xref: /freebsd/sys/vm/vm_phys.c (revision b1f9167f94059fd55c630891d359bcff987bd7eb)
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *	Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/vmmeter.h>
58 
59 #include <ddb/ddb.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_phys.h>
67 
68 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
69     "Too many physsegs.");
70 
71 struct mem_affinity *mem_affinity;
72 
73 int vm_ndomains = 1;
74 
75 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
76 int vm_phys_nsegs;
77 
78 #define VM_PHYS_FICTITIOUS_NSEGS	8
79 static struct vm_phys_fictitious_seg {
80 	vm_paddr_t	start;
81 	vm_paddr_t	end;
82 	vm_page_t	first_page;
83 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
84 static struct mtx vm_phys_fictitious_reg_mtx;
85 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
86 
87 static struct vm_freelist
88     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
89 
90 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
91 
92 static int cnt_prezero;
93 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
94     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
95 
96 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
97 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
98     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
99 
100 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
101 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
102     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
103 
104 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
105     &vm_ndomains, 0, "Number of physical memory domains available.");
106 
107 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
108     int order);
109 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
110     int domain);
111 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
112 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
113 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
114     int order);
115 
116 static __inline int
117 vm_rr_selectdomain(void)
118 {
119 #if MAXMEMDOM > 1
120 	struct thread *td;
121 
122 	td = curthread;
123 
124 	td->td_dom_rr_idx++;
125 	td->td_dom_rr_idx %= vm_ndomains;
126 	return (td->td_dom_rr_idx);
127 #else
128 	return (0);
129 #endif
130 }
131 
132 boolean_t
133 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
134 {
135 	struct vm_phys_seg *s;
136 	int idx;
137 
138 	while ((idx = ffsl(mask)) != 0) {
139 		idx--;	/* ffsl counts from 1 */
140 		mask &= ~(1UL << idx);
141 		s = &vm_phys_segs[idx];
142 		if (low < s->end && high > s->start)
143 			return (TRUE);
144 	}
145 	return (FALSE);
146 }
147 
148 /*
149  * Outputs the state of the physical memory allocator, specifically,
150  * the amount of physical memory in each free list.
151  */
152 static int
153 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
154 {
155 	struct sbuf sbuf;
156 	struct vm_freelist *fl;
157 	int dom, error, flind, oind, pind;
158 
159 	error = sysctl_wire_old_buffer(req, 0);
160 	if (error != 0)
161 		return (error);
162 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
163 	for (dom = 0; dom < vm_ndomains; dom++) {
164 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
165 		for (flind = 0; flind < vm_nfreelists; flind++) {
166 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
167 			    "\n  ORDER (SIZE)  |  NUMBER"
168 			    "\n              ", flind);
169 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
170 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
171 			sbuf_printf(&sbuf, "\n--            ");
172 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
173 				sbuf_printf(&sbuf, "-- --      ");
174 			sbuf_printf(&sbuf, "--\n");
175 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
176 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
177 				    1 << (PAGE_SHIFT - 10 + oind));
178 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
179 				fl = vm_phys_free_queues[dom][flind][pind];
180 					sbuf_printf(&sbuf, "  |  %6d",
181 					    fl[oind].lcnt);
182 				}
183 				sbuf_printf(&sbuf, "\n");
184 			}
185 		}
186 	}
187 	error = sbuf_finish(&sbuf);
188 	sbuf_delete(&sbuf);
189 	return (error);
190 }
191 
192 /*
193  * Outputs the set of physical memory segments.
194  */
195 static int
196 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
197 {
198 	struct sbuf sbuf;
199 	struct vm_phys_seg *seg;
200 	int error, segind;
201 
202 	error = sysctl_wire_old_buffer(req, 0);
203 	if (error != 0)
204 		return (error);
205 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
206 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
207 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
208 		seg = &vm_phys_segs[segind];
209 		sbuf_printf(&sbuf, "start:     %#jx\n",
210 		    (uintmax_t)seg->start);
211 		sbuf_printf(&sbuf, "end:       %#jx\n",
212 		    (uintmax_t)seg->end);
213 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
214 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
215 	}
216 	error = sbuf_finish(&sbuf);
217 	sbuf_delete(&sbuf);
218 	return (error);
219 }
220 
221 static void
222 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
223 {
224 
225 	m->order = order;
226 	if (tail)
227 		TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
228 	else
229 		TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
230 	fl[order].lcnt++;
231 }
232 
233 static void
234 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
235 {
236 
237 	TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
238 	fl[order].lcnt--;
239 	m->order = VM_NFREEORDER;
240 }
241 
242 /*
243  * Create a physical memory segment.
244  */
245 static void
246 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
247 {
248 	struct vm_phys_seg *seg;
249 #ifdef VM_PHYSSEG_SPARSE
250 	long pages;
251 	int segind;
252 
253 	pages = 0;
254 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
255 		seg = &vm_phys_segs[segind];
256 		pages += atop(seg->end - seg->start);
257 	}
258 #endif
259 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
260 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
261 	KASSERT(domain < vm_ndomains,
262 	    ("vm_phys_create_seg: invalid domain provided"));
263 	seg = &vm_phys_segs[vm_phys_nsegs++];
264 	seg->start = start;
265 	seg->end = end;
266 	seg->domain = domain;
267 #ifdef VM_PHYSSEG_SPARSE
268 	seg->first_page = &vm_page_array[pages];
269 #else
270 	seg->first_page = PHYS_TO_VM_PAGE(start);
271 #endif
272 	seg->free_queues = &vm_phys_free_queues[domain][flind];
273 }
274 
275 static void
276 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
277 {
278 	int i;
279 
280 	if (mem_affinity == NULL) {
281 		_vm_phys_create_seg(start, end, flind, 0);
282 		return;
283 	}
284 
285 	for (i = 0;; i++) {
286 		if (mem_affinity[i].end == 0)
287 			panic("Reached end of affinity info");
288 		if (mem_affinity[i].end <= start)
289 			continue;
290 		if (mem_affinity[i].start > start)
291 			panic("No affinity info for start %jx",
292 			    (uintmax_t)start);
293 		if (mem_affinity[i].end >= end) {
294 			_vm_phys_create_seg(start, end, flind,
295 			    mem_affinity[i].domain);
296 			break;
297 		}
298 		_vm_phys_create_seg(start, mem_affinity[i].end, flind,
299 		    mem_affinity[i].domain);
300 		start = mem_affinity[i].end;
301 	}
302 }
303 
304 /*
305  * Initialize the physical memory allocator.
306  */
307 void
308 vm_phys_init(void)
309 {
310 	struct vm_freelist *fl;
311 	int dom, flind, i, oind, pind;
312 
313 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
314 #ifdef	VM_FREELIST_ISADMA
315 		if (phys_avail[i] < 16777216) {
316 			if (phys_avail[i + 1] > 16777216) {
317 				vm_phys_create_seg(phys_avail[i], 16777216,
318 				    VM_FREELIST_ISADMA);
319 				vm_phys_create_seg(16777216, phys_avail[i + 1],
320 				    VM_FREELIST_DEFAULT);
321 			} else {
322 				vm_phys_create_seg(phys_avail[i],
323 				    phys_avail[i + 1], VM_FREELIST_ISADMA);
324 			}
325 			if (VM_FREELIST_ISADMA >= vm_nfreelists)
326 				vm_nfreelists = VM_FREELIST_ISADMA + 1;
327 		} else
328 #endif
329 #ifdef	VM_FREELIST_HIGHMEM
330 		if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
331 			if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
332 				vm_phys_create_seg(phys_avail[i],
333 				    VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
334 				vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
335 				    phys_avail[i + 1], VM_FREELIST_HIGHMEM);
336 			} else {
337 				vm_phys_create_seg(phys_avail[i],
338 				    phys_avail[i + 1], VM_FREELIST_HIGHMEM);
339 			}
340 			if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
341 				vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
342 		} else
343 #endif
344 		vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
345 		    VM_FREELIST_DEFAULT);
346 	}
347 	for (dom = 0; dom < vm_ndomains; dom++) {
348 		for (flind = 0; flind < vm_nfreelists; flind++) {
349 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
350 				fl = vm_phys_free_queues[dom][flind][pind];
351 				for (oind = 0; oind < VM_NFREEORDER; oind++)
352 					TAILQ_INIT(&fl[oind].pl);
353 			}
354 		}
355 	}
356 	mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
357 }
358 
359 /*
360  * Split a contiguous, power of two-sized set of physical pages.
361  */
362 static __inline void
363 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
364 {
365 	vm_page_t m_buddy;
366 
367 	while (oind > order) {
368 		oind--;
369 		m_buddy = &m[1 << oind];
370 		KASSERT(m_buddy->order == VM_NFREEORDER,
371 		    ("vm_phys_split_pages: page %p has unexpected order %d",
372 		    m_buddy, m_buddy->order));
373 		vm_freelist_add(fl, m_buddy, oind, 0);
374         }
375 }
376 
377 /*
378  * Initialize a physical page and add it to the free lists.
379  */
380 void
381 vm_phys_add_page(vm_paddr_t pa)
382 {
383 	vm_page_t m;
384 	struct vm_domain *vmd;
385 
386 	vm_cnt.v_page_count++;
387 	m = vm_phys_paddr_to_vm_page(pa);
388 	m->phys_addr = pa;
389 	m->queue = PQ_NONE;
390 	m->segind = vm_phys_paddr_to_segind(pa);
391 	vmd = vm_phys_domain(m);
392 	vmd->vmd_page_count++;
393 	vmd->vmd_segs |= 1UL << m->segind;
394 	KASSERT(m->order == VM_NFREEORDER,
395 	    ("vm_phys_add_page: page %p has unexpected order %d",
396 	    m, m->order));
397 	m->pool = VM_FREEPOOL_DEFAULT;
398 	pmap_page_init(m);
399 	mtx_lock(&vm_page_queue_free_mtx);
400 	vm_phys_freecnt_adj(m, 1);
401 	vm_phys_free_pages(m, 0);
402 	mtx_unlock(&vm_page_queue_free_mtx);
403 }
404 
405 /*
406  * Allocate a contiguous, power of two-sized set of physical pages
407  * from the free lists.
408  *
409  * The free page queues must be locked.
410  */
411 vm_page_t
412 vm_phys_alloc_pages(int pool, int order)
413 {
414 	vm_page_t m;
415 	int dom, domain, flind;
416 
417 	KASSERT(pool < VM_NFREEPOOL,
418 	    ("vm_phys_alloc_pages: pool %d is out of range", pool));
419 	KASSERT(order < VM_NFREEORDER,
420 	    ("vm_phys_alloc_pages: order %d is out of range", order));
421 
422 	for (dom = 0; dom < vm_ndomains; dom++) {
423 		domain = vm_rr_selectdomain();
424 		for (flind = 0; flind < vm_nfreelists; flind++) {
425 			m = vm_phys_alloc_domain_pages(domain, flind, pool,
426 			    order);
427 			if (m != NULL)
428 				return (m);
429 		}
430 	}
431 	return (NULL);
432 }
433 
434 /*
435  * Find and dequeue a free page on the given free list, with the
436  * specified pool and order
437  */
438 vm_page_t
439 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
440 {
441 	vm_page_t m;
442 	int dom, domain;
443 
444 	KASSERT(flind < VM_NFREELIST,
445 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
446 	KASSERT(pool < VM_NFREEPOOL,
447 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
448 	KASSERT(order < VM_NFREEORDER,
449 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
450 
451 	for (dom = 0; dom < vm_ndomains; dom++) {
452 		domain = vm_rr_selectdomain();
453 		m = vm_phys_alloc_domain_pages(domain, flind, pool, order);
454 		if (m != NULL)
455 			return (m);
456 	}
457 	return (NULL);
458 }
459 
460 static vm_page_t
461 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
462 {
463 	struct vm_freelist *fl;
464 	struct vm_freelist *alt;
465 	int oind, pind;
466 	vm_page_t m;
467 
468 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
469 	fl = &vm_phys_free_queues[domain][flind][pool][0];
470 	for (oind = order; oind < VM_NFREEORDER; oind++) {
471 		m = TAILQ_FIRST(&fl[oind].pl);
472 		if (m != NULL) {
473 			vm_freelist_rem(fl, m, oind);
474 			vm_phys_split_pages(m, oind, fl, order);
475 			return (m);
476 		}
477 	}
478 
479 	/*
480 	 * The given pool was empty.  Find the largest
481 	 * contiguous, power-of-two-sized set of pages in any
482 	 * pool.  Transfer these pages to the given pool, and
483 	 * use them to satisfy the allocation.
484 	 */
485 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
486 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
487 			alt = &vm_phys_free_queues[domain][flind][pind][0];
488 			m = TAILQ_FIRST(&alt[oind].pl);
489 			if (m != NULL) {
490 				vm_freelist_rem(alt, m, oind);
491 				vm_phys_set_pool(pool, m, oind);
492 				vm_phys_split_pages(m, oind, fl, order);
493 				return (m);
494 			}
495 		}
496 	}
497 	return (NULL);
498 }
499 
500 /*
501  * Find the vm_page corresponding to the given physical address.
502  */
503 vm_page_t
504 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
505 {
506 	struct vm_phys_seg *seg;
507 	int segind;
508 
509 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
510 		seg = &vm_phys_segs[segind];
511 		if (pa >= seg->start && pa < seg->end)
512 			return (&seg->first_page[atop(pa - seg->start)]);
513 	}
514 	return (NULL);
515 }
516 
517 vm_page_t
518 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
519 {
520 	struct vm_phys_fictitious_seg *seg;
521 	vm_page_t m;
522 	int segind;
523 
524 	m = NULL;
525 	for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
526 		seg = &vm_phys_fictitious_segs[segind];
527 		if (pa >= seg->start && pa < seg->end) {
528 			m = &seg->first_page[atop(pa - seg->start)];
529 			KASSERT((m->flags & PG_FICTITIOUS) != 0,
530 			    ("%p not fictitious", m));
531 			break;
532 		}
533 	}
534 	return (m);
535 }
536 
537 int
538 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
539     vm_memattr_t memattr)
540 {
541 	struct vm_phys_fictitious_seg *seg;
542 	vm_page_t fp;
543 	long i, page_count;
544 	int segind;
545 #ifdef VM_PHYSSEG_DENSE
546 	long pi;
547 	boolean_t malloced;
548 #endif
549 
550 	page_count = (end - start) / PAGE_SIZE;
551 
552 #ifdef VM_PHYSSEG_DENSE
553 	pi = atop(start);
554 	if (pi >= first_page && pi < vm_page_array_size + first_page) {
555 		if (atop(end) >= vm_page_array_size + first_page)
556 			return (EINVAL);
557 		fp = &vm_page_array[pi - first_page];
558 		malloced = FALSE;
559 	} else
560 #endif
561 	{
562 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
563 		    M_WAITOK | M_ZERO);
564 #ifdef VM_PHYSSEG_DENSE
565 		malloced = TRUE;
566 #endif
567 	}
568 	for (i = 0; i < page_count; i++) {
569 		vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
570 		fp[i].oflags &= ~VPO_UNMANAGED;
571 		fp[i].busy_lock = VPB_UNBUSIED;
572 	}
573 	mtx_lock(&vm_phys_fictitious_reg_mtx);
574 	for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
575 		seg = &vm_phys_fictitious_segs[segind];
576 		if (seg->start == 0 && seg->end == 0) {
577 			seg->start = start;
578 			seg->end = end;
579 			seg->first_page = fp;
580 			mtx_unlock(&vm_phys_fictitious_reg_mtx);
581 			return (0);
582 		}
583 	}
584 	mtx_unlock(&vm_phys_fictitious_reg_mtx);
585 #ifdef VM_PHYSSEG_DENSE
586 	if (malloced)
587 #endif
588 		free(fp, M_FICT_PAGES);
589 	return (EBUSY);
590 }
591 
592 void
593 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
594 {
595 	struct vm_phys_fictitious_seg *seg;
596 	vm_page_t fp;
597 	int segind;
598 #ifdef VM_PHYSSEG_DENSE
599 	long pi;
600 #endif
601 
602 #ifdef VM_PHYSSEG_DENSE
603 	pi = atop(start);
604 #endif
605 
606 	mtx_lock(&vm_phys_fictitious_reg_mtx);
607 	for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
608 		seg = &vm_phys_fictitious_segs[segind];
609 		if (seg->start == start && seg->end == end) {
610 			seg->start = seg->end = 0;
611 			fp = seg->first_page;
612 			seg->first_page = NULL;
613 			mtx_unlock(&vm_phys_fictitious_reg_mtx);
614 #ifdef VM_PHYSSEG_DENSE
615 			if (pi < first_page || atop(end) >= vm_page_array_size)
616 #endif
617 				free(fp, M_FICT_PAGES);
618 			return;
619 		}
620 	}
621 	mtx_unlock(&vm_phys_fictitious_reg_mtx);
622 	KASSERT(0, ("Unregistering not registered fictitious range"));
623 }
624 
625 /*
626  * Find the segment containing the given physical address.
627  */
628 static int
629 vm_phys_paddr_to_segind(vm_paddr_t pa)
630 {
631 	struct vm_phys_seg *seg;
632 	int segind;
633 
634 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
635 		seg = &vm_phys_segs[segind];
636 		if (pa >= seg->start && pa < seg->end)
637 			return (segind);
638 	}
639 	panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
640 	    (uintmax_t)pa);
641 }
642 
643 /*
644  * Free a contiguous, power of two-sized set of physical pages.
645  *
646  * The free page queues must be locked.
647  */
648 void
649 vm_phys_free_pages(vm_page_t m, int order)
650 {
651 	struct vm_freelist *fl;
652 	struct vm_phys_seg *seg;
653 	vm_paddr_t pa;
654 	vm_page_t m_buddy;
655 
656 	KASSERT(m->order == VM_NFREEORDER,
657 	    ("vm_phys_free_pages: page %p has unexpected order %d",
658 	    m, m->order));
659 	KASSERT(m->pool < VM_NFREEPOOL,
660 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
661 	    m, m->pool));
662 	KASSERT(order < VM_NFREEORDER,
663 	    ("vm_phys_free_pages: order %d is out of range", order));
664 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
665 	seg = &vm_phys_segs[m->segind];
666 	if (order < VM_NFREEORDER - 1) {
667 		pa = VM_PAGE_TO_PHYS(m);
668 		do {
669 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
670 			if (pa < seg->start || pa >= seg->end)
671 				break;
672 			m_buddy = &seg->first_page[atop(pa - seg->start)];
673 			if (m_buddy->order != order)
674 				break;
675 			fl = (*seg->free_queues)[m_buddy->pool];
676 			vm_freelist_rem(fl, m_buddy, order);
677 			if (m_buddy->pool != m->pool)
678 				vm_phys_set_pool(m->pool, m_buddy, order);
679 			order++;
680 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
681 			m = &seg->first_page[atop(pa - seg->start)];
682 		} while (order < VM_NFREEORDER - 1);
683 	}
684 	fl = (*seg->free_queues)[m->pool];
685 	vm_freelist_add(fl, m, order, 1);
686 }
687 
688 /*
689  * Free a contiguous, arbitrarily sized set of physical pages.
690  *
691  * The free page queues must be locked.
692  */
693 void
694 vm_phys_free_contig(vm_page_t m, u_long npages)
695 {
696 	u_int n;
697 	int order;
698 
699 	/*
700 	 * Avoid unnecessary coalescing by freeing the pages in the largest
701 	 * possible power-of-two-sized subsets.
702 	 */
703 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
704 	for (;; npages -= n) {
705 		/*
706 		 * Unsigned "min" is used here so that "order" is assigned
707 		 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
708 		 * or the low-order bits of its physical address are zero
709 		 * because the size of a physical address exceeds the size of
710 		 * a long.
711 		 */
712 		order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
713 		    VM_NFREEORDER - 1);
714 		n = 1 << order;
715 		if (npages < n)
716 			break;
717 		vm_phys_free_pages(m, order);
718 		m += n;
719 	}
720 	/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
721 	for (; npages > 0; npages -= n) {
722 		order = flsl(npages) - 1;
723 		n = 1 << order;
724 		vm_phys_free_pages(m, order);
725 		m += n;
726 	}
727 }
728 
729 /*
730  * Set the pool for a contiguous, power of two-sized set of physical pages.
731  */
732 void
733 vm_phys_set_pool(int pool, vm_page_t m, int order)
734 {
735 	vm_page_t m_tmp;
736 
737 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
738 		m_tmp->pool = pool;
739 }
740 
741 /*
742  * Search for the given physical page "m" in the free lists.  If the search
743  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
744  * FALSE, indicating that "m" is not in the free lists.
745  *
746  * The free page queues must be locked.
747  */
748 boolean_t
749 vm_phys_unfree_page(vm_page_t m)
750 {
751 	struct vm_freelist *fl;
752 	struct vm_phys_seg *seg;
753 	vm_paddr_t pa, pa_half;
754 	vm_page_t m_set, m_tmp;
755 	int order;
756 
757 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
758 
759 	/*
760 	 * First, find the contiguous, power of two-sized set of free
761 	 * physical pages containing the given physical page "m" and
762 	 * assign it to "m_set".
763 	 */
764 	seg = &vm_phys_segs[m->segind];
765 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
766 	    order < VM_NFREEORDER - 1; ) {
767 		order++;
768 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
769 		if (pa >= seg->start)
770 			m_set = &seg->first_page[atop(pa - seg->start)];
771 		else
772 			return (FALSE);
773 	}
774 	if (m_set->order < order)
775 		return (FALSE);
776 	if (m_set->order == VM_NFREEORDER)
777 		return (FALSE);
778 	KASSERT(m_set->order < VM_NFREEORDER,
779 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
780 	    m_set, m_set->order));
781 
782 	/*
783 	 * Next, remove "m_set" from the free lists.  Finally, extract
784 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
785 	 * is larger than a page, shrink "m_set" by returning the half
786 	 * of "m_set" that does not contain "m" to the free lists.
787 	 */
788 	fl = (*seg->free_queues)[m_set->pool];
789 	order = m_set->order;
790 	vm_freelist_rem(fl, m_set, order);
791 	while (order > 0) {
792 		order--;
793 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
794 		if (m->phys_addr < pa_half)
795 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
796 		else {
797 			m_tmp = m_set;
798 			m_set = &seg->first_page[atop(pa_half - seg->start)];
799 		}
800 		vm_freelist_add(fl, m_tmp, order, 0);
801 	}
802 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
803 	return (TRUE);
804 }
805 
806 /*
807  * Try to zero one physical page.  Used by an idle priority thread.
808  */
809 boolean_t
810 vm_phys_zero_pages_idle(void)
811 {
812 	static struct vm_freelist *fl;
813 	static int flind, oind, pind;
814 	vm_page_t m, m_tmp;
815 	int domain;
816 
817 	domain = vm_rr_selectdomain();
818 	fl = vm_phys_free_queues[domain][0][0];
819 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
820 	for (;;) {
821 		TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
822 			for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
823 				if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
824 					vm_phys_unfree_page(m_tmp);
825 					vm_phys_freecnt_adj(m, -1);
826 					mtx_unlock(&vm_page_queue_free_mtx);
827 					pmap_zero_page_idle(m_tmp);
828 					m_tmp->flags |= PG_ZERO;
829 					mtx_lock(&vm_page_queue_free_mtx);
830 					vm_phys_freecnt_adj(m, 1);
831 					vm_phys_free_pages(m_tmp, 0);
832 					vm_page_zero_count++;
833 					cnt_prezero++;
834 					return (TRUE);
835 				}
836 			}
837 		}
838 		oind++;
839 		if (oind == VM_NFREEORDER) {
840 			oind = 0;
841 			pind++;
842 			if (pind == VM_NFREEPOOL) {
843 				pind = 0;
844 				flind++;
845 				if (flind == vm_nfreelists)
846 					flind = 0;
847 			}
848 			fl = vm_phys_free_queues[domain][flind][pind];
849 		}
850 	}
851 }
852 
853 /*
854  * Allocate a contiguous set of physical pages of the given size
855  * "npages" from the free lists.  All of the physical pages must be at
856  * or above the given physical address "low" and below the given
857  * physical address "high".  The given value "alignment" determines the
858  * alignment of the first physical page in the set.  If the given value
859  * "boundary" is non-zero, then the set of physical pages cannot cross
860  * any physical address boundary that is a multiple of that value.  Both
861  * "alignment" and "boundary" must be a power of two.
862  */
863 vm_page_t
864 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
865     u_long alignment, vm_paddr_t boundary)
866 {
867 	struct vm_freelist *fl;
868 	struct vm_phys_seg *seg;
869 	vm_paddr_t pa, pa_last, size;
870 	vm_page_t m, m_ret;
871 	u_long npages_end;
872 	int dom, domain, flind, oind, order, pind;
873 
874 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
875 	size = npages << PAGE_SHIFT;
876 	KASSERT(size != 0,
877 	    ("vm_phys_alloc_contig: size must not be 0"));
878 	KASSERT((alignment & (alignment - 1)) == 0,
879 	    ("vm_phys_alloc_contig: alignment must be a power of 2"));
880 	KASSERT((boundary & (boundary - 1)) == 0,
881 	    ("vm_phys_alloc_contig: boundary must be a power of 2"));
882 	/* Compute the queue that is the best fit for npages. */
883 	for (order = 0; (1 << order) < npages; order++);
884 	dom = 0;
885 restartdom:
886 	domain = vm_rr_selectdomain();
887 	for (flind = 0; flind < vm_nfreelists; flind++) {
888 		for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
889 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
890 				fl = &vm_phys_free_queues[domain][flind][pind][0];
891 				TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
892 					/*
893 					 * A free list may contain physical pages
894 					 * from one or more segments.
895 					 */
896 					seg = &vm_phys_segs[m_ret->segind];
897 					if (seg->start > high ||
898 					    low >= seg->end)
899 						continue;
900 
901 					/*
902 					 * Is the size of this allocation request
903 					 * larger than the largest block size?
904 					 */
905 					if (order >= VM_NFREEORDER) {
906 						/*
907 						 * Determine if a sufficient number
908 						 * of subsequent blocks to satisfy
909 						 * the allocation request are free.
910 						 */
911 						pa = VM_PAGE_TO_PHYS(m_ret);
912 						pa_last = pa + size;
913 						for (;;) {
914 							pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
915 							if (pa >= pa_last)
916 								break;
917 							if (pa < seg->start ||
918 							    pa >= seg->end)
919 								break;
920 							m = &seg->first_page[atop(pa - seg->start)];
921 							if (m->order != VM_NFREEORDER - 1)
922 								break;
923 						}
924 						/* If not, continue to the next block. */
925 						if (pa < pa_last)
926 							continue;
927 					}
928 
929 					/*
930 					 * Determine if the blocks are within the given range,
931 					 * satisfy the given alignment, and do not cross the
932 					 * given boundary.
933 					 */
934 					pa = VM_PAGE_TO_PHYS(m_ret);
935 					if (pa >= low &&
936 					    pa + size <= high &&
937 					    (pa & (alignment - 1)) == 0 &&
938 					    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
939 						goto done;
940 				}
941 			}
942 		}
943 	}
944 	if (++dom < vm_ndomains)
945 		goto restartdom;
946 	return (NULL);
947 done:
948 	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
949 		fl = (*seg->free_queues)[m->pool];
950 		vm_freelist_rem(fl, m, m->order);
951 	}
952 	if (m_ret->pool != VM_FREEPOOL_DEFAULT)
953 		vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
954 	fl = (*seg->free_queues)[m_ret->pool];
955 	vm_phys_split_pages(m_ret, oind, fl, order);
956 	/* Return excess pages to the free lists. */
957 	npages_end = roundup2(npages, 1 << imin(oind, order));
958 	if (npages < npages_end)
959 		vm_phys_free_contig(&m_ret[npages], npages_end - npages);
960 	return (m_ret);
961 }
962 
963 #ifdef DDB
964 /*
965  * Show the number of physical pages in each of the free lists.
966  */
967 DB_SHOW_COMMAND(freepages, db_show_freepages)
968 {
969 	struct vm_freelist *fl;
970 	int flind, oind, pind, dom;
971 
972 	for (dom = 0; dom < vm_ndomains; dom++) {
973 		db_printf("DOMAIN: %d\n", dom);
974 		for (flind = 0; flind < vm_nfreelists; flind++) {
975 			db_printf("FREE LIST %d:\n"
976 			    "\n  ORDER (SIZE)  |  NUMBER"
977 			    "\n              ", flind);
978 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
979 				db_printf("  |  POOL %d", pind);
980 			db_printf("\n--            ");
981 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
982 				db_printf("-- --      ");
983 			db_printf("--\n");
984 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
985 				db_printf("  %2.2d (%6.6dK)", oind,
986 				    1 << (PAGE_SHIFT - 10 + oind));
987 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
988 				fl = vm_phys_free_queues[dom][flind][pind];
989 					db_printf("  |  %6.6d", fl[oind].lcnt);
990 				}
991 				db_printf("\n");
992 			}
993 			db_printf("\n");
994 		}
995 		db_printf("\n");
996 	}
997 }
998 #endif
999