xref: /freebsd/sys/vm/vm_phys.c (revision cb20a74ca06381e96c41cb4495d633710cc6cb79)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/domainset.h>
48 #include <sys/lock.h>
49 #include <sys/kernel.h>
50 #include <sys/malloc.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/queue.h>
54 #include <sys/rwlock.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/tree.h>
58 #include <sys/vmmeter.h>
59 
60 #include <ddb/ddb.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_extern.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_phys.h>
69 #include <vm/vm_pagequeue.h>
70 
71 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
72     "Too many physsegs.");
73 _Static_assert(sizeof(long long) >= sizeof(vm_paddr_t),
74     "vm_paddr_t too big for ffsll, flsll.");
75 
76 #ifdef NUMA
77 struct mem_affinity __read_mostly *mem_affinity;
78 int __read_mostly *mem_locality;
79 
80 static int numa_disabled;
81 static SYSCTL_NODE(_vm, OID_AUTO, numa, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
82     "NUMA options");
83 SYSCTL_INT(_vm_numa, OID_AUTO, disabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
84     &numa_disabled, 0, "NUMA-awareness in the allocators is disabled");
85 #endif
86 
87 int __read_mostly vm_ndomains = 1;
88 domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);
89 
90 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
91 int __read_mostly vm_phys_nsegs;
92 static struct vm_phys_seg vm_phys_early_segs[8];
93 static int vm_phys_early_nsegs;
94 
95 struct vm_phys_fictitious_seg;
96 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
97     struct vm_phys_fictitious_seg *);
98 
99 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
100     RB_INITIALIZER(&vm_phys_fictitious_tree);
101 
102 struct vm_phys_fictitious_seg {
103 	RB_ENTRY(vm_phys_fictitious_seg) node;
104 	/* Memory region data */
105 	vm_paddr_t	start;
106 	vm_paddr_t	end;
107 	vm_page_t	first_page;
108 };
109 
110 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
111     vm_phys_fictitious_cmp);
112 
113 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
114 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
115 
116 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
117     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
118     [VM_NFREEORDER_MAX];
119 
120 static int __read_mostly vm_nfreelists;
121 
122 /*
123  * These "avail lists" are globals used to communicate boot-time physical
124  * memory layout to other parts of the kernel.  Each physically contiguous
125  * region of memory is defined by a start address at an even index and an
126  * end address at the following odd index.  Each list is terminated by a
127  * pair of zero entries.
128  *
129  * dump_avail tells the dump code what regions to include in a crash dump, and
130  * phys_avail is all of the remaining physical memory that is available for
131  * the vm system.
132  *
133  * Initially dump_avail and phys_avail are identical.  Boot time memory
134  * allocations remove extents from phys_avail that may still be included
135  * in dumps.
136  */
137 vm_paddr_t phys_avail[PHYS_AVAIL_COUNT];
138 vm_paddr_t dump_avail[PHYS_AVAIL_COUNT];
139 
140 /*
141  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
142  */
143 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
144 
145 CTASSERT(VM_FREELIST_DEFAULT == 0);
146 
147 #ifdef VM_FREELIST_DMA32
148 #define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
149 #endif
150 
151 /*
152  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
153  * the ordering of the free list boundaries.
154  */
155 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
156 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
157 #endif
158 
159 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
160 SYSCTL_OID(_vm, OID_AUTO, phys_free,
161     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
162     sysctl_vm_phys_free, "A",
163     "Phys Free Info");
164 
165 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
166 SYSCTL_OID(_vm, OID_AUTO, phys_segs,
167     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
168     sysctl_vm_phys_segs, "A",
169     "Phys Seg Info");
170 
171 #ifdef NUMA
172 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
173 SYSCTL_OID(_vm, OID_AUTO, phys_locality,
174     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
175     sysctl_vm_phys_locality, "A",
176     "Phys Locality Info");
177 #endif
178 
179 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
180     &vm_ndomains, 0, "Number of physical memory domains available.");
181 
182 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
183 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
184 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
185     int order, int tail);
186 
187 /*
188  * Red-black tree helpers for vm fictitious range management.
189  */
190 static inline int
191 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
192     struct vm_phys_fictitious_seg *range)
193 {
194 
195 	KASSERT(range->start != 0 && range->end != 0,
196 	    ("Invalid range passed on search for vm_fictitious page"));
197 	if (p->start >= range->end)
198 		return (1);
199 	if (p->start < range->start)
200 		return (-1);
201 
202 	return (0);
203 }
204 
205 static int
206 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
207     struct vm_phys_fictitious_seg *p2)
208 {
209 
210 	/* Check if this is a search for a page */
211 	if (p1->end == 0)
212 		return (vm_phys_fictitious_in_range(p1, p2));
213 
214 	KASSERT(p2->end != 0,
215     ("Invalid range passed as second parameter to vm fictitious comparison"));
216 
217 	/* Searching to add a new range */
218 	if (p1->end <= p2->start)
219 		return (-1);
220 	if (p1->start >= p2->end)
221 		return (1);
222 
223 	panic("Trying to add overlapping vm fictitious ranges:\n"
224 	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
225 	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
226 }
227 
228 int
229 vm_phys_domain_match(int prefer __numa_used, vm_paddr_t low __numa_used,
230     vm_paddr_t high __numa_used)
231 {
232 #ifdef NUMA
233 	domainset_t mask;
234 	int i;
235 
236 	if (vm_ndomains == 1 || mem_affinity == NULL)
237 		return (0);
238 
239 	DOMAINSET_ZERO(&mask);
240 	/*
241 	 * Check for any memory that overlaps low, high.
242 	 */
243 	for (i = 0; mem_affinity[i].end != 0; i++)
244 		if (mem_affinity[i].start <= high &&
245 		    mem_affinity[i].end >= low)
246 			DOMAINSET_SET(mem_affinity[i].domain, &mask);
247 	if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
248 		return (prefer);
249 	if (DOMAINSET_EMPTY(&mask))
250 		panic("vm_phys_domain_match:  Impossible constraint");
251 	return (DOMAINSET_FFS(&mask) - 1);
252 #else
253 	return (0);
254 #endif
255 }
256 
257 /*
258  * Outputs the state of the physical memory allocator, specifically,
259  * the amount of physical memory in each free list.
260  */
261 static int
262 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
263 {
264 	struct sbuf sbuf;
265 	struct vm_freelist *fl;
266 	int dom, error, flind, oind, pind;
267 
268 	error = sysctl_wire_old_buffer(req, 0);
269 	if (error != 0)
270 		return (error);
271 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
272 	for (dom = 0; dom < vm_ndomains; dom++) {
273 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
274 		for (flind = 0; flind < vm_nfreelists; flind++) {
275 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
276 			    "\n  ORDER (SIZE)  |  NUMBER"
277 			    "\n              ", flind);
278 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
279 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
280 			sbuf_printf(&sbuf, "\n--            ");
281 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
282 				sbuf_printf(&sbuf, "-- --      ");
283 			sbuf_printf(&sbuf, "--\n");
284 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
285 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
286 				    1 << (PAGE_SHIFT - 10 + oind));
287 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
288 				fl = vm_phys_free_queues[dom][flind][pind];
289 					sbuf_printf(&sbuf, "  |  %6d",
290 					    fl[oind].lcnt);
291 				}
292 				sbuf_printf(&sbuf, "\n");
293 			}
294 		}
295 	}
296 	error = sbuf_finish(&sbuf);
297 	sbuf_delete(&sbuf);
298 	return (error);
299 }
300 
301 /*
302  * Outputs the set of physical memory segments.
303  */
304 static int
305 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
306 {
307 	struct sbuf sbuf;
308 	struct vm_phys_seg *seg;
309 	int error, segind;
310 
311 	error = sysctl_wire_old_buffer(req, 0);
312 	if (error != 0)
313 		return (error);
314 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
315 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
316 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
317 		seg = &vm_phys_segs[segind];
318 		sbuf_printf(&sbuf, "start:     %#jx\n",
319 		    (uintmax_t)seg->start);
320 		sbuf_printf(&sbuf, "end:       %#jx\n",
321 		    (uintmax_t)seg->end);
322 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
323 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
324 	}
325 	error = sbuf_finish(&sbuf);
326 	sbuf_delete(&sbuf);
327 	return (error);
328 }
329 
330 /*
331  * Return affinity, or -1 if there's no affinity information.
332  */
333 int
334 vm_phys_mem_affinity(int f __numa_used, int t __numa_used)
335 {
336 
337 #ifdef NUMA
338 	if (mem_locality == NULL)
339 		return (-1);
340 	if (f >= vm_ndomains || t >= vm_ndomains)
341 		return (-1);
342 	return (mem_locality[f * vm_ndomains + t]);
343 #else
344 	return (-1);
345 #endif
346 }
347 
348 #ifdef NUMA
349 /*
350  * Outputs the VM locality table.
351  */
352 static int
353 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
354 {
355 	struct sbuf sbuf;
356 	int error, i, j;
357 
358 	error = sysctl_wire_old_buffer(req, 0);
359 	if (error != 0)
360 		return (error);
361 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
362 
363 	sbuf_printf(&sbuf, "\n");
364 
365 	for (i = 0; i < vm_ndomains; i++) {
366 		sbuf_printf(&sbuf, "%d: ", i);
367 		for (j = 0; j < vm_ndomains; j++) {
368 			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
369 		}
370 		sbuf_printf(&sbuf, "\n");
371 	}
372 	error = sbuf_finish(&sbuf);
373 	sbuf_delete(&sbuf);
374 	return (error);
375 }
376 #endif
377 
378 static void
379 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
380 {
381 
382 	m->order = order;
383 	if (tail)
384 		TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
385 	else
386 		TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
387 	fl[order].lcnt++;
388 }
389 
390 static void
391 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
392 {
393 
394 	TAILQ_REMOVE(&fl[order].pl, m, listq);
395 	fl[order].lcnt--;
396 	m->order = VM_NFREEORDER;
397 }
398 
399 /*
400  * Create a physical memory segment.
401  */
402 static void
403 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
404 {
405 	struct vm_phys_seg *seg;
406 
407 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
408 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
409 	KASSERT(domain >= 0 && domain < vm_ndomains,
410 	    ("vm_phys_create_seg: invalid domain provided"));
411 	seg = &vm_phys_segs[vm_phys_nsegs++];
412 	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
413 		*seg = *(seg - 1);
414 		seg--;
415 	}
416 	seg->start = start;
417 	seg->end = end;
418 	seg->domain = domain;
419 }
420 
421 static void
422 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
423 {
424 #ifdef NUMA
425 	int i;
426 
427 	if (mem_affinity == NULL) {
428 		_vm_phys_create_seg(start, end, 0);
429 		return;
430 	}
431 
432 	for (i = 0;; i++) {
433 		if (mem_affinity[i].end == 0)
434 			panic("Reached end of affinity info");
435 		if (mem_affinity[i].end <= start)
436 			continue;
437 		if (mem_affinity[i].start > start)
438 			panic("No affinity info for start %jx",
439 			    (uintmax_t)start);
440 		if (mem_affinity[i].end >= end) {
441 			_vm_phys_create_seg(start, end,
442 			    mem_affinity[i].domain);
443 			break;
444 		}
445 		_vm_phys_create_seg(start, mem_affinity[i].end,
446 		    mem_affinity[i].domain);
447 		start = mem_affinity[i].end;
448 	}
449 #else
450 	_vm_phys_create_seg(start, end, 0);
451 #endif
452 }
453 
454 /*
455  * Add a physical memory segment.
456  */
457 void
458 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
459 {
460 	vm_paddr_t paddr;
461 
462 	KASSERT((start & PAGE_MASK) == 0,
463 	    ("vm_phys_define_seg: start is not page aligned"));
464 	KASSERT((end & PAGE_MASK) == 0,
465 	    ("vm_phys_define_seg: end is not page aligned"));
466 
467 	/*
468 	 * Split the physical memory segment if it spans two or more free
469 	 * list boundaries.
470 	 */
471 	paddr = start;
472 #ifdef	VM_FREELIST_LOWMEM
473 	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
474 		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
475 		paddr = VM_LOWMEM_BOUNDARY;
476 	}
477 #endif
478 #ifdef	VM_FREELIST_DMA32
479 	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
480 		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
481 		paddr = VM_DMA32_BOUNDARY;
482 	}
483 #endif
484 	vm_phys_create_seg(paddr, end);
485 }
486 
487 /*
488  * Initialize the physical memory allocator.
489  *
490  * Requires that vm_page_array is initialized!
491  */
492 void
493 vm_phys_init(void)
494 {
495 	struct vm_freelist *fl;
496 	struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
497 #if defined(VM_DMA32_NPAGES_THRESHOLD) || defined(VM_PHYSSEG_SPARSE)
498 	u_long npages;
499 #endif
500 	int dom, flind, freelist, oind, pind, segind;
501 
502 	/*
503 	 * Compute the number of free lists, and generate the mapping from the
504 	 * manifest constants VM_FREELIST_* to the free list indices.
505 	 *
506 	 * Initially, the entries of vm_freelist_to_flind[] are set to either
507 	 * 0 or 1 to indicate which free lists should be created.
508 	 */
509 #ifdef	VM_DMA32_NPAGES_THRESHOLD
510 	npages = 0;
511 #endif
512 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
513 		seg = &vm_phys_segs[segind];
514 #ifdef	VM_FREELIST_LOWMEM
515 		if (seg->end <= VM_LOWMEM_BOUNDARY)
516 			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
517 		else
518 #endif
519 #ifdef	VM_FREELIST_DMA32
520 		if (
521 #ifdef	VM_DMA32_NPAGES_THRESHOLD
522 		    /*
523 		     * Create the DMA32 free list only if the amount of
524 		     * physical memory above physical address 4G exceeds the
525 		     * given threshold.
526 		     */
527 		    npages > VM_DMA32_NPAGES_THRESHOLD &&
528 #endif
529 		    seg->end <= VM_DMA32_BOUNDARY)
530 			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
531 		else
532 #endif
533 		{
534 #ifdef	VM_DMA32_NPAGES_THRESHOLD
535 			npages += atop(seg->end - seg->start);
536 #endif
537 			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
538 		}
539 	}
540 	/* Change each entry into a running total of the free lists. */
541 	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
542 		vm_freelist_to_flind[freelist] +=
543 		    vm_freelist_to_flind[freelist - 1];
544 	}
545 	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
546 	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
547 	/* Change each entry into a free list index. */
548 	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
549 		vm_freelist_to_flind[freelist]--;
550 
551 	/*
552 	 * Initialize the first_page and free_queues fields of each physical
553 	 * memory segment.
554 	 */
555 #ifdef VM_PHYSSEG_SPARSE
556 	npages = 0;
557 #endif
558 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
559 		seg = &vm_phys_segs[segind];
560 #ifdef VM_PHYSSEG_SPARSE
561 		seg->first_page = &vm_page_array[npages];
562 		npages += atop(seg->end - seg->start);
563 #else
564 		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
565 #endif
566 #ifdef	VM_FREELIST_LOWMEM
567 		if (seg->end <= VM_LOWMEM_BOUNDARY) {
568 			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
569 			KASSERT(flind >= 0,
570 			    ("vm_phys_init: LOWMEM flind < 0"));
571 		} else
572 #endif
573 #ifdef	VM_FREELIST_DMA32
574 		if (seg->end <= VM_DMA32_BOUNDARY) {
575 			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
576 			KASSERT(flind >= 0,
577 			    ("vm_phys_init: DMA32 flind < 0"));
578 		} else
579 #endif
580 		{
581 			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
582 			KASSERT(flind >= 0,
583 			    ("vm_phys_init: DEFAULT flind < 0"));
584 		}
585 		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
586 	}
587 
588 	/*
589 	 * Coalesce physical memory segments that are contiguous and share the
590 	 * same per-domain free queues.
591 	 */
592 	prev_seg = vm_phys_segs;
593 	seg = &vm_phys_segs[1];
594 	end_seg = &vm_phys_segs[vm_phys_nsegs];
595 	while (seg < end_seg) {
596 		if (prev_seg->end == seg->start &&
597 		    prev_seg->free_queues == seg->free_queues) {
598 			prev_seg->end = seg->end;
599 			KASSERT(prev_seg->domain == seg->domain,
600 			    ("vm_phys_init: free queues cannot span domains"));
601 			vm_phys_nsegs--;
602 			end_seg--;
603 			for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
604 				*tmp_seg = *(tmp_seg + 1);
605 		} else {
606 			prev_seg = seg;
607 			seg++;
608 		}
609 	}
610 
611 	/*
612 	 * Initialize the free queues.
613 	 */
614 	for (dom = 0; dom < vm_ndomains; dom++) {
615 		for (flind = 0; flind < vm_nfreelists; flind++) {
616 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
617 				fl = vm_phys_free_queues[dom][flind][pind];
618 				for (oind = 0; oind < VM_NFREEORDER; oind++)
619 					TAILQ_INIT(&fl[oind].pl);
620 			}
621 		}
622 	}
623 
624 	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
625 }
626 
627 /*
628  * Register info about the NUMA topology of the system.
629  *
630  * Invoked by platform-dependent code prior to vm_phys_init().
631  */
632 void
633 vm_phys_register_domains(int ndomains __numa_used,
634     struct mem_affinity *affinity __numa_used, int *locality __numa_used)
635 {
636 #ifdef NUMA
637 	int i;
638 
639 	/*
640 	 * For now the only override value that we support is 1, which
641 	 * effectively disables NUMA-awareness in the allocators.
642 	 */
643 	TUNABLE_INT_FETCH("vm.numa.disabled", &numa_disabled);
644 	if (numa_disabled)
645 		ndomains = 1;
646 
647 	if (ndomains > 1) {
648 		vm_ndomains = ndomains;
649 		mem_affinity = affinity;
650 		mem_locality = locality;
651 	}
652 
653 	for (i = 0; i < vm_ndomains; i++)
654 		DOMAINSET_SET(i, &all_domains);
655 #endif
656 }
657 
658 /*
659  * Split a contiguous, power of two-sized set of physical pages.
660  *
661  * When this function is called by a page allocation function, the caller
662  * should request insertion at the head unless the order [order, oind) queues
663  * are known to be empty.  The objective being to reduce the likelihood of
664  * long-term fragmentation by promoting contemporaneous allocation and
665  * (hopefully) deallocation.
666  */
667 static __inline void
668 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
669     int tail)
670 {
671 	vm_page_t m_buddy;
672 
673 	while (oind > order) {
674 		oind--;
675 		m_buddy = &m[1 << oind];
676 		KASSERT(m_buddy->order == VM_NFREEORDER,
677 		    ("vm_phys_split_pages: page %p has unexpected order %d",
678 		    m_buddy, m_buddy->order));
679 		vm_freelist_add(fl, m_buddy, oind, tail);
680         }
681 }
682 
683 /*
684  * Add the physical pages [m, m + npages) at the beginning of a power-of-two
685  * aligned and sized set to the specified free list.
686  *
687  * When this function is called by a page allocation function, the caller
688  * should request insertion at the head unless the lower-order queues are
689  * known to be empty.  The objective being to reduce the likelihood of long-
690  * term fragmentation by promoting contemporaneous allocation and (hopefully)
691  * deallocation.
692  *
693  * The physical page m's buddy must not be free.
694  */
695 static void
696 vm_phys_enq_beg(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
697 {
698         int order;
699 
700 	KASSERT(npages == 0 ||
701 	    (VM_PAGE_TO_PHYS(m) &
702 	    ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
703 	    ("%s: page %p and npages %u are misaligned",
704 	    __func__, m, npages));
705         while (npages > 0) {
706 		KASSERT(m->order == VM_NFREEORDER,
707 		    ("%s: page %p has unexpected order %d",
708 		    __func__, m, m->order));
709                 order = fls(npages) - 1;
710 		KASSERT(order < VM_NFREEORDER,
711 		    ("%s: order %d is out of range", __func__, order));
712                 vm_freelist_add(fl, m, order, tail);
713 		m += 1 << order;
714                 npages -= 1 << order;
715         }
716 }
717 
718 /*
719  * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
720  * and sized set to the specified free list.
721  *
722  * When this function is called by a page allocation function, the caller
723  * should request insertion at the head unless the lower-order queues are
724  * known to be empty.  The objective being to reduce the likelihood of long-
725  * term fragmentation by promoting contemporaneous allocation and (hopefully)
726  * deallocation.
727  *
728  * If npages is zero, this function does nothing and ignores the physical page
729  * parameter m.  Otherwise, the physical page m's buddy must not be free.
730  */
731 static vm_page_t
732 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
733 {
734 	int order;
735 
736 	KASSERT(npages == 0 ||
737 	    ((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
738 	    ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
739 	    ("vm_phys_enq_range: page %p and npages %u are misaligned",
740 	    m, npages));
741 	while (npages > 0) {
742 		KASSERT(m->order == VM_NFREEORDER,
743 		    ("vm_phys_enq_range: page %p has unexpected order %d",
744 		    m, m->order));
745 		order = ffs(npages) - 1;
746 		KASSERT(order < VM_NFREEORDER,
747 		    ("vm_phys_enq_range: order %d is out of range", order));
748 		vm_freelist_add(fl, m, order, tail);
749 		m += 1 << order;
750 		npages -= 1 << order;
751 	}
752 	return (m);
753 }
754 
755 /*
756  * Set the pool for a contiguous, power of two-sized set of physical pages.
757  */
758 static void
759 vm_phys_set_pool(int pool, vm_page_t m, int order)
760 {
761 	vm_page_t m_tmp;
762 
763 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
764 		m_tmp->pool = pool;
765 }
766 
767 /*
768  * Tries to allocate the specified number of pages from the specified pool
769  * within the specified domain.  Returns the actual number of allocated pages
770  * and a pointer to each page through the array ma[].
771  *
772  * The returned pages may not be physically contiguous.  However, in contrast
773  * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
774  * calling this function once to allocate the desired number of pages will
775  * avoid wasted time in vm_phys_split_pages().
776  *
777  * The free page queues for the specified domain must be locked.
778  */
779 int
780 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
781 {
782 	struct vm_freelist *alt, *fl;
783 	vm_page_t m;
784 	int avail, end, flind, freelist, i, oind, pind;
785 
786 	KASSERT(domain >= 0 && domain < vm_ndomains,
787 	    ("vm_phys_alloc_npages: domain %d is out of range", domain));
788 	KASSERT(pool < VM_NFREEPOOL,
789 	    ("vm_phys_alloc_npages: pool %d is out of range", pool));
790 	KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
791 	    ("vm_phys_alloc_npages: npages %d is out of range", npages));
792 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
793 	i = 0;
794 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
795 		flind = vm_freelist_to_flind[freelist];
796 		if (flind < 0)
797 			continue;
798 		fl = vm_phys_free_queues[domain][flind][pool];
799 		for (oind = 0; oind < VM_NFREEORDER; oind++) {
800 			while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
801 				vm_freelist_rem(fl, m, oind);
802 				avail = i + (1 << oind);
803 				end = imin(npages, avail);
804 				while (i < end)
805 					ma[i++] = m++;
806 				if (i == npages) {
807 					/*
808 					 * Return excess pages to fl.  Its order
809 					 * [0, oind) queues are empty.
810 					 */
811 					vm_phys_enq_range(m, avail - i, fl, 1);
812 					return (npages);
813 				}
814 			}
815 		}
816 		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
817 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
818 				alt = vm_phys_free_queues[domain][flind][pind];
819 				while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
820 				    NULL) {
821 					vm_freelist_rem(alt, m, oind);
822 					vm_phys_set_pool(pool, m, oind);
823 					avail = i + (1 << oind);
824 					end = imin(npages, avail);
825 					while (i < end)
826 						ma[i++] = m++;
827 					if (i == npages) {
828 						/*
829 						 * Return excess pages to fl.
830 						 * Its order [0, oind) queues
831 						 * are empty.
832 						 */
833 						vm_phys_enq_range(m, avail - i,
834 						    fl, 1);
835 						return (npages);
836 					}
837 				}
838 			}
839 		}
840 	}
841 	return (i);
842 }
843 
844 /*
845  * Allocate a contiguous, power of two-sized set of physical pages
846  * from the free lists.
847  *
848  * The free page queues must be locked.
849  */
850 vm_page_t
851 vm_phys_alloc_pages(int domain, int pool, int order)
852 {
853 	vm_page_t m;
854 	int freelist;
855 
856 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
857 		m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
858 		if (m != NULL)
859 			return (m);
860 	}
861 	return (NULL);
862 }
863 
864 /*
865  * Allocate a contiguous, power of two-sized set of physical pages from the
866  * specified free list.  The free list must be specified using one of the
867  * manifest constants VM_FREELIST_*.
868  *
869  * The free page queues must be locked.
870  */
871 vm_page_t
872 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
873 {
874 	struct vm_freelist *alt, *fl;
875 	vm_page_t m;
876 	int oind, pind, flind;
877 
878 	KASSERT(domain >= 0 && domain < vm_ndomains,
879 	    ("vm_phys_alloc_freelist_pages: domain %d is out of range",
880 	    domain));
881 	KASSERT(freelist < VM_NFREELIST,
882 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
883 	    freelist));
884 	KASSERT(pool < VM_NFREEPOOL,
885 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
886 	KASSERT(order < VM_NFREEORDER,
887 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
888 
889 	flind = vm_freelist_to_flind[freelist];
890 	/* Check if freelist is present */
891 	if (flind < 0)
892 		return (NULL);
893 
894 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
895 	fl = &vm_phys_free_queues[domain][flind][pool][0];
896 	for (oind = order; oind < VM_NFREEORDER; oind++) {
897 		m = TAILQ_FIRST(&fl[oind].pl);
898 		if (m != NULL) {
899 			vm_freelist_rem(fl, m, oind);
900 			/* The order [order, oind) queues are empty. */
901 			vm_phys_split_pages(m, oind, fl, order, 1);
902 			return (m);
903 		}
904 	}
905 
906 	/*
907 	 * The given pool was empty.  Find the largest
908 	 * contiguous, power-of-two-sized set of pages in any
909 	 * pool.  Transfer these pages to the given pool, and
910 	 * use them to satisfy the allocation.
911 	 */
912 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
913 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
914 			alt = &vm_phys_free_queues[domain][flind][pind][0];
915 			m = TAILQ_FIRST(&alt[oind].pl);
916 			if (m != NULL) {
917 				vm_freelist_rem(alt, m, oind);
918 				vm_phys_set_pool(pool, m, oind);
919 				/* The order [order, oind) queues are empty. */
920 				vm_phys_split_pages(m, oind, fl, order, 1);
921 				return (m);
922 			}
923 		}
924 	}
925 	return (NULL);
926 }
927 
928 /*
929  * Find the vm_page corresponding to the given physical address.
930  */
931 vm_page_t
932 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
933 {
934 	struct vm_phys_seg *seg;
935 
936 	if ((seg = vm_phys_paddr_to_seg(pa)) != NULL)
937 		return (&seg->first_page[atop(pa - seg->start)]);
938 	return (NULL);
939 }
940 
941 vm_page_t
942 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
943 {
944 	struct vm_phys_fictitious_seg tmp, *seg;
945 	vm_page_t m;
946 
947 	m = NULL;
948 	tmp.start = pa;
949 	tmp.end = 0;
950 
951 	rw_rlock(&vm_phys_fictitious_reg_lock);
952 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
953 	rw_runlock(&vm_phys_fictitious_reg_lock);
954 	if (seg == NULL)
955 		return (NULL);
956 
957 	m = &seg->first_page[atop(pa - seg->start)];
958 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
959 
960 	return (m);
961 }
962 
963 static inline void
964 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
965     long page_count, vm_memattr_t memattr)
966 {
967 	long i;
968 
969 	bzero(range, page_count * sizeof(*range));
970 	for (i = 0; i < page_count; i++) {
971 		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
972 		range[i].oflags &= ~VPO_UNMANAGED;
973 		range[i].busy_lock = VPB_UNBUSIED;
974 	}
975 }
976 
977 int
978 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
979     vm_memattr_t memattr)
980 {
981 	struct vm_phys_fictitious_seg *seg;
982 	vm_page_t fp;
983 	long page_count;
984 #ifdef VM_PHYSSEG_DENSE
985 	long pi, pe;
986 	long dpage_count;
987 #endif
988 
989 	KASSERT(start < end,
990 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
991 	    (uintmax_t)start, (uintmax_t)end));
992 
993 	page_count = (end - start) / PAGE_SIZE;
994 
995 #ifdef VM_PHYSSEG_DENSE
996 	pi = atop(start);
997 	pe = atop(end);
998 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
999 		fp = &vm_page_array[pi - first_page];
1000 		if ((pe - first_page) > vm_page_array_size) {
1001 			/*
1002 			 * We have a segment that starts inside
1003 			 * of vm_page_array, but ends outside of it.
1004 			 *
1005 			 * Use vm_page_array pages for those that are
1006 			 * inside of the vm_page_array range, and
1007 			 * allocate the remaining ones.
1008 			 */
1009 			dpage_count = vm_page_array_size - (pi - first_page);
1010 			vm_phys_fictitious_init_range(fp, start, dpage_count,
1011 			    memattr);
1012 			page_count -= dpage_count;
1013 			start += ptoa(dpage_count);
1014 			goto alloc;
1015 		}
1016 		/*
1017 		 * We can allocate the full range from vm_page_array,
1018 		 * so there's no need to register the range in the tree.
1019 		 */
1020 		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1021 		return (0);
1022 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1023 		/*
1024 		 * We have a segment that ends inside of vm_page_array,
1025 		 * but starts outside of it.
1026 		 */
1027 		fp = &vm_page_array[0];
1028 		dpage_count = pe - first_page;
1029 		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
1030 		    memattr);
1031 		end -= ptoa(dpage_count);
1032 		page_count -= dpage_count;
1033 		goto alloc;
1034 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1035 		/*
1036 		 * Trying to register a fictitious range that expands before
1037 		 * and after vm_page_array.
1038 		 */
1039 		return (EINVAL);
1040 	} else {
1041 alloc:
1042 #endif
1043 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
1044 		    M_WAITOK);
1045 #ifdef VM_PHYSSEG_DENSE
1046 	}
1047 #endif
1048 	vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1049 
1050 	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
1051 	seg->start = start;
1052 	seg->end = end;
1053 	seg->first_page = fp;
1054 
1055 	rw_wlock(&vm_phys_fictitious_reg_lock);
1056 	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1057 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1058 
1059 	return (0);
1060 }
1061 
1062 void
1063 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1064 {
1065 	struct vm_phys_fictitious_seg *seg, tmp;
1066 #ifdef VM_PHYSSEG_DENSE
1067 	long pi, pe;
1068 #endif
1069 
1070 	KASSERT(start < end,
1071 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
1072 	    (uintmax_t)start, (uintmax_t)end));
1073 
1074 #ifdef VM_PHYSSEG_DENSE
1075 	pi = atop(start);
1076 	pe = atop(end);
1077 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1078 		if ((pe - first_page) <= vm_page_array_size) {
1079 			/*
1080 			 * This segment was allocated using vm_page_array
1081 			 * only, there's nothing to do since those pages
1082 			 * were never added to the tree.
1083 			 */
1084 			return;
1085 		}
1086 		/*
1087 		 * We have a segment that starts inside
1088 		 * of vm_page_array, but ends outside of it.
1089 		 *
1090 		 * Calculate how many pages were added to the
1091 		 * tree and free them.
1092 		 */
1093 		start = ptoa(first_page + vm_page_array_size);
1094 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1095 		/*
1096 		 * We have a segment that ends inside of vm_page_array,
1097 		 * but starts outside of it.
1098 		 */
1099 		end = ptoa(first_page);
1100 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1101 		/* Since it's not possible to register such a range, panic. */
1102 		panic(
1103 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1104 		    (uintmax_t)start, (uintmax_t)end);
1105 	}
1106 #endif
1107 	tmp.start = start;
1108 	tmp.end = 0;
1109 
1110 	rw_wlock(&vm_phys_fictitious_reg_lock);
1111 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1112 	if (seg->start != start || seg->end != end) {
1113 		rw_wunlock(&vm_phys_fictitious_reg_lock);
1114 		panic(
1115 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1116 		    (uintmax_t)start, (uintmax_t)end);
1117 	}
1118 	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1119 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1120 	free(seg->first_page, M_FICT_PAGES);
1121 	free(seg, M_FICT_PAGES);
1122 }
1123 
1124 /*
1125  * Free a contiguous, power of two-sized set of physical pages.
1126  *
1127  * The free page queues must be locked.
1128  */
1129 void
1130 vm_phys_free_pages(vm_page_t m, int order)
1131 {
1132 	struct vm_freelist *fl;
1133 	struct vm_phys_seg *seg;
1134 	vm_paddr_t pa;
1135 	vm_page_t m_buddy;
1136 
1137 	KASSERT(m->order == VM_NFREEORDER,
1138 	    ("vm_phys_free_pages: page %p has unexpected order %d",
1139 	    m, m->order));
1140 	KASSERT(m->pool < VM_NFREEPOOL,
1141 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
1142 	    m, m->pool));
1143 	KASSERT(order < VM_NFREEORDER,
1144 	    ("vm_phys_free_pages: order %d is out of range", order));
1145 	seg = &vm_phys_segs[m->segind];
1146 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1147 	if (order < VM_NFREEORDER - 1) {
1148 		pa = VM_PAGE_TO_PHYS(m);
1149 		do {
1150 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1151 			if (pa < seg->start || pa >= seg->end)
1152 				break;
1153 			m_buddy = &seg->first_page[atop(pa - seg->start)];
1154 			if (m_buddy->order != order)
1155 				break;
1156 			fl = (*seg->free_queues)[m_buddy->pool];
1157 			vm_freelist_rem(fl, m_buddy, order);
1158 			if (m_buddy->pool != m->pool)
1159 				vm_phys_set_pool(m->pool, m_buddy, order);
1160 			order++;
1161 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1162 			m = &seg->first_page[atop(pa - seg->start)];
1163 		} while (order < VM_NFREEORDER - 1);
1164 	}
1165 	fl = (*seg->free_queues)[m->pool];
1166 	vm_freelist_add(fl, m, order, 1);
1167 }
1168 
1169 /*
1170  * Free a contiguous, arbitrarily sized set of physical pages, without
1171  * merging across set boundaries.
1172  *
1173  * The free page queues must be locked.
1174  */
1175 void
1176 vm_phys_enqueue_contig(vm_page_t m, u_long npages)
1177 {
1178 	struct vm_freelist *fl;
1179 	struct vm_phys_seg *seg;
1180 	vm_page_t m_end;
1181 	vm_paddr_t diff, lo;
1182 	int order;
1183 
1184 	/*
1185 	 * Avoid unnecessary coalescing by freeing the pages in the largest
1186 	 * possible power-of-two-sized subsets.
1187 	 */
1188 	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1189 	seg = &vm_phys_segs[m->segind];
1190 	fl = (*seg->free_queues)[m->pool];
1191 	m_end = m + npages;
1192 	/* Free blocks of increasing size. */
1193 	lo = atop(VM_PAGE_TO_PHYS(m));
1194 	if (m < m_end &&
1195 	    (diff = lo ^ (lo + npages - 1)) != 0) {
1196 		order = min(flsll(diff) - 1, VM_NFREEORDER - 1);
1197 		m = vm_phys_enq_range(m, roundup2(lo, 1 << order) - lo, fl, 1);
1198 	}
1199 
1200 	/* Free blocks of maximum size. */
1201 	order = VM_NFREEORDER - 1;
1202 	while (m + (1 << order) <= m_end) {
1203 		KASSERT(seg == &vm_phys_segs[m->segind],
1204 		    ("%s: page range [%p,%p) spans multiple segments",
1205 		    __func__, m_end - npages, m));
1206 		vm_freelist_add(fl, m, order, 1);
1207 		m += 1 << order;
1208 	}
1209 	/* Free blocks of diminishing size. */
1210 	vm_phys_enq_beg(m, m_end - m, fl, 1);
1211 }
1212 
1213 /*
1214  * Free a contiguous, arbitrarily sized set of physical pages.
1215  *
1216  * The free page queues must be locked.
1217  */
1218 void
1219 vm_phys_free_contig(vm_page_t m, u_long npages)
1220 {
1221 	vm_paddr_t lo;
1222 	vm_page_t m_start, m_end;
1223 	unsigned max_order, order_start, order_end;
1224 
1225 	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1226 
1227 	lo = atop(VM_PAGE_TO_PHYS(m));
1228 	max_order = min(flsll(lo ^ (lo + npages)) - 1, VM_NFREEORDER - 1);
1229 
1230 	m_start = m;
1231 	order_start = ffsll(lo) - 1;
1232 	if (order_start < max_order)
1233 		m_start += 1 << order_start;
1234 	m_end = m + npages;
1235 	order_end = ffsll(lo + npages) - 1;
1236 	if (order_end < max_order)
1237 		m_end -= 1 << order_end;
1238 	/*
1239 	 * Avoid unnecessary coalescing by freeing the pages at the start and
1240 	 * end of the range last.
1241 	 */
1242 	if (m_start < m_end)
1243 		vm_phys_enqueue_contig(m_start, m_end - m_start);
1244 	if (order_start < max_order)
1245 		vm_phys_free_pages(m, order_start);
1246 	if (order_end < max_order)
1247 		vm_phys_free_pages(m_end, order_end);
1248 }
1249 
1250 /*
1251  * Identify the first address range within segment segind or greater
1252  * that matches the domain, lies within the low/high range, and has
1253  * enough pages.  Return -1 if there is none.
1254  */
1255 int
1256 vm_phys_find_range(vm_page_t bounds[], int segind, int domain,
1257     u_long npages, vm_paddr_t low, vm_paddr_t high)
1258 {
1259 	vm_paddr_t pa_end, pa_start;
1260 	struct vm_phys_seg *end_seg, *seg;
1261 
1262 	KASSERT(npages > 0, ("npages is zero"));
1263 	KASSERT(domain >= 0 && domain < vm_ndomains, ("domain out of range"));
1264 	end_seg = &vm_phys_segs[vm_phys_nsegs];
1265 	for (seg = &vm_phys_segs[segind]; seg < end_seg; seg++) {
1266 		if (seg->domain != domain)
1267 			continue;
1268 		if (seg->start >= high)
1269 			return (-1);
1270 		pa_start = MAX(low, seg->start);
1271 		pa_end = MIN(high, seg->end);
1272 		if (pa_end - pa_start < ptoa(npages))
1273 			continue;
1274 		bounds[0] = &seg->first_page[atop(pa_start - seg->start)];
1275 		bounds[1] = &seg->first_page[atop(pa_end - seg->start)];
1276 		return (seg - vm_phys_segs);
1277 	}
1278 	return (-1);
1279 }
1280 
1281 /*
1282  * Search for the given physical page "m" in the free lists.  If the search
1283  * succeeds, remove "m" from the free lists and return true.  Otherwise, return
1284  * false, indicating that "m" is not in the free lists.
1285  *
1286  * The free page queues must be locked.
1287  */
1288 bool
1289 vm_phys_unfree_page(vm_page_t m)
1290 {
1291 	struct vm_freelist *fl;
1292 	struct vm_phys_seg *seg;
1293 	vm_paddr_t pa, pa_half;
1294 	vm_page_t m_set, m_tmp;
1295 	int order;
1296 
1297 	/*
1298 	 * First, find the contiguous, power of two-sized set of free
1299 	 * physical pages containing the given physical page "m" and
1300 	 * assign it to "m_set".
1301 	 */
1302 	seg = &vm_phys_segs[m->segind];
1303 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1304 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1305 	    order < VM_NFREEORDER - 1; ) {
1306 		order++;
1307 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1308 		if (pa >= seg->start)
1309 			m_set = &seg->first_page[atop(pa - seg->start)];
1310 		else
1311 			return (false);
1312 	}
1313 	if (m_set->order < order)
1314 		return (false);
1315 	if (m_set->order == VM_NFREEORDER)
1316 		return (false);
1317 	KASSERT(m_set->order < VM_NFREEORDER,
1318 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
1319 	    m_set, m_set->order));
1320 
1321 	/*
1322 	 * Next, remove "m_set" from the free lists.  Finally, extract
1323 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
1324 	 * is larger than a page, shrink "m_set" by returning the half
1325 	 * of "m_set" that does not contain "m" to the free lists.
1326 	 */
1327 	fl = (*seg->free_queues)[m_set->pool];
1328 	order = m_set->order;
1329 	vm_freelist_rem(fl, m_set, order);
1330 	while (order > 0) {
1331 		order--;
1332 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1333 		if (m->phys_addr < pa_half)
1334 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1335 		else {
1336 			m_tmp = m_set;
1337 			m_set = &seg->first_page[atop(pa_half - seg->start)];
1338 		}
1339 		vm_freelist_add(fl, m_tmp, order, 0);
1340 	}
1341 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1342 	return (true);
1343 }
1344 
1345 /*
1346  * Find a run of contiguous physical pages, meeting alignment requirements, from
1347  * a list of max-sized page blocks, where we need at least two consecutive
1348  * blocks to satisfy the (large) page request.
1349  */
1350 static vm_page_t
1351 vm_phys_find_freelist_contig(struct vm_freelist *fl, u_long npages,
1352     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1353 {
1354 	struct vm_phys_seg *seg;
1355 	vm_page_t m, m_iter, m_ret;
1356 	vm_paddr_t max_size, size;
1357 	int max_order;
1358 
1359 	max_order = VM_NFREEORDER - 1;
1360 	size = npages << PAGE_SHIFT;
1361 	max_size = (vm_paddr_t)1 << (PAGE_SHIFT + max_order);
1362 	KASSERT(size > max_size, ("size is too small"));
1363 
1364 	/*
1365 	 * In order to avoid examining any free max-sized page block more than
1366 	 * twice, identify the ones that are first in a physically-contiguous
1367 	 * sequence of such blocks, and only for those walk the sequence to
1368 	 * check if there are enough free blocks starting at a properly aligned
1369 	 * block.  Thus, no block is checked for free-ness more than twice.
1370 	 */
1371 	TAILQ_FOREACH(m, &fl[max_order].pl, listq) {
1372 		/*
1373 		 * Skip m unless it is first in a sequence of free max page
1374 		 * blocks >= low in its segment.
1375 		 */
1376 		seg = &vm_phys_segs[m->segind];
1377 		if (VM_PAGE_TO_PHYS(m) < MAX(low, seg->start))
1378 			continue;
1379 		if (VM_PAGE_TO_PHYS(m) >= max_size &&
1380 		    VM_PAGE_TO_PHYS(m) - max_size >= MAX(low, seg->start) &&
1381 		    max_order == m[-1 << max_order].order)
1382 			continue;
1383 
1384 		/*
1385 		 * Advance m_ret from m to the first of the sequence, if any,
1386 		 * that satisfies alignment conditions and might leave enough
1387 		 * space.
1388 		 */
1389 		m_ret = m;
1390 		while (!vm_addr_ok(VM_PAGE_TO_PHYS(m_ret),
1391 		    size, alignment, boundary) &&
1392 		    VM_PAGE_TO_PHYS(m_ret) + size <= MIN(high, seg->end) &&
1393 		    max_order == m_ret[1 << max_order].order)
1394 			m_ret += 1 << max_order;
1395 
1396 		/*
1397 		 * Skip m unless some block m_ret in the sequence is properly
1398 		 * aligned, and begins a sequence of enough pages less than
1399 		 * high, and in the same segment.
1400 		 */
1401 		if (VM_PAGE_TO_PHYS(m_ret) + size > MIN(high, seg->end))
1402 			continue;
1403 
1404 		/*
1405 		 * Skip m unless the blocks to allocate starting at m_ret are
1406 		 * all free.
1407 		 */
1408 		for (m_iter = m_ret;
1409 		    m_iter < m_ret + npages && max_order == m_iter->order;
1410 		    m_iter += 1 << max_order) {
1411 		}
1412 		if (m_iter < m_ret + npages)
1413 			continue;
1414 		return (m_ret);
1415 	}
1416 	return (NULL);
1417 }
1418 
1419 /*
1420  * Find a run of contiguous physical pages from the specified free list
1421  * table.
1422  */
1423 static vm_page_t
1424 vm_phys_find_queues_contig(
1425     struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX],
1426     u_long npages, vm_paddr_t low, vm_paddr_t high,
1427     u_long alignment, vm_paddr_t boundary)
1428 {
1429 	struct vm_freelist *fl;
1430 	vm_page_t m_ret;
1431 	vm_paddr_t pa, pa_end, size;
1432 	int oind, order, pind;
1433 
1434 	KASSERT(npages > 0, ("npages is 0"));
1435 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1436 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1437 	/* Compute the queue that is the best fit for npages. */
1438 	order = flsl(npages - 1);
1439 	/* Search for a large enough free block. */
1440 	size = npages << PAGE_SHIFT;
1441 	for (oind = order; oind < VM_NFREEORDER; oind++) {
1442 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1443 			fl = (*queues)[pind];
1444 			TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1445 				/*
1446 				 * Determine if the address range starting at pa
1447 				 * is within the given range, satisfies the
1448 				 * given alignment, and does not cross the given
1449 				 * boundary.
1450 				 */
1451 				pa = VM_PAGE_TO_PHYS(m_ret);
1452 				pa_end = pa + size;
1453 				if (low <= pa && pa_end <= high &&
1454 				    vm_addr_ok(pa, size, alignment, boundary))
1455 					return (m_ret);
1456 			}
1457 		}
1458 	}
1459 	if (order < VM_NFREEORDER)
1460 		return (NULL);
1461 	/* Search for a long-enough sequence of max-order blocks. */
1462 	for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1463 		fl = (*queues)[pind];
1464 		m_ret = vm_phys_find_freelist_contig(fl, npages,
1465 		    low, high, alignment, boundary);
1466 		if (m_ret != NULL)
1467 			return (m_ret);
1468 	}
1469 	return (NULL);
1470 }
1471 
1472 /*
1473  * Allocate a contiguous set of physical pages of the given size
1474  * "npages" from the free lists.  All of the physical pages must be at
1475  * or above the given physical address "low" and below the given
1476  * physical address "high".  The given value "alignment" determines the
1477  * alignment of the first physical page in the set.  If the given value
1478  * "boundary" is non-zero, then the set of physical pages cannot cross
1479  * any physical address boundary that is a multiple of that value.  Both
1480  * "alignment" and "boundary" must be a power of two.
1481  */
1482 vm_page_t
1483 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1484     u_long alignment, vm_paddr_t boundary)
1485 {
1486 	vm_paddr_t pa_end, pa_start;
1487 	struct vm_freelist *fl;
1488 	vm_page_t m, m_run;
1489 	struct vm_phys_seg *seg;
1490 	struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX];
1491 	int oind, segind;
1492 
1493 	KASSERT(npages > 0, ("npages is 0"));
1494 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1495 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1496 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
1497 	if (low >= high)
1498 		return (NULL);
1499 	queues = NULL;
1500 	m_run = NULL;
1501 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1502 		seg = &vm_phys_segs[segind];
1503 		if (seg->start >= high || seg->domain != domain)
1504 			continue;
1505 		if (low >= seg->end)
1506 			break;
1507 		if (low <= seg->start)
1508 			pa_start = seg->start;
1509 		else
1510 			pa_start = low;
1511 		if (high < seg->end)
1512 			pa_end = high;
1513 		else
1514 			pa_end = seg->end;
1515 		if (pa_end - pa_start < ptoa(npages))
1516 			continue;
1517 		/*
1518 		 * If a previous segment led to a search using
1519 		 * the same free lists as would this segment, then
1520 		 * we've actually already searched within this
1521 		 * too.  So skip it.
1522 		 */
1523 		if (seg->free_queues == queues)
1524 			continue;
1525 		queues = seg->free_queues;
1526 		m_run = vm_phys_find_queues_contig(queues, npages,
1527 		    low, high, alignment, boundary);
1528 		if (m_run != NULL)
1529 			break;
1530 	}
1531 	if (m_run == NULL)
1532 		return (NULL);
1533 
1534 	/* Allocate pages from the page-range found. */
1535 	for (m = m_run; m < &m_run[npages]; m = &m[1 << oind]) {
1536 		fl = (*queues)[m->pool];
1537 		oind = m->order;
1538 		vm_freelist_rem(fl, m, oind);
1539 		if (m->pool != VM_FREEPOOL_DEFAULT)
1540 			vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1541 	}
1542 	/* Return excess pages to the free lists. */
1543 	fl = (*queues)[VM_FREEPOOL_DEFAULT];
1544 	vm_phys_enq_range(&m_run[npages], m - &m_run[npages], fl, 0);
1545 
1546 	/* Return page verified to satisfy conditions of request. */
1547 	pa_start = VM_PAGE_TO_PHYS(m_run);
1548 	KASSERT(low <= pa_start,
1549 	    ("memory allocated below minimum requested range"));
1550 	KASSERT(pa_start + ptoa(npages) <= high,
1551 	    ("memory allocated above maximum requested range"));
1552 	seg = &vm_phys_segs[m_run->segind];
1553 	KASSERT(seg->domain == domain,
1554 	    ("memory not allocated from specified domain"));
1555 	KASSERT(vm_addr_ok(pa_start, ptoa(npages), alignment, boundary),
1556 	    ("memory alignment/boundary constraints not satisfied"));
1557 	return (m_run);
1558 }
1559 
1560 /*
1561  * Return the index of the first unused slot which may be the terminating
1562  * entry.
1563  */
1564 static int
1565 vm_phys_avail_count(void)
1566 {
1567 	int i;
1568 
1569 	for (i = 0; phys_avail[i + 1]; i += 2)
1570 		continue;
1571 	if (i > PHYS_AVAIL_ENTRIES)
1572 		panic("Improperly terminated phys_avail %d entries", i);
1573 
1574 	return (i);
1575 }
1576 
1577 /*
1578  * Assert that a phys_avail entry is valid.
1579  */
1580 static void
1581 vm_phys_avail_check(int i)
1582 {
1583 	if (phys_avail[i] & PAGE_MASK)
1584 		panic("Unaligned phys_avail[%d]: %#jx", i,
1585 		    (intmax_t)phys_avail[i]);
1586 	if (phys_avail[i+1] & PAGE_MASK)
1587 		panic("Unaligned phys_avail[%d + 1]: %#jx", i,
1588 		    (intmax_t)phys_avail[i]);
1589 	if (phys_avail[i + 1] < phys_avail[i])
1590 		panic("phys_avail[%d] start %#jx < end %#jx", i,
1591 		    (intmax_t)phys_avail[i], (intmax_t)phys_avail[i+1]);
1592 }
1593 
1594 /*
1595  * Return the index of an overlapping phys_avail entry or -1.
1596  */
1597 #ifdef NUMA
1598 static int
1599 vm_phys_avail_find(vm_paddr_t pa)
1600 {
1601 	int i;
1602 
1603 	for (i = 0; phys_avail[i + 1]; i += 2)
1604 		if (phys_avail[i] <= pa && phys_avail[i + 1] > pa)
1605 			return (i);
1606 	return (-1);
1607 }
1608 #endif
1609 
1610 /*
1611  * Return the index of the largest entry.
1612  */
1613 int
1614 vm_phys_avail_largest(void)
1615 {
1616 	vm_paddr_t sz, largesz;
1617 	int largest;
1618 	int i;
1619 
1620 	largest = 0;
1621 	largesz = 0;
1622 	for (i = 0; phys_avail[i + 1]; i += 2) {
1623 		sz = vm_phys_avail_size(i);
1624 		if (sz > largesz) {
1625 			largesz = sz;
1626 			largest = i;
1627 		}
1628 	}
1629 
1630 	return (largest);
1631 }
1632 
1633 vm_paddr_t
1634 vm_phys_avail_size(int i)
1635 {
1636 
1637 	return (phys_avail[i + 1] - phys_avail[i]);
1638 }
1639 
1640 /*
1641  * Split an entry at the address 'pa'.  Return zero on success or errno.
1642  */
1643 static int
1644 vm_phys_avail_split(vm_paddr_t pa, int i)
1645 {
1646 	int cnt;
1647 
1648 	vm_phys_avail_check(i);
1649 	if (pa <= phys_avail[i] || pa >= phys_avail[i + 1])
1650 		panic("vm_phys_avail_split: invalid address");
1651 	cnt = vm_phys_avail_count();
1652 	if (cnt >= PHYS_AVAIL_ENTRIES)
1653 		return (ENOSPC);
1654 	memmove(&phys_avail[i + 2], &phys_avail[i],
1655 	    (cnt - i) * sizeof(phys_avail[0]));
1656 	phys_avail[i + 1] = pa;
1657 	phys_avail[i + 2] = pa;
1658 	vm_phys_avail_check(i);
1659 	vm_phys_avail_check(i+2);
1660 
1661 	return (0);
1662 }
1663 
1664 /*
1665  * Check if a given physical address can be included as part of a crash dump.
1666  */
1667 bool
1668 vm_phys_is_dumpable(vm_paddr_t pa)
1669 {
1670 	vm_page_t m;
1671 	int i;
1672 
1673 	if ((m = vm_phys_paddr_to_vm_page(pa)) != NULL)
1674 		return ((m->flags & PG_NODUMP) == 0);
1675 
1676 	for (i = 0; dump_avail[i] != 0 || dump_avail[i + 1] != 0; i += 2) {
1677 		if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
1678 			return (true);
1679 	}
1680 	return (false);
1681 }
1682 
1683 void
1684 vm_phys_early_add_seg(vm_paddr_t start, vm_paddr_t end)
1685 {
1686 	struct vm_phys_seg *seg;
1687 
1688 	if (vm_phys_early_nsegs == -1)
1689 		panic("%s: called after initialization", __func__);
1690 	if (vm_phys_early_nsegs == nitems(vm_phys_early_segs))
1691 		panic("%s: ran out of early segments", __func__);
1692 
1693 	seg = &vm_phys_early_segs[vm_phys_early_nsegs++];
1694 	seg->start = start;
1695 	seg->end = end;
1696 }
1697 
1698 /*
1699  * This routine allocates NUMA node specific memory before the page
1700  * allocator is bootstrapped.
1701  */
1702 vm_paddr_t
1703 vm_phys_early_alloc(int domain, size_t alloc_size)
1704 {
1705 #ifdef NUMA
1706 	int mem_index;
1707 #endif
1708 	int i, biggestone;
1709 	vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align;
1710 
1711 	KASSERT(domain == -1 || (domain >= 0 && domain < vm_ndomains),
1712 	    ("%s: invalid domain index %d", __func__, domain));
1713 
1714 	/*
1715 	 * Search the mem_affinity array for the biggest address
1716 	 * range in the desired domain.  This is used to constrain
1717 	 * the phys_avail selection below.
1718 	 */
1719 	biggestsize = 0;
1720 	mem_start = 0;
1721 	mem_end = -1;
1722 #ifdef NUMA
1723 	mem_index = 0;
1724 	if (mem_affinity != NULL) {
1725 		for (i = 0;; i++) {
1726 			size = mem_affinity[i].end - mem_affinity[i].start;
1727 			if (size == 0)
1728 				break;
1729 			if (domain != -1 && mem_affinity[i].domain != domain)
1730 				continue;
1731 			if (size > biggestsize) {
1732 				mem_index = i;
1733 				biggestsize = size;
1734 			}
1735 		}
1736 		mem_start = mem_affinity[mem_index].start;
1737 		mem_end = mem_affinity[mem_index].end;
1738 	}
1739 #endif
1740 
1741 	/*
1742 	 * Now find biggest physical segment in within the desired
1743 	 * numa domain.
1744 	 */
1745 	biggestsize = 0;
1746 	biggestone = 0;
1747 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1748 		/* skip regions that are out of range */
1749 		if (phys_avail[i+1] - alloc_size < mem_start ||
1750 		    phys_avail[i+1] > mem_end)
1751 			continue;
1752 		size = vm_phys_avail_size(i);
1753 		if (size > biggestsize) {
1754 			biggestone = i;
1755 			biggestsize = size;
1756 		}
1757 	}
1758 	alloc_size = round_page(alloc_size);
1759 
1760 	/*
1761 	 * Grab single pages from the front to reduce fragmentation.
1762 	 */
1763 	if (alloc_size == PAGE_SIZE) {
1764 		pa = phys_avail[biggestone];
1765 		phys_avail[biggestone] += PAGE_SIZE;
1766 		vm_phys_avail_check(biggestone);
1767 		return (pa);
1768 	}
1769 
1770 	/*
1771 	 * Naturally align large allocations.
1772 	 */
1773 	align = phys_avail[biggestone + 1] & (alloc_size - 1);
1774 	if (alloc_size + align > biggestsize)
1775 		panic("cannot find a large enough size\n");
1776 	if (align != 0 &&
1777 	    vm_phys_avail_split(phys_avail[biggestone + 1] - align,
1778 	    biggestone) != 0)
1779 		/* Wasting memory. */
1780 		phys_avail[biggestone + 1] -= align;
1781 
1782 	phys_avail[biggestone + 1] -= alloc_size;
1783 	vm_phys_avail_check(biggestone);
1784 	pa = phys_avail[biggestone + 1];
1785 	return (pa);
1786 }
1787 
1788 void
1789 vm_phys_early_startup(void)
1790 {
1791 	struct vm_phys_seg *seg;
1792 	int i;
1793 
1794 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1795 		phys_avail[i] = round_page(phys_avail[i]);
1796 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
1797 	}
1798 
1799 	for (i = 0; i < vm_phys_early_nsegs; i++) {
1800 		seg = &vm_phys_early_segs[i];
1801 		vm_phys_add_seg(seg->start, seg->end);
1802 	}
1803 	vm_phys_early_nsegs = -1;
1804 
1805 #ifdef NUMA
1806 	/* Force phys_avail to be split by domain. */
1807 	if (mem_affinity != NULL) {
1808 		int idx;
1809 
1810 		for (i = 0; mem_affinity[i].end != 0; i++) {
1811 			idx = vm_phys_avail_find(mem_affinity[i].start);
1812 			if (idx != -1 &&
1813 			    phys_avail[idx] != mem_affinity[i].start)
1814 				vm_phys_avail_split(mem_affinity[i].start, idx);
1815 			idx = vm_phys_avail_find(mem_affinity[i].end);
1816 			if (idx != -1 &&
1817 			    phys_avail[idx] != mem_affinity[i].end)
1818 				vm_phys_avail_split(mem_affinity[i].end, idx);
1819 		}
1820 	}
1821 #endif
1822 }
1823 
1824 #ifdef DDB
1825 /*
1826  * Show the number of physical pages in each of the free lists.
1827  */
1828 DB_SHOW_COMMAND_FLAGS(freepages, db_show_freepages, DB_CMD_MEMSAFE)
1829 {
1830 	struct vm_freelist *fl;
1831 	int flind, oind, pind, dom;
1832 
1833 	for (dom = 0; dom < vm_ndomains; dom++) {
1834 		db_printf("DOMAIN: %d\n", dom);
1835 		for (flind = 0; flind < vm_nfreelists; flind++) {
1836 			db_printf("FREE LIST %d:\n"
1837 			    "\n  ORDER (SIZE)  |  NUMBER"
1838 			    "\n              ", flind);
1839 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1840 				db_printf("  |  POOL %d", pind);
1841 			db_printf("\n--            ");
1842 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1843 				db_printf("-- --      ");
1844 			db_printf("--\n");
1845 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1846 				db_printf("  %2.2d (%6.6dK)", oind,
1847 				    1 << (PAGE_SHIFT - 10 + oind));
1848 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1849 				fl = vm_phys_free_queues[dom][flind][pind];
1850 					db_printf("  |  %6.6d", fl[oind].lcnt);
1851 				}
1852 				db_printf("\n");
1853 			}
1854 			db_printf("\n");
1855 		}
1856 		db_printf("\n");
1857 	}
1858 }
1859 #endif
1860