xref: /freebsd/sys/vm/vm_phys.c (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_ddb.h"
45 #include "opt_vm.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/domainset.h>
50 #include <sys/lock.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/queue.h>
56 #include <sys/rwlock.h>
57 #include <sys/sbuf.h>
58 #include <sys/sysctl.h>
59 #include <sys/tree.h>
60 #include <sys/vmmeter.h>
61 
62 #include <ddb/ddb.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_param.h>
67 #include <vm/vm_kern.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_phys.h>
71 #include <vm/vm_pagequeue.h>
72 
73 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
74     "Too many physsegs.");
75 
76 #ifdef NUMA
77 struct mem_affinity __read_mostly *mem_affinity;
78 int __read_mostly *mem_locality;
79 #endif
80 
81 int __read_mostly vm_ndomains = 1;
82 domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);
83 
84 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
85 int __read_mostly vm_phys_nsegs;
86 static struct vm_phys_seg vm_phys_early_segs[8];
87 static int vm_phys_early_nsegs;
88 
89 struct vm_phys_fictitious_seg;
90 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
91     struct vm_phys_fictitious_seg *);
92 
93 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
94     RB_INITIALIZER(&vm_phys_fictitious_tree);
95 
96 struct vm_phys_fictitious_seg {
97 	RB_ENTRY(vm_phys_fictitious_seg) node;
98 	/* Memory region data */
99 	vm_paddr_t	start;
100 	vm_paddr_t	end;
101 	vm_page_t	first_page;
102 };
103 
104 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
105     vm_phys_fictitious_cmp);
106 
107 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
108 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
109 
110 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
111     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
112     [VM_NFREEORDER_MAX];
113 
114 static int __read_mostly vm_nfreelists;
115 
116 /*
117  * These "avail lists" are globals used to communicate boot-time physical
118  * memory layout to other parts of the kernel.  Each physically contiguous
119  * region of memory is defined by a start address at an even index and an
120  * end address at the following odd index.  Each list is terminated by a
121  * pair of zero entries.
122  *
123  * dump_avail tells the dump code what regions to include in a crash dump, and
124  * phys_avail is all of the remaining physical memory that is available for
125  * the vm system.
126  *
127  * Initially dump_avail and phys_avail are identical.  Boot time memory
128  * allocations remove extents from phys_avail that may still be included
129  * in dumps.
130  */
131 vm_paddr_t phys_avail[PHYS_AVAIL_COUNT];
132 vm_paddr_t dump_avail[PHYS_AVAIL_COUNT];
133 
134 /*
135  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
136  */
137 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
138 
139 CTASSERT(VM_FREELIST_DEFAULT == 0);
140 
141 #ifdef VM_FREELIST_DMA32
142 #define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
143 #endif
144 
145 /*
146  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
147  * the ordering of the free list boundaries.
148  */
149 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
150 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
151 #endif
152 
153 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
154 SYSCTL_OID(_vm, OID_AUTO, phys_free,
155     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
156     sysctl_vm_phys_free, "A",
157     "Phys Free Info");
158 
159 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
160 SYSCTL_OID(_vm, OID_AUTO, phys_segs,
161     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
162     sysctl_vm_phys_segs, "A",
163     "Phys Seg Info");
164 
165 #ifdef NUMA
166 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
167 SYSCTL_OID(_vm, OID_AUTO, phys_locality,
168     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
169     sysctl_vm_phys_locality, "A",
170     "Phys Locality Info");
171 #endif
172 
173 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
174     &vm_ndomains, 0, "Number of physical memory domains available.");
175 
176 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
177 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
178 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
179     int order, int tail);
180 
181 /*
182  * Red-black tree helpers for vm fictitious range management.
183  */
184 static inline int
185 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
186     struct vm_phys_fictitious_seg *range)
187 {
188 
189 	KASSERT(range->start != 0 && range->end != 0,
190 	    ("Invalid range passed on search for vm_fictitious page"));
191 	if (p->start >= range->end)
192 		return (1);
193 	if (p->start < range->start)
194 		return (-1);
195 
196 	return (0);
197 }
198 
199 static int
200 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
201     struct vm_phys_fictitious_seg *p2)
202 {
203 
204 	/* Check if this is a search for a page */
205 	if (p1->end == 0)
206 		return (vm_phys_fictitious_in_range(p1, p2));
207 
208 	KASSERT(p2->end != 0,
209     ("Invalid range passed as second parameter to vm fictitious comparison"));
210 
211 	/* Searching to add a new range */
212 	if (p1->end <= p2->start)
213 		return (-1);
214 	if (p1->start >= p2->end)
215 		return (1);
216 
217 	panic("Trying to add overlapping vm fictitious ranges:\n"
218 	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
219 	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
220 }
221 
222 int
223 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
224 {
225 #ifdef NUMA
226 	domainset_t mask;
227 	int i;
228 
229 	if (vm_ndomains == 1 || mem_affinity == NULL)
230 		return (0);
231 
232 	DOMAINSET_ZERO(&mask);
233 	/*
234 	 * Check for any memory that overlaps low, high.
235 	 */
236 	for (i = 0; mem_affinity[i].end != 0; i++)
237 		if (mem_affinity[i].start <= high &&
238 		    mem_affinity[i].end >= low)
239 			DOMAINSET_SET(mem_affinity[i].domain, &mask);
240 	if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
241 		return (prefer);
242 	if (DOMAINSET_EMPTY(&mask))
243 		panic("vm_phys_domain_match:  Impossible constraint");
244 	return (DOMAINSET_FFS(&mask) - 1);
245 #else
246 	return (0);
247 #endif
248 }
249 
250 /*
251  * Outputs the state of the physical memory allocator, specifically,
252  * the amount of physical memory in each free list.
253  */
254 static int
255 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
256 {
257 	struct sbuf sbuf;
258 	struct vm_freelist *fl;
259 	int dom, error, flind, oind, pind;
260 
261 	error = sysctl_wire_old_buffer(req, 0);
262 	if (error != 0)
263 		return (error);
264 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
265 	for (dom = 0; dom < vm_ndomains; dom++) {
266 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
267 		for (flind = 0; flind < vm_nfreelists; flind++) {
268 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
269 			    "\n  ORDER (SIZE)  |  NUMBER"
270 			    "\n              ", flind);
271 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
272 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
273 			sbuf_printf(&sbuf, "\n--            ");
274 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
275 				sbuf_printf(&sbuf, "-- --      ");
276 			sbuf_printf(&sbuf, "--\n");
277 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
278 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
279 				    1 << (PAGE_SHIFT - 10 + oind));
280 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
281 				fl = vm_phys_free_queues[dom][flind][pind];
282 					sbuf_printf(&sbuf, "  |  %6d",
283 					    fl[oind].lcnt);
284 				}
285 				sbuf_printf(&sbuf, "\n");
286 			}
287 		}
288 	}
289 	error = sbuf_finish(&sbuf);
290 	sbuf_delete(&sbuf);
291 	return (error);
292 }
293 
294 /*
295  * Outputs the set of physical memory segments.
296  */
297 static int
298 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
299 {
300 	struct sbuf sbuf;
301 	struct vm_phys_seg *seg;
302 	int error, segind;
303 
304 	error = sysctl_wire_old_buffer(req, 0);
305 	if (error != 0)
306 		return (error);
307 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
308 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
309 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
310 		seg = &vm_phys_segs[segind];
311 		sbuf_printf(&sbuf, "start:     %#jx\n",
312 		    (uintmax_t)seg->start);
313 		sbuf_printf(&sbuf, "end:       %#jx\n",
314 		    (uintmax_t)seg->end);
315 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
316 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
317 	}
318 	error = sbuf_finish(&sbuf);
319 	sbuf_delete(&sbuf);
320 	return (error);
321 }
322 
323 /*
324  * Return affinity, or -1 if there's no affinity information.
325  */
326 int
327 vm_phys_mem_affinity(int f, int t)
328 {
329 
330 #ifdef NUMA
331 	if (mem_locality == NULL)
332 		return (-1);
333 	if (f >= vm_ndomains || t >= vm_ndomains)
334 		return (-1);
335 	return (mem_locality[f * vm_ndomains + t]);
336 #else
337 	return (-1);
338 #endif
339 }
340 
341 #ifdef NUMA
342 /*
343  * Outputs the VM locality table.
344  */
345 static int
346 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
347 {
348 	struct sbuf sbuf;
349 	int error, i, j;
350 
351 	error = sysctl_wire_old_buffer(req, 0);
352 	if (error != 0)
353 		return (error);
354 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
355 
356 	sbuf_printf(&sbuf, "\n");
357 
358 	for (i = 0; i < vm_ndomains; i++) {
359 		sbuf_printf(&sbuf, "%d: ", i);
360 		for (j = 0; j < vm_ndomains; j++) {
361 			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
362 		}
363 		sbuf_printf(&sbuf, "\n");
364 	}
365 	error = sbuf_finish(&sbuf);
366 	sbuf_delete(&sbuf);
367 	return (error);
368 }
369 #endif
370 
371 static void
372 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
373 {
374 
375 	m->order = order;
376 	if (tail)
377 		TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
378 	else
379 		TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
380 	fl[order].lcnt++;
381 }
382 
383 static void
384 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
385 {
386 
387 	TAILQ_REMOVE(&fl[order].pl, m, listq);
388 	fl[order].lcnt--;
389 	m->order = VM_NFREEORDER;
390 }
391 
392 /*
393  * Create a physical memory segment.
394  */
395 static void
396 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
397 {
398 	struct vm_phys_seg *seg;
399 
400 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
401 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
402 	KASSERT(domain >= 0 && domain < vm_ndomains,
403 	    ("vm_phys_create_seg: invalid domain provided"));
404 	seg = &vm_phys_segs[vm_phys_nsegs++];
405 	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
406 		*seg = *(seg - 1);
407 		seg--;
408 	}
409 	seg->start = start;
410 	seg->end = end;
411 	seg->domain = domain;
412 }
413 
414 static void
415 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
416 {
417 #ifdef NUMA
418 	int i;
419 
420 	if (mem_affinity == NULL) {
421 		_vm_phys_create_seg(start, end, 0);
422 		return;
423 	}
424 
425 	for (i = 0;; i++) {
426 		if (mem_affinity[i].end == 0)
427 			panic("Reached end of affinity info");
428 		if (mem_affinity[i].end <= start)
429 			continue;
430 		if (mem_affinity[i].start > start)
431 			panic("No affinity info for start %jx",
432 			    (uintmax_t)start);
433 		if (mem_affinity[i].end >= end) {
434 			_vm_phys_create_seg(start, end,
435 			    mem_affinity[i].domain);
436 			break;
437 		}
438 		_vm_phys_create_seg(start, mem_affinity[i].end,
439 		    mem_affinity[i].domain);
440 		start = mem_affinity[i].end;
441 	}
442 #else
443 	_vm_phys_create_seg(start, end, 0);
444 #endif
445 }
446 
447 /*
448  * Add a physical memory segment.
449  */
450 void
451 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
452 {
453 	vm_paddr_t paddr;
454 
455 	KASSERT((start & PAGE_MASK) == 0,
456 	    ("vm_phys_define_seg: start is not page aligned"));
457 	KASSERT((end & PAGE_MASK) == 0,
458 	    ("vm_phys_define_seg: end is not page aligned"));
459 
460 	/*
461 	 * Split the physical memory segment if it spans two or more free
462 	 * list boundaries.
463 	 */
464 	paddr = start;
465 #ifdef	VM_FREELIST_LOWMEM
466 	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
467 		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
468 		paddr = VM_LOWMEM_BOUNDARY;
469 	}
470 #endif
471 #ifdef	VM_FREELIST_DMA32
472 	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
473 		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
474 		paddr = VM_DMA32_BOUNDARY;
475 	}
476 #endif
477 	vm_phys_create_seg(paddr, end);
478 }
479 
480 /*
481  * Initialize the physical memory allocator.
482  *
483  * Requires that vm_page_array is initialized!
484  */
485 void
486 vm_phys_init(void)
487 {
488 	struct vm_freelist *fl;
489 	struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
490 #if defined(VM_DMA32_NPAGES_THRESHOLD) || defined(VM_PHYSSEG_SPARSE)
491 	u_long npages;
492 #endif
493 	int dom, flind, freelist, oind, pind, segind;
494 
495 	/*
496 	 * Compute the number of free lists, and generate the mapping from the
497 	 * manifest constants VM_FREELIST_* to the free list indices.
498 	 *
499 	 * Initially, the entries of vm_freelist_to_flind[] are set to either
500 	 * 0 or 1 to indicate which free lists should be created.
501 	 */
502 #ifdef	VM_DMA32_NPAGES_THRESHOLD
503 	npages = 0;
504 #endif
505 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
506 		seg = &vm_phys_segs[segind];
507 #ifdef	VM_FREELIST_LOWMEM
508 		if (seg->end <= VM_LOWMEM_BOUNDARY)
509 			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
510 		else
511 #endif
512 #ifdef	VM_FREELIST_DMA32
513 		if (
514 #ifdef	VM_DMA32_NPAGES_THRESHOLD
515 		    /*
516 		     * Create the DMA32 free list only if the amount of
517 		     * physical memory above physical address 4G exceeds the
518 		     * given threshold.
519 		     */
520 		    npages > VM_DMA32_NPAGES_THRESHOLD &&
521 #endif
522 		    seg->end <= VM_DMA32_BOUNDARY)
523 			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
524 		else
525 #endif
526 		{
527 #ifdef	VM_DMA32_NPAGES_THRESHOLD
528 			npages += atop(seg->end - seg->start);
529 #endif
530 			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
531 		}
532 	}
533 	/* Change each entry into a running total of the free lists. */
534 	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
535 		vm_freelist_to_flind[freelist] +=
536 		    vm_freelist_to_flind[freelist - 1];
537 	}
538 	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
539 	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
540 	/* Change each entry into a free list index. */
541 	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
542 		vm_freelist_to_flind[freelist]--;
543 
544 	/*
545 	 * Initialize the first_page and free_queues fields of each physical
546 	 * memory segment.
547 	 */
548 #ifdef VM_PHYSSEG_SPARSE
549 	npages = 0;
550 #endif
551 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
552 		seg = &vm_phys_segs[segind];
553 #ifdef VM_PHYSSEG_SPARSE
554 		seg->first_page = &vm_page_array[npages];
555 		npages += atop(seg->end - seg->start);
556 #else
557 		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
558 #endif
559 #ifdef	VM_FREELIST_LOWMEM
560 		if (seg->end <= VM_LOWMEM_BOUNDARY) {
561 			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
562 			KASSERT(flind >= 0,
563 			    ("vm_phys_init: LOWMEM flind < 0"));
564 		} else
565 #endif
566 #ifdef	VM_FREELIST_DMA32
567 		if (seg->end <= VM_DMA32_BOUNDARY) {
568 			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
569 			KASSERT(flind >= 0,
570 			    ("vm_phys_init: DMA32 flind < 0"));
571 		} else
572 #endif
573 		{
574 			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
575 			KASSERT(flind >= 0,
576 			    ("vm_phys_init: DEFAULT flind < 0"));
577 		}
578 		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
579 	}
580 
581 	/*
582 	 * Coalesce physical memory segments that are contiguous and share the
583 	 * same per-domain free queues.
584 	 */
585 	prev_seg = vm_phys_segs;
586 	seg = &vm_phys_segs[1];
587 	end_seg = &vm_phys_segs[vm_phys_nsegs];
588 	while (seg < end_seg) {
589 		if (prev_seg->end == seg->start &&
590 		    prev_seg->free_queues == seg->free_queues) {
591 			prev_seg->end = seg->end;
592 			KASSERT(prev_seg->domain == seg->domain,
593 			    ("vm_phys_init: free queues cannot span domains"));
594 			vm_phys_nsegs--;
595 			end_seg--;
596 			for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
597 				*tmp_seg = *(tmp_seg + 1);
598 		} else {
599 			prev_seg = seg;
600 			seg++;
601 		}
602 	}
603 
604 	/*
605 	 * Initialize the free queues.
606 	 */
607 	for (dom = 0; dom < vm_ndomains; dom++) {
608 		for (flind = 0; flind < vm_nfreelists; flind++) {
609 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
610 				fl = vm_phys_free_queues[dom][flind][pind];
611 				for (oind = 0; oind < VM_NFREEORDER; oind++)
612 					TAILQ_INIT(&fl[oind].pl);
613 			}
614 		}
615 	}
616 
617 	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
618 }
619 
620 /*
621  * Register info about the NUMA topology of the system.
622  *
623  * Invoked by platform-dependent code prior to vm_phys_init().
624  */
625 void
626 vm_phys_register_domains(int ndomains, struct mem_affinity *affinity,
627     int *locality)
628 {
629 #ifdef NUMA
630 	int d, i;
631 
632 	/*
633 	 * For now the only override value that we support is 1, which
634 	 * effectively disables NUMA-awareness in the allocators.
635 	 */
636 	d = 0;
637 	TUNABLE_INT_FETCH("vm.numa.disabled", &d);
638 	if (d)
639 		ndomains = 1;
640 
641 	if (ndomains > 1) {
642 		vm_ndomains = ndomains;
643 		mem_affinity = affinity;
644 		mem_locality = locality;
645 	}
646 
647 	for (i = 0; i < vm_ndomains; i++)
648 		DOMAINSET_SET(i, &all_domains);
649 #else
650 	(void)ndomains;
651 	(void)affinity;
652 	(void)locality;
653 #endif
654 }
655 
656 /*
657  * Split a contiguous, power of two-sized set of physical pages.
658  *
659  * When this function is called by a page allocation function, the caller
660  * should request insertion at the head unless the order [order, oind) queues
661  * are known to be empty.  The objective being to reduce the likelihood of
662  * long-term fragmentation by promoting contemporaneous allocation and
663  * (hopefully) deallocation.
664  */
665 static __inline void
666 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
667     int tail)
668 {
669 	vm_page_t m_buddy;
670 
671 	while (oind > order) {
672 		oind--;
673 		m_buddy = &m[1 << oind];
674 		KASSERT(m_buddy->order == VM_NFREEORDER,
675 		    ("vm_phys_split_pages: page %p has unexpected order %d",
676 		    m_buddy, m_buddy->order));
677 		vm_freelist_add(fl, m_buddy, oind, tail);
678         }
679 }
680 
681 /*
682  * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
683  * and sized set to the specified free list.
684  *
685  * When this function is called by a page allocation function, the caller
686  * should request insertion at the head unless the lower-order queues are
687  * known to be empty.  The objective being to reduce the likelihood of long-
688  * term fragmentation by promoting contemporaneous allocation and (hopefully)
689  * deallocation.
690  *
691  * The physical page m's buddy must not be free.
692  */
693 static void
694 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
695 {
696 	u_int n;
697 	int order;
698 
699 	KASSERT(npages > 0, ("vm_phys_enq_range: npages is 0"));
700 	KASSERT(((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
701 	    ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
702 	    ("vm_phys_enq_range: page %p and npages %u are misaligned",
703 	    m, npages));
704 	do {
705 		KASSERT(m->order == VM_NFREEORDER,
706 		    ("vm_phys_enq_range: page %p has unexpected order %d",
707 		    m, m->order));
708 		order = ffs(npages) - 1;
709 		KASSERT(order < VM_NFREEORDER,
710 		    ("vm_phys_enq_range: order %d is out of range", order));
711 		vm_freelist_add(fl, m, order, tail);
712 		n = 1 << order;
713 		m += n;
714 		npages -= n;
715 	} while (npages > 0);
716 }
717 
718 /*
719  * Set the pool for a contiguous, power of two-sized set of physical pages.
720  */
721 static void
722 vm_phys_set_pool(int pool, vm_page_t m, int order)
723 {
724 	vm_page_t m_tmp;
725 
726 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
727 		m_tmp->pool = pool;
728 }
729 
730 /*
731  * Tries to allocate the specified number of pages from the specified pool
732  * within the specified domain.  Returns the actual number of allocated pages
733  * and a pointer to each page through the array ma[].
734  *
735  * The returned pages may not be physically contiguous.  However, in contrast
736  * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
737  * calling this function once to allocate the desired number of pages will
738  * avoid wasted time in vm_phys_split_pages().
739  *
740  * The free page queues for the specified domain must be locked.
741  */
742 int
743 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
744 {
745 	struct vm_freelist *alt, *fl;
746 	vm_page_t m;
747 	int avail, end, flind, freelist, i, need, oind, pind;
748 
749 	KASSERT(domain >= 0 && domain < vm_ndomains,
750 	    ("vm_phys_alloc_npages: domain %d is out of range", domain));
751 	KASSERT(pool < VM_NFREEPOOL,
752 	    ("vm_phys_alloc_npages: pool %d is out of range", pool));
753 	KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
754 	    ("vm_phys_alloc_npages: npages %d is out of range", npages));
755 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
756 	i = 0;
757 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
758 		flind = vm_freelist_to_flind[freelist];
759 		if (flind < 0)
760 			continue;
761 		fl = vm_phys_free_queues[domain][flind][pool];
762 		for (oind = 0; oind < VM_NFREEORDER; oind++) {
763 			while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
764 				vm_freelist_rem(fl, m, oind);
765 				avail = 1 << oind;
766 				need = imin(npages - i, avail);
767 				for (end = i + need; i < end;)
768 					ma[i++] = m++;
769 				if (need < avail) {
770 					/*
771 					 * Return excess pages to fl.  Its
772 					 * order [0, oind) queues are empty.
773 					 */
774 					vm_phys_enq_range(m, avail - need, fl,
775 					    1);
776 					return (npages);
777 				} else if (i == npages)
778 					return (npages);
779 			}
780 		}
781 		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
782 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
783 				alt = vm_phys_free_queues[domain][flind][pind];
784 				while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
785 				    NULL) {
786 					vm_freelist_rem(alt, m, oind);
787 					vm_phys_set_pool(pool, m, oind);
788 					avail = 1 << oind;
789 					need = imin(npages - i, avail);
790 					for (end = i + need; i < end;)
791 						ma[i++] = m++;
792 					if (need < avail) {
793 						/*
794 						 * Return excess pages to fl.
795 						 * Its order [0, oind) queues
796 						 * are empty.
797 						 */
798 						vm_phys_enq_range(m, avail -
799 						    need, fl, 1);
800 						return (npages);
801 					} else if (i == npages)
802 						return (npages);
803 				}
804 			}
805 		}
806 	}
807 	return (i);
808 }
809 
810 /*
811  * Allocate a contiguous, power of two-sized set of physical pages
812  * from the free lists.
813  *
814  * The free page queues must be locked.
815  */
816 vm_page_t
817 vm_phys_alloc_pages(int domain, int pool, int order)
818 {
819 	vm_page_t m;
820 	int freelist;
821 
822 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
823 		m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
824 		if (m != NULL)
825 			return (m);
826 	}
827 	return (NULL);
828 }
829 
830 /*
831  * Allocate a contiguous, power of two-sized set of physical pages from the
832  * specified free list.  The free list must be specified using one of the
833  * manifest constants VM_FREELIST_*.
834  *
835  * The free page queues must be locked.
836  */
837 vm_page_t
838 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
839 {
840 	struct vm_freelist *alt, *fl;
841 	vm_page_t m;
842 	int oind, pind, flind;
843 
844 	KASSERT(domain >= 0 && domain < vm_ndomains,
845 	    ("vm_phys_alloc_freelist_pages: domain %d is out of range",
846 	    domain));
847 	KASSERT(freelist < VM_NFREELIST,
848 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
849 	    freelist));
850 	KASSERT(pool < VM_NFREEPOOL,
851 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
852 	KASSERT(order < VM_NFREEORDER,
853 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
854 
855 	flind = vm_freelist_to_flind[freelist];
856 	/* Check if freelist is present */
857 	if (flind < 0)
858 		return (NULL);
859 
860 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
861 	fl = &vm_phys_free_queues[domain][flind][pool][0];
862 	for (oind = order; oind < VM_NFREEORDER; oind++) {
863 		m = TAILQ_FIRST(&fl[oind].pl);
864 		if (m != NULL) {
865 			vm_freelist_rem(fl, m, oind);
866 			/* The order [order, oind) queues are empty. */
867 			vm_phys_split_pages(m, oind, fl, order, 1);
868 			return (m);
869 		}
870 	}
871 
872 	/*
873 	 * The given pool was empty.  Find the largest
874 	 * contiguous, power-of-two-sized set of pages in any
875 	 * pool.  Transfer these pages to the given pool, and
876 	 * use them to satisfy the allocation.
877 	 */
878 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
879 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
880 			alt = &vm_phys_free_queues[domain][flind][pind][0];
881 			m = TAILQ_FIRST(&alt[oind].pl);
882 			if (m != NULL) {
883 				vm_freelist_rem(alt, m, oind);
884 				vm_phys_set_pool(pool, m, oind);
885 				/* The order [order, oind) queues are empty. */
886 				vm_phys_split_pages(m, oind, fl, order, 1);
887 				return (m);
888 			}
889 		}
890 	}
891 	return (NULL);
892 }
893 
894 /*
895  * Find the vm_page corresponding to the given physical address.
896  */
897 vm_page_t
898 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
899 {
900 	struct vm_phys_seg *seg;
901 	int segind;
902 
903 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
904 		seg = &vm_phys_segs[segind];
905 		if (pa >= seg->start && pa < seg->end)
906 			return (&seg->first_page[atop(pa - seg->start)]);
907 	}
908 	return (NULL);
909 }
910 
911 vm_page_t
912 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
913 {
914 	struct vm_phys_fictitious_seg tmp, *seg;
915 	vm_page_t m;
916 
917 	m = NULL;
918 	tmp.start = pa;
919 	tmp.end = 0;
920 
921 	rw_rlock(&vm_phys_fictitious_reg_lock);
922 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
923 	rw_runlock(&vm_phys_fictitious_reg_lock);
924 	if (seg == NULL)
925 		return (NULL);
926 
927 	m = &seg->first_page[atop(pa - seg->start)];
928 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
929 
930 	return (m);
931 }
932 
933 static inline void
934 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
935     long page_count, vm_memattr_t memattr)
936 {
937 	long i;
938 
939 	bzero(range, page_count * sizeof(*range));
940 	for (i = 0; i < page_count; i++) {
941 		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
942 		range[i].oflags &= ~VPO_UNMANAGED;
943 		range[i].busy_lock = VPB_UNBUSIED;
944 	}
945 }
946 
947 int
948 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
949     vm_memattr_t memattr)
950 {
951 	struct vm_phys_fictitious_seg *seg;
952 	vm_page_t fp;
953 	long page_count;
954 #ifdef VM_PHYSSEG_DENSE
955 	long pi, pe;
956 	long dpage_count;
957 #endif
958 
959 	KASSERT(start < end,
960 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
961 	    (uintmax_t)start, (uintmax_t)end));
962 
963 	page_count = (end - start) / PAGE_SIZE;
964 
965 #ifdef VM_PHYSSEG_DENSE
966 	pi = atop(start);
967 	pe = atop(end);
968 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
969 		fp = &vm_page_array[pi - first_page];
970 		if ((pe - first_page) > vm_page_array_size) {
971 			/*
972 			 * We have a segment that starts inside
973 			 * of vm_page_array, but ends outside of it.
974 			 *
975 			 * Use vm_page_array pages for those that are
976 			 * inside of the vm_page_array range, and
977 			 * allocate the remaining ones.
978 			 */
979 			dpage_count = vm_page_array_size - (pi - first_page);
980 			vm_phys_fictitious_init_range(fp, start, dpage_count,
981 			    memattr);
982 			page_count -= dpage_count;
983 			start += ptoa(dpage_count);
984 			goto alloc;
985 		}
986 		/*
987 		 * We can allocate the full range from vm_page_array,
988 		 * so there's no need to register the range in the tree.
989 		 */
990 		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
991 		return (0);
992 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
993 		/*
994 		 * We have a segment that ends inside of vm_page_array,
995 		 * but starts outside of it.
996 		 */
997 		fp = &vm_page_array[0];
998 		dpage_count = pe - first_page;
999 		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
1000 		    memattr);
1001 		end -= ptoa(dpage_count);
1002 		page_count -= dpage_count;
1003 		goto alloc;
1004 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1005 		/*
1006 		 * Trying to register a fictitious range that expands before
1007 		 * and after vm_page_array.
1008 		 */
1009 		return (EINVAL);
1010 	} else {
1011 alloc:
1012 #endif
1013 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
1014 		    M_WAITOK);
1015 #ifdef VM_PHYSSEG_DENSE
1016 	}
1017 #endif
1018 	vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1019 
1020 	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
1021 	seg->start = start;
1022 	seg->end = end;
1023 	seg->first_page = fp;
1024 
1025 	rw_wlock(&vm_phys_fictitious_reg_lock);
1026 	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1027 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1028 
1029 	return (0);
1030 }
1031 
1032 void
1033 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1034 {
1035 	struct vm_phys_fictitious_seg *seg, tmp;
1036 #ifdef VM_PHYSSEG_DENSE
1037 	long pi, pe;
1038 #endif
1039 
1040 	KASSERT(start < end,
1041 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
1042 	    (uintmax_t)start, (uintmax_t)end));
1043 
1044 #ifdef VM_PHYSSEG_DENSE
1045 	pi = atop(start);
1046 	pe = atop(end);
1047 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1048 		if ((pe - first_page) <= vm_page_array_size) {
1049 			/*
1050 			 * This segment was allocated using vm_page_array
1051 			 * only, there's nothing to do since those pages
1052 			 * were never added to the tree.
1053 			 */
1054 			return;
1055 		}
1056 		/*
1057 		 * We have a segment that starts inside
1058 		 * of vm_page_array, but ends outside of it.
1059 		 *
1060 		 * Calculate how many pages were added to the
1061 		 * tree and free them.
1062 		 */
1063 		start = ptoa(first_page + vm_page_array_size);
1064 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1065 		/*
1066 		 * We have a segment that ends inside of vm_page_array,
1067 		 * but starts outside of it.
1068 		 */
1069 		end = ptoa(first_page);
1070 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1071 		/* Since it's not possible to register such a range, panic. */
1072 		panic(
1073 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1074 		    (uintmax_t)start, (uintmax_t)end);
1075 	}
1076 #endif
1077 	tmp.start = start;
1078 	tmp.end = 0;
1079 
1080 	rw_wlock(&vm_phys_fictitious_reg_lock);
1081 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1082 	if (seg->start != start || seg->end != end) {
1083 		rw_wunlock(&vm_phys_fictitious_reg_lock);
1084 		panic(
1085 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1086 		    (uintmax_t)start, (uintmax_t)end);
1087 	}
1088 	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1089 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1090 	free(seg->first_page, M_FICT_PAGES);
1091 	free(seg, M_FICT_PAGES);
1092 }
1093 
1094 /*
1095  * Free a contiguous, power of two-sized set of physical pages.
1096  *
1097  * The free page queues must be locked.
1098  */
1099 void
1100 vm_phys_free_pages(vm_page_t m, int order)
1101 {
1102 	struct vm_freelist *fl;
1103 	struct vm_phys_seg *seg;
1104 	vm_paddr_t pa;
1105 	vm_page_t m_buddy;
1106 
1107 	KASSERT(m->order == VM_NFREEORDER,
1108 	    ("vm_phys_free_pages: page %p has unexpected order %d",
1109 	    m, m->order));
1110 	KASSERT(m->pool < VM_NFREEPOOL,
1111 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
1112 	    m, m->pool));
1113 	KASSERT(order < VM_NFREEORDER,
1114 	    ("vm_phys_free_pages: order %d is out of range", order));
1115 	seg = &vm_phys_segs[m->segind];
1116 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1117 	if (order < VM_NFREEORDER - 1) {
1118 		pa = VM_PAGE_TO_PHYS(m);
1119 		do {
1120 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1121 			if (pa < seg->start || pa >= seg->end)
1122 				break;
1123 			m_buddy = &seg->first_page[atop(pa - seg->start)];
1124 			if (m_buddy->order != order)
1125 				break;
1126 			fl = (*seg->free_queues)[m_buddy->pool];
1127 			vm_freelist_rem(fl, m_buddy, order);
1128 			if (m_buddy->pool != m->pool)
1129 				vm_phys_set_pool(m->pool, m_buddy, order);
1130 			order++;
1131 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1132 			m = &seg->first_page[atop(pa - seg->start)];
1133 		} while (order < VM_NFREEORDER - 1);
1134 	}
1135 	fl = (*seg->free_queues)[m->pool];
1136 	vm_freelist_add(fl, m, order, 1);
1137 }
1138 
1139 /*
1140  * Return the largest possible order of a set of pages starting at m.
1141  */
1142 static int
1143 max_order(vm_page_t m)
1144 {
1145 
1146 	/*
1147 	 * Unsigned "min" is used here so that "order" is assigned
1148 	 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1149 	 * or the low-order bits of its physical address are zero
1150 	 * because the size of a physical address exceeds the size of
1151 	 * a long.
1152 	 */
1153 	return (min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1154 	    VM_NFREEORDER - 1));
1155 }
1156 
1157 /*
1158  * Free a contiguous, arbitrarily sized set of physical pages, without
1159  * merging across set boundaries.
1160  *
1161  * The free page queues must be locked.
1162  */
1163 void
1164 vm_phys_enqueue_contig(vm_page_t m, u_long npages)
1165 {
1166 	struct vm_freelist *fl;
1167 	struct vm_phys_seg *seg;
1168 	vm_page_t m_end;
1169 	int order;
1170 
1171 	/*
1172 	 * Avoid unnecessary coalescing by freeing the pages in the largest
1173 	 * possible power-of-two-sized subsets.
1174 	 */
1175 	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1176 	seg = &vm_phys_segs[m->segind];
1177 	fl = (*seg->free_queues)[m->pool];
1178 	m_end = m + npages;
1179 	/* Free blocks of increasing size. */
1180 	while ((order = max_order(m)) < VM_NFREEORDER - 1 &&
1181 	    m + (1 << order) <= m_end) {
1182 		KASSERT(seg == &vm_phys_segs[m->segind],
1183 		    ("%s: page range [%p,%p) spans multiple segments",
1184 		    __func__, m_end - npages, m));
1185 		vm_freelist_add(fl, m, order, 1);
1186 		m += 1 << order;
1187 	}
1188 	/* Free blocks of maximum size. */
1189 	while (m + (1 << order) <= m_end) {
1190 		KASSERT(seg == &vm_phys_segs[m->segind],
1191 		    ("%s: page range [%p,%p) spans multiple segments",
1192 		    __func__, m_end - npages, m));
1193 		vm_freelist_add(fl, m, order, 1);
1194 		m += 1 << order;
1195 	}
1196 	/* Free blocks of diminishing size. */
1197 	while (m < m_end) {
1198 		KASSERT(seg == &vm_phys_segs[m->segind],
1199 		    ("%s: page range [%p,%p) spans multiple segments",
1200 		    __func__, m_end - npages, m));
1201 		order = flsl(m_end - m) - 1;
1202 		vm_freelist_add(fl, m, order, 1);
1203 		m += 1 << order;
1204 	}
1205 }
1206 
1207 /*
1208  * Free a contiguous, arbitrarily sized set of physical pages.
1209  *
1210  * The free page queues must be locked.
1211  */
1212 void
1213 vm_phys_free_contig(vm_page_t m, u_long npages)
1214 {
1215 	int order_start, order_end;
1216 	vm_page_t m_start, m_end;
1217 
1218 	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1219 
1220 	m_start = m;
1221 	order_start = max_order(m_start);
1222 	if (order_start < VM_NFREEORDER - 1)
1223 		m_start += 1 << order_start;
1224 	m_end = m + npages;
1225 	order_end = max_order(m_end);
1226 	if (order_end < VM_NFREEORDER - 1)
1227 		m_end -= 1 << order_end;
1228 	/*
1229 	 * Avoid unnecessary coalescing by freeing the pages at the start and
1230 	 * end of the range last.
1231 	 */
1232 	if (m_start < m_end)
1233 		vm_phys_enqueue_contig(m_start, m_end - m_start);
1234 	if (order_start < VM_NFREEORDER - 1)
1235 		vm_phys_free_pages(m, order_start);
1236 	if (order_end < VM_NFREEORDER - 1)
1237 		vm_phys_free_pages(m_end, order_end);
1238 }
1239 
1240 /*
1241  * Scan physical memory between the specified addresses "low" and "high" for a
1242  * run of contiguous physical pages that satisfy the specified conditions, and
1243  * return the lowest page in the run.  The specified "alignment" determines
1244  * the alignment of the lowest physical page in the run.  If the specified
1245  * "boundary" is non-zero, then the run of physical pages cannot span a
1246  * physical address that is a multiple of "boundary".
1247  *
1248  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
1249  * be a power of two.
1250  */
1251 vm_page_t
1252 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1253     u_long alignment, vm_paddr_t boundary, int options)
1254 {
1255 	vm_paddr_t pa_end;
1256 	vm_page_t m_end, m_run, m_start;
1257 	struct vm_phys_seg *seg;
1258 	int segind;
1259 
1260 	KASSERT(npages > 0, ("npages is 0"));
1261 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1262 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1263 	if (low >= high)
1264 		return (NULL);
1265 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1266 		seg = &vm_phys_segs[segind];
1267 		if (seg->domain != domain)
1268 			continue;
1269 		if (seg->start >= high)
1270 			break;
1271 		if (low >= seg->end)
1272 			continue;
1273 		if (low <= seg->start)
1274 			m_start = seg->first_page;
1275 		else
1276 			m_start = &seg->first_page[atop(low - seg->start)];
1277 		if (high < seg->end)
1278 			pa_end = high;
1279 		else
1280 			pa_end = seg->end;
1281 		if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1282 			continue;
1283 		m_end = &seg->first_page[atop(pa_end - seg->start)];
1284 		m_run = vm_page_scan_contig(npages, m_start, m_end,
1285 		    alignment, boundary, options);
1286 		if (m_run != NULL)
1287 			return (m_run);
1288 	}
1289 	return (NULL);
1290 }
1291 
1292 /*
1293  * Search for the given physical page "m" in the free lists.  If the search
1294  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1295  * FALSE, indicating that "m" is not in the free lists.
1296  *
1297  * The free page queues must be locked.
1298  */
1299 boolean_t
1300 vm_phys_unfree_page(vm_page_t m)
1301 {
1302 	struct vm_freelist *fl;
1303 	struct vm_phys_seg *seg;
1304 	vm_paddr_t pa, pa_half;
1305 	vm_page_t m_set, m_tmp;
1306 	int order;
1307 
1308 	/*
1309 	 * First, find the contiguous, power of two-sized set of free
1310 	 * physical pages containing the given physical page "m" and
1311 	 * assign it to "m_set".
1312 	 */
1313 	seg = &vm_phys_segs[m->segind];
1314 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1315 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1316 	    order < VM_NFREEORDER - 1; ) {
1317 		order++;
1318 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1319 		if (pa >= seg->start)
1320 			m_set = &seg->first_page[atop(pa - seg->start)];
1321 		else
1322 			return (FALSE);
1323 	}
1324 	if (m_set->order < order)
1325 		return (FALSE);
1326 	if (m_set->order == VM_NFREEORDER)
1327 		return (FALSE);
1328 	KASSERT(m_set->order < VM_NFREEORDER,
1329 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
1330 	    m_set, m_set->order));
1331 
1332 	/*
1333 	 * Next, remove "m_set" from the free lists.  Finally, extract
1334 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
1335 	 * is larger than a page, shrink "m_set" by returning the half
1336 	 * of "m_set" that does not contain "m" to the free lists.
1337 	 */
1338 	fl = (*seg->free_queues)[m_set->pool];
1339 	order = m_set->order;
1340 	vm_freelist_rem(fl, m_set, order);
1341 	while (order > 0) {
1342 		order--;
1343 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1344 		if (m->phys_addr < pa_half)
1345 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1346 		else {
1347 			m_tmp = m_set;
1348 			m_set = &seg->first_page[atop(pa_half - seg->start)];
1349 		}
1350 		vm_freelist_add(fl, m_tmp, order, 0);
1351 	}
1352 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1353 	return (TRUE);
1354 }
1355 
1356 /*
1357  * Find a run of contiguous physical pages from the specified page list.
1358  */
1359 static vm_page_t
1360 vm_phys_find_freelist_contig(struct vm_freelist *fl, int oind, u_long npages,
1361     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1362 {
1363 	struct vm_phys_seg *seg;
1364 	vm_paddr_t frag, lbound, pa, page_size, pa_end, pa_pre, size;
1365 	vm_page_t m, m_listed, m_ret;
1366 	int order;
1367 
1368 	KASSERT(npages > 0, ("npages is 0"));
1369 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1370 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1371 	/* Search for a run satisfying the specified conditions. */
1372 	page_size = PAGE_SIZE;
1373 	size = npages << PAGE_SHIFT;
1374 	frag = (npages & ~(~0UL << oind)) << PAGE_SHIFT;
1375 	TAILQ_FOREACH(m_listed, &fl[oind].pl, listq) {
1376 		/*
1377 		 * Determine if the address range starting at pa is
1378 		 * too low.
1379 		 */
1380 		pa = VM_PAGE_TO_PHYS(m_listed);
1381 		if (pa < low)
1382 			continue;
1383 
1384 		/*
1385 		 * If this is not the first free oind-block in this range, bail
1386 		 * out. We have seen the first free block already, or will see
1387 		 * it before failing to find an appropriate range.
1388 		 */
1389 		seg = &vm_phys_segs[m_listed->segind];
1390 		lbound = low > seg->start ? low : seg->start;
1391 		pa_pre = pa - (page_size << oind);
1392 		m = &seg->first_page[atop(pa_pre - seg->start)];
1393 		if (pa != 0 && pa_pre >= lbound && m->order == oind)
1394 			continue;
1395 
1396 		if (!vm_addr_align_ok(pa, alignment))
1397 			/* Advance to satisfy alignment condition. */
1398 			pa = roundup2(pa, alignment);
1399 		else if (frag != 0 && lbound + frag <= pa) {
1400 			/*
1401 			 * Back up to the first aligned free block in this
1402 			 * range, without moving below lbound.
1403 			 */
1404 			pa_end = pa;
1405 			for (order = oind - 1; order >= 0; order--) {
1406 				pa_pre = pa_end - (page_size << order);
1407 				if (!vm_addr_align_ok(pa_pre, alignment))
1408 					break;
1409 				m = &seg->first_page[atop(pa_pre - seg->start)];
1410 				if (pa_pre >= lbound && m->order == order)
1411 					pa_end = pa_pre;
1412 			}
1413 			/*
1414 			 * If the extra small blocks are enough to complete the
1415 			 * fragment, use them.  Otherwise, look to allocate the
1416 			 * fragment at the other end.
1417 			 */
1418 			if (pa_end + frag <= pa)
1419 				pa = pa_end;
1420 		}
1421 
1422 		/* Advance as necessary to satisfy boundary conditions. */
1423 		if (!vm_addr_bound_ok(pa, size, boundary))
1424 			pa = roundup2(pa + 1, boundary);
1425 		pa_end = pa + size;
1426 
1427 		/*
1428 		 * Determine if the address range is valid (without overflow in
1429 		 * pa_end calculation), and fits within the segment.
1430 		 */
1431 		if (pa_end < pa || seg->end < pa_end)
1432 			continue;
1433 
1434 		m_ret = &seg->first_page[atop(pa - seg->start)];
1435 
1436 		/*
1437 		 * Determine whether there are enough free oind-blocks here to
1438 		 * satisfy the allocation request.
1439 		 */
1440 		pa = VM_PAGE_TO_PHYS(m_listed);
1441 		do {
1442 			pa += page_size << oind;
1443 			if (pa >= pa_end)
1444 				return (m_ret);
1445 			m = &seg->first_page[atop(pa - seg->start)];
1446 		} while (oind == m->order);
1447 
1448 		/*
1449 		 * Determine if an additional series of free blocks of
1450 		 * diminishing size can help to satisfy the allocation request.
1451 		 */
1452 		while (m->order < oind &&
1453 		    pa + 2 * (page_size << m->order) > pa_end) {
1454 			pa += page_size << m->order;
1455 			if (pa >= pa_end)
1456 				return (m_ret);
1457 			m = &seg->first_page[atop(pa - seg->start)];
1458 		}
1459 	}
1460 	return (NULL);
1461 }
1462 
1463 /*
1464  * Find a run of contiguous physical pages from the specified free list
1465  * table.
1466  */
1467 static vm_page_t
1468 vm_phys_find_queues_contig(
1469     struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX],
1470     u_long npages, vm_paddr_t low, vm_paddr_t high,
1471     u_long alignment, vm_paddr_t boundary)
1472 {
1473 	struct vm_freelist *fl;
1474 	vm_page_t m_ret;
1475 	vm_paddr_t pa, pa_end, size;
1476 	int oind, order, pind;
1477 
1478 	KASSERT(npages > 0, ("npages is 0"));
1479 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1480 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1481 	/* Compute the queue that is the best fit for npages. */
1482 	order = flsl(npages - 1);
1483 	/* Search for a large enough free block. */
1484 	size = npages << PAGE_SHIFT;
1485 	for (oind = order; oind < VM_NFREEORDER; oind++) {
1486 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1487 			fl = (*queues)[pind];
1488 			TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1489 				/*
1490 				 * Determine if the address range starting at pa
1491 				 * is within the given range, satisfies the
1492 				 * given alignment, and does not cross the given
1493 				 * boundary.
1494 				 */
1495 				pa = VM_PAGE_TO_PHYS(m_ret);
1496 				pa_end = pa + size;
1497 				if (low <= pa && pa_end <= high &&
1498 				    vm_addr_ok(pa, size, alignment, boundary))
1499 					return (m_ret);
1500 			}
1501 		}
1502 	}
1503 	if (order < VM_NFREEORDER)
1504 		return (NULL);
1505 	/* Search for a long-enough sequence of small blocks. */
1506 	oind = VM_NFREEORDER - 1;
1507 	for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1508 		fl = (*queues)[pind];
1509 		m_ret = vm_phys_find_freelist_contig(fl, oind, npages,
1510 		    low, high, alignment, boundary);
1511 		if (m_ret != NULL)
1512 			return (m_ret);
1513 	}
1514 	return (NULL);
1515 }
1516 
1517 /*
1518  * Allocate a contiguous set of physical pages of the given size
1519  * "npages" from the free lists.  All of the physical pages must be at
1520  * or above the given physical address "low" and below the given
1521  * physical address "high".  The given value "alignment" determines the
1522  * alignment of the first physical page in the set.  If the given value
1523  * "boundary" is non-zero, then the set of physical pages cannot cross
1524  * any physical address boundary that is a multiple of that value.  Both
1525  * "alignment" and "boundary" must be a power of two.
1526  */
1527 vm_page_t
1528 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1529     u_long alignment, vm_paddr_t boundary)
1530 {
1531 	vm_paddr_t pa_end, pa_start;
1532 	struct vm_freelist *fl;
1533 	vm_page_t m, m_run;
1534 	struct vm_phys_seg *seg;
1535 	struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX];
1536 	int oind, segind;
1537 
1538 	KASSERT(npages > 0, ("npages is 0"));
1539 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1540 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1541 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
1542 	if (low >= high)
1543 		return (NULL);
1544 	queues = NULL;
1545 	m_run = NULL;
1546 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1547 		seg = &vm_phys_segs[segind];
1548 		if (seg->start >= high || seg->domain != domain)
1549 			continue;
1550 		if (low >= seg->end)
1551 			break;
1552 		if (low <= seg->start)
1553 			pa_start = seg->start;
1554 		else
1555 			pa_start = low;
1556 		if (high < seg->end)
1557 			pa_end = high;
1558 		else
1559 			pa_end = seg->end;
1560 		if (pa_end - pa_start < ptoa(npages))
1561 			continue;
1562 		/*
1563 		 * If a previous segment led to a search using
1564 		 * the same free lists as would this segment, then
1565 		 * we've actually already searched within this
1566 		 * too.  So skip it.
1567 		 */
1568 		if (seg->free_queues == queues)
1569 			continue;
1570 		queues = seg->free_queues;
1571 		m_run = vm_phys_find_queues_contig(queues, npages,
1572 		    low, high, alignment, boundary);
1573 		if (m_run != NULL)
1574 			break;
1575 	}
1576 	if (m_run == NULL)
1577 		return (NULL);
1578 
1579 	/* Allocate pages from the page-range found. */
1580 	for (m = m_run; m < &m_run[npages]; m = &m[1 << oind]) {
1581 		fl = (*queues)[m->pool];
1582 		oind = m->order;
1583 		vm_freelist_rem(fl, m, oind);
1584 		if (m->pool != VM_FREEPOOL_DEFAULT)
1585 			vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1586 	}
1587 	/* Return excess pages to the free lists. */
1588 	if (&m_run[npages] < m) {
1589 		fl = (*queues)[VM_FREEPOOL_DEFAULT];
1590 		vm_phys_enq_range(&m_run[npages], m - &m_run[npages], fl, 0);
1591 	}
1592 	return (m_run);
1593 }
1594 
1595 /*
1596  * Return the index of the first unused slot which may be the terminating
1597  * entry.
1598  */
1599 static int
1600 vm_phys_avail_count(void)
1601 {
1602 	int i;
1603 
1604 	for (i = 0; phys_avail[i + 1]; i += 2)
1605 		continue;
1606 	if (i > PHYS_AVAIL_ENTRIES)
1607 		panic("Improperly terminated phys_avail %d entries", i);
1608 
1609 	return (i);
1610 }
1611 
1612 /*
1613  * Assert that a phys_avail entry is valid.
1614  */
1615 static void
1616 vm_phys_avail_check(int i)
1617 {
1618 	if (phys_avail[i] & PAGE_MASK)
1619 		panic("Unaligned phys_avail[%d]: %#jx", i,
1620 		    (intmax_t)phys_avail[i]);
1621 	if (phys_avail[i+1] & PAGE_MASK)
1622 		panic("Unaligned phys_avail[%d + 1]: %#jx", i,
1623 		    (intmax_t)phys_avail[i]);
1624 	if (phys_avail[i + 1] < phys_avail[i])
1625 		panic("phys_avail[%d] start %#jx < end %#jx", i,
1626 		    (intmax_t)phys_avail[i], (intmax_t)phys_avail[i+1]);
1627 }
1628 
1629 /*
1630  * Return the index of an overlapping phys_avail entry or -1.
1631  */
1632 #ifdef NUMA
1633 static int
1634 vm_phys_avail_find(vm_paddr_t pa)
1635 {
1636 	int i;
1637 
1638 	for (i = 0; phys_avail[i + 1]; i += 2)
1639 		if (phys_avail[i] <= pa && phys_avail[i + 1] > pa)
1640 			return (i);
1641 	return (-1);
1642 }
1643 #endif
1644 
1645 /*
1646  * Return the index of the largest entry.
1647  */
1648 int
1649 vm_phys_avail_largest(void)
1650 {
1651 	vm_paddr_t sz, largesz;
1652 	int largest;
1653 	int i;
1654 
1655 	largest = 0;
1656 	largesz = 0;
1657 	for (i = 0; phys_avail[i + 1]; i += 2) {
1658 		sz = vm_phys_avail_size(i);
1659 		if (sz > largesz) {
1660 			largesz = sz;
1661 			largest = i;
1662 		}
1663 	}
1664 
1665 	return (largest);
1666 }
1667 
1668 vm_paddr_t
1669 vm_phys_avail_size(int i)
1670 {
1671 
1672 	return (phys_avail[i + 1] - phys_avail[i]);
1673 }
1674 
1675 /*
1676  * Split an entry at the address 'pa'.  Return zero on success or errno.
1677  */
1678 static int
1679 vm_phys_avail_split(vm_paddr_t pa, int i)
1680 {
1681 	int cnt;
1682 
1683 	vm_phys_avail_check(i);
1684 	if (pa <= phys_avail[i] || pa >= phys_avail[i + 1])
1685 		panic("vm_phys_avail_split: invalid address");
1686 	cnt = vm_phys_avail_count();
1687 	if (cnt >= PHYS_AVAIL_ENTRIES)
1688 		return (ENOSPC);
1689 	memmove(&phys_avail[i + 2], &phys_avail[i],
1690 	    (cnt - i) * sizeof(phys_avail[0]));
1691 	phys_avail[i + 1] = pa;
1692 	phys_avail[i + 2] = pa;
1693 	vm_phys_avail_check(i);
1694 	vm_phys_avail_check(i+2);
1695 
1696 	return (0);
1697 }
1698 
1699 /*
1700  * Check if a given physical address can be included as part of a crash dump.
1701  */
1702 bool
1703 vm_phys_is_dumpable(vm_paddr_t pa)
1704 {
1705 	vm_page_t m;
1706 	int i;
1707 
1708 	if ((m = vm_phys_paddr_to_vm_page(pa)) != NULL)
1709 		return ((m->flags & PG_NODUMP) == 0);
1710 
1711 	for (i = 0; dump_avail[i] != 0 || dump_avail[i + 1] != 0; i += 2) {
1712 		if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
1713 			return (true);
1714 	}
1715 	return (false);
1716 }
1717 
1718 void
1719 vm_phys_early_add_seg(vm_paddr_t start, vm_paddr_t end)
1720 {
1721 	struct vm_phys_seg *seg;
1722 
1723 	if (vm_phys_early_nsegs == -1)
1724 		panic("%s: called after initialization", __func__);
1725 	if (vm_phys_early_nsegs == nitems(vm_phys_early_segs))
1726 		panic("%s: ran out of early segments", __func__);
1727 
1728 	seg = &vm_phys_early_segs[vm_phys_early_nsegs++];
1729 	seg->start = start;
1730 	seg->end = end;
1731 }
1732 
1733 /*
1734  * This routine allocates NUMA node specific memory before the page
1735  * allocator is bootstrapped.
1736  */
1737 vm_paddr_t
1738 vm_phys_early_alloc(int domain, size_t alloc_size)
1739 {
1740 #ifdef NUMA
1741 	int mem_index;
1742 #endif
1743 	int i, biggestone;
1744 	vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align;
1745 
1746 	KASSERT(domain == -1 || (domain >= 0 && domain < vm_ndomains),
1747 	    ("%s: invalid domain index %d", __func__, domain));
1748 
1749 	/*
1750 	 * Search the mem_affinity array for the biggest address
1751 	 * range in the desired domain.  This is used to constrain
1752 	 * the phys_avail selection below.
1753 	 */
1754 	biggestsize = 0;
1755 	mem_start = 0;
1756 	mem_end = -1;
1757 #ifdef NUMA
1758 	mem_index = 0;
1759 	if (mem_affinity != NULL) {
1760 		for (i = 0;; i++) {
1761 			size = mem_affinity[i].end - mem_affinity[i].start;
1762 			if (size == 0)
1763 				break;
1764 			if (domain != -1 && mem_affinity[i].domain != domain)
1765 				continue;
1766 			if (size > biggestsize) {
1767 				mem_index = i;
1768 				biggestsize = size;
1769 			}
1770 		}
1771 		mem_start = mem_affinity[mem_index].start;
1772 		mem_end = mem_affinity[mem_index].end;
1773 	}
1774 #endif
1775 
1776 	/*
1777 	 * Now find biggest physical segment in within the desired
1778 	 * numa domain.
1779 	 */
1780 	biggestsize = 0;
1781 	biggestone = 0;
1782 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1783 		/* skip regions that are out of range */
1784 		if (phys_avail[i+1] - alloc_size < mem_start ||
1785 		    phys_avail[i+1] > mem_end)
1786 			continue;
1787 		size = vm_phys_avail_size(i);
1788 		if (size > biggestsize) {
1789 			biggestone = i;
1790 			biggestsize = size;
1791 		}
1792 	}
1793 	alloc_size = round_page(alloc_size);
1794 
1795 	/*
1796 	 * Grab single pages from the front to reduce fragmentation.
1797 	 */
1798 	if (alloc_size == PAGE_SIZE) {
1799 		pa = phys_avail[biggestone];
1800 		phys_avail[biggestone] += PAGE_SIZE;
1801 		vm_phys_avail_check(biggestone);
1802 		return (pa);
1803 	}
1804 
1805 	/*
1806 	 * Naturally align large allocations.
1807 	 */
1808 	align = phys_avail[biggestone + 1] & (alloc_size - 1);
1809 	if (alloc_size + align > biggestsize)
1810 		panic("cannot find a large enough size\n");
1811 	if (align != 0 &&
1812 	    vm_phys_avail_split(phys_avail[biggestone + 1] - align,
1813 	    biggestone) != 0)
1814 		/* Wasting memory. */
1815 		phys_avail[biggestone + 1] -= align;
1816 
1817 	phys_avail[biggestone + 1] -= alloc_size;
1818 	vm_phys_avail_check(biggestone);
1819 	pa = phys_avail[biggestone + 1];
1820 	return (pa);
1821 }
1822 
1823 void
1824 vm_phys_early_startup(void)
1825 {
1826 	struct vm_phys_seg *seg;
1827 	int i;
1828 
1829 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1830 		phys_avail[i] = round_page(phys_avail[i]);
1831 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
1832 	}
1833 
1834 	for (i = 0; i < vm_phys_early_nsegs; i++) {
1835 		seg = &vm_phys_early_segs[i];
1836 		vm_phys_add_seg(seg->start, seg->end);
1837 	}
1838 	vm_phys_early_nsegs = -1;
1839 
1840 #ifdef NUMA
1841 	/* Force phys_avail to be split by domain. */
1842 	if (mem_affinity != NULL) {
1843 		int idx;
1844 
1845 		for (i = 0; mem_affinity[i].end != 0; i++) {
1846 			idx = vm_phys_avail_find(mem_affinity[i].start);
1847 			if (idx != -1 &&
1848 			    phys_avail[idx] != mem_affinity[i].start)
1849 				vm_phys_avail_split(mem_affinity[i].start, idx);
1850 			idx = vm_phys_avail_find(mem_affinity[i].end);
1851 			if (idx != -1 &&
1852 			    phys_avail[idx] != mem_affinity[i].end)
1853 				vm_phys_avail_split(mem_affinity[i].end, idx);
1854 		}
1855 	}
1856 #endif
1857 }
1858 
1859 #ifdef DDB
1860 /*
1861  * Show the number of physical pages in each of the free lists.
1862  */
1863 DB_SHOW_COMMAND(freepages, db_show_freepages)
1864 {
1865 	struct vm_freelist *fl;
1866 	int flind, oind, pind, dom;
1867 
1868 	for (dom = 0; dom < vm_ndomains; dom++) {
1869 		db_printf("DOMAIN: %d\n", dom);
1870 		for (flind = 0; flind < vm_nfreelists; flind++) {
1871 			db_printf("FREE LIST %d:\n"
1872 			    "\n  ORDER (SIZE)  |  NUMBER"
1873 			    "\n              ", flind);
1874 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1875 				db_printf("  |  POOL %d", pind);
1876 			db_printf("\n--            ");
1877 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1878 				db_printf("-- --      ");
1879 			db_printf("--\n");
1880 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1881 				db_printf("  %2.2d (%6.6dK)", oind,
1882 				    1 << (PAGE_SHIFT - 10 + oind));
1883 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1884 				fl = vm_phys_free_queues[dom][flind][pind];
1885 					db_printf("  |  %6.6d", fl[oind].lcnt);
1886 				}
1887 				db_printf("\n");
1888 			}
1889 			db_printf("\n");
1890 		}
1891 		db_printf("\n");
1892 	}
1893 }
1894 #endif
1895