1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Physical memory system implementation 34 * 35 * Any external functions defined by this module are only to be used by the 36 * virtual memory system. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ddb.h" 43 #include "opt_vm.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/lock.h> 48 #include <sys/kernel.h> 49 #include <sys/malloc.h> 50 #include <sys/mutex.h> 51 #if MAXMEMDOM > 1 52 #include <sys/proc.h> 53 #endif 54 #include <sys/queue.h> 55 #include <sys/sbuf.h> 56 #include <sys/sysctl.h> 57 #include <sys/vmmeter.h> 58 59 #include <ddb/ddb.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_param.h> 63 #include <vm/vm_kern.h> 64 #include <vm/vm_object.h> 65 #include <vm/vm_page.h> 66 #include <vm/vm_phys.h> 67 68 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX, 69 "Too many physsegs."); 70 71 struct mem_affinity *mem_affinity; 72 73 int vm_ndomains = 1; 74 75 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX]; 76 int vm_phys_nsegs; 77 78 #define VM_PHYS_FICTITIOUS_NSEGS 8 79 static struct vm_phys_fictitious_seg { 80 vm_paddr_t start; 81 vm_paddr_t end; 82 vm_page_t first_page; 83 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS]; 84 static struct mtx vm_phys_fictitious_reg_mtx; 85 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages"); 86 87 static struct vm_freelist 88 vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER]; 89 90 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1; 91 92 static int cnt_prezero; 93 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD, 94 &cnt_prezero, 0, "The number of physical pages prezeroed at idle time"); 95 96 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS); 97 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD, 98 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info"); 99 100 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS); 101 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD, 102 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info"); 103 104 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD, 105 &vm_ndomains, 0, "Number of physical memory domains available."); 106 107 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool, 108 int order); 109 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, 110 int domain); 111 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind); 112 static int vm_phys_paddr_to_segind(vm_paddr_t pa); 113 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, 114 int order); 115 116 static __inline int 117 vm_rr_selectdomain(void) 118 { 119 #if MAXMEMDOM > 1 120 struct thread *td; 121 122 td = curthread; 123 124 td->td_dom_rr_idx++; 125 td->td_dom_rr_idx %= vm_ndomains; 126 return (td->td_dom_rr_idx); 127 #else 128 return (0); 129 #endif 130 } 131 132 boolean_t 133 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high) 134 { 135 struct vm_phys_seg *s; 136 int idx; 137 138 while ((idx = ffsl(mask)) != 0) { 139 idx--; /* ffsl counts from 1 */ 140 mask &= ~(1UL << idx); 141 s = &vm_phys_segs[idx]; 142 if (low < s->end && high > s->start) 143 return (TRUE); 144 } 145 return (FALSE); 146 } 147 148 /* 149 * Outputs the state of the physical memory allocator, specifically, 150 * the amount of physical memory in each free list. 151 */ 152 static int 153 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS) 154 { 155 struct sbuf sbuf; 156 struct vm_freelist *fl; 157 int dom, error, flind, oind, pind; 158 159 error = sysctl_wire_old_buffer(req, 0); 160 if (error != 0) 161 return (error); 162 sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req); 163 for (dom = 0; dom < vm_ndomains; dom++) { 164 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom); 165 for (flind = 0; flind < vm_nfreelists; flind++) { 166 sbuf_printf(&sbuf, "\nFREE LIST %d:\n" 167 "\n ORDER (SIZE) | NUMBER" 168 "\n ", flind); 169 for (pind = 0; pind < VM_NFREEPOOL; pind++) 170 sbuf_printf(&sbuf, " | POOL %d", pind); 171 sbuf_printf(&sbuf, "\n-- "); 172 for (pind = 0; pind < VM_NFREEPOOL; pind++) 173 sbuf_printf(&sbuf, "-- -- "); 174 sbuf_printf(&sbuf, "--\n"); 175 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 176 sbuf_printf(&sbuf, " %2d (%6dK)", oind, 177 1 << (PAGE_SHIFT - 10 + oind)); 178 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 179 fl = vm_phys_free_queues[dom][flind][pind]; 180 sbuf_printf(&sbuf, " | %6d", 181 fl[oind].lcnt); 182 } 183 sbuf_printf(&sbuf, "\n"); 184 } 185 } 186 } 187 error = sbuf_finish(&sbuf); 188 sbuf_delete(&sbuf); 189 return (error); 190 } 191 192 /* 193 * Outputs the set of physical memory segments. 194 */ 195 static int 196 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS) 197 { 198 struct sbuf sbuf; 199 struct vm_phys_seg *seg; 200 int error, segind; 201 202 error = sysctl_wire_old_buffer(req, 0); 203 if (error != 0) 204 return (error); 205 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 206 for (segind = 0; segind < vm_phys_nsegs; segind++) { 207 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind); 208 seg = &vm_phys_segs[segind]; 209 sbuf_printf(&sbuf, "start: %#jx\n", 210 (uintmax_t)seg->start); 211 sbuf_printf(&sbuf, "end: %#jx\n", 212 (uintmax_t)seg->end); 213 sbuf_printf(&sbuf, "domain: %d\n", seg->domain); 214 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues); 215 } 216 error = sbuf_finish(&sbuf); 217 sbuf_delete(&sbuf); 218 return (error); 219 } 220 221 static void 222 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail) 223 { 224 225 m->order = order; 226 if (tail) 227 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q); 228 else 229 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q); 230 fl[order].lcnt++; 231 } 232 233 static void 234 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order) 235 { 236 237 TAILQ_REMOVE(&fl[order].pl, m, plinks.q); 238 fl[order].lcnt--; 239 m->order = VM_NFREEORDER; 240 } 241 242 /* 243 * Create a physical memory segment. 244 */ 245 static void 246 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain) 247 { 248 struct vm_phys_seg *seg; 249 #ifdef VM_PHYSSEG_SPARSE 250 long pages; 251 int segind; 252 253 pages = 0; 254 for (segind = 0; segind < vm_phys_nsegs; segind++) { 255 seg = &vm_phys_segs[segind]; 256 pages += atop(seg->end - seg->start); 257 } 258 #endif 259 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX, 260 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX")); 261 KASSERT(domain < vm_ndomains, 262 ("vm_phys_create_seg: invalid domain provided")); 263 seg = &vm_phys_segs[vm_phys_nsegs++]; 264 seg->start = start; 265 seg->end = end; 266 seg->domain = domain; 267 #ifdef VM_PHYSSEG_SPARSE 268 seg->first_page = &vm_page_array[pages]; 269 #else 270 seg->first_page = PHYS_TO_VM_PAGE(start); 271 #endif 272 seg->free_queues = &vm_phys_free_queues[domain][flind]; 273 } 274 275 static void 276 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind) 277 { 278 int i; 279 280 if (mem_affinity == NULL) { 281 _vm_phys_create_seg(start, end, flind, 0); 282 return; 283 } 284 285 for (i = 0;; i++) { 286 if (mem_affinity[i].end == 0) 287 panic("Reached end of affinity info"); 288 if (mem_affinity[i].end <= start) 289 continue; 290 if (mem_affinity[i].start > start) 291 panic("No affinity info for start %jx", 292 (uintmax_t)start); 293 if (mem_affinity[i].end >= end) { 294 _vm_phys_create_seg(start, end, flind, 295 mem_affinity[i].domain); 296 break; 297 } 298 _vm_phys_create_seg(start, mem_affinity[i].end, flind, 299 mem_affinity[i].domain); 300 start = mem_affinity[i].end; 301 } 302 } 303 304 /* 305 * Initialize the physical memory allocator. 306 */ 307 void 308 vm_phys_init(void) 309 { 310 struct vm_freelist *fl; 311 int dom, flind, i, oind, pind; 312 313 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 314 #ifdef VM_FREELIST_ISADMA 315 if (phys_avail[i] < 16777216) { 316 if (phys_avail[i + 1] > 16777216) { 317 vm_phys_create_seg(phys_avail[i], 16777216, 318 VM_FREELIST_ISADMA); 319 vm_phys_create_seg(16777216, phys_avail[i + 1], 320 VM_FREELIST_DEFAULT); 321 } else { 322 vm_phys_create_seg(phys_avail[i], 323 phys_avail[i + 1], VM_FREELIST_ISADMA); 324 } 325 if (VM_FREELIST_ISADMA >= vm_nfreelists) 326 vm_nfreelists = VM_FREELIST_ISADMA + 1; 327 } else 328 #endif 329 #ifdef VM_FREELIST_HIGHMEM 330 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) { 331 if (phys_avail[i] < VM_HIGHMEM_ADDRESS) { 332 vm_phys_create_seg(phys_avail[i], 333 VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT); 334 vm_phys_create_seg(VM_HIGHMEM_ADDRESS, 335 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 336 } else { 337 vm_phys_create_seg(phys_avail[i], 338 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 339 } 340 if (VM_FREELIST_HIGHMEM >= vm_nfreelists) 341 vm_nfreelists = VM_FREELIST_HIGHMEM + 1; 342 } else 343 #endif 344 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1], 345 VM_FREELIST_DEFAULT); 346 } 347 for (dom = 0; dom < vm_ndomains; dom++) { 348 for (flind = 0; flind < vm_nfreelists; flind++) { 349 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 350 fl = vm_phys_free_queues[dom][flind][pind]; 351 for (oind = 0; oind < VM_NFREEORDER; oind++) 352 TAILQ_INIT(&fl[oind].pl); 353 } 354 } 355 } 356 mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF); 357 } 358 359 /* 360 * Split a contiguous, power of two-sized set of physical pages. 361 */ 362 static __inline void 363 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order) 364 { 365 vm_page_t m_buddy; 366 367 while (oind > order) { 368 oind--; 369 m_buddy = &m[1 << oind]; 370 KASSERT(m_buddy->order == VM_NFREEORDER, 371 ("vm_phys_split_pages: page %p has unexpected order %d", 372 m_buddy, m_buddy->order)); 373 vm_freelist_add(fl, m_buddy, oind, 0); 374 } 375 } 376 377 /* 378 * Initialize a physical page and add it to the free lists. 379 */ 380 void 381 vm_phys_add_page(vm_paddr_t pa) 382 { 383 vm_page_t m; 384 struct vm_domain *vmd; 385 386 vm_cnt.v_page_count++; 387 m = vm_phys_paddr_to_vm_page(pa); 388 m->phys_addr = pa; 389 m->queue = PQ_NONE; 390 m->segind = vm_phys_paddr_to_segind(pa); 391 vmd = vm_phys_domain(m); 392 vmd->vmd_page_count++; 393 vmd->vmd_segs |= 1UL << m->segind; 394 KASSERT(m->order == VM_NFREEORDER, 395 ("vm_phys_add_page: page %p has unexpected order %d", 396 m, m->order)); 397 m->pool = VM_FREEPOOL_DEFAULT; 398 pmap_page_init(m); 399 mtx_lock(&vm_page_queue_free_mtx); 400 vm_phys_freecnt_adj(m, 1); 401 vm_phys_free_pages(m, 0); 402 mtx_unlock(&vm_page_queue_free_mtx); 403 } 404 405 /* 406 * Allocate a contiguous, power of two-sized set of physical pages 407 * from the free lists. 408 * 409 * The free page queues must be locked. 410 */ 411 vm_page_t 412 vm_phys_alloc_pages(int pool, int order) 413 { 414 vm_page_t m; 415 int dom, domain, flind; 416 417 KASSERT(pool < VM_NFREEPOOL, 418 ("vm_phys_alloc_pages: pool %d is out of range", pool)); 419 KASSERT(order < VM_NFREEORDER, 420 ("vm_phys_alloc_pages: order %d is out of range", order)); 421 422 for (dom = 0; dom < vm_ndomains; dom++) { 423 domain = vm_rr_selectdomain(); 424 for (flind = 0; flind < vm_nfreelists; flind++) { 425 m = vm_phys_alloc_domain_pages(domain, flind, pool, 426 order); 427 if (m != NULL) 428 return (m); 429 } 430 } 431 return (NULL); 432 } 433 434 /* 435 * Find and dequeue a free page on the given free list, with the 436 * specified pool and order 437 */ 438 vm_page_t 439 vm_phys_alloc_freelist_pages(int flind, int pool, int order) 440 { 441 vm_page_t m; 442 int dom, domain; 443 444 KASSERT(flind < VM_NFREELIST, 445 ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind)); 446 KASSERT(pool < VM_NFREEPOOL, 447 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool)); 448 KASSERT(order < VM_NFREEORDER, 449 ("vm_phys_alloc_freelist_pages: order %d is out of range", order)); 450 451 for (dom = 0; dom < vm_ndomains; dom++) { 452 domain = vm_rr_selectdomain(); 453 m = vm_phys_alloc_domain_pages(domain, flind, pool, order); 454 if (m != NULL) 455 return (m); 456 } 457 return (NULL); 458 } 459 460 static vm_page_t 461 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order) 462 { 463 struct vm_freelist *fl; 464 struct vm_freelist *alt; 465 int oind, pind; 466 vm_page_t m; 467 468 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 469 fl = &vm_phys_free_queues[domain][flind][pool][0]; 470 for (oind = order; oind < VM_NFREEORDER; oind++) { 471 m = TAILQ_FIRST(&fl[oind].pl); 472 if (m != NULL) { 473 vm_freelist_rem(fl, m, oind); 474 vm_phys_split_pages(m, oind, fl, order); 475 return (m); 476 } 477 } 478 479 /* 480 * The given pool was empty. Find the largest 481 * contiguous, power-of-two-sized set of pages in any 482 * pool. Transfer these pages to the given pool, and 483 * use them to satisfy the allocation. 484 */ 485 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) { 486 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 487 alt = &vm_phys_free_queues[domain][flind][pind][0]; 488 m = TAILQ_FIRST(&alt[oind].pl); 489 if (m != NULL) { 490 vm_freelist_rem(alt, m, oind); 491 vm_phys_set_pool(pool, m, oind); 492 vm_phys_split_pages(m, oind, fl, order); 493 return (m); 494 } 495 } 496 } 497 return (NULL); 498 } 499 500 /* 501 * Find the vm_page corresponding to the given physical address. 502 */ 503 vm_page_t 504 vm_phys_paddr_to_vm_page(vm_paddr_t pa) 505 { 506 struct vm_phys_seg *seg; 507 int segind; 508 509 for (segind = 0; segind < vm_phys_nsegs; segind++) { 510 seg = &vm_phys_segs[segind]; 511 if (pa >= seg->start && pa < seg->end) 512 return (&seg->first_page[atop(pa - seg->start)]); 513 } 514 return (NULL); 515 } 516 517 vm_page_t 518 vm_phys_fictitious_to_vm_page(vm_paddr_t pa) 519 { 520 struct vm_phys_fictitious_seg *seg; 521 vm_page_t m; 522 int segind; 523 524 m = NULL; 525 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) { 526 seg = &vm_phys_fictitious_segs[segind]; 527 if (pa >= seg->start && pa < seg->end) { 528 m = &seg->first_page[atop(pa - seg->start)]; 529 KASSERT((m->flags & PG_FICTITIOUS) != 0, 530 ("%p not fictitious", m)); 531 break; 532 } 533 } 534 return (m); 535 } 536 537 int 538 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end, 539 vm_memattr_t memattr) 540 { 541 struct vm_phys_fictitious_seg *seg; 542 vm_page_t fp; 543 long i, page_count; 544 int segind; 545 #ifdef VM_PHYSSEG_DENSE 546 long pi; 547 boolean_t malloced; 548 #endif 549 550 page_count = (end - start) / PAGE_SIZE; 551 552 #ifdef VM_PHYSSEG_DENSE 553 pi = atop(start); 554 if (pi >= first_page && atop(end) < vm_page_array_size) { 555 fp = &vm_page_array[pi - first_page]; 556 malloced = FALSE; 557 } else 558 #endif 559 { 560 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES, 561 M_WAITOK | M_ZERO); 562 #ifdef VM_PHYSSEG_DENSE 563 malloced = TRUE; 564 #endif 565 } 566 for (i = 0; i < page_count; i++) { 567 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr); 568 fp[i].oflags &= ~VPO_UNMANAGED; 569 fp[i].busy_lock = VPB_UNBUSIED; 570 } 571 mtx_lock(&vm_phys_fictitious_reg_mtx); 572 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) { 573 seg = &vm_phys_fictitious_segs[segind]; 574 if (seg->start == 0 && seg->end == 0) { 575 seg->start = start; 576 seg->end = end; 577 seg->first_page = fp; 578 mtx_unlock(&vm_phys_fictitious_reg_mtx); 579 return (0); 580 } 581 } 582 mtx_unlock(&vm_phys_fictitious_reg_mtx); 583 #ifdef VM_PHYSSEG_DENSE 584 if (malloced) 585 #endif 586 free(fp, M_FICT_PAGES); 587 return (EBUSY); 588 } 589 590 void 591 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end) 592 { 593 struct vm_phys_fictitious_seg *seg; 594 vm_page_t fp; 595 int segind; 596 #ifdef VM_PHYSSEG_DENSE 597 long pi; 598 #endif 599 600 #ifdef VM_PHYSSEG_DENSE 601 pi = atop(start); 602 #endif 603 604 mtx_lock(&vm_phys_fictitious_reg_mtx); 605 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) { 606 seg = &vm_phys_fictitious_segs[segind]; 607 if (seg->start == start && seg->end == end) { 608 seg->start = seg->end = 0; 609 fp = seg->first_page; 610 seg->first_page = NULL; 611 mtx_unlock(&vm_phys_fictitious_reg_mtx); 612 #ifdef VM_PHYSSEG_DENSE 613 if (pi < first_page || atop(end) >= vm_page_array_size) 614 #endif 615 free(fp, M_FICT_PAGES); 616 return; 617 } 618 } 619 mtx_unlock(&vm_phys_fictitious_reg_mtx); 620 KASSERT(0, ("Unregistering not registered fictitious range")); 621 } 622 623 /* 624 * Find the segment containing the given physical address. 625 */ 626 static int 627 vm_phys_paddr_to_segind(vm_paddr_t pa) 628 { 629 struct vm_phys_seg *seg; 630 int segind; 631 632 for (segind = 0; segind < vm_phys_nsegs; segind++) { 633 seg = &vm_phys_segs[segind]; 634 if (pa >= seg->start && pa < seg->end) 635 return (segind); 636 } 637 panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" , 638 (uintmax_t)pa); 639 } 640 641 /* 642 * Free a contiguous, power of two-sized set of physical pages. 643 * 644 * The free page queues must be locked. 645 */ 646 void 647 vm_phys_free_pages(vm_page_t m, int order) 648 { 649 struct vm_freelist *fl; 650 struct vm_phys_seg *seg; 651 vm_paddr_t pa; 652 vm_page_t m_buddy; 653 654 KASSERT(m->order == VM_NFREEORDER, 655 ("vm_phys_free_pages: page %p has unexpected order %d", 656 m, m->order)); 657 KASSERT(m->pool < VM_NFREEPOOL, 658 ("vm_phys_free_pages: page %p has unexpected pool %d", 659 m, m->pool)); 660 KASSERT(order < VM_NFREEORDER, 661 ("vm_phys_free_pages: order %d is out of range", order)); 662 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 663 seg = &vm_phys_segs[m->segind]; 664 if (order < VM_NFREEORDER - 1) { 665 pa = VM_PAGE_TO_PHYS(m); 666 do { 667 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order)); 668 if (pa < seg->start || pa >= seg->end) 669 break; 670 m_buddy = &seg->first_page[atop(pa - seg->start)]; 671 if (m_buddy->order != order) 672 break; 673 fl = (*seg->free_queues)[m_buddy->pool]; 674 vm_freelist_rem(fl, m_buddy, order); 675 if (m_buddy->pool != m->pool) 676 vm_phys_set_pool(m->pool, m_buddy, order); 677 order++; 678 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1); 679 m = &seg->first_page[atop(pa - seg->start)]; 680 } while (order < VM_NFREEORDER - 1); 681 } 682 fl = (*seg->free_queues)[m->pool]; 683 vm_freelist_add(fl, m, order, 1); 684 } 685 686 /* 687 * Free a contiguous, arbitrarily sized set of physical pages. 688 * 689 * The free page queues must be locked. 690 */ 691 void 692 vm_phys_free_contig(vm_page_t m, u_long npages) 693 { 694 u_int n; 695 int order; 696 697 /* 698 * Avoid unnecessary coalescing by freeing the pages in the largest 699 * possible power-of-two-sized subsets. 700 */ 701 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 702 for (;; npages -= n) { 703 /* 704 * Unsigned "min" is used here so that "order" is assigned 705 * "VM_NFREEORDER - 1" when "m"'s physical address is zero 706 * or the low-order bits of its physical address are zero 707 * because the size of a physical address exceeds the size of 708 * a long. 709 */ 710 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1, 711 VM_NFREEORDER - 1); 712 n = 1 << order; 713 if (npages < n) 714 break; 715 vm_phys_free_pages(m, order); 716 m += n; 717 } 718 /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */ 719 for (; npages > 0; npages -= n) { 720 order = flsl(npages) - 1; 721 n = 1 << order; 722 vm_phys_free_pages(m, order); 723 m += n; 724 } 725 } 726 727 /* 728 * Set the pool for a contiguous, power of two-sized set of physical pages. 729 */ 730 void 731 vm_phys_set_pool(int pool, vm_page_t m, int order) 732 { 733 vm_page_t m_tmp; 734 735 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++) 736 m_tmp->pool = pool; 737 } 738 739 /* 740 * Search for the given physical page "m" in the free lists. If the search 741 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return 742 * FALSE, indicating that "m" is not in the free lists. 743 * 744 * The free page queues must be locked. 745 */ 746 boolean_t 747 vm_phys_unfree_page(vm_page_t m) 748 { 749 struct vm_freelist *fl; 750 struct vm_phys_seg *seg; 751 vm_paddr_t pa, pa_half; 752 vm_page_t m_set, m_tmp; 753 int order; 754 755 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 756 757 /* 758 * First, find the contiguous, power of two-sized set of free 759 * physical pages containing the given physical page "m" and 760 * assign it to "m_set". 761 */ 762 seg = &vm_phys_segs[m->segind]; 763 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER && 764 order < VM_NFREEORDER - 1; ) { 765 order++; 766 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order)); 767 if (pa >= seg->start) 768 m_set = &seg->first_page[atop(pa - seg->start)]; 769 else 770 return (FALSE); 771 } 772 if (m_set->order < order) 773 return (FALSE); 774 if (m_set->order == VM_NFREEORDER) 775 return (FALSE); 776 KASSERT(m_set->order < VM_NFREEORDER, 777 ("vm_phys_unfree_page: page %p has unexpected order %d", 778 m_set, m_set->order)); 779 780 /* 781 * Next, remove "m_set" from the free lists. Finally, extract 782 * "m" from "m_set" using an iterative algorithm: While "m_set" 783 * is larger than a page, shrink "m_set" by returning the half 784 * of "m_set" that does not contain "m" to the free lists. 785 */ 786 fl = (*seg->free_queues)[m_set->pool]; 787 order = m_set->order; 788 vm_freelist_rem(fl, m_set, order); 789 while (order > 0) { 790 order--; 791 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order)); 792 if (m->phys_addr < pa_half) 793 m_tmp = &seg->first_page[atop(pa_half - seg->start)]; 794 else { 795 m_tmp = m_set; 796 m_set = &seg->first_page[atop(pa_half - seg->start)]; 797 } 798 vm_freelist_add(fl, m_tmp, order, 0); 799 } 800 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency")); 801 return (TRUE); 802 } 803 804 /* 805 * Try to zero one physical page. Used by an idle priority thread. 806 */ 807 boolean_t 808 vm_phys_zero_pages_idle(void) 809 { 810 static struct vm_freelist *fl; 811 static int flind, oind, pind; 812 vm_page_t m, m_tmp; 813 int domain; 814 815 domain = vm_rr_selectdomain(); 816 fl = vm_phys_free_queues[domain][0][0]; 817 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 818 for (;;) { 819 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) { 820 for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) { 821 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) { 822 vm_phys_unfree_page(m_tmp); 823 vm_phys_freecnt_adj(m, -1); 824 mtx_unlock(&vm_page_queue_free_mtx); 825 pmap_zero_page_idle(m_tmp); 826 m_tmp->flags |= PG_ZERO; 827 mtx_lock(&vm_page_queue_free_mtx); 828 vm_phys_freecnt_adj(m, 1); 829 vm_phys_free_pages(m_tmp, 0); 830 vm_page_zero_count++; 831 cnt_prezero++; 832 return (TRUE); 833 } 834 } 835 } 836 oind++; 837 if (oind == VM_NFREEORDER) { 838 oind = 0; 839 pind++; 840 if (pind == VM_NFREEPOOL) { 841 pind = 0; 842 flind++; 843 if (flind == vm_nfreelists) 844 flind = 0; 845 } 846 fl = vm_phys_free_queues[domain][flind][pind]; 847 } 848 } 849 } 850 851 /* 852 * Allocate a contiguous set of physical pages of the given size 853 * "npages" from the free lists. All of the physical pages must be at 854 * or above the given physical address "low" and below the given 855 * physical address "high". The given value "alignment" determines the 856 * alignment of the first physical page in the set. If the given value 857 * "boundary" is non-zero, then the set of physical pages cannot cross 858 * any physical address boundary that is a multiple of that value. Both 859 * "alignment" and "boundary" must be a power of two. 860 */ 861 vm_page_t 862 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 863 u_long alignment, vm_paddr_t boundary) 864 { 865 struct vm_freelist *fl; 866 struct vm_phys_seg *seg; 867 vm_paddr_t pa, pa_last, size; 868 vm_page_t m, m_ret; 869 u_long npages_end; 870 int dom, domain, flind, oind, order, pind; 871 872 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 873 size = npages << PAGE_SHIFT; 874 KASSERT(size != 0, 875 ("vm_phys_alloc_contig: size must not be 0")); 876 KASSERT((alignment & (alignment - 1)) == 0, 877 ("vm_phys_alloc_contig: alignment must be a power of 2")); 878 KASSERT((boundary & (boundary - 1)) == 0, 879 ("vm_phys_alloc_contig: boundary must be a power of 2")); 880 /* Compute the queue that is the best fit for npages. */ 881 for (order = 0; (1 << order) < npages; order++); 882 dom = 0; 883 restartdom: 884 domain = vm_rr_selectdomain(); 885 for (flind = 0; flind < vm_nfreelists; flind++) { 886 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) { 887 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 888 fl = &vm_phys_free_queues[domain][flind][pind][0]; 889 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) { 890 /* 891 * A free list may contain physical pages 892 * from one or more segments. 893 */ 894 seg = &vm_phys_segs[m_ret->segind]; 895 if (seg->start > high || 896 low >= seg->end) 897 continue; 898 899 /* 900 * Is the size of this allocation request 901 * larger than the largest block size? 902 */ 903 if (order >= VM_NFREEORDER) { 904 /* 905 * Determine if a sufficient number 906 * of subsequent blocks to satisfy 907 * the allocation request are free. 908 */ 909 pa = VM_PAGE_TO_PHYS(m_ret); 910 pa_last = pa + size; 911 for (;;) { 912 pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1); 913 if (pa >= pa_last) 914 break; 915 if (pa < seg->start || 916 pa >= seg->end) 917 break; 918 m = &seg->first_page[atop(pa - seg->start)]; 919 if (m->order != VM_NFREEORDER - 1) 920 break; 921 } 922 /* If not, continue to the next block. */ 923 if (pa < pa_last) 924 continue; 925 } 926 927 /* 928 * Determine if the blocks are within the given range, 929 * satisfy the given alignment, and do not cross the 930 * given boundary. 931 */ 932 pa = VM_PAGE_TO_PHYS(m_ret); 933 if (pa >= low && 934 pa + size <= high && 935 (pa & (alignment - 1)) == 0 && 936 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0) 937 goto done; 938 } 939 } 940 } 941 } 942 if (++dom < vm_ndomains) 943 goto restartdom; 944 return (NULL); 945 done: 946 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) { 947 fl = (*seg->free_queues)[m->pool]; 948 vm_freelist_rem(fl, m, m->order); 949 } 950 if (m_ret->pool != VM_FREEPOOL_DEFAULT) 951 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind); 952 fl = (*seg->free_queues)[m_ret->pool]; 953 vm_phys_split_pages(m_ret, oind, fl, order); 954 /* Return excess pages to the free lists. */ 955 npages_end = roundup2(npages, 1 << imin(oind, order)); 956 if (npages < npages_end) 957 vm_phys_free_contig(&m_ret[npages], npages_end - npages); 958 return (m_ret); 959 } 960 961 #ifdef DDB 962 /* 963 * Show the number of physical pages in each of the free lists. 964 */ 965 DB_SHOW_COMMAND(freepages, db_show_freepages) 966 { 967 struct vm_freelist *fl; 968 int flind, oind, pind, dom; 969 970 for (dom = 0; dom < vm_ndomains; dom++) { 971 db_printf("DOMAIN: %d\n", dom); 972 for (flind = 0; flind < vm_nfreelists; flind++) { 973 db_printf("FREE LIST %d:\n" 974 "\n ORDER (SIZE) | NUMBER" 975 "\n ", flind); 976 for (pind = 0; pind < VM_NFREEPOOL; pind++) 977 db_printf(" | POOL %d", pind); 978 db_printf("\n-- "); 979 for (pind = 0; pind < VM_NFREEPOOL; pind++) 980 db_printf("-- -- "); 981 db_printf("--\n"); 982 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 983 db_printf(" %2.2d (%6.6dK)", oind, 984 1 << (PAGE_SHIFT - 10 + oind)); 985 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 986 fl = vm_phys_free_queues[dom][flind][pind]; 987 db_printf(" | %6.6d", fl[oind].lcnt); 988 } 989 db_printf("\n"); 990 } 991 db_printf("\n"); 992 } 993 db_printf("\n"); 994 } 995 } 996 #endif 997