1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Physical memory system implementation 34 * 35 * Any external functions defined by this module are only to be used by the 36 * virtual memory system. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ddb.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/lock.h> 47 #include <sys/kernel.h> 48 #include <sys/malloc.h> 49 #include <sys/mutex.h> 50 #include <sys/queue.h> 51 #include <sys/sbuf.h> 52 #include <sys/sysctl.h> 53 #include <sys/vmmeter.h> 54 55 #include <ddb/ddb.h> 56 57 #include <vm/vm.h> 58 #include <vm/vm_param.h> 59 #include <vm/vm_kern.h> 60 #include <vm/vm_object.h> 61 #include <vm/vm_page.h> 62 #include <vm/vm_phys.h> 63 64 /* 65 * VM_FREELIST_DEFAULT is split into VM_NDOMAIN lists, one for each 66 * domain. These extra lists are stored at the end of the regular 67 * free lists starting with VM_NFREELIST. 68 */ 69 #define VM_RAW_NFREELIST (VM_NFREELIST + VM_NDOMAIN - 1) 70 71 struct vm_freelist { 72 struct pglist pl; 73 int lcnt; 74 }; 75 76 struct vm_phys_seg { 77 vm_paddr_t start; 78 vm_paddr_t end; 79 vm_page_t first_page; 80 int domain; 81 struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER]; 82 }; 83 84 struct mem_affinity *mem_affinity; 85 86 static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX]; 87 88 static int vm_phys_nsegs; 89 90 static struct vm_freelist 91 vm_phys_free_queues[VM_RAW_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER]; 92 static struct vm_freelist 93 (*vm_phys_lookup_lists[VM_NDOMAIN][VM_RAW_NFREELIST])[VM_NFREEPOOL][VM_NFREEORDER]; 94 95 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1; 96 97 static int cnt_prezero; 98 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD, 99 &cnt_prezero, 0, "The number of physical pages prezeroed at idle time"); 100 101 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS); 102 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD, 103 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info"); 104 105 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS); 106 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD, 107 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info"); 108 109 #if VM_NDOMAIN > 1 110 static int sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS); 111 SYSCTL_OID(_vm, OID_AUTO, phys_lookup_lists, CTLTYPE_STRING | CTLFLAG_RD, 112 NULL, 0, sysctl_vm_phys_lookup_lists, "A", "Phys Lookup Lists"); 113 #endif 114 115 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, 116 int domain); 117 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind); 118 static int vm_phys_paddr_to_segind(vm_paddr_t pa); 119 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, 120 int order); 121 122 /* 123 * Outputs the state of the physical memory allocator, specifically, 124 * the amount of physical memory in each free list. 125 */ 126 static int 127 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS) 128 { 129 struct sbuf sbuf; 130 struct vm_freelist *fl; 131 int error, flind, oind, pind; 132 133 error = sysctl_wire_old_buffer(req, 0); 134 if (error != 0) 135 return (error); 136 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 137 for (flind = 0; flind < vm_nfreelists; flind++) { 138 sbuf_printf(&sbuf, "\nFREE LIST %d:\n" 139 "\n ORDER (SIZE) | NUMBER" 140 "\n ", flind); 141 for (pind = 0; pind < VM_NFREEPOOL; pind++) 142 sbuf_printf(&sbuf, " | POOL %d", pind); 143 sbuf_printf(&sbuf, "\n-- "); 144 for (pind = 0; pind < VM_NFREEPOOL; pind++) 145 sbuf_printf(&sbuf, "-- -- "); 146 sbuf_printf(&sbuf, "--\n"); 147 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 148 sbuf_printf(&sbuf, " %2d (%6dK)", oind, 149 1 << (PAGE_SHIFT - 10 + oind)); 150 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 151 fl = vm_phys_free_queues[flind][pind]; 152 sbuf_printf(&sbuf, " | %6d", fl[oind].lcnt); 153 } 154 sbuf_printf(&sbuf, "\n"); 155 } 156 } 157 error = sbuf_finish(&sbuf); 158 sbuf_delete(&sbuf); 159 return (error); 160 } 161 162 /* 163 * Outputs the set of physical memory segments. 164 */ 165 static int 166 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS) 167 { 168 struct sbuf sbuf; 169 struct vm_phys_seg *seg; 170 int error, segind; 171 172 error = sysctl_wire_old_buffer(req, 0); 173 if (error != 0) 174 return (error); 175 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 176 for (segind = 0; segind < vm_phys_nsegs; segind++) { 177 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind); 178 seg = &vm_phys_segs[segind]; 179 sbuf_printf(&sbuf, "start: %#jx\n", 180 (uintmax_t)seg->start); 181 sbuf_printf(&sbuf, "end: %#jx\n", 182 (uintmax_t)seg->end); 183 sbuf_printf(&sbuf, "domain: %d\n", seg->domain); 184 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues); 185 } 186 error = sbuf_finish(&sbuf); 187 sbuf_delete(&sbuf); 188 return (error); 189 } 190 191 #if VM_NDOMAIN > 1 192 /* 193 * Outputs the set of free list lookup lists. 194 */ 195 static int 196 sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS) 197 { 198 struct sbuf sbuf; 199 int domain, error, flind, ndomains; 200 201 error = sysctl_wire_old_buffer(req, 0); 202 if (error != 0) 203 return (error); 204 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 205 ndomains = vm_nfreelists - VM_NFREELIST + 1; 206 for (domain = 0; domain < ndomains; domain++) { 207 sbuf_printf(&sbuf, "\nDOMAIN %d:\n\n", domain); 208 for (flind = 0; flind < vm_nfreelists; flind++) 209 sbuf_printf(&sbuf, " [%d]:\t%p\n", flind, 210 vm_phys_lookup_lists[domain][flind]); 211 } 212 error = sbuf_finish(&sbuf); 213 sbuf_delete(&sbuf); 214 return (error); 215 } 216 #endif 217 218 /* 219 * Create a physical memory segment. 220 */ 221 static void 222 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain) 223 { 224 struct vm_phys_seg *seg; 225 #ifdef VM_PHYSSEG_SPARSE 226 long pages; 227 int segind; 228 229 pages = 0; 230 for (segind = 0; segind < vm_phys_nsegs; segind++) { 231 seg = &vm_phys_segs[segind]; 232 pages += atop(seg->end - seg->start); 233 } 234 #endif 235 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX, 236 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX")); 237 seg = &vm_phys_segs[vm_phys_nsegs++]; 238 seg->start = start; 239 seg->end = end; 240 seg->domain = domain; 241 #ifdef VM_PHYSSEG_SPARSE 242 seg->first_page = &vm_page_array[pages]; 243 #else 244 seg->first_page = PHYS_TO_VM_PAGE(start); 245 #endif 246 #if VM_NDOMAIN > 1 247 if (flind == VM_FREELIST_DEFAULT && domain != 0) { 248 flind = VM_NFREELIST + (domain - 1); 249 if (flind >= vm_nfreelists) 250 vm_nfreelists = flind + 1; 251 } 252 #endif 253 seg->free_queues = &vm_phys_free_queues[flind]; 254 } 255 256 static void 257 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind) 258 { 259 int i; 260 261 if (mem_affinity == NULL) { 262 _vm_phys_create_seg(start, end, flind, 0); 263 return; 264 } 265 266 for (i = 0;; i++) { 267 if (mem_affinity[i].end == 0) 268 panic("Reached end of affinity info"); 269 if (mem_affinity[i].end <= start) 270 continue; 271 if (mem_affinity[i].start > start) 272 panic("No affinity info for start %jx", 273 (uintmax_t)start); 274 if (mem_affinity[i].end >= end) { 275 _vm_phys_create_seg(start, end, flind, 276 mem_affinity[i].domain); 277 break; 278 } 279 _vm_phys_create_seg(start, mem_affinity[i].end, flind, 280 mem_affinity[i].domain); 281 start = mem_affinity[i].end; 282 } 283 } 284 285 /* 286 * Initialize the physical memory allocator. 287 */ 288 void 289 vm_phys_init(void) 290 { 291 struct vm_freelist *fl; 292 int flind, i, oind, pind; 293 #if VM_NDOMAIN > 1 294 int ndomains, j; 295 #endif 296 297 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 298 #ifdef VM_FREELIST_ISADMA 299 if (phys_avail[i] < 16777216) { 300 if (phys_avail[i + 1] > 16777216) { 301 vm_phys_create_seg(phys_avail[i], 16777216, 302 VM_FREELIST_ISADMA); 303 vm_phys_create_seg(16777216, phys_avail[i + 1], 304 VM_FREELIST_DEFAULT); 305 } else { 306 vm_phys_create_seg(phys_avail[i], 307 phys_avail[i + 1], VM_FREELIST_ISADMA); 308 } 309 if (VM_FREELIST_ISADMA >= vm_nfreelists) 310 vm_nfreelists = VM_FREELIST_ISADMA + 1; 311 } else 312 #endif 313 #ifdef VM_FREELIST_HIGHMEM 314 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) { 315 if (phys_avail[i] < VM_HIGHMEM_ADDRESS) { 316 vm_phys_create_seg(phys_avail[i], 317 VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT); 318 vm_phys_create_seg(VM_HIGHMEM_ADDRESS, 319 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 320 } else { 321 vm_phys_create_seg(phys_avail[i], 322 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 323 } 324 if (VM_FREELIST_HIGHMEM >= vm_nfreelists) 325 vm_nfreelists = VM_FREELIST_HIGHMEM + 1; 326 } else 327 #endif 328 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1], 329 VM_FREELIST_DEFAULT); 330 } 331 for (flind = 0; flind < vm_nfreelists; flind++) { 332 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 333 fl = vm_phys_free_queues[flind][pind]; 334 for (oind = 0; oind < VM_NFREEORDER; oind++) 335 TAILQ_INIT(&fl[oind].pl); 336 } 337 } 338 #if VM_NDOMAIN > 1 339 /* 340 * Build a free list lookup list for each domain. All of the 341 * memory domain lists are inserted at the VM_FREELIST_DEFAULT 342 * index in a round-robin order starting with the current 343 * domain. 344 */ 345 ndomains = vm_nfreelists - VM_NFREELIST + 1; 346 for (flind = 0; flind < VM_FREELIST_DEFAULT; flind++) 347 for (i = 0; i < ndomains; i++) 348 vm_phys_lookup_lists[i][flind] = 349 &vm_phys_free_queues[flind]; 350 for (i = 0; i < ndomains; i++) 351 for (j = 0; j < ndomains; j++) { 352 flind = (i + j) % ndomains; 353 if (flind == 0) 354 flind = VM_FREELIST_DEFAULT; 355 else 356 flind += VM_NFREELIST - 1; 357 vm_phys_lookup_lists[i][VM_FREELIST_DEFAULT + j] = 358 &vm_phys_free_queues[flind]; 359 } 360 for (flind = VM_FREELIST_DEFAULT + 1; flind < VM_NFREELIST; 361 flind++) 362 for (i = 0; i < ndomains; i++) 363 vm_phys_lookup_lists[i][flind + ndomains - 1] = 364 &vm_phys_free_queues[flind]; 365 #else 366 for (flind = 0; flind < vm_nfreelists; flind++) 367 vm_phys_lookup_lists[0][flind] = &vm_phys_free_queues[flind]; 368 #endif 369 } 370 371 /* 372 * Split a contiguous, power of two-sized set of physical pages. 373 */ 374 static __inline void 375 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order) 376 { 377 vm_page_t m_buddy; 378 379 while (oind > order) { 380 oind--; 381 m_buddy = &m[1 << oind]; 382 KASSERT(m_buddy->order == VM_NFREEORDER, 383 ("vm_phys_split_pages: page %p has unexpected order %d", 384 m_buddy, m_buddy->order)); 385 m_buddy->order = oind; 386 TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq); 387 fl[oind].lcnt++; 388 } 389 } 390 391 /* 392 * Initialize a physical page and add it to the free lists. 393 */ 394 void 395 vm_phys_add_page(vm_paddr_t pa) 396 { 397 vm_page_t m; 398 399 cnt.v_page_count++; 400 m = vm_phys_paddr_to_vm_page(pa); 401 m->phys_addr = pa; 402 m->queue = PQ_NONE; 403 m->segind = vm_phys_paddr_to_segind(pa); 404 m->flags = PG_FREE; 405 KASSERT(m->order == VM_NFREEORDER, 406 ("vm_phys_add_page: page %p has unexpected order %d", 407 m, m->order)); 408 m->pool = VM_FREEPOOL_DEFAULT; 409 pmap_page_init(m); 410 mtx_lock(&vm_page_queue_free_mtx); 411 cnt.v_free_count++; 412 vm_phys_free_pages(m, 0); 413 mtx_unlock(&vm_page_queue_free_mtx); 414 } 415 416 /* 417 * Allocate a contiguous, power of two-sized set of physical pages 418 * from the free lists. 419 * 420 * The free page queues must be locked. 421 */ 422 vm_page_t 423 vm_phys_alloc_pages(int pool, int order) 424 { 425 vm_page_t m; 426 int flind; 427 428 for (flind = 0; flind < vm_nfreelists; flind++) { 429 m = vm_phys_alloc_freelist_pages(flind, pool, order); 430 if (m != NULL) 431 return (m); 432 } 433 return (NULL); 434 } 435 436 /* 437 * Find and dequeue a free page on the given free list, with the 438 * specified pool and order 439 */ 440 vm_page_t 441 vm_phys_alloc_freelist_pages(int flind, int pool, int order) 442 { 443 struct vm_freelist *fl; 444 struct vm_freelist *alt; 445 int domain, oind, pind; 446 vm_page_t m; 447 448 KASSERT(flind < VM_NFREELIST, 449 ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind)); 450 KASSERT(pool < VM_NFREEPOOL, 451 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool)); 452 KASSERT(order < VM_NFREEORDER, 453 ("vm_phys_alloc_freelist_pages: order %d is out of range", order)); 454 455 #if VM_NDOMAIN > 1 456 domain = PCPU_GET(domain); 457 #else 458 domain = 0; 459 #endif 460 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 461 fl = (*vm_phys_lookup_lists[domain][flind])[pool]; 462 for (oind = order; oind < VM_NFREEORDER; oind++) { 463 m = TAILQ_FIRST(&fl[oind].pl); 464 if (m != NULL) { 465 TAILQ_REMOVE(&fl[oind].pl, m, pageq); 466 fl[oind].lcnt--; 467 m->order = VM_NFREEORDER; 468 vm_phys_split_pages(m, oind, fl, order); 469 return (m); 470 } 471 } 472 473 /* 474 * The given pool was empty. Find the largest 475 * contiguous, power-of-two-sized set of pages in any 476 * pool. Transfer these pages to the given pool, and 477 * use them to satisfy the allocation. 478 */ 479 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) { 480 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 481 alt = (*vm_phys_lookup_lists[domain][flind])[pind]; 482 m = TAILQ_FIRST(&alt[oind].pl); 483 if (m != NULL) { 484 TAILQ_REMOVE(&alt[oind].pl, m, pageq); 485 alt[oind].lcnt--; 486 m->order = VM_NFREEORDER; 487 vm_phys_set_pool(pool, m, oind); 488 vm_phys_split_pages(m, oind, fl, order); 489 return (m); 490 } 491 } 492 } 493 return (NULL); 494 } 495 496 /* 497 * Find the vm_page corresponding to the given physical address. 498 */ 499 vm_page_t 500 vm_phys_paddr_to_vm_page(vm_paddr_t pa) 501 { 502 struct vm_phys_seg *seg; 503 int segind; 504 505 for (segind = 0; segind < vm_phys_nsegs; segind++) { 506 seg = &vm_phys_segs[segind]; 507 if (pa >= seg->start && pa < seg->end) 508 return (&seg->first_page[atop(pa - seg->start)]); 509 } 510 return (NULL); 511 } 512 513 /* 514 * Find the segment containing the given physical address. 515 */ 516 static int 517 vm_phys_paddr_to_segind(vm_paddr_t pa) 518 { 519 struct vm_phys_seg *seg; 520 int segind; 521 522 for (segind = 0; segind < vm_phys_nsegs; segind++) { 523 seg = &vm_phys_segs[segind]; 524 if (pa >= seg->start && pa < seg->end) 525 return (segind); 526 } 527 panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" , 528 (uintmax_t)pa); 529 } 530 531 /* 532 * Free a contiguous, power of two-sized set of physical pages. 533 * 534 * The free page queues must be locked. 535 */ 536 void 537 vm_phys_free_pages(vm_page_t m, int order) 538 { 539 struct vm_freelist *fl; 540 struct vm_phys_seg *seg; 541 vm_paddr_t pa; 542 vm_page_t m_buddy; 543 544 KASSERT(m->order == VM_NFREEORDER, 545 ("vm_phys_free_pages: page %p has unexpected order %d", 546 m, m->order)); 547 KASSERT(m->pool < VM_NFREEPOOL, 548 ("vm_phys_free_pages: page %p has unexpected pool %d", 549 m, m->pool)); 550 KASSERT(order < VM_NFREEORDER, 551 ("vm_phys_free_pages: order %d is out of range", order)); 552 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 553 seg = &vm_phys_segs[m->segind]; 554 if (order < VM_NFREEORDER - 1) { 555 pa = VM_PAGE_TO_PHYS(m); 556 do { 557 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order)); 558 if (pa < seg->start || pa >= seg->end) 559 break; 560 m_buddy = &seg->first_page[atop(pa - seg->start)]; 561 if (m_buddy->order != order) 562 break; 563 fl = (*seg->free_queues)[m_buddy->pool]; 564 TAILQ_REMOVE(&fl[order].pl, m_buddy, pageq); 565 fl[order].lcnt--; 566 m_buddy->order = VM_NFREEORDER; 567 if (m_buddy->pool != m->pool) 568 vm_phys_set_pool(m->pool, m_buddy, order); 569 order++; 570 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1); 571 m = &seg->first_page[atop(pa - seg->start)]; 572 } while (order < VM_NFREEORDER - 1); 573 } 574 m->order = order; 575 fl = (*seg->free_queues)[m->pool]; 576 TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq); 577 fl[order].lcnt++; 578 } 579 580 /* 581 * Free a contiguous, arbitrarily sized set of physical pages. 582 * 583 * The free page queues must be locked. 584 */ 585 void 586 vm_phys_free_contig(vm_page_t m, u_long npages) 587 { 588 u_int n; 589 int order; 590 591 /* 592 * Avoid unnecessary coalescing by freeing the pages in the largest 593 * possible power-of-two-sized subsets. 594 */ 595 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 596 for (;; npages -= n) { 597 /* 598 * Unsigned "min" is used here so that "order" is assigned 599 * "VM_NFREEORDER - 1" when "m"'s physical address is zero 600 * or the low-order bits of its physical address are zero 601 * because the size of a physical address exceeds the size of 602 * a long. 603 */ 604 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1, 605 VM_NFREEORDER - 1); 606 n = 1 << order; 607 if (npages < n) 608 break; 609 vm_phys_free_pages(m, order); 610 m += n; 611 } 612 /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */ 613 for (; npages > 0; npages -= n) { 614 order = flsl(npages) - 1; 615 n = 1 << order; 616 vm_phys_free_pages(m, order); 617 m += n; 618 } 619 } 620 621 /* 622 * Set the pool for a contiguous, power of two-sized set of physical pages. 623 */ 624 void 625 vm_phys_set_pool(int pool, vm_page_t m, int order) 626 { 627 vm_page_t m_tmp; 628 629 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++) 630 m_tmp->pool = pool; 631 } 632 633 /* 634 * Search for the given physical page "m" in the free lists. If the search 635 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return 636 * FALSE, indicating that "m" is not in the free lists. 637 * 638 * The free page queues must be locked. 639 */ 640 boolean_t 641 vm_phys_unfree_page(vm_page_t m) 642 { 643 struct vm_freelist *fl; 644 struct vm_phys_seg *seg; 645 vm_paddr_t pa, pa_half; 646 vm_page_t m_set, m_tmp; 647 int order; 648 649 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 650 651 /* 652 * First, find the contiguous, power of two-sized set of free 653 * physical pages containing the given physical page "m" and 654 * assign it to "m_set". 655 */ 656 seg = &vm_phys_segs[m->segind]; 657 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER && 658 order < VM_NFREEORDER - 1; ) { 659 order++; 660 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order)); 661 if (pa >= seg->start) 662 m_set = &seg->first_page[atop(pa - seg->start)]; 663 else 664 return (FALSE); 665 } 666 if (m_set->order < order) 667 return (FALSE); 668 if (m_set->order == VM_NFREEORDER) 669 return (FALSE); 670 KASSERT(m_set->order < VM_NFREEORDER, 671 ("vm_phys_unfree_page: page %p has unexpected order %d", 672 m_set, m_set->order)); 673 674 /* 675 * Next, remove "m_set" from the free lists. Finally, extract 676 * "m" from "m_set" using an iterative algorithm: While "m_set" 677 * is larger than a page, shrink "m_set" by returning the half 678 * of "m_set" that does not contain "m" to the free lists. 679 */ 680 fl = (*seg->free_queues)[m_set->pool]; 681 order = m_set->order; 682 TAILQ_REMOVE(&fl[order].pl, m_set, pageq); 683 fl[order].lcnt--; 684 m_set->order = VM_NFREEORDER; 685 while (order > 0) { 686 order--; 687 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order)); 688 if (m->phys_addr < pa_half) 689 m_tmp = &seg->first_page[atop(pa_half - seg->start)]; 690 else { 691 m_tmp = m_set; 692 m_set = &seg->first_page[atop(pa_half - seg->start)]; 693 } 694 m_tmp->order = order; 695 TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq); 696 fl[order].lcnt++; 697 } 698 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency")); 699 return (TRUE); 700 } 701 702 /* 703 * Try to zero one physical page. Used by an idle priority thread. 704 */ 705 boolean_t 706 vm_phys_zero_pages_idle(void) 707 { 708 static struct vm_freelist *fl = vm_phys_free_queues[0][0]; 709 static int flind, oind, pind; 710 vm_page_t m, m_tmp; 711 712 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 713 for (;;) { 714 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) { 715 for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) { 716 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) { 717 vm_phys_unfree_page(m_tmp); 718 cnt.v_free_count--; 719 mtx_unlock(&vm_page_queue_free_mtx); 720 pmap_zero_page_idle(m_tmp); 721 m_tmp->flags |= PG_ZERO; 722 mtx_lock(&vm_page_queue_free_mtx); 723 cnt.v_free_count++; 724 vm_phys_free_pages(m_tmp, 0); 725 vm_page_zero_count++; 726 cnt_prezero++; 727 return (TRUE); 728 } 729 } 730 } 731 oind++; 732 if (oind == VM_NFREEORDER) { 733 oind = 0; 734 pind++; 735 if (pind == VM_NFREEPOOL) { 736 pind = 0; 737 flind++; 738 if (flind == vm_nfreelists) 739 flind = 0; 740 } 741 fl = vm_phys_free_queues[flind][pind]; 742 } 743 } 744 } 745 746 /* 747 * Allocate a contiguous set of physical pages of the given size 748 * "npages" from the free lists. All of the physical pages must be at 749 * or above the given physical address "low" and below the given 750 * physical address "high". The given value "alignment" determines the 751 * alignment of the first physical page in the set. If the given value 752 * "boundary" is non-zero, then the set of physical pages cannot cross 753 * any physical address boundary that is a multiple of that value. Both 754 * "alignment" and "boundary" must be a power of two. 755 */ 756 vm_page_t 757 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 758 u_long alignment, vm_paddr_t boundary) 759 { 760 struct vm_freelist *fl; 761 struct vm_phys_seg *seg; 762 vm_paddr_t pa, pa_last, size; 763 vm_page_t m, m_ret; 764 u_long npages_end; 765 int domain, flind, oind, order, pind; 766 767 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 768 #if VM_NDOMAIN > 1 769 domain = PCPU_GET(domain); 770 #else 771 domain = 0; 772 #endif 773 size = npages << PAGE_SHIFT; 774 KASSERT(size != 0, 775 ("vm_phys_alloc_contig: size must not be 0")); 776 KASSERT((alignment & (alignment - 1)) == 0, 777 ("vm_phys_alloc_contig: alignment must be a power of 2")); 778 KASSERT((boundary & (boundary - 1)) == 0, 779 ("vm_phys_alloc_contig: boundary must be a power of 2")); 780 /* Compute the queue that is the best fit for npages. */ 781 for (order = 0; (1 << order) < npages; order++); 782 for (flind = 0; flind < vm_nfreelists; flind++) { 783 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) { 784 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 785 fl = (*vm_phys_lookup_lists[domain][flind]) 786 [pind]; 787 TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) { 788 /* 789 * A free list may contain physical pages 790 * from one or more segments. 791 */ 792 seg = &vm_phys_segs[m_ret->segind]; 793 if (seg->start > high || 794 low >= seg->end) 795 continue; 796 797 /* 798 * Is the size of this allocation request 799 * larger than the largest block size? 800 */ 801 if (order >= VM_NFREEORDER) { 802 /* 803 * Determine if a sufficient number 804 * of subsequent blocks to satisfy 805 * the allocation request are free. 806 */ 807 pa = VM_PAGE_TO_PHYS(m_ret); 808 pa_last = pa + size; 809 for (;;) { 810 pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1); 811 if (pa >= pa_last) 812 break; 813 if (pa < seg->start || 814 pa >= seg->end) 815 break; 816 m = &seg->first_page[atop(pa - seg->start)]; 817 if (m->order != VM_NFREEORDER - 1) 818 break; 819 } 820 /* If not, continue to the next block. */ 821 if (pa < pa_last) 822 continue; 823 } 824 825 /* 826 * Determine if the blocks are within the given range, 827 * satisfy the given alignment, and do not cross the 828 * given boundary. 829 */ 830 pa = VM_PAGE_TO_PHYS(m_ret); 831 if (pa >= low && 832 pa + size <= high && 833 (pa & (alignment - 1)) == 0 && 834 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0) 835 goto done; 836 } 837 } 838 } 839 } 840 return (NULL); 841 done: 842 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) { 843 fl = (*seg->free_queues)[m->pool]; 844 TAILQ_REMOVE(&fl[m->order].pl, m, pageq); 845 fl[m->order].lcnt--; 846 m->order = VM_NFREEORDER; 847 } 848 if (m_ret->pool != VM_FREEPOOL_DEFAULT) 849 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind); 850 fl = (*seg->free_queues)[m_ret->pool]; 851 vm_phys_split_pages(m_ret, oind, fl, order); 852 /* Return excess pages to the free lists. */ 853 npages_end = roundup2(npages, 1 << imin(oind, order)); 854 if (npages < npages_end) 855 vm_phys_free_contig(&m_ret[npages], npages_end - npages); 856 return (m_ret); 857 } 858 859 #ifdef DDB 860 /* 861 * Show the number of physical pages in each of the free lists. 862 */ 863 DB_SHOW_COMMAND(freepages, db_show_freepages) 864 { 865 struct vm_freelist *fl; 866 int flind, oind, pind; 867 868 for (flind = 0; flind < vm_nfreelists; flind++) { 869 db_printf("FREE LIST %d:\n" 870 "\n ORDER (SIZE) | NUMBER" 871 "\n ", flind); 872 for (pind = 0; pind < VM_NFREEPOOL; pind++) 873 db_printf(" | POOL %d", pind); 874 db_printf("\n-- "); 875 for (pind = 0; pind < VM_NFREEPOOL; pind++) 876 db_printf("-- -- "); 877 db_printf("--\n"); 878 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 879 db_printf(" %2.2d (%6.6dK)", oind, 880 1 << (PAGE_SHIFT - 10 + oind)); 881 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 882 fl = vm_phys_free_queues[flind][pind]; 883 db_printf(" | %6.6d", fl[oind].lcnt); 884 } 885 db_printf("\n"); 886 } 887 db_printf("\n"); 888 } 889 } 890 #endif 891