xref: /freebsd/sys/vm/vm_phys.c (revision b5864e6de2f3aa8eb9bb269ec86282598b5201b1)
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *	Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/queue.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sysctl.h>
56 #include <sys/tree.h>
57 #include <sys/vmmeter.h>
58 #include <sys/seq.h>
59 
60 #include <ddb/ddb.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_phys.h>
68 
69 #include <vm/vm_domain.h>
70 
71 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
72     "Too many physsegs.");
73 
74 #ifdef VM_NUMA_ALLOC
75 struct mem_affinity *mem_affinity;
76 int *mem_locality;
77 #endif
78 
79 int vm_ndomains = 1;
80 
81 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
82 int vm_phys_nsegs;
83 
84 struct vm_phys_fictitious_seg;
85 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
86     struct vm_phys_fictitious_seg *);
87 
88 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
89     RB_INITIALIZER(_vm_phys_fictitious_tree);
90 
91 struct vm_phys_fictitious_seg {
92 	RB_ENTRY(vm_phys_fictitious_seg) node;
93 	/* Memory region data */
94 	vm_paddr_t	start;
95 	vm_paddr_t	end;
96 	vm_page_t	first_page;
97 };
98 
99 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
100     vm_phys_fictitious_cmp);
101 
102 static struct rwlock vm_phys_fictitious_reg_lock;
103 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
104 
105 static struct vm_freelist
106     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
107 
108 static int vm_nfreelists;
109 
110 /*
111  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
112  */
113 static int vm_freelist_to_flind[VM_NFREELIST];
114 
115 CTASSERT(VM_FREELIST_DEFAULT == 0);
116 
117 #ifdef VM_FREELIST_ISADMA
118 #define	VM_ISADMA_BOUNDARY	16777216
119 #endif
120 #ifdef VM_FREELIST_DMA32
121 #define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
122 #endif
123 
124 /*
125  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
126  * the ordering of the free list boundaries.
127  */
128 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
129 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
130 #endif
131 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
132 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
133 #endif
134 
135 static int cnt_prezero;
136 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
137     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
138 
139 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
140 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
141     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
142 
143 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
144 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
145     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
146 
147 #ifdef VM_NUMA_ALLOC
148 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
149 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
150     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
151 #endif
152 
153 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
154     &vm_ndomains, 0, "Number of physical memory domains available.");
155 
156 /*
157  * Default to first-touch + round-robin.
158  */
159 static struct mtx vm_default_policy_mtx;
160 MTX_SYSINIT(vm_default_policy, &vm_default_policy_mtx, "default policy mutex",
161     MTX_DEF);
162 #ifdef VM_NUMA_ALLOC
163 static struct vm_domain_policy vm_default_policy =
164     VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
165 #else
166 /* Use round-robin so the domain policy code will only try once per allocation */
167 static struct vm_domain_policy vm_default_policy =
168     VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_ROUND_ROBIN, 0);
169 #endif
170 
171 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
172     int order);
173 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
174     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
175     vm_paddr_t boundary);
176 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
177 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
178 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
179 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
180     int order);
181 
182 static int
183 sysctl_vm_default_policy(SYSCTL_HANDLER_ARGS)
184 {
185 	char policy_name[32];
186 	int error;
187 
188 	mtx_lock(&vm_default_policy_mtx);
189 
190 	/* Map policy to output string */
191 	switch (vm_default_policy.p.policy) {
192 	case VM_POLICY_FIRST_TOUCH:
193 		strcpy(policy_name, "first-touch");
194 		break;
195 	case VM_POLICY_FIRST_TOUCH_ROUND_ROBIN:
196 		strcpy(policy_name, "first-touch-rr");
197 		break;
198 	case VM_POLICY_ROUND_ROBIN:
199 	default:
200 		strcpy(policy_name, "rr");
201 		break;
202 	}
203 	mtx_unlock(&vm_default_policy_mtx);
204 
205 	error = sysctl_handle_string(oidp, &policy_name[0],
206 	    sizeof(policy_name), req);
207 	if (error != 0 || req->newptr == NULL)
208 		return (error);
209 
210 	mtx_lock(&vm_default_policy_mtx);
211 	/* Set: match on the subset of policies that make sense as a default */
212 	if (strcmp("first-touch-rr", policy_name) == 0) {
213 		vm_domain_policy_set(&vm_default_policy,
214 		    VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
215 	} else if (strcmp("first-touch", policy_name) == 0) {
216 		vm_domain_policy_set(&vm_default_policy,
217 		    VM_POLICY_FIRST_TOUCH, 0);
218 	} else if (strcmp("rr", policy_name) == 0) {
219 		vm_domain_policy_set(&vm_default_policy,
220 		    VM_POLICY_ROUND_ROBIN, 0);
221 	} else {
222 		error = EINVAL;
223 		goto finish;
224 	}
225 
226 	error = 0;
227 finish:
228 	mtx_unlock(&vm_default_policy_mtx);
229 	return (error);
230 }
231 
232 SYSCTL_PROC(_vm, OID_AUTO, default_policy, CTLTYPE_STRING | CTLFLAG_RW,
233     0, 0, sysctl_vm_default_policy, "A",
234     "Default policy (rr, first-touch, first-touch-rr");
235 
236 /*
237  * Red-black tree helpers for vm fictitious range management.
238  */
239 static inline int
240 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
241     struct vm_phys_fictitious_seg *range)
242 {
243 
244 	KASSERT(range->start != 0 && range->end != 0,
245 	    ("Invalid range passed on search for vm_fictitious page"));
246 	if (p->start >= range->end)
247 		return (1);
248 	if (p->start < range->start)
249 		return (-1);
250 
251 	return (0);
252 }
253 
254 static int
255 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
256     struct vm_phys_fictitious_seg *p2)
257 {
258 
259 	/* Check if this is a search for a page */
260 	if (p1->end == 0)
261 		return (vm_phys_fictitious_in_range(p1, p2));
262 
263 	KASSERT(p2->end != 0,
264     ("Invalid range passed as second parameter to vm fictitious comparison"));
265 
266 	/* Searching to add a new range */
267 	if (p1->end <= p2->start)
268 		return (-1);
269 	if (p1->start >= p2->end)
270 		return (1);
271 
272 	panic("Trying to add overlapping vm fictitious ranges:\n"
273 	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
274 	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
275 }
276 
277 static __inline int
278 vm_rr_selectdomain(void)
279 {
280 #ifdef VM_NUMA_ALLOC
281 	struct thread *td;
282 
283 	td = curthread;
284 
285 	td->td_dom_rr_idx++;
286 	td->td_dom_rr_idx %= vm_ndomains;
287 	return (td->td_dom_rr_idx);
288 #else
289 	return (0);
290 #endif
291 }
292 
293 /*
294  * Initialise a VM domain iterator.
295  *
296  * Check the thread policy, then the proc policy,
297  * then default to the system policy.
298  *
299  * Later on the various layers will have this logic
300  * plumbed into them and the phys code will be explicitly
301  * handed a VM domain policy to use.
302  */
303 static void
304 vm_policy_iterator_init(struct vm_domain_iterator *vi)
305 {
306 #ifdef VM_NUMA_ALLOC
307 	struct vm_domain_policy lcl;
308 #endif
309 
310 	vm_domain_iterator_init(vi);
311 
312 #ifdef VM_NUMA_ALLOC
313 	/* Copy out the thread policy */
314 	vm_domain_policy_localcopy(&lcl, &curthread->td_vm_dom_policy);
315 	if (lcl.p.policy != VM_POLICY_NONE) {
316 		/* Thread policy is present; use it */
317 		vm_domain_iterator_set_policy(vi, &lcl);
318 		return;
319 	}
320 
321 	vm_domain_policy_localcopy(&lcl,
322 	    &curthread->td_proc->p_vm_dom_policy);
323 	if (lcl.p.policy != VM_POLICY_NONE) {
324 		/* Process policy is present; use it */
325 		vm_domain_iterator_set_policy(vi, &lcl);
326 		return;
327 	}
328 #endif
329 	/* Use system default policy */
330 	vm_domain_iterator_set_policy(vi, &vm_default_policy);
331 }
332 
333 static void
334 vm_policy_iterator_finish(struct vm_domain_iterator *vi)
335 {
336 
337 	vm_domain_iterator_cleanup(vi);
338 }
339 
340 boolean_t
341 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
342 {
343 	struct vm_phys_seg *s;
344 	int idx;
345 
346 	while ((idx = ffsl(mask)) != 0) {
347 		idx--;	/* ffsl counts from 1 */
348 		mask &= ~(1UL << idx);
349 		s = &vm_phys_segs[idx];
350 		if (low < s->end && high > s->start)
351 			return (TRUE);
352 	}
353 	return (FALSE);
354 }
355 
356 /*
357  * Outputs the state of the physical memory allocator, specifically,
358  * the amount of physical memory in each free list.
359  */
360 static int
361 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
362 {
363 	struct sbuf sbuf;
364 	struct vm_freelist *fl;
365 	int dom, error, flind, oind, pind;
366 
367 	error = sysctl_wire_old_buffer(req, 0);
368 	if (error != 0)
369 		return (error);
370 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
371 	for (dom = 0; dom < vm_ndomains; dom++) {
372 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
373 		for (flind = 0; flind < vm_nfreelists; flind++) {
374 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
375 			    "\n  ORDER (SIZE)  |  NUMBER"
376 			    "\n              ", flind);
377 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
378 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
379 			sbuf_printf(&sbuf, "\n--            ");
380 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
381 				sbuf_printf(&sbuf, "-- --      ");
382 			sbuf_printf(&sbuf, "--\n");
383 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
384 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
385 				    1 << (PAGE_SHIFT - 10 + oind));
386 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
387 				fl = vm_phys_free_queues[dom][flind][pind];
388 					sbuf_printf(&sbuf, "  |  %6d",
389 					    fl[oind].lcnt);
390 				}
391 				sbuf_printf(&sbuf, "\n");
392 			}
393 		}
394 	}
395 	error = sbuf_finish(&sbuf);
396 	sbuf_delete(&sbuf);
397 	return (error);
398 }
399 
400 /*
401  * Outputs the set of physical memory segments.
402  */
403 static int
404 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
405 {
406 	struct sbuf sbuf;
407 	struct vm_phys_seg *seg;
408 	int error, segind;
409 
410 	error = sysctl_wire_old_buffer(req, 0);
411 	if (error != 0)
412 		return (error);
413 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
414 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
415 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
416 		seg = &vm_phys_segs[segind];
417 		sbuf_printf(&sbuf, "start:     %#jx\n",
418 		    (uintmax_t)seg->start);
419 		sbuf_printf(&sbuf, "end:       %#jx\n",
420 		    (uintmax_t)seg->end);
421 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
422 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
423 	}
424 	error = sbuf_finish(&sbuf);
425 	sbuf_delete(&sbuf);
426 	return (error);
427 }
428 
429 /*
430  * Return affinity, or -1 if there's no affinity information.
431  */
432 int
433 vm_phys_mem_affinity(int f, int t)
434 {
435 
436 #ifdef VM_NUMA_ALLOC
437 	if (mem_locality == NULL)
438 		return (-1);
439 	if (f >= vm_ndomains || t >= vm_ndomains)
440 		return (-1);
441 	return (mem_locality[f * vm_ndomains + t]);
442 #else
443 	return (-1);
444 #endif
445 }
446 
447 #ifdef VM_NUMA_ALLOC
448 /*
449  * Outputs the VM locality table.
450  */
451 static int
452 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
453 {
454 	struct sbuf sbuf;
455 	int error, i, j;
456 
457 	error = sysctl_wire_old_buffer(req, 0);
458 	if (error != 0)
459 		return (error);
460 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
461 
462 	sbuf_printf(&sbuf, "\n");
463 
464 	for (i = 0; i < vm_ndomains; i++) {
465 		sbuf_printf(&sbuf, "%d: ", i);
466 		for (j = 0; j < vm_ndomains; j++) {
467 			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
468 		}
469 		sbuf_printf(&sbuf, "\n");
470 	}
471 	error = sbuf_finish(&sbuf);
472 	sbuf_delete(&sbuf);
473 	return (error);
474 }
475 #endif
476 
477 static void
478 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
479 {
480 
481 	m->order = order;
482 	if (tail)
483 		TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
484 	else
485 		TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
486 	fl[order].lcnt++;
487 }
488 
489 static void
490 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
491 {
492 
493 	TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
494 	fl[order].lcnt--;
495 	m->order = VM_NFREEORDER;
496 }
497 
498 /*
499  * Create a physical memory segment.
500  */
501 static void
502 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
503 {
504 	struct vm_phys_seg *seg;
505 
506 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
507 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
508 	KASSERT(domain < vm_ndomains,
509 	    ("vm_phys_create_seg: invalid domain provided"));
510 	seg = &vm_phys_segs[vm_phys_nsegs++];
511 	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
512 		*seg = *(seg - 1);
513 		seg--;
514 	}
515 	seg->start = start;
516 	seg->end = end;
517 	seg->domain = domain;
518 }
519 
520 static void
521 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
522 {
523 #ifdef VM_NUMA_ALLOC
524 	int i;
525 
526 	if (mem_affinity == NULL) {
527 		_vm_phys_create_seg(start, end, 0);
528 		return;
529 	}
530 
531 	for (i = 0;; i++) {
532 		if (mem_affinity[i].end == 0)
533 			panic("Reached end of affinity info");
534 		if (mem_affinity[i].end <= start)
535 			continue;
536 		if (mem_affinity[i].start > start)
537 			panic("No affinity info for start %jx",
538 			    (uintmax_t)start);
539 		if (mem_affinity[i].end >= end) {
540 			_vm_phys_create_seg(start, end,
541 			    mem_affinity[i].domain);
542 			break;
543 		}
544 		_vm_phys_create_seg(start, mem_affinity[i].end,
545 		    mem_affinity[i].domain);
546 		start = mem_affinity[i].end;
547 	}
548 #else
549 	_vm_phys_create_seg(start, end, 0);
550 #endif
551 }
552 
553 /*
554  * Add a physical memory segment.
555  */
556 void
557 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
558 {
559 	vm_paddr_t paddr;
560 
561 	KASSERT((start & PAGE_MASK) == 0,
562 	    ("vm_phys_define_seg: start is not page aligned"));
563 	KASSERT((end & PAGE_MASK) == 0,
564 	    ("vm_phys_define_seg: end is not page aligned"));
565 
566 	/*
567 	 * Split the physical memory segment if it spans two or more free
568 	 * list boundaries.
569 	 */
570 	paddr = start;
571 #ifdef	VM_FREELIST_ISADMA
572 	if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
573 		vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
574 		paddr = VM_ISADMA_BOUNDARY;
575 	}
576 #endif
577 #ifdef	VM_FREELIST_LOWMEM
578 	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
579 		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
580 		paddr = VM_LOWMEM_BOUNDARY;
581 	}
582 #endif
583 #ifdef	VM_FREELIST_DMA32
584 	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
585 		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
586 		paddr = VM_DMA32_BOUNDARY;
587 	}
588 #endif
589 	vm_phys_create_seg(paddr, end);
590 }
591 
592 /*
593  * Initialize the physical memory allocator.
594  *
595  * Requires that vm_page_array is initialized!
596  */
597 void
598 vm_phys_init(void)
599 {
600 	struct vm_freelist *fl;
601 	struct vm_phys_seg *seg;
602 	u_long npages;
603 	int dom, flind, freelist, oind, pind, segind;
604 
605 	/*
606 	 * Compute the number of free lists, and generate the mapping from the
607 	 * manifest constants VM_FREELIST_* to the free list indices.
608 	 *
609 	 * Initially, the entries of vm_freelist_to_flind[] are set to either
610 	 * 0 or 1 to indicate which free lists should be created.
611 	 */
612 	npages = 0;
613 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
614 		seg = &vm_phys_segs[segind];
615 #ifdef	VM_FREELIST_ISADMA
616 		if (seg->end <= VM_ISADMA_BOUNDARY)
617 			vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
618 		else
619 #endif
620 #ifdef	VM_FREELIST_LOWMEM
621 		if (seg->end <= VM_LOWMEM_BOUNDARY)
622 			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
623 		else
624 #endif
625 #ifdef	VM_FREELIST_DMA32
626 		if (
627 #ifdef	VM_DMA32_NPAGES_THRESHOLD
628 		    /*
629 		     * Create the DMA32 free list only if the amount of
630 		     * physical memory above physical address 4G exceeds the
631 		     * given threshold.
632 		     */
633 		    npages > VM_DMA32_NPAGES_THRESHOLD &&
634 #endif
635 		    seg->end <= VM_DMA32_BOUNDARY)
636 			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
637 		else
638 #endif
639 		{
640 			npages += atop(seg->end - seg->start);
641 			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
642 		}
643 	}
644 	/* Change each entry into a running total of the free lists. */
645 	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
646 		vm_freelist_to_flind[freelist] +=
647 		    vm_freelist_to_flind[freelist - 1];
648 	}
649 	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
650 	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
651 	/* Change each entry into a free list index. */
652 	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
653 		vm_freelist_to_flind[freelist]--;
654 
655 	/*
656 	 * Initialize the first_page and free_queues fields of each physical
657 	 * memory segment.
658 	 */
659 #ifdef VM_PHYSSEG_SPARSE
660 	npages = 0;
661 #endif
662 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
663 		seg = &vm_phys_segs[segind];
664 #ifdef VM_PHYSSEG_SPARSE
665 		seg->first_page = &vm_page_array[npages];
666 		npages += atop(seg->end - seg->start);
667 #else
668 		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
669 #endif
670 #ifdef	VM_FREELIST_ISADMA
671 		if (seg->end <= VM_ISADMA_BOUNDARY) {
672 			flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
673 			KASSERT(flind >= 0,
674 			    ("vm_phys_init: ISADMA flind < 0"));
675 		} else
676 #endif
677 #ifdef	VM_FREELIST_LOWMEM
678 		if (seg->end <= VM_LOWMEM_BOUNDARY) {
679 			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
680 			KASSERT(flind >= 0,
681 			    ("vm_phys_init: LOWMEM flind < 0"));
682 		} else
683 #endif
684 #ifdef	VM_FREELIST_DMA32
685 		if (seg->end <= VM_DMA32_BOUNDARY) {
686 			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
687 			KASSERT(flind >= 0,
688 			    ("vm_phys_init: DMA32 flind < 0"));
689 		} else
690 #endif
691 		{
692 			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
693 			KASSERT(flind >= 0,
694 			    ("vm_phys_init: DEFAULT flind < 0"));
695 		}
696 		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
697 	}
698 
699 	/*
700 	 * Initialize the free queues.
701 	 */
702 	for (dom = 0; dom < vm_ndomains; dom++) {
703 		for (flind = 0; flind < vm_nfreelists; flind++) {
704 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
705 				fl = vm_phys_free_queues[dom][flind][pind];
706 				for (oind = 0; oind < VM_NFREEORDER; oind++)
707 					TAILQ_INIT(&fl[oind].pl);
708 			}
709 		}
710 	}
711 
712 	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
713 }
714 
715 /*
716  * Split a contiguous, power of two-sized set of physical pages.
717  */
718 static __inline void
719 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
720 {
721 	vm_page_t m_buddy;
722 
723 	while (oind > order) {
724 		oind--;
725 		m_buddy = &m[1 << oind];
726 		KASSERT(m_buddy->order == VM_NFREEORDER,
727 		    ("vm_phys_split_pages: page %p has unexpected order %d",
728 		    m_buddy, m_buddy->order));
729 		vm_freelist_add(fl, m_buddy, oind, 0);
730         }
731 }
732 
733 /*
734  * Initialize a physical page and add it to the free lists.
735  */
736 void
737 vm_phys_add_page(vm_paddr_t pa)
738 {
739 	vm_page_t m;
740 	struct vm_domain *vmd;
741 
742 	vm_cnt.v_page_count++;
743 	m = vm_phys_paddr_to_vm_page(pa);
744 	m->busy_lock = VPB_UNBUSIED;
745 	m->phys_addr = pa;
746 	m->queue = PQ_NONE;
747 	m->segind = vm_phys_paddr_to_segind(pa);
748 	vmd = vm_phys_domain(m);
749 	vmd->vmd_page_count++;
750 	vmd->vmd_segs |= 1UL << m->segind;
751 	KASSERT(m->order == VM_NFREEORDER,
752 	    ("vm_phys_add_page: page %p has unexpected order %d",
753 	    m, m->order));
754 	m->pool = VM_FREEPOOL_DEFAULT;
755 	pmap_page_init(m);
756 	mtx_lock(&vm_page_queue_free_mtx);
757 	vm_phys_freecnt_adj(m, 1);
758 	vm_phys_free_pages(m, 0);
759 	mtx_unlock(&vm_page_queue_free_mtx);
760 }
761 
762 /*
763  * Allocate a contiguous, power of two-sized set of physical pages
764  * from the free lists.
765  *
766  * The free page queues must be locked.
767  */
768 vm_page_t
769 vm_phys_alloc_pages(int pool, int order)
770 {
771 	vm_page_t m;
772 	int domain, flind;
773 	struct vm_domain_iterator vi;
774 
775 	KASSERT(pool < VM_NFREEPOOL,
776 	    ("vm_phys_alloc_pages: pool %d is out of range", pool));
777 	KASSERT(order < VM_NFREEORDER,
778 	    ("vm_phys_alloc_pages: order %d is out of range", order));
779 
780 	vm_policy_iterator_init(&vi);
781 
782 	while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
783 		for (flind = 0; flind < vm_nfreelists; flind++) {
784 			m = vm_phys_alloc_domain_pages(domain, flind, pool,
785 			    order);
786 			if (m != NULL)
787 				return (m);
788 		}
789 	}
790 
791 	vm_policy_iterator_finish(&vi);
792 	return (NULL);
793 }
794 
795 /*
796  * Allocate a contiguous, power of two-sized set of physical pages from the
797  * specified free list.  The free list must be specified using one of the
798  * manifest constants VM_FREELIST_*.
799  *
800  * The free page queues must be locked.
801  */
802 vm_page_t
803 vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
804 {
805 	vm_page_t m;
806 	struct vm_domain_iterator vi;
807 	int domain;
808 
809 	KASSERT(freelist < VM_NFREELIST,
810 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
811 	    freelist));
812 	KASSERT(pool < VM_NFREEPOOL,
813 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
814 	KASSERT(order < VM_NFREEORDER,
815 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
816 
817 	vm_policy_iterator_init(&vi);
818 
819 	while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
820 		m = vm_phys_alloc_domain_pages(domain,
821 		    vm_freelist_to_flind[freelist], pool, order);
822 		if (m != NULL)
823 			return (m);
824 	}
825 
826 	vm_policy_iterator_finish(&vi);
827 	return (NULL);
828 }
829 
830 static vm_page_t
831 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
832 {
833 	struct vm_freelist *fl;
834 	struct vm_freelist *alt;
835 	int oind, pind;
836 	vm_page_t m;
837 
838 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
839 	fl = &vm_phys_free_queues[domain][flind][pool][0];
840 	for (oind = order; oind < VM_NFREEORDER; oind++) {
841 		m = TAILQ_FIRST(&fl[oind].pl);
842 		if (m != NULL) {
843 			vm_freelist_rem(fl, m, oind);
844 			vm_phys_split_pages(m, oind, fl, order);
845 			return (m);
846 		}
847 	}
848 
849 	/*
850 	 * The given pool was empty.  Find the largest
851 	 * contiguous, power-of-two-sized set of pages in any
852 	 * pool.  Transfer these pages to the given pool, and
853 	 * use them to satisfy the allocation.
854 	 */
855 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
856 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
857 			alt = &vm_phys_free_queues[domain][flind][pind][0];
858 			m = TAILQ_FIRST(&alt[oind].pl);
859 			if (m != NULL) {
860 				vm_freelist_rem(alt, m, oind);
861 				vm_phys_set_pool(pool, m, oind);
862 				vm_phys_split_pages(m, oind, fl, order);
863 				return (m);
864 			}
865 		}
866 	}
867 	return (NULL);
868 }
869 
870 /*
871  * Find the vm_page corresponding to the given physical address.
872  */
873 vm_page_t
874 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
875 {
876 	struct vm_phys_seg *seg;
877 	int segind;
878 
879 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
880 		seg = &vm_phys_segs[segind];
881 		if (pa >= seg->start && pa < seg->end)
882 			return (&seg->first_page[atop(pa - seg->start)]);
883 	}
884 	return (NULL);
885 }
886 
887 vm_page_t
888 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
889 {
890 	struct vm_phys_fictitious_seg tmp, *seg;
891 	vm_page_t m;
892 
893 	m = NULL;
894 	tmp.start = pa;
895 	tmp.end = 0;
896 
897 	rw_rlock(&vm_phys_fictitious_reg_lock);
898 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
899 	rw_runlock(&vm_phys_fictitious_reg_lock);
900 	if (seg == NULL)
901 		return (NULL);
902 
903 	m = &seg->first_page[atop(pa - seg->start)];
904 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
905 
906 	return (m);
907 }
908 
909 static inline void
910 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
911     long page_count, vm_memattr_t memattr)
912 {
913 	long i;
914 
915 	for (i = 0; i < page_count; i++) {
916 		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
917 		range[i].oflags &= ~VPO_UNMANAGED;
918 		range[i].busy_lock = VPB_UNBUSIED;
919 	}
920 }
921 
922 int
923 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
924     vm_memattr_t memattr)
925 {
926 	struct vm_phys_fictitious_seg *seg;
927 	vm_page_t fp;
928 	long page_count;
929 #ifdef VM_PHYSSEG_DENSE
930 	long pi, pe;
931 	long dpage_count;
932 #endif
933 
934 	KASSERT(start < end,
935 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
936 	    (uintmax_t)start, (uintmax_t)end));
937 
938 	page_count = (end - start) / PAGE_SIZE;
939 
940 #ifdef VM_PHYSSEG_DENSE
941 	pi = atop(start);
942 	pe = atop(end);
943 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
944 		fp = &vm_page_array[pi - first_page];
945 		if ((pe - first_page) > vm_page_array_size) {
946 			/*
947 			 * We have a segment that starts inside
948 			 * of vm_page_array, but ends outside of it.
949 			 *
950 			 * Use vm_page_array pages for those that are
951 			 * inside of the vm_page_array range, and
952 			 * allocate the remaining ones.
953 			 */
954 			dpage_count = vm_page_array_size - (pi - first_page);
955 			vm_phys_fictitious_init_range(fp, start, dpage_count,
956 			    memattr);
957 			page_count -= dpage_count;
958 			start += ptoa(dpage_count);
959 			goto alloc;
960 		}
961 		/*
962 		 * We can allocate the full range from vm_page_array,
963 		 * so there's no need to register the range in the tree.
964 		 */
965 		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
966 		return (0);
967 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
968 		/*
969 		 * We have a segment that ends inside of vm_page_array,
970 		 * but starts outside of it.
971 		 */
972 		fp = &vm_page_array[0];
973 		dpage_count = pe - first_page;
974 		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
975 		    memattr);
976 		end -= ptoa(dpage_count);
977 		page_count -= dpage_count;
978 		goto alloc;
979 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
980 		/*
981 		 * Trying to register a fictitious range that expands before
982 		 * and after vm_page_array.
983 		 */
984 		return (EINVAL);
985 	} else {
986 alloc:
987 #endif
988 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
989 		    M_WAITOK | M_ZERO);
990 #ifdef VM_PHYSSEG_DENSE
991 	}
992 #endif
993 	vm_phys_fictitious_init_range(fp, start, page_count, memattr);
994 
995 	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
996 	seg->start = start;
997 	seg->end = end;
998 	seg->first_page = fp;
999 
1000 	rw_wlock(&vm_phys_fictitious_reg_lock);
1001 	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1002 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1003 
1004 	return (0);
1005 }
1006 
1007 void
1008 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1009 {
1010 	struct vm_phys_fictitious_seg *seg, tmp;
1011 #ifdef VM_PHYSSEG_DENSE
1012 	long pi, pe;
1013 #endif
1014 
1015 	KASSERT(start < end,
1016 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
1017 	    (uintmax_t)start, (uintmax_t)end));
1018 
1019 #ifdef VM_PHYSSEG_DENSE
1020 	pi = atop(start);
1021 	pe = atop(end);
1022 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1023 		if ((pe - first_page) <= vm_page_array_size) {
1024 			/*
1025 			 * This segment was allocated using vm_page_array
1026 			 * only, there's nothing to do since those pages
1027 			 * were never added to the tree.
1028 			 */
1029 			return;
1030 		}
1031 		/*
1032 		 * We have a segment that starts inside
1033 		 * of vm_page_array, but ends outside of it.
1034 		 *
1035 		 * Calculate how many pages were added to the
1036 		 * tree and free them.
1037 		 */
1038 		start = ptoa(first_page + vm_page_array_size);
1039 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1040 		/*
1041 		 * We have a segment that ends inside of vm_page_array,
1042 		 * but starts outside of it.
1043 		 */
1044 		end = ptoa(first_page);
1045 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1046 		/* Since it's not possible to register such a range, panic. */
1047 		panic(
1048 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1049 		    (uintmax_t)start, (uintmax_t)end);
1050 	}
1051 #endif
1052 	tmp.start = start;
1053 	tmp.end = 0;
1054 
1055 	rw_wlock(&vm_phys_fictitious_reg_lock);
1056 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1057 	if (seg->start != start || seg->end != end) {
1058 		rw_wunlock(&vm_phys_fictitious_reg_lock);
1059 		panic(
1060 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1061 		    (uintmax_t)start, (uintmax_t)end);
1062 	}
1063 	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1064 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1065 	free(seg->first_page, M_FICT_PAGES);
1066 	free(seg, M_FICT_PAGES);
1067 }
1068 
1069 /*
1070  * Find the segment containing the given physical address.
1071  */
1072 static int
1073 vm_phys_paddr_to_segind(vm_paddr_t pa)
1074 {
1075 	struct vm_phys_seg *seg;
1076 	int segind;
1077 
1078 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1079 		seg = &vm_phys_segs[segind];
1080 		if (pa >= seg->start && pa < seg->end)
1081 			return (segind);
1082 	}
1083 	panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
1084 	    (uintmax_t)pa);
1085 }
1086 
1087 /*
1088  * Free a contiguous, power of two-sized set of physical pages.
1089  *
1090  * The free page queues must be locked.
1091  */
1092 void
1093 vm_phys_free_pages(vm_page_t m, int order)
1094 {
1095 	struct vm_freelist *fl;
1096 	struct vm_phys_seg *seg;
1097 	vm_paddr_t pa;
1098 	vm_page_t m_buddy;
1099 
1100 	KASSERT(m->order == VM_NFREEORDER,
1101 	    ("vm_phys_free_pages: page %p has unexpected order %d",
1102 	    m, m->order));
1103 	KASSERT(m->pool < VM_NFREEPOOL,
1104 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
1105 	    m, m->pool));
1106 	KASSERT(order < VM_NFREEORDER,
1107 	    ("vm_phys_free_pages: order %d is out of range", order));
1108 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1109 	seg = &vm_phys_segs[m->segind];
1110 	if (order < VM_NFREEORDER - 1) {
1111 		pa = VM_PAGE_TO_PHYS(m);
1112 		do {
1113 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1114 			if (pa < seg->start || pa >= seg->end)
1115 				break;
1116 			m_buddy = &seg->first_page[atop(pa - seg->start)];
1117 			if (m_buddy->order != order)
1118 				break;
1119 			fl = (*seg->free_queues)[m_buddy->pool];
1120 			vm_freelist_rem(fl, m_buddy, order);
1121 			if (m_buddy->pool != m->pool)
1122 				vm_phys_set_pool(m->pool, m_buddy, order);
1123 			order++;
1124 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1125 			m = &seg->first_page[atop(pa - seg->start)];
1126 		} while (order < VM_NFREEORDER - 1);
1127 	}
1128 	fl = (*seg->free_queues)[m->pool];
1129 	vm_freelist_add(fl, m, order, 1);
1130 }
1131 
1132 /*
1133  * Free a contiguous, arbitrarily sized set of physical pages.
1134  *
1135  * The free page queues must be locked.
1136  */
1137 void
1138 vm_phys_free_contig(vm_page_t m, u_long npages)
1139 {
1140 	u_int n;
1141 	int order;
1142 
1143 	/*
1144 	 * Avoid unnecessary coalescing by freeing the pages in the largest
1145 	 * possible power-of-two-sized subsets.
1146 	 */
1147 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1148 	for (;; npages -= n) {
1149 		/*
1150 		 * Unsigned "min" is used here so that "order" is assigned
1151 		 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1152 		 * or the low-order bits of its physical address are zero
1153 		 * because the size of a physical address exceeds the size of
1154 		 * a long.
1155 		 */
1156 		order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1157 		    VM_NFREEORDER - 1);
1158 		n = 1 << order;
1159 		if (npages < n)
1160 			break;
1161 		vm_phys_free_pages(m, order);
1162 		m += n;
1163 	}
1164 	/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
1165 	for (; npages > 0; npages -= n) {
1166 		order = flsl(npages) - 1;
1167 		n = 1 << order;
1168 		vm_phys_free_pages(m, order);
1169 		m += n;
1170 	}
1171 }
1172 
1173 /*
1174  * Scan physical memory between the specified addresses "low" and "high" for a
1175  * run of contiguous physical pages that satisfy the specified conditions, and
1176  * return the lowest page in the run.  The specified "alignment" determines
1177  * the alignment of the lowest physical page in the run.  If the specified
1178  * "boundary" is non-zero, then the run of physical pages cannot span a
1179  * physical address that is a multiple of "boundary".
1180  *
1181  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
1182  * be a power of two.
1183  */
1184 vm_page_t
1185 vm_phys_scan_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1186     u_long alignment, vm_paddr_t boundary, int options)
1187 {
1188 	vm_paddr_t pa_end;
1189 	vm_page_t m_end, m_run, m_start;
1190 	struct vm_phys_seg *seg;
1191 	int segind;
1192 
1193 	KASSERT(npages > 0, ("npages is 0"));
1194 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1195 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1196 	if (low >= high)
1197 		return (NULL);
1198 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1199 		seg = &vm_phys_segs[segind];
1200 		if (seg->start >= high)
1201 			break;
1202 		if (low >= seg->end)
1203 			continue;
1204 		if (low <= seg->start)
1205 			m_start = seg->first_page;
1206 		else
1207 			m_start = &seg->first_page[atop(low - seg->start)];
1208 		if (high < seg->end)
1209 			pa_end = high;
1210 		else
1211 			pa_end = seg->end;
1212 		if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1213 			continue;
1214 		m_end = &seg->first_page[atop(pa_end - seg->start)];
1215 		m_run = vm_page_scan_contig(npages, m_start, m_end,
1216 		    alignment, boundary, options);
1217 		if (m_run != NULL)
1218 			return (m_run);
1219 	}
1220 	return (NULL);
1221 }
1222 
1223 /*
1224  * Set the pool for a contiguous, power of two-sized set of physical pages.
1225  */
1226 void
1227 vm_phys_set_pool(int pool, vm_page_t m, int order)
1228 {
1229 	vm_page_t m_tmp;
1230 
1231 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1232 		m_tmp->pool = pool;
1233 }
1234 
1235 /*
1236  * Search for the given physical page "m" in the free lists.  If the search
1237  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1238  * FALSE, indicating that "m" is not in the free lists.
1239  *
1240  * The free page queues must be locked.
1241  */
1242 boolean_t
1243 vm_phys_unfree_page(vm_page_t m)
1244 {
1245 	struct vm_freelist *fl;
1246 	struct vm_phys_seg *seg;
1247 	vm_paddr_t pa, pa_half;
1248 	vm_page_t m_set, m_tmp;
1249 	int order;
1250 
1251 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1252 
1253 	/*
1254 	 * First, find the contiguous, power of two-sized set of free
1255 	 * physical pages containing the given physical page "m" and
1256 	 * assign it to "m_set".
1257 	 */
1258 	seg = &vm_phys_segs[m->segind];
1259 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1260 	    order < VM_NFREEORDER - 1; ) {
1261 		order++;
1262 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1263 		if (pa >= seg->start)
1264 			m_set = &seg->first_page[atop(pa - seg->start)];
1265 		else
1266 			return (FALSE);
1267 	}
1268 	if (m_set->order < order)
1269 		return (FALSE);
1270 	if (m_set->order == VM_NFREEORDER)
1271 		return (FALSE);
1272 	KASSERT(m_set->order < VM_NFREEORDER,
1273 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
1274 	    m_set, m_set->order));
1275 
1276 	/*
1277 	 * Next, remove "m_set" from the free lists.  Finally, extract
1278 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
1279 	 * is larger than a page, shrink "m_set" by returning the half
1280 	 * of "m_set" that does not contain "m" to the free lists.
1281 	 */
1282 	fl = (*seg->free_queues)[m_set->pool];
1283 	order = m_set->order;
1284 	vm_freelist_rem(fl, m_set, order);
1285 	while (order > 0) {
1286 		order--;
1287 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1288 		if (m->phys_addr < pa_half)
1289 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1290 		else {
1291 			m_tmp = m_set;
1292 			m_set = &seg->first_page[atop(pa_half - seg->start)];
1293 		}
1294 		vm_freelist_add(fl, m_tmp, order, 0);
1295 	}
1296 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1297 	return (TRUE);
1298 }
1299 
1300 /*
1301  * Try to zero one physical page.  Used by an idle priority thread.
1302  */
1303 boolean_t
1304 vm_phys_zero_pages_idle(void)
1305 {
1306 	static struct vm_freelist *fl;
1307 	static int flind, oind, pind;
1308 	vm_page_t m, m_tmp;
1309 	int domain;
1310 
1311 	domain = vm_rr_selectdomain();
1312 	fl = vm_phys_free_queues[domain][0][0];
1313 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1314 	for (;;) {
1315 		TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
1316 			for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
1317 				if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
1318 					vm_phys_unfree_page(m_tmp);
1319 					vm_phys_freecnt_adj(m, -1);
1320 					mtx_unlock(&vm_page_queue_free_mtx);
1321 					pmap_zero_page_idle(m_tmp);
1322 					m_tmp->flags |= PG_ZERO;
1323 					mtx_lock(&vm_page_queue_free_mtx);
1324 					vm_phys_freecnt_adj(m, 1);
1325 					vm_phys_free_pages(m_tmp, 0);
1326 					vm_page_zero_count++;
1327 					cnt_prezero++;
1328 					return (TRUE);
1329 				}
1330 			}
1331 		}
1332 		oind++;
1333 		if (oind == VM_NFREEORDER) {
1334 			oind = 0;
1335 			pind++;
1336 			if (pind == VM_NFREEPOOL) {
1337 				pind = 0;
1338 				flind++;
1339 				if (flind == vm_nfreelists)
1340 					flind = 0;
1341 			}
1342 			fl = vm_phys_free_queues[domain][flind][pind];
1343 		}
1344 	}
1345 }
1346 
1347 /*
1348  * Allocate a contiguous set of physical pages of the given size
1349  * "npages" from the free lists.  All of the physical pages must be at
1350  * or above the given physical address "low" and below the given
1351  * physical address "high".  The given value "alignment" determines the
1352  * alignment of the first physical page in the set.  If the given value
1353  * "boundary" is non-zero, then the set of physical pages cannot cross
1354  * any physical address boundary that is a multiple of that value.  Both
1355  * "alignment" and "boundary" must be a power of two.
1356  */
1357 vm_page_t
1358 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1359     u_long alignment, vm_paddr_t boundary)
1360 {
1361 	vm_paddr_t pa_end, pa_start;
1362 	vm_page_t m_run;
1363 	struct vm_domain_iterator vi;
1364 	struct vm_phys_seg *seg;
1365 	int domain, segind;
1366 
1367 	KASSERT(npages > 0, ("npages is 0"));
1368 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1369 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1370 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1371 	if (low >= high)
1372 		return (NULL);
1373 	vm_policy_iterator_init(&vi);
1374 restartdom:
1375 	if (vm_domain_iterator_run(&vi, &domain) != 0) {
1376 		vm_policy_iterator_finish(&vi);
1377 		return (NULL);
1378 	}
1379 	m_run = NULL;
1380 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1381 		seg = &vm_phys_segs[segind];
1382 		if (seg->start >= high || seg->domain != domain)
1383 			continue;
1384 		if (low >= seg->end)
1385 			break;
1386 		if (low <= seg->start)
1387 			pa_start = seg->start;
1388 		else
1389 			pa_start = low;
1390 		if (high < seg->end)
1391 			pa_end = high;
1392 		else
1393 			pa_end = seg->end;
1394 		if (pa_end - pa_start < ptoa(npages))
1395 			continue;
1396 		m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1397 		    alignment, boundary);
1398 		if (m_run != NULL)
1399 			break;
1400 	}
1401 	if (m_run == NULL && !vm_domain_iterator_isdone(&vi))
1402 		goto restartdom;
1403 	vm_policy_iterator_finish(&vi);
1404 	return (m_run);
1405 }
1406 
1407 /*
1408  * Allocate a run of contiguous physical pages from the free list for the
1409  * specified segment.
1410  */
1411 static vm_page_t
1412 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1413     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1414 {
1415 	struct vm_freelist *fl;
1416 	vm_paddr_t pa, pa_end, size;
1417 	vm_page_t m, m_ret;
1418 	u_long npages_end;
1419 	int oind, order, pind;
1420 
1421 	KASSERT(npages > 0, ("npages is 0"));
1422 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1423 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1424 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1425 	/* Compute the queue that is the best fit for npages. */
1426 	for (order = 0; (1 << order) < npages; order++);
1427 	/* Search for a run satisfying the specified conditions. */
1428 	size = npages << PAGE_SHIFT;
1429 	for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1430 	    oind++) {
1431 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1432 			fl = (*seg->free_queues)[pind];
1433 			TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1434 				/*
1435 				 * Is the size of this allocation request
1436 				 * larger than the largest block size?
1437 				 */
1438 				if (order >= VM_NFREEORDER) {
1439 					/*
1440 					 * Determine if a sufficient number of
1441 					 * subsequent blocks to satisfy the
1442 					 * allocation request are free.
1443 					 */
1444 					pa = VM_PAGE_TO_PHYS(m_ret);
1445 					pa_end = pa + size;
1446 					for (;;) {
1447 						pa += 1 << (PAGE_SHIFT +
1448 						    VM_NFREEORDER - 1);
1449 						if (pa >= pa_end ||
1450 						    pa < seg->start ||
1451 						    pa >= seg->end)
1452 							break;
1453 						m = &seg->first_page[atop(pa -
1454 						    seg->start)];
1455 						if (m->order != VM_NFREEORDER -
1456 						    1)
1457 							break;
1458 					}
1459 					/* If not, go to the next block. */
1460 					if (pa < pa_end)
1461 						continue;
1462 				}
1463 
1464 				/*
1465 				 * Determine if the blocks are within the
1466 				 * given range, satisfy the given alignment,
1467 				 * and do not cross the given boundary.
1468 				 */
1469 				pa = VM_PAGE_TO_PHYS(m_ret);
1470 				pa_end = pa + size;
1471 				if (pa >= low && pa_end <= high &&
1472 				    (pa & (alignment - 1)) == 0 &&
1473 				    rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1474 					goto done;
1475 			}
1476 		}
1477 	}
1478 	return (NULL);
1479 done:
1480 	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1481 		fl = (*seg->free_queues)[m->pool];
1482 		vm_freelist_rem(fl, m, m->order);
1483 	}
1484 	if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1485 		vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1486 	fl = (*seg->free_queues)[m_ret->pool];
1487 	vm_phys_split_pages(m_ret, oind, fl, order);
1488 	/* Return excess pages to the free lists. */
1489 	npages_end = roundup2(npages, 1 << imin(oind, order));
1490 	if (npages < npages_end)
1491 		vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1492 	return (m_ret);
1493 }
1494 
1495 #ifdef DDB
1496 /*
1497  * Show the number of physical pages in each of the free lists.
1498  */
1499 DB_SHOW_COMMAND(freepages, db_show_freepages)
1500 {
1501 	struct vm_freelist *fl;
1502 	int flind, oind, pind, dom;
1503 
1504 	for (dom = 0; dom < vm_ndomains; dom++) {
1505 		db_printf("DOMAIN: %d\n", dom);
1506 		for (flind = 0; flind < vm_nfreelists; flind++) {
1507 			db_printf("FREE LIST %d:\n"
1508 			    "\n  ORDER (SIZE)  |  NUMBER"
1509 			    "\n              ", flind);
1510 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1511 				db_printf("  |  POOL %d", pind);
1512 			db_printf("\n--            ");
1513 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1514 				db_printf("-- --      ");
1515 			db_printf("--\n");
1516 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1517 				db_printf("  %2.2d (%6.6dK)", oind,
1518 				    1 << (PAGE_SHIFT - 10 + oind));
1519 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1520 				fl = vm_phys_free_queues[dom][flind][pind];
1521 					db_printf("  |  %6.6d", fl[oind].lcnt);
1522 				}
1523 				db_printf("\n");
1524 			}
1525 			db_printf("\n");
1526 		}
1527 		db_printf("\n");
1528 	}
1529 }
1530 #endif
1531