUMA
220 	domainset_t mask;
221 	int i;
222 
223 	if (vm_ndomains == 1 || mem_affinity == NULL)
224 		return (0);
225 
226 	DOMAINSET_ZERO(&mask);
227 	/*
228 	 * Check for any memory that overlaps low, high.
229 	 */
230 	for (i = 0; mem_affinity[i].end != 0; i++)
231 		if (mem_affinity[i].start <= high &&
232 		    mem_affinity[i].end >= low)
233 			DOMAINSET_SET(mem_affinity[i].domain, &mask);
234 	if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
235 		return (prefer);
236 	if (DOMAINSET_EMPTY(&mask))
237 		panic("vm_phys_domain_match:  Impossible constraint");
238 	return (DOMAINSET_FFS(&mask) - 1);
239 #else
240 	return (0);
241 #endif
242 }
243 
244 /*
245  * Outputs the state of the physical memory allocator, specifically,
246  * the amount of physical memory in each free list.
247  */
248 static int
249 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
250 {
251 	struct sbuf sbuf;
252 	struct vm_freelist *fl;
253 	int dom, error, flind, oind, pind;
254 
255 	error = sysctl_wire_old_buffer(req, 0);
256 	if (error != 0)
257 		return (error);
258 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
259 	for (dom = 0; dom < vm_ndomains; dom++) {
260 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
261 		for (flind = 0; flind < vm_nfreelists; flind++) {
262 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
263 			    "\n  ORDER (SIZE)  |  NUMBER"
264 			    "\n              ", flind);
265 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
266 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
267 			sbuf_printf(&sbuf, "\n--            ");
268 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
269 				sbuf_printf(&sbuf, "-- --      ");
270 			sbuf_printf(&sbuf, "--\n");
271 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
272 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
273 				    1 << (PAGE_SHIFT - 10 + oind));
274 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
275 				fl = vm_phys_free_queues[dom][flind][pind];
276 					sbuf_printf(&sbuf, "  |  %6d",
277 					    fl[oind].lcnt);
278 				}
279 				sbuf_printf(&sbuf, "\n");
280 			}
281 		}
282 	}
283 	error = sbuf_finish(&sbuf);
284 	sbuf_delete(&sbuf);
285 	return (error);
286 }
287 
288 /*
289  * Outputs the set of physical memory segments.
290  */
291 static int
292 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
293 {
294 	struct sbuf sbuf;
295 	struct vm_phys_seg *seg;
296 	int error, segind;
297 
298 	error = sysctl_wire_old_buffer(req, 0);
299 	if (error != 0)
300 		return (error);
301 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
302 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
303 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
304 		seg = &vm_phys_segs[segind];
305 		sbuf_printf(&sbuf, "start:     %#jx\n",
306 		    (uintmax_t)seg->start);
307 		sbuf_printf(&sbuf, "end:       %#jx\n",
308 		    (uintmax_t)seg->end);
309 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
310 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
311 	}
312 	error = sbuf_finish(&sbuf);
313 	sbuf_delete(&sbuf);
314 	return (error);
315 }
316 
317 /*
318  * Return affinity, or -1 if there's no affinity information.
319  */
320 int
321 vm_phys_mem_affinity(int f, int t)
322 {
323 
324 #ifdef NUMA
325 	if (mem_locality == NULL)
326 		return (-1);
327 	if (f >= vm_ndomains || t >= vm_ndomains)
328 		return (-1);
329 	return (mem_locality[f * vm_ndomains + t]);
330 #else
331 	return (-1);
332 #endif
333 }
334 
335 #ifdef NUMA
336 /*
337  * Outputs the VM locality table.
338  */
339 static int
340 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
341 {
342 	struct sbuf sbuf;
343 	int error, i, j;
344 
345 	error = sysctl_wire_old_buffer(req, 0);
346 	if (error != 0)
347 		return (error);
348 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
349 
350 	sbuf_printf(&sbuf, "\n");
351 
352 	for (i = 0; i < vm_ndomains; i++) {
353 		sbuf_printf(&sbuf, "%d: ", i);
354 		for (j = 0; j < vm_ndomains; j++) {
355 			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
356 		}
357 		sbuf_printf(&sbuf, "\n");
358 	}
359 	error = sbuf_finish(&sbuf);
360 	sbuf_delete(&sbuf);
361 	return (error);
362 }
363 #endif
364 
365 static void
366 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
367 {
368 
369 	m->order = order;
370 	if (tail)
371 		TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
372 	else
373 		TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
374 	fl[order].lcnt++;
375 }
376 
377 static void
378 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
379 {
380 
381 	TAILQ_REMOVE(&fl[order].pl, m, listq);
382 	fl[order].lcnt--;
383 	m->order = VM_NFREEORDER;
384 }
385 
386 /*
387  * Create a physical memory segment.
388  */
389 static void
390 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
391 {
392 	struct vm_phys_seg *seg;
393 
394 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
395 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
396 	KASSERT(domain >= 0 && domain < vm_ndomains,
397 	    ("vm_phys_create_seg: invalid domain provided"));
398 	seg = &vm_phys_segs[vm_phys_nsegs++];
399 	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
400 		*seg = *(seg - 1);
401 		seg--;
402 	}
403 	seg->start = start;
404 	seg->end = end;
405 	seg->domain = domain;
406 }
407 
408 static void
409 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
410 {
411 #ifdef NUMA
412 	int i;
413 
414 	if (mem_affinity == NULL) {
415 		_vm_phys_create_seg(start, end, 0);
416 		return;
417 	}
418 
419 	for (i = 0;; i++) {
420 		if (mem_affinity[i].end == 0)
421 			panic("Reached end of affinity info");
422 		if (mem_affinity[i].end <= start)
423 			continue;
424 		if (mem_affinity[i].start > start)
425 			panic("No affinity info for start %jx",
426 			    (uintmax_t)start);
427 		if (mem_affinity[i].end >= end) {
428 			_vm_phys_create_seg(start, end,
429 			    mem_affinity[i].domain);
430 			break;
431 		}
432 		_vm_phys_create_seg(start, mem_affinity[i].end,
433 		    mem_affinity[i].domain);
434 		start = mem_affinity[i].end;
435 	}
436 #else
437 	_vm_phys_create_seg(start, end, 0);
438 #endif
439 }
440 
441 /*
442  * Add a physical memory segment.
443  */
444 void
445 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
446 {
447 	vm_paddr_t paddr;
448 
449 	KASSERT((start & PAGE_MASK) == 0,
450 	    ("vm_phys_define_seg: start is not page aligned"));
451 	KASSERT((end & PAGE_MASK) == 0,
452 	    ("vm_phys_define_seg: end is not page aligned"));
453 
454 	/*
455 	 * Split the physical memory segment if it spans two or more free
456 	 * list boundaries.
457 	 */
458 	paddr = start;
459 #ifdef	VM_FREELIST_LOWMEM
460 	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
461 		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
462 		paddr = VM_LOWMEM_BOUNDARY;
463 	}
464 #endif
465 #ifdef	VM_FREELIST_DMA32
466 	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
467 		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
468 		paddr = VM_DMA32_BOUNDARY;
469 	}
470 #endif
471 	vm_phys_create_seg(paddr, end);
472 }
473 
474 /*
475  * Initialize the physical memory allocator.
476  *
477  * Requires that vm_page_array is initialized!
478  */
479 void
480 vm_phys_init(void)
481 {
482 	struct vm_freelist *fl;
483 	struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
484 	u_long npages;
485 	int dom, flind, freelist, oind, pind, segind;
486 
487 	/*
488 	 * Compute the number of free lists, and generate the mapping from the
489 	 * manifest constants VM_FREELIST_* to the free list indices.
490 	 *
491 	 * Initially, the entries of vm_freelist_to_flind[] are set to either
492 	 * 0 or 1 to indicate which free lists should be created.
493 	 */
494 	npages = 0;
495 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
496 		seg = &vm_phys_segs[segind];
497 #ifdef	VM_FREELIST_LOWMEM
498 		if (seg->end <= VM_LOWMEM_BOUNDARY)
499 			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
500 		else
501 #endif
502 #ifdef	VM_FREELIST_DMA32
503 		if (
504 #ifdef	VM_DMA32_NPAGES_THRESHOLD
505 		    /*
506 		     * Create the DMA32 free list only if the amount of
507 		     * physical memory above physical address 4G exceeds the
508 		     * given threshold.
509 		     */
510 		    npages > VM_DMA32_NPAGES_THRESHOLD &&
511 #endif
512 		    seg->end <= VM_DMA32_BOUNDARY)
513 			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
514 		else
515 #endif
516 		{
517 			npages += atop(seg->end - seg->start);
518 			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
519 		}
520 	}
521 	/* Change each entry into a running total of the free lists. */
522 	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
523 		vm_freelist_to_flind[freelist] +=
524 		    vm_freelist_to_flind[freelist - 1];
525 	}
526 	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
527 	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
528 	/* Change each entry into a free list index. */
529 	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
530 		vm_freelist_to_flind[freelist]--;
531 
532 	/*
533 	 * Initialize the first_page and free_queues fields of each physical
534 	 * memory segment.
535 	 */
536 #ifdef VM_PHYSSEG_SPARSE
537 	npages = 0;
538 #endif
539 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
540 		seg = &vm_phys_segs[segind];
541 #ifdef VM_PHYSSEG_SPARSE
542 		seg->first_page = &vm_page_array[npages];
543 		npages += atop(seg->end - seg->start);
544 #else
545 		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
546 #endif
547 #ifdef	VM_FREELIST_LOWMEM
548 		if (seg->end <= VM_LOWMEM_BOUNDARY) {
549 			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
550 			KASSERT(flind >= 0,
551 			    ("vm_phys_init: LOWMEM flind < 0"));
552 		} else
553 #endif
554 #ifdef	VM_FREELIST_DMA32
555 		if (seg->end <= VM_DMA32_BOUNDARY) {
556 			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
557 			KASSERT(flind >= 0,
558 			    ("vm_phys_init: DMA32 flind < 0"));
559 		} else
560 #endif
561 		{
562 			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
563 			KASSERT(flind >= 0,
564 			    ("vm_phys_init: DEFAULT flind < 0"));
565 		}
566 		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
567 	}
568 
569 	/*
570 	 * Coalesce physical memory segments that are contiguous and share the
571 	 * same per-domain free queues.
572 	 */
573 	prev_seg = vm_phys_segs;
574 	seg = &vm_phys_segs[1];
575 	end_seg = &vm_phys_segs[vm_phys_nsegs];
576 	while (seg < end_seg) {
577 		if (prev_seg->end == seg->start &&
578 		    prev_seg->free_queues == seg->free_queues) {
579 			prev_seg->end = seg->end;
580 			KASSERT(prev_seg->domain == seg->domain,
581 			    ("vm_phys_init: free queues cannot span domains"));
582 			vm_phys_nsegs--;
583 			end_seg--;
584 			for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
585 				*tmp_seg = *(tmp_seg + 1);
586 		} else {
587 			prev_seg = seg;
588 			seg++;
589 		}
590 	}
591 
592 	/*
593 	 * Initialize the free queues.
594 	 */
595 	for (dom = 0; dom < vm_ndomains; dom++) {
596 		for (flind = 0; flind < vm_nfreelists; flind++) {
597 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
598 				fl = vm_phys_free_queues[dom][flind][pind];
599 				for (oind = 0; oind < VM_NFREEORDER; oind++)
600 					TAILQ_INIT(&fl[oind].pl);
601 			}
602 		}
603 	}
604 
605 	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
606 }
607 
608 /*
609  * Register info about the NUMA topology of the system.
610  *
611  * Invoked by platform-dependent code prior to vm_phys_init().
612  */
613 void
614 vm_phys_register_domains(int ndomains, struct mem_affinity *affinity,
615     int *locality)
616 {
617 #ifdef NUMA
618 	int d, i;
619 
620 	/*
621 	 * For now the only override value that we support is 1, which
622 	 * effectively disables NUMA-awareness in the allocators.
623 	 */
624 	d = 0;
625 	TUNABLE_INT_FETCH("vm.numa.disabled", &d);
626 	if (d)
627 		ndomains = 1;
628 
629 	if (ndomains > 1) {
630 		vm_ndomains = ndomains;
631 		mem_affinity = affinity;
632 		mem_locality = locality;
633 	}
634 
635 	for (i = 0; i < vm_ndomains; i++)
636 		DOMAINSET_SET(i, &all_domains);
637 #else
638 	(void)ndomains;
639 	(void)affinity;
640 	(void)locality;
641 #endif
642 }
643 
644 int
645 _vm_phys_domain(vm_paddr_t pa)
646 {
647 #ifdef NUMA
648 	int i;
649 
650 	if (vm_ndomains == 1 || mem_affinity == NULL)
651 		return (0);
652 
653 	/*
654 	 * Check for any memory that overlaps.
655 	 */
656 	for (i = 0; mem_affinity[i].end != 0; i++)
657 		if (mem_affinity[i].start <= pa &&
658 		    mem_affinity[i].end >= pa)
659 			return (mem_affinity[i].domain);
660 #endif
661 	return (0);
662 }
663 
664 /*
665  * Split a contiguous, power of two-sized set of physical pages.
666  *
667  * When this function is called by a page allocation function, the caller
668  * should request insertion at the head unless the order [order, oind) queues
669  * are known to be empty.  The objective being to reduce the likelihood of
670  * long-term fragmentation by promoting contemporaneous allocation and
671  * (hopefully) deallocation.
672  */
673 static __inline void
674 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
675     int tail)
676 {
677 	vm_page_t m_buddy;
678 
679 	while (oind > order) {
680 		oind--;
681 		m_buddy = &m[1 << oind];
682 		KASSERT(m_buddy->order == VM_NFREEORDER,
683 		    ("vm_phys_split_pages: page %p has unexpected order %d",
684 		    m_buddy, m_buddy->order));
685 		vm_freelist_add(fl, m_buddy, oind, tail);
686         }
687 }
688 
689 /*
690  * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
691  * and sized set to the specified free list.
692  *
693  * When this function is called by a page allocation function, the caller
694  * should request insertion at the head unless the lower-order queues are
695  * known to be empty.  The objective being to reduce the likelihood of long-
696  * term fragmentation by promoting contemporaneous allocation and (hopefully)
697  * deallocation.
698  *
699  * The physical page m's buddy must not be free.
700  */
701 static void
702 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
703 {
704 	u_int n;
705 	int order;
706 
707 	KASSERT(npages > 0, ("vm_phys_enq_range: npages is 0"));
708 	KASSERT(((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
709 	    ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
710 	    ("vm_phys_enq_range: page %p and npages %u are misaligned",
711 	    m, npages));
712 	do {
713 		KASSERT(m->order == VM_NFREEORDER,
714 		    ("vm_phys_enq_range: page %p has unexpected order %d",
715 		    m, m->order));
716 		order = ffs(npages) - 1;
717 		KASSERT(order < VM_NFREEORDER,
718 		    ("vm_phys_enq_range: order %d is out of range", order));
719 		vm_freelist_add(fl, m, order, tail);
720 		n = 1 << order;
721 		m += n;
722 		npages -= n;
723 	} while (npages > 0);
724 }
725 
726 /*
727  * Tries to allocate the specified number of pages from the specified pool
728  * within the specified domain.  Returns the actual number of allocated pages
729  * and a pointer to each page through the array ma[].
730  *
731  * The returned pages may not be physically contiguous.  However, in contrast
732  * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
733  * calling this function once to allocate the desired number of pages will
734  * avoid wasted time in vm_phys_split_pages().
735  *
736  * The free page queues for the specified domain must be locked.
737  */
738 int
739 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
740 {
741 	struct vm_freelist *alt, *fl;
742 	vm_page_t m;
743 	int avail, end, flind, freelist, i, need, oind, pind;
744 
745 	KASSERT(domain >= 0 && domain < vm_ndomains,
746 	    ("vm_phys_alloc_npages: domain %d is out of range", domain));
747 	KASSERT(pool < VM_NFREEPOOL,
748 	    ("vm_phys_alloc_npages: pool %d is out of range", pool));
749 	KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
750 	    ("vm_phys_alloc_npages: npages %d is out of range", npages));
751 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
752 	i = 0;
753 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
754 		flind = vm_freelist_to_flind[freelist];
755 		if (flind < 0)
756 			continue;
757 		fl = vm_phys_free_queues[domain][flind][pool];
758 		for (oind = 0; oind < VM_NFREEORDER; oind++) {
759 			while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
760 				vm_freelist_rem(fl, m, oind);
761 				avail = 1 << oind;
762 				need = imin(npages - i, avail);
763 				for (end = i + need; i < end;)
764 					ma[i++] = m++;
765 				if (need < avail) {
766 					/*
767 					 * Return excess pages to fl.  Its
768 					 * order [0, oind) queues are empty.
769 					 */
770 					vm_phys_enq_range(m, avail - need, fl,
771 					    1);
772 					return (npages);
773 				} else if (i == npages)
774 					return (npages);
775 			}
776 		}
777 		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
778 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
779 				alt = vm_phys_free_queues[domain][flind][pind];
780 				while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
781 				    NULL) {
782 					vm_freelist_rem(alt, m, oind);
783 					vm_phys_set_pool(pool, m, oind);
784 					avail = 1 << oind;
785 					need = imin(npages - i, avail);
786 					for (end = i + need; i < end;)
787 						ma[i++] = m++;
788 					if (need < avail) {
789 						/*
790 						 * Return excess pages to fl.
791 						 * Its order [0, oind) queues
792 						 * are empty.
793 						 */
794 						vm_phys_enq_range(m, avail -
795 						    need, fl, 1);
796 						return (npages);
797 					} else if (i == npages)
798 						return (npages);
799 				}
800 			}
801 		}
802 	}
803 	return (i);
804 }
805 
806 /*
807  * Allocate a contiguous, power of two-sized set of physical pages
808  * from the free lists.
809  *
810  * The free page queues must be locked.
811  */
812 vm_page_t
813 vm_phys_alloc_pages(int domain, int pool, int order)
814 {
815 	vm_page_t m;
816 	int freelist;
817 
818 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
819 		m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
820 		if (m != NULL)
821 			return (m);
822 	}
823 	return (NULL);
824 }
825 
826 /*
827  * Allocate a contiguous, power of two-sized set of physical pages from the
828  * specified free list.  The free list must be specified using one of the
829  * manifest constants VM_FREELIST_*.
830  *
831  * The free page queues must be locked.
832  */
833 vm_page_t
834 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
835 {
836 	struct vm_freelist *alt, *fl;
837 	vm_page_t m;
838 	int oind, pind, flind;
839 
840 	KASSERT(domain >= 0 && domain < vm_ndomains,
841 	    ("vm_phys_alloc_freelist_pages: domain %d is out of range",
842 	    domain));
843 	KASSERT(freelist < VM_NFREELIST,
844 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
845 	    freelist));
846 	KASSERT(pool < VM_NFREEPOOL,
847 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
848 	KASSERT(order < VM_NFREEORDER,
849 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
850 
851 	flind = vm_freelist_to_flind[freelist];
852 	/* Check if freelist is present */
853 	if (flind < 0)
854 		return (NULL);
855 
856 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
857 	fl = &vm_phys_free_queues[domain][flind][pool][0];
858 	for (oind = order; oind < VM_NFREEORDER; oind++) {
859 		m = TAILQ_FIRST(&fl[oind].pl);
860 		if (m != NULL) {
861 			vm_freelist_rem(fl, m, oind);
862 			/* The order [order, oind) queues are empty. */
863 			vm_phys_split_pages(m, oind, fl, order, 1);
864 			return (m);
865 		}
866 	}
867 
868 	/*
869 	 * The given pool was empty.  Find the largest
870 	 * contiguous, power-of-two-sized set of pages in any
871 	 * pool.  Transfer these pages to the given pool, and
872 	 * use them to satisfy the allocation.
873 	 */
874 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
875 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
876 			alt = &vm_phys_free_queues[domain][flind][pind][0];
877 			m = TAILQ_FIRST(&alt[oind].pl);
878 			if (m != NULL) {
879 				vm_freelist_rem(alt, m, oind);
880 				vm_phys_set_pool(pool, m, oind);
881 				/* The order [order, oind) queues are empty. */
882 				vm_phys_split_pages(m, oind, fl, order, 1);
883 				return (m);
884 			}
885 		}
886 	}
887 	return (NULL);
888 }
889 
890 /*
891  * Find the vm_page corresponding to the given physical address.
892  */
893 vm_page_t
894 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
895 {
896 	struct vm_phys_seg *seg;
897 	int segind;
898 
899 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
900 		seg = &vm_phys_segs[segind];
901 		if (pa >= seg->start && pa < seg->end)
902 			return (&seg->first_page[atop(pa - seg->start)]);
903 	}
904 	return (NULL);
905 }
906 
907 vm_page_t
908 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
909 {
910 	struct vm_phys_fictitious_seg tmp, *seg;
911 	vm_page_t m;
912 
913 	m = NULL;
914 	tmp.start = pa;
915 	tmp.end = 0;
916 
917 	rw_rlock(&vm_phys_fictitious_reg_lock);
918 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
919 	rw_runlock(&vm_phys_fictitious_reg_lock);
920 	if (seg == NULL)
921 		return (NULL);
922 
923 	m = &seg->first_page[atop(pa - seg->start)];
924 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
925 
926 	return (m);
927 }
928 
929 static inline void
930 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
931     long page_count, vm_memattr_t memattr)
932 {
933 	long i;
934 
935 	bzero(range, page_count * sizeof(*range));
936 	for (i = 0; i < page_count; i++) {
937 		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
938 		range[i].oflags &= ~VPO_UNMANAGED;
939 		range[i].busy_lock = VPB_UNBUSIED;
940 	}
941 }
942 
943 int
944 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
945     vm_memattr_t memattr)
946 {
947 	struct vm_phys_fictitious_seg *seg;
948 	vm_page_t fp;
949 	long page_count;
950 #ifdef VM_PHYSSEG_DENSE
951 	long pi, pe;
952 	long dpage_count;
953 #endif
954 
955 	KASSERT(start < end,
956 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
957 	    (uintmax_t)start, (uintmax_t)end));
958 
959 	page_count = (end - start) / PAGE_SIZE;
960 
961 #ifdef VM_PHYSSEG_DENSE
962 	pi = atop(start);
963 	pe = atop(end);
964 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
965 		fp = &vm_page_array[pi - first_page];
966 		if ((pe - first_page) > vm_page_array_size) {
967 			/*
968 			 * We have a segment that starts inside
969 			 * of vm_page_array, but ends outside of it.
970 			 *
971 			 * Use vm_page_array pages for those that are
972 			 * inside of the vm_page_array range, and
973 			 * allocate the remaining ones.
974 			 */
975 			dpage_count = vm_page_array_size - (pi - first_page);
976 			vm_phys_fictitious_init_range(fp, start, dpage_count,
977 			    memattr);
978 			page_count -= dpage_count;
979 			start += ptoa(dpage_count);
980 			goto alloc;
981 		}
982 		/*
983 		 * We can allocate the full range from vm_page_array,
984 		 * so there's no need to register the range in the tree.
985 		 */
986 		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
987 		return (0);
988 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
989 		/*
990 		 * We have a segment that ends inside of vm_page_array,
991 		 * but starts outside of it.
992 		 */
993 		fp = &vm_page_array[0];
994 		dpage_count = pe - first_page;
995 		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
996 		    memattr);
997 		end -= ptoa(dpage_count);
998 		page_count -= dpage_count;
999 		goto alloc;
1000 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1001 		/*
1002 		 * Trying to register a fictitious range that expands before
1003 		 * and after vm_page_array.
1004 		 */
1005 		return (EINVAL);
1006 	} else {
1007 alloc:
1008 #endif
1009 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
1010 		    M_WAITOK);
1011 #ifdef VM_PHYSSEG_DENSE
1012 	}
1013 #endif
1014 	vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1015 
1016 	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
1017 	seg->start = start;
1018 	seg->end = end;
1019 	seg->first_page = fp;
1020 
1021 	rw_wlock(&vm_phys_fictitious_reg_lock);
1022 	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1023 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1024 
1025 	return (0);
1026 }
1027 
1028 void
1029 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1030 {
1031 	struct vm_phys_fictitious_seg *seg, tmp;
1032 #ifdef VM_PHYSSEG_DENSE
1033 	long pi, pe;
1034 #endif
1035 
1036 	KASSERT(start < end,
1037 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
1038 	    (uintmax_t)start, (uintmax_t)end));
1039 
1040 #ifdef VM_PHYSSEG_DENSE
1041 	pi = atop(start);
1042 	pe = atop(end);
1043 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1044 		if ((pe - first_page) <= vm_page_array_size) {
1045 			/*
1046 			 * This segment was allocated using vm_page_array
1047 			 * only, there's nothing to do since those pages
1048 			 * were never added to the tree.
1049 			 */
1050 			return;
1051 		}
1052 		/*
1053 		 * We have a segment that starts inside
1054 		 * of vm_page_array, but ends outside of it.
1055 		 *
1056 		 * Calculate how many pages were added to the
1057 		 * tree and free them.
1058 		 */
1059 		start = ptoa(first_page + vm_page_array_size);
1060 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1061 		/*
1062 		 * We have a segment that ends inside of vm_page_array,
1063 		 * but starts outside of it.
1064 		 */
1065 		end = ptoa(first_page);
1066 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1067 		/* Since it's not possible to register such a range, panic. */
1068 		panic(
1069 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1070 		    (uintmax_t)start, (uintmax_t)end);
1071 	}
1072 #endif
1073 	tmp.start = start;
1074 	tmp.end = 0;
1075 
1076 	rw_wlock(&vm_phys_fictitious_reg_lock);
1077 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1078 	if (seg->start != start || seg->end != end) {
1079 		rw_wunlock(&vm_phys_fictitious_reg_lock);
1080 		panic(
1081 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1082 		    (uintmax_t)start, (uintmax_t)end);
1083 	}
1084 	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1085 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1086 	free(seg->first_page, M_FICT_PAGES);
1087 	free(seg, M_FICT_PAGES);
1088 }
1089 
1090 /*
1091  * Free a contiguous, power of two-sized set of physical pages.
1092  *
1093  * The free page queues must be locked.
1094  */
1095 void
1096 vm_phys_free_pages(vm_page_t m, int order)
1097 {
1098 	struct vm_freelist *fl;
1099 	struct vm_phys_seg *seg;
1100 	vm_paddr_t pa;
1101 	vm_page_t m_buddy;
1102 
1103 	KASSERT(m->order == VM_NFREEORDER,
1104 	    ("vm_phys_free_pages: page %p has unexpected order %d",
1105 	    m, m->order));
1106 	KASSERT(m->pool < VM_NFREEPOOL,
1107 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
1108 	    m, m->pool));
1109 	KASSERT(order < VM_NFREEORDER,
1110 	    ("vm_phys_free_pages: order %d is out of range", order));
1111 	seg = &vm_phys_segs[m->segind];
1112 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1113 	if (order < VM_NFREEORDER - 1) {
1114 		pa = VM_PAGE_TO_PHYS(m);
1115 		do {
1116 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1117 			if (pa < seg->start || pa >= seg->end)
1118 				break;
1119 			m_buddy = &seg->first_page[atop(pa - seg->start)];
1120 			if (m_buddy->order != order)
1121 				break;
1122 			fl = (*seg->free_queues)[m_buddy->pool];
1123 			vm_freelist_rem(fl, m_buddy, order);
1124 			if (m_buddy->pool != m->pool)
1125 				vm_phys_set_pool(m->pool, m_buddy, order);
1126 			order++;
1127 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1128 			m = &seg->first_page[atop(pa - seg->start)];
1129 		} while (order < VM_NFREEORDER - 1);
1130 	}
1131 	fl = (*seg->free_queues)[m->pool];
1132 	vm_freelist_add(fl, m, order, 1);
1133 }
1134 
1135 /*
1136  * Return the largest possible order of a set of pages starting at m.
1137  */
1138 static int
1139 max_order(vm_page_t m)
1140 {
1141 
1142 	/*
1143 	 * Unsigned "min" is used here so that "order" is assigned
1144 	 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1145 	 * or the low-order bits of its physical address are zero
1146 	 * because the size of a physical address exceeds the size of
1147 	 * a long.
1148 	 */
1149 	return (min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1150 	    VM_NFREEORDER - 1));
1151 }
1152 
1153 /*
1154  * Free a contiguous, arbitrarily sized set of physical pages, without
1155  * merging across set boundaries.
1156  *
1157  * The free page queues must be locked.
1158  */
1159 void
1160 vm_phys_enqueue_contig(vm_page_t m, u_long npages)
1161 {
1162 	struct vm_freelist *fl;
1163 	struct vm_phys_seg *seg;
1164 	vm_page_t m_end;
1165 	int order;
1166 
1167 	/*
1168 	 * Avoid unnecessary coalescing by freeing the pages in the largest
1169 	 * possible power-of-two-sized subsets.
1170 	 */
1171 	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1172 	seg = &vm_phys_segs[m->segind];
1173 	fl = (*seg->free_queues)[m->pool];
1174 	m_end = m + npages;
1175 	/* Free blocks of increasing size. */
1176 	while ((order = max_order(m)) < VM_NFREEORDER - 1 &&
1177 	    m + (1 << order) <= m_end) {
1178 		KASSERT(seg == &vm_phys_segs[m->segind],
1179 		    ("%s: page range [%p,%p) spans multiple segments",
1180 		    __func__, m_end - npages, m));
1181 		vm_freelist_add(fl, m, order, 1);
1182 		m += 1 << order;
1183 	}
1184 	/* Free blocks of maximum size. */
1185 	while (m + (1 << order) <= m_end) {
1186 		KASSERT(seg == &vm_phys_segs[m->segind],
1187 		    ("%s: page range [%p,%p) spans multiple segments",
1188 		    __func__, m_end - npages, m));
1189 		vm_freelist_add(fl, m, order, 1);
1190 		m += 1 << order;
1191 	}
1192 	/* Free blocks of diminishing size. */
1193 	while (m < m_end) {
1194 		KASSERT(seg == &vm_phys_segs[m->segind],
1195 		    ("%s: page range [%p,%p) spans multiple segments",
1196 		    __func__, m_end - npages, m));
1197 		order = flsl(m_end - m) - 1;
1198 		vm_freelist_add(fl, m, order, 1);
1199 		m += 1 << order;
1200 	}
1201 }
1202 
1203 /*
1204  * Free a contiguous, arbitrarily sized set of physical pages.
1205  *
1206  * The free page queues must be locked.
1207  */
1208 void
1209 vm_phys_free_contig(vm_page_t m, u_long npages)
1210 {
1211 	int order_start, order_end;
1212 	vm_page_t m_start, m_end;
1213 
1214 	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1215 
1216 	m_start = m;
1217 	order_start = max_order(m_start);
1218 	if (order_start < VM_NFREEORDER - 1)
1219 		m_start += 1 << order_start;
1220 	m_end = m + npages;
1221 	order_end = max_order(m_end);
1222 	if (order_end < VM_NFREEORDER - 1)
1223 		m_end -= 1 << order_end;
1224 	/*
1225 	 * Avoid unnecessary coalescing by freeing the pages at the start and
1226 	 * end of the range last.
1227 	 */
1228 	if (m_start < m_end)
1229 		vm_phys_enqueue_contig(m_start, m_end - m_start);
1230 	if (order_start < VM_NFREEORDER - 1)
1231 		vm_phys_free_pages(m, order_start);
1232 	if (order_end < VM_NFREEORDER - 1)
1233 		vm_phys_free_pages(m_end, order_end);
1234 }
1235 
1236 /*
1237  * Scan physical memory between the specified addresses "low" and "high" for a
1238  * run of contiguous physical pages that satisfy the specified conditions, and
1239  * return the lowest page in the run.  The specified "alignment" determines
1240  * the alignment of the lowest physical page in the run.  If the specified
1241  * "boundary" is non-zero, then the run of physical pages cannot span a
1242  * physical address that is a multiple of "boundary".
1243  *
1244  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
1245  * be a power of two.
1246  */
1247 vm_page_t
1248 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1249     u_long alignment, vm_paddr_t boundary, int options)
1250 {
1251 	vm_paddr_t pa_end;
1252 	vm_page_t m_end, m_run, m_start;
1253 	struct vm_phys_seg *seg;
1254 	int segind;
1255 
1256 	KASSERT(npages > 0, ("npages is 0"));
1257 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1258 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1259 	if (low >= high)
1260 		return (NULL);
1261 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1262 		seg = &vm_phys_segs[segind];
1263 		if (seg->domain != domain)
1264 			continue;
1265 		if (seg->start >= high)
1266 			break;
1267 		if (low >= seg->end)
1268 			continue;
1269 		if (low <= seg->start)
1270 			m_start = seg->first_page;
1271 		else
1272 			m_start = &seg->first_page[atop(low - seg->start)];
1273 		if (high < seg->end)
1274 			pa_end = high;
1275 		else
1276 			pa_end = seg->end;
1277 		if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1278 			continue;
1279 		m_end = &seg->first_page[atop(pa_end - seg->start)];
1280 		m_run = vm_page_scan_contig(npages, m_start, m_end,
1281 		    alignment, boundary, options);
1282 		if (m_run != NULL)
1283 			return (m_run);
1284 	}
1285 	return (NULL);
1286 }
1287 
1288 /*
1289  * Set the pool for a contiguous, power of two-sized set of physical pages.
1290  */
1291 void
1292 vm_phys_set_pool(int pool, vm_page_t m, int order)
1293 {
1294 	vm_page_t m_tmp;
1295 
1296 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1297 		m_tmp->pool = pool;
1298 }
1299 
1300 /*
1301  * Search for the given physical page "m" in the free lists.  If the search
1302  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1303  * FALSE, indicating that "m" is not in the free lists.
1304  *
1305  * The free page queues must be locked.
1306  */
1307 boolean_t
1308 vm_phys_unfree_page(vm_page_t m)
1309 {
1310 	struct vm_freelist *fl;
1311 	struct vm_phys_seg *seg;
1312 	vm_paddr_t pa, pa_half;
1313 	vm_page_t m_set, m_tmp;
1314 	int order;
1315 
1316 	/*
1317 	 * First, find the contiguous, power of two-sized set of free
1318 	 * physical pages containing the given physical page "m" and
1319 	 * assign it to "m_set".
1320 	 */
1321 	seg = &vm_phys_segs[m->segind];
1322 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1323 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1324 	    order < VM_NFREEORDER - 1; ) {
1325 		order++;
1326 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1327 		if (pa >= seg->start)
1328 			m_set = &seg->first_page[atop(pa - seg->start)];
1329 		else
1330 			return (FALSE);
1331 	}
1332 	if (m_set->order < order)
1333 		return (FALSE);
1334 	if (m_set->order == VM_NFREEORDER)
1335 		return (FALSE);
1336 	KASSERT(m_set->order < VM_NFREEORDER,
1337 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
1338 	    m_set, m_set->order));
1339 
1340 	/*
1341 	 * Next, remove "m_set" from the free lists.  Finally, extract
1342 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
1343 	 * is larger than a page, shrink "m_set" by returning the half
1344 	 * of "m_set" that does not contain "m" to the free lists.
1345 	 */
1346 	fl = (*seg->free_queues)[m_set->pool];
1347 	order = m_set->order;
1348 	vm_freelist_rem(fl, m_set, order);
1349 	while (order > 0) {
1350 		order--;
1351 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1352 		if (m->phys_addr < pa_half)
1353 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1354 		else {
1355 			m_tmp = m_set;
1356 			m_set = &seg->first_page[atop(pa_half - seg->start)];
1357 		}
1358 		vm_freelist_add(fl, m_tmp, order, 0);
1359 	}
1360 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1361 	return (TRUE);
1362 }
1363 
1364 /*
1365  * Allocate a contiguous set of physical pages of the given size
1366  * "npages" from the free lists.  All of the physical pages must be at
1367  * or above the given physical address "low" and below the given
1368  * physical address "high".  The given value "alignment" determines the
1369  * alignment of the first physical page in the set.  If the given value
1370  * "boundary" is non-zero, then the set of physical pages cannot cross
1371  * any physical address boundary that is a multiple of that value.  Both
1372  * "alignment" and "boundary" must be a power of two.
1373  */
1374 vm_page_t
1375 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1376     u_long alignment, vm_paddr_t boundary)
1377 {
1378 	vm_paddr_t pa_end, pa_start;
1379 	vm_page_t m_run;
1380 	struct vm_phys_seg *seg;
1381 	int segind;
1382 
1383 	KASSERT(npages > 0, ("npages is 0"));
1384 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1385 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1386 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
1387 	if (low >= high)
1388 		return (NULL);
1389 	m_run = NULL;
1390 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1391 		seg = &vm_phys_segs[segind];
1392 		if (seg->start >= high || seg->domain != domain)
1393 			continue;
1394 		if (low >= seg->end)
1395 			break;
1396 		if (low <= seg->start)
1397 			pa_start = seg->start;
1398 		else
1399 			pa_start = low;
1400 		if (high < seg->end)
1401 			pa_end = high;
1402 		else
1403 			pa_end = seg->end;
1404 		if (pa_end - pa_start < ptoa(npages))
1405 			continue;
1406 		m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1407 		    alignment, boundary);
1408 		if (m_run != NULL)
1409 			break;
1410 	}
1411 	return (m_run);
1412 }
1413 
1414 /*
1415  * Allocate a run of contiguous physical pages from the free list for the
1416  * specified segment.
1417  */
1418 static vm_page_t
1419 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1420     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1421 {
1422 	struct vm_freelist *fl;
1423 	vm_paddr_t pa, pa_end, size;
1424 	vm_page_t m, m_ret;
1425 	u_long npages_end;
1426 	int oind, order, pind;
1427 
1428 	KASSERT(npages > 0, ("npages is 0"));
1429 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1430 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1431 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1432 	/* Compute the queue that is the best fit for npages. */
1433 	order = flsl(npages - 1);
1434 	/* Search for a run satisfying the specified conditions. */
1435 	size = npages << PAGE_SHIFT;
1436 	for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1437 	    oind++) {
1438 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1439 			fl = (*seg->free_queues)[pind];
1440 			TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1441 				/*
1442 				 * Is the size of this allocation request
1443 				 * larger than the largest block size?
1444 				 */
1445 				if (order >= VM_NFREEORDER) {
1446 					/*
1447 					 * Determine if a sufficient number of
1448 					 * subsequent blocks to satisfy the
1449 					 * allocation request are free.
1450 					 */
1451 					pa = VM_PAGE_TO_PHYS(m_ret);
1452 					pa_end = pa + size;
1453 					if (pa_end < pa)
1454 						continue;
1455 					for (;;) {
1456 						pa += 1 << (PAGE_SHIFT +
1457 						    VM_NFREEORDER - 1);
1458 						if (pa >= pa_end ||
1459 						    pa < seg->start ||
1460 						    pa >= seg->end)
1461 							break;
1462 						m = &seg->first_page[atop(pa -
1463 						    seg->start)];
1464 						if (m->order != VM_NFREEORDER -
1465 						    1)
1466 							break;
1467 					}
1468 					/* If not, go to the next block. */
1469 					if (pa < pa_end)
1470 						continue;
1471 				}
1472 
1473 				/*
1474 				 * Determine if the blocks are within the
1475 				 * given range, satisfy the given alignment,
1476 				 * and do not cross the given boundary.
1477 				 */
1478 				pa = VM_PAGE_TO_PHYS(m_ret);
1479 				pa_end = pa + size;
1480 				if (pa >= low && pa_end <= high &&
1481 				    (pa & (alignment - 1)) == 0 &&
1482 				    rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1483 					goto done;
1484 			}
1485 		}
1486 	}
1487 	return (NULL);
1488 done:
1489 	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1490 		fl = (*seg->free_queues)[m->pool];
1491 		vm_freelist_rem(fl, m, oind);
1492 		if (m->pool != VM_FREEPOOL_DEFAULT)
1493 			vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1494 	}
1495 	/* Return excess pages to the free lists. */
1496 	npages_end = roundup2(npages, 1 << oind);
1497 	if (npages < npages_end) {
1498 		fl = (*seg->free_queues)[VM_FREEPOOL_DEFAULT];
1499 		vm_phys_enq_range(&m_ret[npages], npages_end - npages, fl, 0);
1500 	}
1501 	return (m_ret);
1502 }
1503 
1504 /*
1505  * Return the index of the first unused slot which may be the terminating
1506  * entry.
1507  */
1508 static int
1509 vm_phys_avail_count(void)
1510 {
1511 	int i;
1512 
1513 	for (i = 0; phys_avail[i + 1]; i += 2)
1514 		continue;
1515 	if (i > PHYS_AVAIL_ENTRIES)
1516 		panic("Improperly terminated phys_avail %d entries", i);
1517 
1518 	return (i);
1519 }
1520 
1521 /*
1522  * Assert that a phys_avail entry is valid.
1523  */
1524 static void
1525 vm_phys_avail_check(int i)
1526 {
1527 	if (phys_avail[i] & PAGE_MASK)
1528 		panic("Unaligned phys_avail[%d]: %#jx", i,
1529 		    (intmax_t)phys_avail[i]);
1530 	if (phys_avail[i+1] & PAGE_MASK)
1531 		panic("Unaligned phys_avail[%d + 1]: %#jx", i,
1532 		    (intmax_t)phys_avail[i]);
1533 	if (phys_avail[i + 1] < phys_avail[i])
1534 		panic("phys_avail[%d] start %#jx < end %#jx", i,
1535 		    (intmax_t)phys_avail[i], (intmax_t)phys_avail[i+1]);
1536 }
1537 
1538 /*
1539  * Return the index of an overlapping phys_avail entry or -1.
1540  */
1541 #ifdef NUMA
1542 static int
1543 vm_phys_avail_find(vm_paddr_t pa)
1544 {
1545 	int i;
1546 
1547 	for (i = 0; phys_avail[i + 1]; i += 2)
1548 		if (phys_avail[i] <= pa && phys_avail[i + 1] > pa)
1549 			return (i);
1550 	return (-1);
1551 }
1552 #endif
1553 
1554 /*
1555  * Return the index of the largest entry.
1556  */
1557 int
1558 vm_phys_avail_largest(void)
1559 {
1560 	vm_paddr_t sz, largesz;
1561 	int largest;
1562 	int i;
1563 
1564 	largest = 0;
1565 	largesz = 0;
1566 	for (i = 0; phys_avail[i + 1]; i += 2) {
1567 		sz = vm_phys_avail_size(i);
1568 		if (sz > largesz) {
1569 			largesz = sz;
1570 			largest = i;
1571 		}
1572 	}
1573 
1574 	return (largest);
1575 }
1576 
1577 vm_paddr_t
1578 vm_phys_avail_size(int i)
1579 {
1580 
1581 	return (phys_avail[i + 1] - phys_avail[i]);
1582 }
1583 
1584 /*
1585  * Split an entry at the address 'pa'.  Return zero on success or errno.
1586  */
1587 static int
1588 vm_phys_avail_split(vm_paddr_t pa, int i)
1589 {
1590 	int cnt;
1591 
1592 	vm_phys_avail_check(i);
1593 	if (pa <= phys_avail[i] || pa >= phys_avail[i + 1])
1594 		panic("vm_phys_avail_split: invalid address");
1595 	cnt = vm_phys_avail_count();
1596 	if (cnt >= PHYS_AVAIL_ENTRIES)
1597 		return (ENOSPC);
1598 	memmove(&phys_avail[i + 2], &phys_avail[i],
1599 	    (cnt - i) * sizeof(phys_avail[0]));
1600 	phys_avail[i + 1] = pa;
1601 	phys_avail[i + 2] = pa;
1602 	vm_phys_avail_check(i);
1603 	vm_phys_avail_check(i+2);
1604 
1605 	return (0);
1606 }
1607 
1608 /*
1609  * This routine allocates NUMA node specific memory before the page
1610  * allocator is bootstrapped.
1611  */
1612 vm_paddr_t
1613 vm_phys_early_alloc(int domain, size_t alloc_size)
1614 {
1615 	int i, mem_index, biggestone;
1616 	vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align;
1617 
1618 
1619 	/*
1620 	 * Search the mem_affinity array for the biggest address
1621 	 * range in the desired domain.  This is used to constrain
1622 	 * the phys_avail selection below.
1623 	 */
1624 	biggestsize = 0;
1625 	mem_index = 0;
1626 	mem_start = 0;
1627 	mem_end = -1;
1628 #ifdef NUMA
1629 	if (mem_affinity != NULL) {
1630 		for (i = 0; ; i++) {
1631 			size = mem_affinity[i].end - mem_affinity[i].start;
1632 			if (size == 0)
1633 				break;
1634 			if (mem_affinity[i].domain != domain)
1635 				continue;
1636 			if (size > biggestsize) {
1637 				mem_index = i;
1638 				biggestsize = size;
1639 			}
1640 		}
1641 		mem_start = mem_affinity[mem_index].start;
1642 		mem_end = mem_affinity[mem_index].end;
1643 	}
1644 #endif
1645 
1646 	/*
1647 	 * Now find biggest physical segment in within the desired
1648 	 * numa domain.
1649 	 */
1650 	biggestsize = 0;
1651 	biggestone = 0;
1652 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1653 		/* skip regions that are out of range */
1654 		if (phys_avail[i+1] - alloc_size < mem_start ||
1655 		    phys_avail[i+1] > mem_end)
1656 			continue;
1657 		size = vm_phys_avail_size(i);
1658 		if (size > biggestsize) {
1659 			biggestone = i;
1660 			biggestsize = size;
1661 		}
1662 	}
1663 	alloc_size = round_page(alloc_size);
1664 
1665 	/*
1666 	 * Grab single pages from the front to reduce fragmentation.
1667 	 */
1668 	if (alloc_size == PAGE_SIZE) {
1669 		pa = phys_avail[biggestone];
1670 		phys_avail[biggestone] += PAGE_SIZE;
1671 		vm_phys_avail_check(biggestone);
1672 		return (pa);
1673 	}
1674 
1675 	/*
1676 	 * Naturally align large allocations.
1677 	 */
1678 	align = phys_avail[biggestone + 1] & (alloc_size - 1);
1679 	if (alloc_size + align > biggestsize)
1680 		panic("cannot find a large enough size\n");
1681 	if (align != 0 &&
1682 	    vm_phys_avail_split(phys_avail[biggestone + 1] - align,
1683 	    biggestone) != 0)
1684 		/* Wasting memory. */
1685 		phys_avail[biggestone + 1] -= align;
1686 
1687 	phys_avail[biggestone + 1] -= alloc_size;
1688 	vm_phys_avail_check(biggestone);
1689 	pa = phys_avail[biggestone + 1];
1690 	return (pa);
1691 }
1692 
1693 void
1694 vm_phys_early_startup(void)
1695 {
1696 	int i;
1697 
1698 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1699 		phys_avail[i] = round_page(phys_avail[i]);
1700 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
1701 	}
1702 
1703 #ifdef NUMA
1704 	/* Force phys_avail to be split by domain. */
1705 	if (mem_affinity != NULL) {
1706 		int idx;
1707 
1708 		for (i = 0; mem_affinity[i].end != 0; i++) {
1709 			idx = vm_phys_avail_find(mem_affinity[i].start);
1710 			if (idx != -1 &&
1711 			    phys_avail[idx] != mem_affinity[i].start)
1712 				vm_phys_avail_split(mem_affinity[i].start, idx);
1713 			idx = vm_phys_avail_find(mem_affinity[i].end);
1714 			if (idx != -1 &&
1715 			    phys_avail[idx] != mem_affinity[i].end)
1716 				vm_phys_avail_split(mem_affinity[i].end, idx);
1717 		}
1718 	}
1719 #endif
1720 }
1721 
1722 #ifdef DDB
1723 /*
1724  * Show the number of physical pages in each of the free lists.
1725  */
1726 DB_SHOW_COMMAND(freepages, db_show_freepages)
1727 {
1728 	struct vm_freelist *fl;
1729 	int flind, oind, pind, dom;
1730 
1731 	for (dom = 0; dom < vm_ndomains; dom++) {
1732 		db_printf("DOMAIN: %d\n", dom);
1733 		for (flind = 0; flind < vm_nfreelists; flind++) {
1734 			db_printf("FREE LIST %d:\n"
1735 			    "\n  ORDER (SIZE)  |  NUMBER"
1736 			    "\n              ", flind);
1737 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1738 				db_printf("  |  POOL %d", pind);
1739 			db_printf("\n--            ");
1740 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1741 				db_printf("-- --      ");
1742 			db_printf("--\n");
1743 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1744 				db_printf("  %2.2d (%6.6dK)", oind,
1745 				    1 << (PAGE_SHIFT - 10 + oind));
1746 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1747 				fl = vm_phys_free_queues[dom][flind][pind];
1748 					db_printf("  |  %6.6d", fl[oind].lcnt);
1749 				}
1750 				db_printf("\n");
1751 			}
1752 			db_printf("\n");
1753 		}
1754 		db_printf("\n");
1755 	}
1756 }
1757 #endif
1758