xref: /freebsd/sys/vm/vm_phys.c (revision 84dfba8d183d31e3412639ecb4b8ad4433cf7e80)
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *	Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/vmmeter.h>
58 
59 #include <ddb/ddb.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_phys.h>
67 
68 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
69     "Too many physsegs.");
70 
71 struct mem_affinity *mem_affinity;
72 
73 int vm_ndomains = 1;
74 
75 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
76 int vm_phys_nsegs;
77 
78 #define VM_PHYS_FICTITIOUS_NSEGS	8
79 static struct vm_phys_fictitious_seg {
80 	vm_paddr_t	start;
81 	vm_paddr_t	end;
82 	vm_page_t	first_page;
83 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
84 static struct mtx vm_phys_fictitious_reg_mtx;
85 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
86 
87 static struct vm_freelist
88     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
89 
90 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
91 
92 static int cnt_prezero;
93 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
94     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
95 
96 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
97 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
98     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
99 
100 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
101 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
102     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
103 
104 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
105     &vm_ndomains, 0, "Number of physical memory domains available.");
106 
107 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
108     int order);
109 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
110     int domain);
111 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
112 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
113 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
114     int order);
115 
116 static __inline int
117 vm_rr_selectdomain(void)
118 {
119 #if MAXMEMDOM > 1
120 	struct thread *td;
121 
122 	td = curthread;
123 
124 	td->td_dom_rr_idx++;
125 	td->td_dom_rr_idx %= vm_ndomains;
126 	return (td->td_dom_rr_idx);
127 #else
128 	return (0);
129 #endif
130 }
131 
132 boolean_t
133 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
134 {
135 	struct vm_phys_seg *s;
136 	int idx;
137 
138 	while ((idx = ffsl(mask)) != 0) {
139 		idx--;	/* ffsl counts from 1 */
140 		mask &= ~(1UL << idx);
141 		s = &vm_phys_segs[idx];
142 		if (low < s->end && high > s->start)
143 			return (TRUE);
144 	}
145 	return (FALSE);
146 }
147 
148 /*
149  * Outputs the state of the physical memory allocator, specifically,
150  * the amount of physical memory in each free list.
151  */
152 static int
153 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
154 {
155 	struct sbuf sbuf;
156 	struct vm_freelist *fl;
157 	int dom, error, flind, oind, pind;
158 
159 	error = sysctl_wire_old_buffer(req, 0);
160 	if (error != 0)
161 		return (error);
162 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
163 	for (dom = 0; dom < vm_ndomains; dom++) {
164 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
165 		for (flind = 0; flind < vm_nfreelists; flind++) {
166 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
167 			    "\n  ORDER (SIZE)  |  NUMBER"
168 			    "\n              ", flind);
169 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
170 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
171 			sbuf_printf(&sbuf, "\n--            ");
172 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
173 				sbuf_printf(&sbuf, "-- --      ");
174 			sbuf_printf(&sbuf, "--\n");
175 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
176 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
177 				    1 << (PAGE_SHIFT - 10 + oind));
178 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
179 				fl = vm_phys_free_queues[dom][flind][pind];
180 					sbuf_printf(&sbuf, "  |  %6d",
181 					    fl[oind].lcnt);
182 				}
183 				sbuf_printf(&sbuf, "\n");
184 			}
185 		}
186 	}
187 	error = sbuf_finish(&sbuf);
188 	sbuf_delete(&sbuf);
189 	return (error);
190 }
191 
192 /*
193  * Outputs the set of physical memory segments.
194  */
195 static int
196 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
197 {
198 	struct sbuf sbuf;
199 	struct vm_phys_seg *seg;
200 	int error, segind;
201 
202 	error = sysctl_wire_old_buffer(req, 0);
203 	if (error != 0)
204 		return (error);
205 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
206 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
207 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
208 		seg = &vm_phys_segs[segind];
209 		sbuf_printf(&sbuf, "start:     %#jx\n",
210 		    (uintmax_t)seg->start);
211 		sbuf_printf(&sbuf, "end:       %#jx\n",
212 		    (uintmax_t)seg->end);
213 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
214 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
215 	}
216 	error = sbuf_finish(&sbuf);
217 	sbuf_delete(&sbuf);
218 	return (error);
219 }
220 
221 static void
222 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
223 {
224 
225 	m->order = order;
226 	if (tail)
227 		TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
228 	else
229 		TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
230 	fl[order].lcnt++;
231 }
232 
233 static void
234 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
235 {
236 
237 	TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
238 	fl[order].lcnt--;
239 	m->order = VM_NFREEORDER;
240 }
241 
242 /*
243  * Create a physical memory segment.
244  */
245 static void
246 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
247 {
248 	struct vm_phys_seg *seg;
249 #ifdef VM_PHYSSEG_SPARSE
250 	long pages;
251 	int segind;
252 
253 	pages = 0;
254 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
255 		seg = &vm_phys_segs[segind];
256 		pages += atop(seg->end - seg->start);
257 	}
258 #endif
259 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
260 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
261 	KASSERT(domain < vm_ndomains,
262 	    ("vm_phys_create_seg: invalid domain provided"));
263 	seg = &vm_phys_segs[vm_phys_nsegs++];
264 	seg->start = start;
265 	seg->end = end;
266 	seg->domain = domain;
267 #ifdef VM_PHYSSEG_SPARSE
268 	seg->first_page = &vm_page_array[pages];
269 #else
270 	seg->first_page = PHYS_TO_VM_PAGE(start);
271 #endif
272 	seg->free_queues = &vm_phys_free_queues[domain][flind];
273 }
274 
275 static void
276 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
277 {
278 	int i;
279 
280 	if (mem_affinity == NULL) {
281 		_vm_phys_create_seg(start, end, flind, 0);
282 		return;
283 	}
284 
285 	for (i = 0;; i++) {
286 		if (mem_affinity[i].end == 0)
287 			panic("Reached end of affinity info");
288 		if (mem_affinity[i].end <= start)
289 			continue;
290 		if (mem_affinity[i].start > start)
291 			panic("No affinity info for start %jx",
292 			    (uintmax_t)start);
293 		if (mem_affinity[i].end >= end) {
294 			_vm_phys_create_seg(start, end, flind,
295 			    mem_affinity[i].domain);
296 			break;
297 		}
298 		_vm_phys_create_seg(start, mem_affinity[i].end, flind,
299 		    mem_affinity[i].domain);
300 		start = mem_affinity[i].end;
301 	}
302 }
303 
304 /*
305  * Initialize the physical memory allocator.
306  */
307 void
308 vm_phys_init(void)
309 {
310 	struct vm_freelist *fl;
311 	int dom, flind, i, oind, pind;
312 
313 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
314 #ifdef	VM_FREELIST_ISADMA
315 		if (phys_avail[i] < 16777216) {
316 			if (phys_avail[i + 1] > 16777216) {
317 				vm_phys_create_seg(phys_avail[i], 16777216,
318 				    VM_FREELIST_ISADMA);
319 				vm_phys_create_seg(16777216, phys_avail[i + 1],
320 				    VM_FREELIST_DEFAULT);
321 			} else {
322 				vm_phys_create_seg(phys_avail[i],
323 				    phys_avail[i + 1], VM_FREELIST_ISADMA);
324 			}
325 			if (VM_FREELIST_ISADMA >= vm_nfreelists)
326 				vm_nfreelists = VM_FREELIST_ISADMA + 1;
327 		} else
328 #endif
329 #ifdef	VM_FREELIST_HIGHMEM
330 		if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
331 			if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
332 				vm_phys_create_seg(phys_avail[i],
333 				    VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
334 				vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
335 				    phys_avail[i + 1], VM_FREELIST_HIGHMEM);
336 			} else {
337 				vm_phys_create_seg(phys_avail[i],
338 				    phys_avail[i + 1], VM_FREELIST_HIGHMEM);
339 			}
340 			if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
341 				vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
342 		} else
343 #endif
344 		vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
345 		    VM_FREELIST_DEFAULT);
346 	}
347 	for (dom = 0; dom < vm_ndomains; dom++) {
348 		for (flind = 0; flind < vm_nfreelists; flind++) {
349 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
350 				fl = vm_phys_free_queues[dom][flind][pind];
351 				for (oind = 0; oind < VM_NFREEORDER; oind++)
352 					TAILQ_INIT(&fl[oind].pl);
353 			}
354 		}
355 	}
356 	mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
357 }
358 
359 /*
360  * Split a contiguous, power of two-sized set of physical pages.
361  */
362 static __inline void
363 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
364 {
365 	vm_page_t m_buddy;
366 
367 	while (oind > order) {
368 		oind--;
369 		m_buddy = &m[1 << oind];
370 		KASSERT(m_buddy->order == VM_NFREEORDER,
371 		    ("vm_phys_split_pages: page %p has unexpected order %d",
372 		    m_buddy, m_buddy->order));
373 		vm_freelist_add(fl, m_buddy, oind, 0);
374         }
375 }
376 
377 /*
378  * Initialize a physical page and add it to the free lists.
379  */
380 void
381 vm_phys_add_page(vm_paddr_t pa)
382 {
383 	vm_page_t m;
384 	struct vm_domain *vmd;
385 
386 	cnt.v_page_count++;
387 	m = vm_phys_paddr_to_vm_page(pa);
388 	m->phys_addr = pa;
389 	m->queue = PQ_NONE;
390 	m->segind = vm_phys_paddr_to_segind(pa);
391 	vmd = vm_phys_domain(m);
392 	vmd->vmd_page_count++;
393 	vmd->vmd_segs |= 1UL << m->segind;
394 	m->flags = PG_FREE;
395 	KASSERT(m->order == VM_NFREEORDER,
396 	    ("vm_phys_add_page: page %p has unexpected order %d",
397 	    m, m->order));
398 	m->pool = VM_FREEPOOL_DEFAULT;
399 	pmap_page_init(m);
400 	mtx_lock(&vm_page_queue_free_mtx);
401 	vm_phys_freecnt_adj(m, 1);
402 	vm_phys_free_pages(m, 0);
403 	mtx_unlock(&vm_page_queue_free_mtx);
404 }
405 
406 /*
407  * Allocate a contiguous, power of two-sized set of physical pages
408  * from the free lists.
409  *
410  * The free page queues must be locked.
411  */
412 vm_page_t
413 vm_phys_alloc_pages(int pool, int order)
414 {
415 	vm_page_t m;
416 	int dom, domain, flind;
417 
418 	KASSERT(pool < VM_NFREEPOOL,
419 	    ("vm_phys_alloc_pages: pool %d is out of range", pool));
420 	KASSERT(order < VM_NFREEORDER,
421 	    ("vm_phys_alloc_pages: order %d is out of range", order));
422 
423 	for (dom = 0; dom < vm_ndomains; dom++) {
424 		domain = vm_rr_selectdomain();
425 		for (flind = 0; flind < vm_nfreelists; flind++) {
426 			m = vm_phys_alloc_domain_pages(domain, flind, pool,
427 			    order);
428 			if (m != NULL)
429 				return (m);
430 		}
431 	}
432 	return (NULL);
433 }
434 
435 /*
436  * Find and dequeue a free page on the given free list, with the
437  * specified pool and order
438  */
439 vm_page_t
440 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
441 {
442 	vm_page_t m;
443 	int dom, domain;
444 
445 	KASSERT(flind < VM_NFREELIST,
446 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
447 	KASSERT(pool < VM_NFREEPOOL,
448 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
449 	KASSERT(order < VM_NFREEORDER,
450 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
451 
452 	for (dom = 0; dom < vm_ndomains; dom++) {
453 		domain = vm_rr_selectdomain();
454 		m = vm_phys_alloc_domain_pages(domain, flind, pool, order);
455 		if (m != NULL)
456 			return (m);
457 	}
458 	return (NULL);
459 }
460 
461 static vm_page_t
462 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
463 {
464 	struct vm_freelist *fl;
465 	struct vm_freelist *alt;
466 	int oind, pind;
467 	vm_page_t m;
468 
469 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
470 	fl = &vm_phys_free_queues[domain][flind][pool][0];
471 	for (oind = order; oind < VM_NFREEORDER; oind++) {
472 		m = TAILQ_FIRST(&fl[oind].pl);
473 		if (m != NULL) {
474 			vm_freelist_rem(fl, m, oind);
475 			vm_phys_split_pages(m, oind, fl, order);
476 			return (m);
477 		}
478 	}
479 
480 	/*
481 	 * The given pool was empty.  Find the largest
482 	 * contiguous, power-of-two-sized set of pages in any
483 	 * pool.  Transfer these pages to the given pool, and
484 	 * use them to satisfy the allocation.
485 	 */
486 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
487 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
488 			alt = &vm_phys_free_queues[domain][flind][pind][0];
489 			m = TAILQ_FIRST(&alt[oind].pl);
490 			if (m != NULL) {
491 				vm_freelist_rem(alt, m, oind);
492 				vm_phys_set_pool(pool, m, oind);
493 				vm_phys_split_pages(m, oind, fl, order);
494 				return (m);
495 			}
496 		}
497 	}
498 	return (NULL);
499 }
500 
501 /*
502  * Find the vm_page corresponding to the given physical address.
503  */
504 vm_page_t
505 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
506 {
507 	struct vm_phys_seg *seg;
508 	int segind;
509 
510 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
511 		seg = &vm_phys_segs[segind];
512 		if (pa >= seg->start && pa < seg->end)
513 			return (&seg->first_page[atop(pa - seg->start)]);
514 	}
515 	return (NULL);
516 }
517 
518 vm_page_t
519 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
520 {
521 	struct vm_phys_fictitious_seg *seg;
522 	vm_page_t m;
523 	int segind;
524 
525 	m = NULL;
526 	for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
527 		seg = &vm_phys_fictitious_segs[segind];
528 		if (pa >= seg->start && pa < seg->end) {
529 			m = &seg->first_page[atop(pa - seg->start)];
530 			KASSERT((m->flags & PG_FICTITIOUS) != 0,
531 			    ("%p not fictitious", m));
532 			break;
533 		}
534 	}
535 	return (m);
536 }
537 
538 int
539 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
540     vm_memattr_t memattr)
541 {
542 	struct vm_phys_fictitious_seg *seg;
543 	vm_page_t fp;
544 	long i, page_count;
545 	int segind;
546 #ifdef VM_PHYSSEG_DENSE
547 	long pi;
548 	boolean_t malloced;
549 #endif
550 
551 	page_count = (end - start) / PAGE_SIZE;
552 
553 #ifdef VM_PHYSSEG_DENSE
554 	pi = atop(start);
555 	if (pi >= first_page && atop(end) < vm_page_array_size) {
556 		fp = &vm_page_array[pi - first_page];
557 		malloced = FALSE;
558 	} else
559 #endif
560 	{
561 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
562 		    M_WAITOK | M_ZERO);
563 #ifdef VM_PHYSSEG_DENSE
564 		malloced = TRUE;
565 #endif
566 	}
567 	for (i = 0; i < page_count; i++) {
568 		vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
569 		fp[i].oflags &= ~VPO_UNMANAGED;
570 		fp[i].busy_lock = VPB_UNBUSIED;
571 	}
572 	mtx_lock(&vm_phys_fictitious_reg_mtx);
573 	for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
574 		seg = &vm_phys_fictitious_segs[segind];
575 		if (seg->start == 0 && seg->end == 0) {
576 			seg->start = start;
577 			seg->end = end;
578 			seg->first_page = fp;
579 			mtx_unlock(&vm_phys_fictitious_reg_mtx);
580 			return (0);
581 		}
582 	}
583 	mtx_unlock(&vm_phys_fictitious_reg_mtx);
584 #ifdef VM_PHYSSEG_DENSE
585 	if (malloced)
586 #endif
587 		free(fp, M_FICT_PAGES);
588 	return (EBUSY);
589 }
590 
591 void
592 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
593 {
594 	struct vm_phys_fictitious_seg *seg;
595 	vm_page_t fp;
596 	int segind;
597 #ifdef VM_PHYSSEG_DENSE
598 	long pi;
599 #endif
600 
601 #ifdef VM_PHYSSEG_DENSE
602 	pi = atop(start);
603 #endif
604 
605 	mtx_lock(&vm_phys_fictitious_reg_mtx);
606 	for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
607 		seg = &vm_phys_fictitious_segs[segind];
608 		if (seg->start == start && seg->end == end) {
609 			seg->start = seg->end = 0;
610 			fp = seg->first_page;
611 			seg->first_page = NULL;
612 			mtx_unlock(&vm_phys_fictitious_reg_mtx);
613 #ifdef VM_PHYSSEG_DENSE
614 			if (pi < first_page || atop(end) >= vm_page_array_size)
615 #endif
616 				free(fp, M_FICT_PAGES);
617 			return;
618 		}
619 	}
620 	mtx_unlock(&vm_phys_fictitious_reg_mtx);
621 	KASSERT(0, ("Unregistering not registered fictitious range"));
622 }
623 
624 /*
625  * Find the segment containing the given physical address.
626  */
627 static int
628 vm_phys_paddr_to_segind(vm_paddr_t pa)
629 {
630 	struct vm_phys_seg *seg;
631 	int segind;
632 
633 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
634 		seg = &vm_phys_segs[segind];
635 		if (pa >= seg->start && pa < seg->end)
636 			return (segind);
637 	}
638 	panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
639 	    (uintmax_t)pa);
640 }
641 
642 /*
643  * Free a contiguous, power of two-sized set of physical pages.
644  *
645  * The free page queues must be locked.
646  */
647 void
648 vm_phys_free_pages(vm_page_t m, int order)
649 {
650 	struct vm_freelist *fl;
651 	struct vm_phys_seg *seg;
652 	vm_paddr_t pa;
653 	vm_page_t m_buddy;
654 
655 	KASSERT(m->order == VM_NFREEORDER,
656 	    ("vm_phys_free_pages: page %p has unexpected order %d",
657 	    m, m->order));
658 	KASSERT(m->pool < VM_NFREEPOOL,
659 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
660 	    m, m->pool));
661 	KASSERT(order < VM_NFREEORDER,
662 	    ("vm_phys_free_pages: order %d is out of range", order));
663 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
664 	seg = &vm_phys_segs[m->segind];
665 	if (order < VM_NFREEORDER - 1) {
666 		pa = VM_PAGE_TO_PHYS(m);
667 		do {
668 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
669 			if (pa < seg->start || pa >= seg->end)
670 				break;
671 			m_buddy = &seg->first_page[atop(pa - seg->start)];
672 			if (m_buddy->order != order)
673 				break;
674 			fl = (*seg->free_queues)[m_buddy->pool];
675 			vm_freelist_rem(fl, m_buddy, order);
676 			if (m_buddy->pool != m->pool)
677 				vm_phys_set_pool(m->pool, m_buddy, order);
678 			order++;
679 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
680 			m = &seg->first_page[atop(pa - seg->start)];
681 		} while (order < VM_NFREEORDER - 1);
682 	}
683 	fl = (*seg->free_queues)[m->pool];
684 	vm_freelist_add(fl, m, order, 1);
685 }
686 
687 /*
688  * Free a contiguous, arbitrarily sized set of physical pages.
689  *
690  * The free page queues must be locked.
691  */
692 void
693 vm_phys_free_contig(vm_page_t m, u_long npages)
694 {
695 	u_int n;
696 	int order;
697 
698 	/*
699 	 * Avoid unnecessary coalescing by freeing the pages in the largest
700 	 * possible power-of-two-sized subsets.
701 	 */
702 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
703 	for (;; npages -= n) {
704 		/*
705 		 * Unsigned "min" is used here so that "order" is assigned
706 		 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
707 		 * or the low-order bits of its physical address are zero
708 		 * because the size of a physical address exceeds the size of
709 		 * a long.
710 		 */
711 		order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
712 		    VM_NFREEORDER - 1);
713 		n = 1 << order;
714 		if (npages < n)
715 			break;
716 		vm_phys_free_pages(m, order);
717 		m += n;
718 	}
719 	/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
720 	for (; npages > 0; npages -= n) {
721 		order = flsl(npages) - 1;
722 		n = 1 << order;
723 		vm_phys_free_pages(m, order);
724 		m += n;
725 	}
726 }
727 
728 /*
729  * Set the pool for a contiguous, power of two-sized set of physical pages.
730  */
731 void
732 vm_phys_set_pool(int pool, vm_page_t m, int order)
733 {
734 	vm_page_t m_tmp;
735 
736 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
737 		m_tmp->pool = pool;
738 }
739 
740 /*
741  * Search for the given physical page "m" in the free lists.  If the search
742  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
743  * FALSE, indicating that "m" is not in the free lists.
744  *
745  * The free page queues must be locked.
746  */
747 boolean_t
748 vm_phys_unfree_page(vm_page_t m)
749 {
750 	struct vm_freelist *fl;
751 	struct vm_phys_seg *seg;
752 	vm_paddr_t pa, pa_half;
753 	vm_page_t m_set, m_tmp;
754 	int order;
755 
756 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
757 
758 	/*
759 	 * First, find the contiguous, power of two-sized set of free
760 	 * physical pages containing the given physical page "m" and
761 	 * assign it to "m_set".
762 	 */
763 	seg = &vm_phys_segs[m->segind];
764 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
765 	    order < VM_NFREEORDER - 1; ) {
766 		order++;
767 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
768 		if (pa >= seg->start)
769 			m_set = &seg->first_page[atop(pa - seg->start)];
770 		else
771 			return (FALSE);
772 	}
773 	if (m_set->order < order)
774 		return (FALSE);
775 	if (m_set->order == VM_NFREEORDER)
776 		return (FALSE);
777 	KASSERT(m_set->order < VM_NFREEORDER,
778 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
779 	    m_set, m_set->order));
780 
781 	/*
782 	 * Next, remove "m_set" from the free lists.  Finally, extract
783 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
784 	 * is larger than a page, shrink "m_set" by returning the half
785 	 * of "m_set" that does not contain "m" to the free lists.
786 	 */
787 	fl = (*seg->free_queues)[m_set->pool];
788 	order = m_set->order;
789 	vm_freelist_rem(fl, m_set, order);
790 	while (order > 0) {
791 		order--;
792 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
793 		if (m->phys_addr < pa_half)
794 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
795 		else {
796 			m_tmp = m_set;
797 			m_set = &seg->first_page[atop(pa_half - seg->start)];
798 		}
799 		vm_freelist_add(fl, m_tmp, order, 0);
800 	}
801 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
802 	return (TRUE);
803 }
804 
805 /*
806  * Try to zero one physical page.  Used by an idle priority thread.
807  */
808 boolean_t
809 vm_phys_zero_pages_idle(void)
810 {
811 	static struct vm_freelist *fl;
812 	static int flind, oind, pind;
813 	vm_page_t m, m_tmp;
814 	int domain;
815 
816 	domain = vm_rr_selectdomain();
817 	fl = vm_phys_free_queues[domain][0][0];
818 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
819 	for (;;) {
820 		TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
821 			for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
822 				if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
823 					vm_phys_unfree_page(m_tmp);
824 					vm_phys_freecnt_adj(m, -1);
825 					mtx_unlock(&vm_page_queue_free_mtx);
826 					pmap_zero_page_idle(m_tmp);
827 					m_tmp->flags |= PG_ZERO;
828 					mtx_lock(&vm_page_queue_free_mtx);
829 					vm_phys_freecnt_adj(m, 1);
830 					vm_phys_free_pages(m_tmp, 0);
831 					vm_page_zero_count++;
832 					cnt_prezero++;
833 					return (TRUE);
834 				}
835 			}
836 		}
837 		oind++;
838 		if (oind == VM_NFREEORDER) {
839 			oind = 0;
840 			pind++;
841 			if (pind == VM_NFREEPOOL) {
842 				pind = 0;
843 				flind++;
844 				if (flind == vm_nfreelists)
845 					flind = 0;
846 			}
847 			fl = vm_phys_free_queues[domain][flind][pind];
848 		}
849 	}
850 }
851 
852 /*
853  * Allocate a contiguous set of physical pages of the given size
854  * "npages" from the free lists.  All of the physical pages must be at
855  * or above the given physical address "low" and below the given
856  * physical address "high".  The given value "alignment" determines the
857  * alignment of the first physical page in the set.  If the given value
858  * "boundary" is non-zero, then the set of physical pages cannot cross
859  * any physical address boundary that is a multiple of that value.  Both
860  * "alignment" and "boundary" must be a power of two.
861  */
862 vm_page_t
863 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
864     u_long alignment, vm_paddr_t boundary)
865 {
866 	struct vm_freelist *fl;
867 	struct vm_phys_seg *seg;
868 	vm_paddr_t pa, pa_last, size;
869 	vm_page_t m, m_ret;
870 	u_long npages_end;
871 	int dom, domain, flind, oind, order, pind;
872 
873 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
874 	size = npages << PAGE_SHIFT;
875 	KASSERT(size != 0,
876 	    ("vm_phys_alloc_contig: size must not be 0"));
877 	KASSERT((alignment & (alignment - 1)) == 0,
878 	    ("vm_phys_alloc_contig: alignment must be a power of 2"));
879 	KASSERT((boundary & (boundary - 1)) == 0,
880 	    ("vm_phys_alloc_contig: boundary must be a power of 2"));
881 	/* Compute the queue that is the best fit for npages. */
882 	for (order = 0; (1 << order) < npages; order++);
883 	dom = 0;
884 restartdom:
885 	domain = vm_rr_selectdomain();
886 	for (flind = 0; flind < vm_nfreelists; flind++) {
887 		for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
888 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
889 				fl = &vm_phys_free_queues[domain][flind][pind][0];
890 				TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
891 					/*
892 					 * A free list may contain physical pages
893 					 * from one or more segments.
894 					 */
895 					seg = &vm_phys_segs[m_ret->segind];
896 					if (seg->start > high ||
897 					    low >= seg->end)
898 						continue;
899 
900 					/*
901 					 * Is the size of this allocation request
902 					 * larger than the largest block size?
903 					 */
904 					if (order >= VM_NFREEORDER) {
905 						/*
906 						 * Determine if a sufficient number
907 						 * of subsequent blocks to satisfy
908 						 * the allocation request are free.
909 						 */
910 						pa = VM_PAGE_TO_PHYS(m_ret);
911 						pa_last = pa + size;
912 						for (;;) {
913 							pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
914 							if (pa >= pa_last)
915 								break;
916 							if (pa < seg->start ||
917 							    pa >= seg->end)
918 								break;
919 							m = &seg->first_page[atop(pa - seg->start)];
920 							if (m->order != VM_NFREEORDER - 1)
921 								break;
922 						}
923 						/* If not, continue to the next block. */
924 						if (pa < pa_last)
925 							continue;
926 					}
927 
928 					/*
929 					 * Determine if the blocks are within the given range,
930 					 * satisfy the given alignment, and do not cross the
931 					 * given boundary.
932 					 */
933 					pa = VM_PAGE_TO_PHYS(m_ret);
934 					if (pa >= low &&
935 					    pa + size <= high &&
936 					    (pa & (alignment - 1)) == 0 &&
937 					    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
938 						goto done;
939 				}
940 			}
941 		}
942 	}
943 	if (++dom < vm_ndomains)
944 		goto restartdom;
945 	return (NULL);
946 done:
947 	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
948 		fl = (*seg->free_queues)[m->pool];
949 		vm_freelist_rem(fl, m, m->order);
950 	}
951 	if (m_ret->pool != VM_FREEPOOL_DEFAULT)
952 		vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
953 	fl = (*seg->free_queues)[m_ret->pool];
954 	vm_phys_split_pages(m_ret, oind, fl, order);
955 	/* Return excess pages to the free lists. */
956 	npages_end = roundup2(npages, 1 << imin(oind, order));
957 	if (npages < npages_end)
958 		vm_phys_free_contig(&m_ret[npages], npages_end - npages);
959 	return (m_ret);
960 }
961 
962 #ifdef DDB
963 /*
964  * Show the number of physical pages in each of the free lists.
965  */
966 DB_SHOW_COMMAND(freepages, db_show_freepages)
967 {
968 	struct vm_freelist *fl;
969 	int flind, oind, pind, dom;
970 
971 	for (dom = 0; dom < vm_ndomains; dom++) {
972 		db_printf("DOMAIN: %d\n", dom);
973 		for (flind = 0; flind < vm_nfreelists; flind++) {
974 			db_printf("FREE LIST %d:\n"
975 			    "\n  ORDER (SIZE)  |  NUMBER"
976 			    "\n              ", flind);
977 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
978 				db_printf("  |  POOL %d", pind);
979 			db_printf("\n--            ");
980 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
981 				db_printf("-- --      ");
982 			db_printf("--\n");
983 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
984 				db_printf("  %2.2d (%6.6dK)", oind,
985 				    1 << (PAGE_SHIFT - 10 + oind));
986 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
987 				fl = vm_phys_free_queues[dom][flind][pind];
988 					db_printf("  |  %6.6d", fl[oind].lcnt);
989 				}
990 				db_printf("\n");
991 			}
992 			db_printf("\n");
993 		}
994 		db_printf("\n");
995 	}
996 }
997 #endif
998