1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2006 Rice University 5 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu> 6 * All rights reserved. 7 * 8 * This software was developed for the FreeBSD Project by Alan L. Cox, 9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Physical memory system implementation 36 * 37 * Any external functions defined by this module are only to be used by the 38 * virtual memory system. 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_ddb.h" 45 #include "opt_vm.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/domainset.h> 50 #include <sys/lock.h> 51 #include <sys/kernel.h> 52 #include <sys/malloc.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/queue.h> 56 #include <sys/rwlock.h> 57 #include <sys/sbuf.h> 58 #include <sys/sysctl.h> 59 #include <sys/tree.h> 60 #include <sys/vmmeter.h> 61 62 #include <ddb/ddb.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_extern.h> 66 #include <vm/vm_param.h> 67 #include <vm/vm_kern.h> 68 #include <vm/vm_object.h> 69 #include <vm/vm_page.h> 70 #include <vm/vm_phys.h> 71 #include <vm/vm_pagequeue.h> 72 73 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX, 74 "Too many physsegs."); 75 76 #ifdef NUMA 77 struct mem_affinity __read_mostly *mem_affinity; 78 int __read_mostly *mem_locality; 79 #endif 80 81 int __read_mostly vm_ndomains = 1; 82 domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1); 83 84 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX]; 85 int __read_mostly vm_phys_nsegs; 86 static struct vm_phys_seg vm_phys_early_segs[8]; 87 static int vm_phys_early_nsegs; 88 89 struct vm_phys_fictitious_seg; 90 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *, 91 struct vm_phys_fictitious_seg *); 92 93 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree = 94 RB_INITIALIZER(&vm_phys_fictitious_tree); 95 96 struct vm_phys_fictitious_seg { 97 RB_ENTRY(vm_phys_fictitious_seg) node; 98 /* Memory region data */ 99 vm_paddr_t start; 100 vm_paddr_t end; 101 vm_page_t first_page; 102 }; 103 104 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node, 105 vm_phys_fictitious_cmp); 106 107 static struct rwlock_padalign vm_phys_fictitious_reg_lock; 108 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages"); 109 110 static struct vm_freelist __aligned(CACHE_LINE_SIZE) 111 vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL] 112 [VM_NFREEORDER_MAX]; 113 114 static int __read_mostly vm_nfreelists; 115 116 /* 117 * These "avail lists" are globals used to communicate boot-time physical 118 * memory layout to other parts of the kernel. Each physically contiguous 119 * region of memory is defined by a start address at an even index and an 120 * end address at the following odd index. Each list is terminated by a 121 * pair of zero entries. 122 * 123 * dump_avail tells the dump code what regions to include in a crash dump, and 124 * phys_avail is all of the remaining physical memory that is available for 125 * the vm system. 126 * 127 * Initially dump_avail and phys_avail are identical. Boot time memory 128 * allocations remove extents from phys_avail that may still be included 129 * in dumps. 130 */ 131 vm_paddr_t phys_avail[PHYS_AVAIL_COUNT]; 132 vm_paddr_t dump_avail[PHYS_AVAIL_COUNT]; 133 134 /* 135 * Provides the mapping from VM_FREELIST_* to free list indices (flind). 136 */ 137 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST]; 138 139 CTASSERT(VM_FREELIST_DEFAULT == 0); 140 141 #ifdef VM_FREELIST_DMA32 142 #define VM_DMA32_BOUNDARY ((vm_paddr_t)1 << 32) 143 #endif 144 145 /* 146 * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about 147 * the ordering of the free list boundaries. 148 */ 149 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY) 150 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY); 151 #endif 152 153 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS); 154 SYSCTL_OID(_vm, OID_AUTO, phys_free, 155 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 156 sysctl_vm_phys_free, "A", 157 "Phys Free Info"); 158 159 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS); 160 SYSCTL_OID(_vm, OID_AUTO, phys_segs, 161 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 162 sysctl_vm_phys_segs, "A", 163 "Phys Seg Info"); 164 165 #ifdef NUMA 166 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS); 167 SYSCTL_OID(_vm, OID_AUTO, phys_locality, 168 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 169 sysctl_vm_phys_locality, "A", 170 "Phys Locality Info"); 171 #endif 172 173 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD, 174 &vm_ndomains, 0, "Number of physical memory domains available."); 175 176 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain); 177 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end); 178 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, 179 int order, int tail); 180 181 /* 182 * Red-black tree helpers for vm fictitious range management. 183 */ 184 static inline int 185 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p, 186 struct vm_phys_fictitious_seg *range) 187 { 188 189 KASSERT(range->start != 0 && range->end != 0, 190 ("Invalid range passed on search for vm_fictitious page")); 191 if (p->start >= range->end) 192 return (1); 193 if (p->start < range->start) 194 return (-1); 195 196 return (0); 197 } 198 199 static int 200 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1, 201 struct vm_phys_fictitious_seg *p2) 202 { 203 204 /* Check if this is a search for a page */ 205 if (p1->end == 0) 206 return (vm_phys_fictitious_in_range(p1, p2)); 207 208 KASSERT(p2->end != 0, 209 ("Invalid range passed as second parameter to vm fictitious comparison")); 210 211 /* Searching to add a new range */ 212 if (p1->end <= p2->start) 213 return (-1); 214 if (p1->start >= p2->end) 215 return (1); 216 217 panic("Trying to add overlapping vm fictitious ranges:\n" 218 "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start, 219 (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end); 220 } 221 222 int 223 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high) 224 { 225 #ifdef NUMA 226 domainset_t mask; 227 int i; 228 229 if (vm_ndomains == 1 || mem_affinity == NULL) 230 return (0); 231 232 DOMAINSET_ZERO(&mask); 233 /* 234 * Check for any memory that overlaps low, high. 235 */ 236 for (i = 0; mem_affinity[i].end != 0; i++) 237 if (mem_affinity[i].start <= high && 238 mem_affinity[i].end >= low) 239 DOMAINSET_SET(mem_affinity[i].domain, &mask); 240 if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask)) 241 return (prefer); 242 if (DOMAINSET_EMPTY(&mask)) 243 panic("vm_phys_domain_match: Impossible constraint"); 244 return (DOMAINSET_FFS(&mask) - 1); 245 #else 246 return (0); 247 #endif 248 } 249 250 /* 251 * Outputs the state of the physical memory allocator, specifically, 252 * the amount of physical memory in each free list. 253 */ 254 static int 255 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS) 256 { 257 struct sbuf sbuf; 258 struct vm_freelist *fl; 259 int dom, error, flind, oind, pind; 260 261 error = sysctl_wire_old_buffer(req, 0); 262 if (error != 0) 263 return (error); 264 sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req); 265 for (dom = 0; dom < vm_ndomains; dom++) { 266 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom); 267 for (flind = 0; flind < vm_nfreelists; flind++) { 268 sbuf_printf(&sbuf, "\nFREE LIST %d:\n" 269 "\n ORDER (SIZE) | NUMBER" 270 "\n ", flind); 271 for (pind = 0; pind < VM_NFREEPOOL; pind++) 272 sbuf_printf(&sbuf, " | POOL %d", pind); 273 sbuf_printf(&sbuf, "\n-- "); 274 for (pind = 0; pind < VM_NFREEPOOL; pind++) 275 sbuf_printf(&sbuf, "-- -- "); 276 sbuf_printf(&sbuf, "--\n"); 277 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 278 sbuf_printf(&sbuf, " %2d (%6dK)", oind, 279 1 << (PAGE_SHIFT - 10 + oind)); 280 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 281 fl = vm_phys_free_queues[dom][flind][pind]; 282 sbuf_printf(&sbuf, " | %6d", 283 fl[oind].lcnt); 284 } 285 sbuf_printf(&sbuf, "\n"); 286 } 287 } 288 } 289 error = sbuf_finish(&sbuf); 290 sbuf_delete(&sbuf); 291 return (error); 292 } 293 294 /* 295 * Outputs the set of physical memory segments. 296 */ 297 static int 298 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS) 299 { 300 struct sbuf sbuf; 301 struct vm_phys_seg *seg; 302 int error, segind; 303 304 error = sysctl_wire_old_buffer(req, 0); 305 if (error != 0) 306 return (error); 307 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 308 for (segind = 0; segind < vm_phys_nsegs; segind++) { 309 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind); 310 seg = &vm_phys_segs[segind]; 311 sbuf_printf(&sbuf, "start: %#jx\n", 312 (uintmax_t)seg->start); 313 sbuf_printf(&sbuf, "end: %#jx\n", 314 (uintmax_t)seg->end); 315 sbuf_printf(&sbuf, "domain: %d\n", seg->domain); 316 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues); 317 } 318 error = sbuf_finish(&sbuf); 319 sbuf_delete(&sbuf); 320 return (error); 321 } 322 323 /* 324 * Return affinity, or -1 if there's no affinity information. 325 */ 326 int 327 vm_phys_mem_affinity(int f, int t) 328 { 329 330 #ifdef NUMA 331 if (mem_locality == NULL) 332 return (-1); 333 if (f >= vm_ndomains || t >= vm_ndomains) 334 return (-1); 335 return (mem_locality[f * vm_ndomains + t]); 336 #else 337 return (-1); 338 #endif 339 } 340 341 #ifdef NUMA 342 /* 343 * Outputs the VM locality table. 344 */ 345 static int 346 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS) 347 { 348 struct sbuf sbuf; 349 int error, i, j; 350 351 error = sysctl_wire_old_buffer(req, 0); 352 if (error != 0) 353 return (error); 354 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 355 356 sbuf_printf(&sbuf, "\n"); 357 358 for (i = 0; i < vm_ndomains; i++) { 359 sbuf_printf(&sbuf, "%d: ", i); 360 for (j = 0; j < vm_ndomains; j++) { 361 sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j)); 362 } 363 sbuf_printf(&sbuf, "\n"); 364 } 365 error = sbuf_finish(&sbuf); 366 sbuf_delete(&sbuf); 367 return (error); 368 } 369 #endif 370 371 static void 372 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail) 373 { 374 375 m->order = order; 376 if (tail) 377 TAILQ_INSERT_TAIL(&fl[order].pl, m, listq); 378 else 379 TAILQ_INSERT_HEAD(&fl[order].pl, m, listq); 380 fl[order].lcnt++; 381 } 382 383 static void 384 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order) 385 { 386 387 TAILQ_REMOVE(&fl[order].pl, m, listq); 388 fl[order].lcnt--; 389 m->order = VM_NFREEORDER; 390 } 391 392 /* 393 * Create a physical memory segment. 394 */ 395 static void 396 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain) 397 { 398 struct vm_phys_seg *seg; 399 400 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX, 401 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX")); 402 KASSERT(domain >= 0 && domain < vm_ndomains, 403 ("vm_phys_create_seg: invalid domain provided")); 404 seg = &vm_phys_segs[vm_phys_nsegs++]; 405 while (seg > vm_phys_segs && (seg - 1)->start >= end) { 406 *seg = *(seg - 1); 407 seg--; 408 } 409 seg->start = start; 410 seg->end = end; 411 seg->domain = domain; 412 } 413 414 static void 415 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end) 416 { 417 #ifdef NUMA 418 int i; 419 420 if (mem_affinity == NULL) { 421 _vm_phys_create_seg(start, end, 0); 422 return; 423 } 424 425 for (i = 0;; i++) { 426 if (mem_affinity[i].end == 0) 427 panic("Reached end of affinity info"); 428 if (mem_affinity[i].end <= start) 429 continue; 430 if (mem_affinity[i].start > start) 431 panic("No affinity info for start %jx", 432 (uintmax_t)start); 433 if (mem_affinity[i].end >= end) { 434 _vm_phys_create_seg(start, end, 435 mem_affinity[i].domain); 436 break; 437 } 438 _vm_phys_create_seg(start, mem_affinity[i].end, 439 mem_affinity[i].domain); 440 start = mem_affinity[i].end; 441 } 442 #else 443 _vm_phys_create_seg(start, end, 0); 444 #endif 445 } 446 447 /* 448 * Add a physical memory segment. 449 */ 450 void 451 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end) 452 { 453 vm_paddr_t paddr; 454 455 KASSERT((start & PAGE_MASK) == 0, 456 ("vm_phys_define_seg: start is not page aligned")); 457 KASSERT((end & PAGE_MASK) == 0, 458 ("vm_phys_define_seg: end is not page aligned")); 459 460 /* 461 * Split the physical memory segment if it spans two or more free 462 * list boundaries. 463 */ 464 paddr = start; 465 #ifdef VM_FREELIST_LOWMEM 466 if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) { 467 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY); 468 paddr = VM_LOWMEM_BOUNDARY; 469 } 470 #endif 471 #ifdef VM_FREELIST_DMA32 472 if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) { 473 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY); 474 paddr = VM_DMA32_BOUNDARY; 475 } 476 #endif 477 vm_phys_create_seg(paddr, end); 478 } 479 480 /* 481 * Initialize the physical memory allocator. 482 * 483 * Requires that vm_page_array is initialized! 484 */ 485 void 486 vm_phys_init(void) 487 { 488 struct vm_freelist *fl; 489 struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg; 490 u_long npages; 491 int dom, flind, freelist, oind, pind, segind; 492 493 /* 494 * Compute the number of free lists, and generate the mapping from the 495 * manifest constants VM_FREELIST_* to the free list indices. 496 * 497 * Initially, the entries of vm_freelist_to_flind[] are set to either 498 * 0 or 1 to indicate which free lists should be created. 499 */ 500 npages = 0; 501 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) { 502 seg = &vm_phys_segs[segind]; 503 #ifdef VM_FREELIST_LOWMEM 504 if (seg->end <= VM_LOWMEM_BOUNDARY) 505 vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1; 506 else 507 #endif 508 #ifdef VM_FREELIST_DMA32 509 if ( 510 #ifdef VM_DMA32_NPAGES_THRESHOLD 511 /* 512 * Create the DMA32 free list only if the amount of 513 * physical memory above physical address 4G exceeds the 514 * given threshold. 515 */ 516 npages > VM_DMA32_NPAGES_THRESHOLD && 517 #endif 518 seg->end <= VM_DMA32_BOUNDARY) 519 vm_freelist_to_flind[VM_FREELIST_DMA32] = 1; 520 else 521 #endif 522 { 523 npages += atop(seg->end - seg->start); 524 vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1; 525 } 526 } 527 /* Change each entry into a running total of the free lists. */ 528 for (freelist = 1; freelist < VM_NFREELIST; freelist++) { 529 vm_freelist_to_flind[freelist] += 530 vm_freelist_to_flind[freelist - 1]; 531 } 532 vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1]; 533 KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists")); 534 /* Change each entry into a free list index. */ 535 for (freelist = 0; freelist < VM_NFREELIST; freelist++) 536 vm_freelist_to_flind[freelist]--; 537 538 /* 539 * Initialize the first_page and free_queues fields of each physical 540 * memory segment. 541 */ 542 #ifdef VM_PHYSSEG_SPARSE 543 npages = 0; 544 #endif 545 for (segind = 0; segind < vm_phys_nsegs; segind++) { 546 seg = &vm_phys_segs[segind]; 547 #ifdef VM_PHYSSEG_SPARSE 548 seg->first_page = &vm_page_array[npages]; 549 npages += atop(seg->end - seg->start); 550 #else 551 seg->first_page = PHYS_TO_VM_PAGE(seg->start); 552 #endif 553 #ifdef VM_FREELIST_LOWMEM 554 if (seg->end <= VM_LOWMEM_BOUNDARY) { 555 flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM]; 556 KASSERT(flind >= 0, 557 ("vm_phys_init: LOWMEM flind < 0")); 558 } else 559 #endif 560 #ifdef VM_FREELIST_DMA32 561 if (seg->end <= VM_DMA32_BOUNDARY) { 562 flind = vm_freelist_to_flind[VM_FREELIST_DMA32]; 563 KASSERT(flind >= 0, 564 ("vm_phys_init: DMA32 flind < 0")); 565 } else 566 #endif 567 { 568 flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT]; 569 KASSERT(flind >= 0, 570 ("vm_phys_init: DEFAULT flind < 0")); 571 } 572 seg->free_queues = &vm_phys_free_queues[seg->domain][flind]; 573 } 574 575 /* 576 * Coalesce physical memory segments that are contiguous and share the 577 * same per-domain free queues. 578 */ 579 prev_seg = vm_phys_segs; 580 seg = &vm_phys_segs[1]; 581 end_seg = &vm_phys_segs[vm_phys_nsegs]; 582 while (seg < end_seg) { 583 if (prev_seg->end == seg->start && 584 prev_seg->free_queues == seg->free_queues) { 585 prev_seg->end = seg->end; 586 KASSERT(prev_seg->domain == seg->domain, 587 ("vm_phys_init: free queues cannot span domains")); 588 vm_phys_nsegs--; 589 end_seg--; 590 for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++) 591 *tmp_seg = *(tmp_seg + 1); 592 } else { 593 prev_seg = seg; 594 seg++; 595 } 596 } 597 598 /* 599 * Initialize the free queues. 600 */ 601 for (dom = 0; dom < vm_ndomains; dom++) { 602 for (flind = 0; flind < vm_nfreelists; flind++) { 603 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 604 fl = vm_phys_free_queues[dom][flind][pind]; 605 for (oind = 0; oind < VM_NFREEORDER; oind++) 606 TAILQ_INIT(&fl[oind].pl); 607 } 608 } 609 } 610 611 rw_init(&vm_phys_fictitious_reg_lock, "vmfctr"); 612 } 613 614 /* 615 * Register info about the NUMA topology of the system. 616 * 617 * Invoked by platform-dependent code prior to vm_phys_init(). 618 */ 619 void 620 vm_phys_register_domains(int ndomains, struct mem_affinity *affinity, 621 int *locality) 622 { 623 #ifdef NUMA 624 int d, i; 625 626 /* 627 * For now the only override value that we support is 1, which 628 * effectively disables NUMA-awareness in the allocators. 629 */ 630 d = 0; 631 TUNABLE_INT_FETCH("vm.numa.disabled", &d); 632 if (d) 633 ndomains = 1; 634 635 if (ndomains > 1) { 636 vm_ndomains = ndomains; 637 mem_affinity = affinity; 638 mem_locality = locality; 639 } 640 641 for (i = 0; i < vm_ndomains; i++) 642 DOMAINSET_SET(i, &all_domains); 643 #else 644 (void)ndomains; 645 (void)affinity; 646 (void)locality; 647 #endif 648 } 649 650 /* 651 * Split a contiguous, power of two-sized set of physical pages. 652 * 653 * When this function is called by a page allocation function, the caller 654 * should request insertion at the head unless the order [order, oind) queues 655 * are known to be empty. The objective being to reduce the likelihood of 656 * long-term fragmentation by promoting contemporaneous allocation and 657 * (hopefully) deallocation. 658 */ 659 static __inline void 660 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order, 661 int tail) 662 { 663 vm_page_t m_buddy; 664 665 while (oind > order) { 666 oind--; 667 m_buddy = &m[1 << oind]; 668 KASSERT(m_buddy->order == VM_NFREEORDER, 669 ("vm_phys_split_pages: page %p has unexpected order %d", 670 m_buddy, m_buddy->order)); 671 vm_freelist_add(fl, m_buddy, oind, tail); 672 } 673 } 674 675 /* 676 * Add the physical pages [m, m + npages) at the end of a power-of-two aligned 677 * and sized set to the specified free list. 678 * 679 * When this function is called by a page allocation function, the caller 680 * should request insertion at the head unless the lower-order queues are 681 * known to be empty. The objective being to reduce the likelihood of long- 682 * term fragmentation by promoting contemporaneous allocation and (hopefully) 683 * deallocation. 684 * 685 * The physical page m's buddy must not be free. 686 */ 687 static void 688 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail) 689 { 690 u_int n; 691 int order; 692 693 KASSERT(npages > 0, ("vm_phys_enq_range: npages is 0")); 694 KASSERT(((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) & 695 ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0, 696 ("vm_phys_enq_range: page %p and npages %u are misaligned", 697 m, npages)); 698 do { 699 KASSERT(m->order == VM_NFREEORDER, 700 ("vm_phys_enq_range: page %p has unexpected order %d", 701 m, m->order)); 702 order = ffs(npages) - 1; 703 KASSERT(order < VM_NFREEORDER, 704 ("vm_phys_enq_range: order %d is out of range", order)); 705 vm_freelist_add(fl, m, order, tail); 706 n = 1 << order; 707 m += n; 708 npages -= n; 709 } while (npages > 0); 710 } 711 712 /* 713 * Set the pool for a contiguous, power of two-sized set of physical pages. 714 */ 715 static void 716 vm_phys_set_pool(int pool, vm_page_t m, int order) 717 { 718 vm_page_t m_tmp; 719 720 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++) 721 m_tmp->pool = pool; 722 } 723 724 /* 725 * Tries to allocate the specified number of pages from the specified pool 726 * within the specified domain. Returns the actual number of allocated pages 727 * and a pointer to each page through the array ma[]. 728 * 729 * The returned pages may not be physically contiguous. However, in contrast 730 * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0), 731 * calling this function once to allocate the desired number of pages will 732 * avoid wasted time in vm_phys_split_pages(). 733 * 734 * The free page queues for the specified domain must be locked. 735 */ 736 int 737 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[]) 738 { 739 struct vm_freelist *alt, *fl; 740 vm_page_t m; 741 int avail, end, flind, freelist, i, need, oind, pind; 742 743 KASSERT(domain >= 0 && domain < vm_ndomains, 744 ("vm_phys_alloc_npages: domain %d is out of range", domain)); 745 KASSERT(pool < VM_NFREEPOOL, 746 ("vm_phys_alloc_npages: pool %d is out of range", pool)); 747 KASSERT(npages <= 1 << (VM_NFREEORDER - 1), 748 ("vm_phys_alloc_npages: npages %d is out of range", npages)); 749 vm_domain_free_assert_locked(VM_DOMAIN(domain)); 750 i = 0; 751 for (freelist = 0; freelist < VM_NFREELIST; freelist++) { 752 flind = vm_freelist_to_flind[freelist]; 753 if (flind < 0) 754 continue; 755 fl = vm_phys_free_queues[domain][flind][pool]; 756 for (oind = 0; oind < VM_NFREEORDER; oind++) { 757 while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) { 758 vm_freelist_rem(fl, m, oind); 759 avail = 1 << oind; 760 need = imin(npages - i, avail); 761 for (end = i + need; i < end;) 762 ma[i++] = m++; 763 if (need < avail) { 764 /* 765 * Return excess pages to fl. Its 766 * order [0, oind) queues are empty. 767 */ 768 vm_phys_enq_range(m, avail - need, fl, 769 1); 770 return (npages); 771 } else if (i == npages) 772 return (npages); 773 } 774 } 775 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 776 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 777 alt = vm_phys_free_queues[domain][flind][pind]; 778 while ((m = TAILQ_FIRST(&alt[oind].pl)) != 779 NULL) { 780 vm_freelist_rem(alt, m, oind); 781 vm_phys_set_pool(pool, m, oind); 782 avail = 1 << oind; 783 need = imin(npages - i, avail); 784 for (end = i + need; i < end;) 785 ma[i++] = m++; 786 if (need < avail) { 787 /* 788 * Return excess pages to fl. 789 * Its order [0, oind) queues 790 * are empty. 791 */ 792 vm_phys_enq_range(m, avail - 793 need, fl, 1); 794 return (npages); 795 } else if (i == npages) 796 return (npages); 797 } 798 } 799 } 800 } 801 return (i); 802 } 803 804 /* 805 * Allocate a contiguous, power of two-sized set of physical pages 806 * from the free lists. 807 * 808 * The free page queues must be locked. 809 */ 810 vm_page_t 811 vm_phys_alloc_pages(int domain, int pool, int order) 812 { 813 vm_page_t m; 814 int freelist; 815 816 for (freelist = 0; freelist < VM_NFREELIST; freelist++) { 817 m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order); 818 if (m != NULL) 819 return (m); 820 } 821 return (NULL); 822 } 823 824 /* 825 * Allocate a contiguous, power of two-sized set of physical pages from the 826 * specified free list. The free list must be specified using one of the 827 * manifest constants VM_FREELIST_*. 828 * 829 * The free page queues must be locked. 830 */ 831 vm_page_t 832 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order) 833 { 834 struct vm_freelist *alt, *fl; 835 vm_page_t m; 836 int oind, pind, flind; 837 838 KASSERT(domain >= 0 && domain < vm_ndomains, 839 ("vm_phys_alloc_freelist_pages: domain %d is out of range", 840 domain)); 841 KASSERT(freelist < VM_NFREELIST, 842 ("vm_phys_alloc_freelist_pages: freelist %d is out of range", 843 freelist)); 844 KASSERT(pool < VM_NFREEPOOL, 845 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool)); 846 KASSERT(order < VM_NFREEORDER, 847 ("vm_phys_alloc_freelist_pages: order %d is out of range", order)); 848 849 flind = vm_freelist_to_flind[freelist]; 850 /* Check if freelist is present */ 851 if (flind < 0) 852 return (NULL); 853 854 vm_domain_free_assert_locked(VM_DOMAIN(domain)); 855 fl = &vm_phys_free_queues[domain][flind][pool][0]; 856 for (oind = order; oind < VM_NFREEORDER; oind++) { 857 m = TAILQ_FIRST(&fl[oind].pl); 858 if (m != NULL) { 859 vm_freelist_rem(fl, m, oind); 860 /* The order [order, oind) queues are empty. */ 861 vm_phys_split_pages(m, oind, fl, order, 1); 862 return (m); 863 } 864 } 865 866 /* 867 * The given pool was empty. Find the largest 868 * contiguous, power-of-two-sized set of pages in any 869 * pool. Transfer these pages to the given pool, and 870 * use them to satisfy the allocation. 871 */ 872 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) { 873 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 874 alt = &vm_phys_free_queues[domain][flind][pind][0]; 875 m = TAILQ_FIRST(&alt[oind].pl); 876 if (m != NULL) { 877 vm_freelist_rem(alt, m, oind); 878 vm_phys_set_pool(pool, m, oind); 879 /* The order [order, oind) queues are empty. */ 880 vm_phys_split_pages(m, oind, fl, order, 1); 881 return (m); 882 } 883 } 884 } 885 return (NULL); 886 } 887 888 /* 889 * Find the vm_page corresponding to the given physical address. 890 */ 891 vm_page_t 892 vm_phys_paddr_to_vm_page(vm_paddr_t pa) 893 { 894 struct vm_phys_seg *seg; 895 int segind; 896 897 for (segind = 0; segind < vm_phys_nsegs; segind++) { 898 seg = &vm_phys_segs[segind]; 899 if (pa >= seg->start && pa < seg->end) 900 return (&seg->first_page[atop(pa - seg->start)]); 901 } 902 return (NULL); 903 } 904 905 vm_page_t 906 vm_phys_fictitious_to_vm_page(vm_paddr_t pa) 907 { 908 struct vm_phys_fictitious_seg tmp, *seg; 909 vm_page_t m; 910 911 m = NULL; 912 tmp.start = pa; 913 tmp.end = 0; 914 915 rw_rlock(&vm_phys_fictitious_reg_lock); 916 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp); 917 rw_runlock(&vm_phys_fictitious_reg_lock); 918 if (seg == NULL) 919 return (NULL); 920 921 m = &seg->first_page[atop(pa - seg->start)]; 922 KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m)); 923 924 return (m); 925 } 926 927 static inline void 928 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start, 929 long page_count, vm_memattr_t memattr) 930 { 931 long i; 932 933 bzero(range, page_count * sizeof(*range)); 934 for (i = 0; i < page_count; i++) { 935 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr); 936 range[i].oflags &= ~VPO_UNMANAGED; 937 range[i].busy_lock = VPB_UNBUSIED; 938 } 939 } 940 941 int 942 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end, 943 vm_memattr_t memattr) 944 { 945 struct vm_phys_fictitious_seg *seg; 946 vm_page_t fp; 947 long page_count; 948 #ifdef VM_PHYSSEG_DENSE 949 long pi, pe; 950 long dpage_count; 951 #endif 952 953 KASSERT(start < end, 954 ("Start of segment isn't less than end (start: %jx end: %jx)", 955 (uintmax_t)start, (uintmax_t)end)); 956 957 page_count = (end - start) / PAGE_SIZE; 958 959 #ifdef VM_PHYSSEG_DENSE 960 pi = atop(start); 961 pe = atop(end); 962 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 963 fp = &vm_page_array[pi - first_page]; 964 if ((pe - first_page) > vm_page_array_size) { 965 /* 966 * We have a segment that starts inside 967 * of vm_page_array, but ends outside of it. 968 * 969 * Use vm_page_array pages for those that are 970 * inside of the vm_page_array range, and 971 * allocate the remaining ones. 972 */ 973 dpage_count = vm_page_array_size - (pi - first_page); 974 vm_phys_fictitious_init_range(fp, start, dpage_count, 975 memattr); 976 page_count -= dpage_count; 977 start += ptoa(dpage_count); 978 goto alloc; 979 } 980 /* 981 * We can allocate the full range from vm_page_array, 982 * so there's no need to register the range in the tree. 983 */ 984 vm_phys_fictitious_init_range(fp, start, page_count, memattr); 985 return (0); 986 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) { 987 /* 988 * We have a segment that ends inside of vm_page_array, 989 * but starts outside of it. 990 */ 991 fp = &vm_page_array[0]; 992 dpage_count = pe - first_page; 993 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count, 994 memattr); 995 end -= ptoa(dpage_count); 996 page_count -= dpage_count; 997 goto alloc; 998 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) { 999 /* 1000 * Trying to register a fictitious range that expands before 1001 * and after vm_page_array. 1002 */ 1003 return (EINVAL); 1004 } else { 1005 alloc: 1006 #endif 1007 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES, 1008 M_WAITOK); 1009 #ifdef VM_PHYSSEG_DENSE 1010 } 1011 #endif 1012 vm_phys_fictitious_init_range(fp, start, page_count, memattr); 1013 1014 seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO); 1015 seg->start = start; 1016 seg->end = end; 1017 seg->first_page = fp; 1018 1019 rw_wlock(&vm_phys_fictitious_reg_lock); 1020 RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg); 1021 rw_wunlock(&vm_phys_fictitious_reg_lock); 1022 1023 return (0); 1024 } 1025 1026 void 1027 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end) 1028 { 1029 struct vm_phys_fictitious_seg *seg, tmp; 1030 #ifdef VM_PHYSSEG_DENSE 1031 long pi, pe; 1032 #endif 1033 1034 KASSERT(start < end, 1035 ("Start of segment isn't less than end (start: %jx end: %jx)", 1036 (uintmax_t)start, (uintmax_t)end)); 1037 1038 #ifdef VM_PHYSSEG_DENSE 1039 pi = atop(start); 1040 pe = atop(end); 1041 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1042 if ((pe - first_page) <= vm_page_array_size) { 1043 /* 1044 * This segment was allocated using vm_page_array 1045 * only, there's nothing to do since those pages 1046 * were never added to the tree. 1047 */ 1048 return; 1049 } 1050 /* 1051 * We have a segment that starts inside 1052 * of vm_page_array, but ends outside of it. 1053 * 1054 * Calculate how many pages were added to the 1055 * tree and free them. 1056 */ 1057 start = ptoa(first_page + vm_page_array_size); 1058 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) { 1059 /* 1060 * We have a segment that ends inside of vm_page_array, 1061 * but starts outside of it. 1062 */ 1063 end = ptoa(first_page); 1064 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) { 1065 /* Since it's not possible to register such a range, panic. */ 1066 panic( 1067 "Unregistering not registered fictitious range [%#jx:%#jx]", 1068 (uintmax_t)start, (uintmax_t)end); 1069 } 1070 #endif 1071 tmp.start = start; 1072 tmp.end = 0; 1073 1074 rw_wlock(&vm_phys_fictitious_reg_lock); 1075 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp); 1076 if (seg->start != start || seg->end != end) { 1077 rw_wunlock(&vm_phys_fictitious_reg_lock); 1078 panic( 1079 "Unregistering not registered fictitious range [%#jx:%#jx]", 1080 (uintmax_t)start, (uintmax_t)end); 1081 } 1082 RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg); 1083 rw_wunlock(&vm_phys_fictitious_reg_lock); 1084 free(seg->first_page, M_FICT_PAGES); 1085 free(seg, M_FICT_PAGES); 1086 } 1087 1088 /* 1089 * Free a contiguous, power of two-sized set of physical pages. 1090 * 1091 * The free page queues must be locked. 1092 */ 1093 void 1094 vm_phys_free_pages(vm_page_t m, int order) 1095 { 1096 struct vm_freelist *fl; 1097 struct vm_phys_seg *seg; 1098 vm_paddr_t pa; 1099 vm_page_t m_buddy; 1100 1101 KASSERT(m->order == VM_NFREEORDER, 1102 ("vm_phys_free_pages: page %p has unexpected order %d", 1103 m, m->order)); 1104 KASSERT(m->pool < VM_NFREEPOOL, 1105 ("vm_phys_free_pages: page %p has unexpected pool %d", 1106 m, m->pool)); 1107 KASSERT(order < VM_NFREEORDER, 1108 ("vm_phys_free_pages: order %d is out of range", order)); 1109 seg = &vm_phys_segs[m->segind]; 1110 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain)); 1111 if (order < VM_NFREEORDER - 1) { 1112 pa = VM_PAGE_TO_PHYS(m); 1113 do { 1114 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order)); 1115 if (pa < seg->start || pa >= seg->end) 1116 break; 1117 m_buddy = &seg->first_page[atop(pa - seg->start)]; 1118 if (m_buddy->order != order) 1119 break; 1120 fl = (*seg->free_queues)[m_buddy->pool]; 1121 vm_freelist_rem(fl, m_buddy, order); 1122 if (m_buddy->pool != m->pool) 1123 vm_phys_set_pool(m->pool, m_buddy, order); 1124 order++; 1125 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1); 1126 m = &seg->first_page[atop(pa - seg->start)]; 1127 } while (order < VM_NFREEORDER - 1); 1128 } 1129 fl = (*seg->free_queues)[m->pool]; 1130 vm_freelist_add(fl, m, order, 1); 1131 } 1132 1133 /* 1134 * Return the largest possible order of a set of pages starting at m. 1135 */ 1136 static int 1137 max_order(vm_page_t m) 1138 { 1139 1140 /* 1141 * Unsigned "min" is used here so that "order" is assigned 1142 * "VM_NFREEORDER - 1" when "m"'s physical address is zero 1143 * or the low-order bits of its physical address are zero 1144 * because the size of a physical address exceeds the size of 1145 * a long. 1146 */ 1147 return (min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1, 1148 VM_NFREEORDER - 1)); 1149 } 1150 1151 /* 1152 * Free a contiguous, arbitrarily sized set of physical pages, without 1153 * merging across set boundaries. 1154 * 1155 * The free page queues must be locked. 1156 */ 1157 void 1158 vm_phys_enqueue_contig(vm_page_t m, u_long npages) 1159 { 1160 struct vm_freelist *fl; 1161 struct vm_phys_seg *seg; 1162 vm_page_t m_end; 1163 int order; 1164 1165 /* 1166 * Avoid unnecessary coalescing by freeing the pages in the largest 1167 * possible power-of-two-sized subsets. 1168 */ 1169 vm_domain_free_assert_locked(vm_pagequeue_domain(m)); 1170 seg = &vm_phys_segs[m->segind]; 1171 fl = (*seg->free_queues)[m->pool]; 1172 m_end = m + npages; 1173 /* Free blocks of increasing size. */ 1174 while ((order = max_order(m)) < VM_NFREEORDER - 1 && 1175 m + (1 << order) <= m_end) { 1176 KASSERT(seg == &vm_phys_segs[m->segind], 1177 ("%s: page range [%p,%p) spans multiple segments", 1178 __func__, m_end - npages, m)); 1179 vm_freelist_add(fl, m, order, 1); 1180 m += 1 << order; 1181 } 1182 /* Free blocks of maximum size. */ 1183 while (m + (1 << order) <= m_end) { 1184 KASSERT(seg == &vm_phys_segs[m->segind], 1185 ("%s: page range [%p,%p) spans multiple segments", 1186 __func__, m_end - npages, m)); 1187 vm_freelist_add(fl, m, order, 1); 1188 m += 1 << order; 1189 } 1190 /* Free blocks of diminishing size. */ 1191 while (m < m_end) { 1192 KASSERT(seg == &vm_phys_segs[m->segind], 1193 ("%s: page range [%p,%p) spans multiple segments", 1194 __func__, m_end - npages, m)); 1195 order = flsl(m_end - m) - 1; 1196 vm_freelist_add(fl, m, order, 1); 1197 m += 1 << order; 1198 } 1199 } 1200 1201 /* 1202 * Free a contiguous, arbitrarily sized set of physical pages. 1203 * 1204 * The free page queues must be locked. 1205 */ 1206 void 1207 vm_phys_free_contig(vm_page_t m, u_long npages) 1208 { 1209 int order_start, order_end; 1210 vm_page_t m_start, m_end; 1211 1212 vm_domain_free_assert_locked(vm_pagequeue_domain(m)); 1213 1214 m_start = m; 1215 order_start = max_order(m_start); 1216 if (order_start < VM_NFREEORDER - 1) 1217 m_start += 1 << order_start; 1218 m_end = m + npages; 1219 order_end = max_order(m_end); 1220 if (order_end < VM_NFREEORDER - 1) 1221 m_end -= 1 << order_end; 1222 /* 1223 * Avoid unnecessary coalescing by freeing the pages at the start and 1224 * end of the range last. 1225 */ 1226 if (m_start < m_end) 1227 vm_phys_enqueue_contig(m_start, m_end - m_start); 1228 if (order_start < VM_NFREEORDER - 1) 1229 vm_phys_free_pages(m, order_start); 1230 if (order_end < VM_NFREEORDER - 1) 1231 vm_phys_free_pages(m_end, order_end); 1232 } 1233 1234 /* 1235 * Scan physical memory between the specified addresses "low" and "high" for a 1236 * run of contiguous physical pages that satisfy the specified conditions, and 1237 * return the lowest page in the run. The specified "alignment" determines 1238 * the alignment of the lowest physical page in the run. If the specified 1239 * "boundary" is non-zero, then the run of physical pages cannot span a 1240 * physical address that is a multiple of "boundary". 1241 * 1242 * "npages" must be greater than zero. Both "alignment" and "boundary" must 1243 * be a power of two. 1244 */ 1245 vm_page_t 1246 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, 1247 u_long alignment, vm_paddr_t boundary, int options) 1248 { 1249 vm_paddr_t pa_end; 1250 vm_page_t m_end, m_run, m_start; 1251 struct vm_phys_seg *seg; 1252 int segind; 1253 1254 KASSERT(npages > 0, ("npages is 0")); 1255 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 1256 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 1257 if (low >= high) 1258 return (NULL); 1259 for (segind = 0; segind < vm_phys_nsegs; segind++) { 1260 seg = &vm_phys_segs[segind]; 1261 if (seg->domain != domain) 1262 continue; 1263 if (seg->start >= high) 1264 break; 1265 if (low >= seg->end) 1266 continue; 1267 if (low <= seg->start) 1268 m_start = seg->first_page; 1269 else 1270 m_start = &seg->first_page[atop(low - seg->start)]; 1271 if (high < seg->end) 1272 pa_end = high; 1273 else 1274 pa_end = seg->end; 1275 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages)) 1276 continue; 1277 m_end = &seg->first_page[atop(pa_end - seg->start)]; 1278 m_run = vm_page_scan_contig(npages, m_start, m_end, 1279 alignment, boundary, options); 1280 if (m_run != NULL) 1281 return (m_run); 1282 } 1283 return (NULL); 1284 } 1285 1286 /* 1287 * Search for the given physical page "m" in the free lists. If the search 1288 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return 1289 * FALSE, indicating that "m" is not in the free lists. 1290 * 1291 * The free page queues must be locked. 1292 */ 1293 boolean_t 1294 vm_phys_unfree_page(vm_page_t m) 1295 { 1296 struct vm_freelist *fl; 1297 struct vm_phys_seg *seg; 1298 vm_paddr_t pa, pa_half; 1299 vm_page_t m_set, m_tmp; 1300 int order; 1301 1302 /* 1303 * First, find the contiguous, power of two-sized set of free 1304 * physical pages containing the given physical page "m" and 1305 * assign it to "m_set". 1306 */ 1307 seg = &vm_phys_segs[m->segind]; 1308 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain)); 1309 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER && 1310 order < VM_NFREEORDER - 1; ) { 1311 order++; 1312 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order)); 1313 if (pa >= seg->start) 1314 m_set = &seg->first_page[atop(pa - seg->start)]; 1315 else 1316 return (FALSE); 1317 } 1318 if (m_set->order < order) 1319 return (FALSE); 1320 if (m_set->order == VM_NFREEORDER) 1321 return (FALSE); 1322 KASSERT(m_set->order < VM_NFREEORDER, 1323 ("vm_phys_unfree_page: page %p has unexpected order %d", 1324 m_set, m_set->order)); 1325 1326 /* 1327 * Next, remove "m_set" from the free lists. Finally, extract 1328 * "m" from "m_set" using an iterative algorithm: While "m_set" 1329 * is larger than a page, shrink "m_set" by returning the half 1330 * of "m_set" that does not contain "m" to the free lists. 1331 */ 1332 fl = (*seg->free_queues)[m_set->pool]; 1333 order = m_set->order; 1334 vm_freelist_rem(fl, m_set, order); 1335 while (order > 0) { 1336 order--; 1337 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order)); 1338 if (m->phys_addr < pa_half) 1339 m_tmp = &seg->first_page[atop(pa_half - seg->start)]; 1340 else { 1341 m_tmp = m_set; 1342 m_set = &seg->first_page[atop(pa_half - seg->start)]; 1343 } 1344 vm_freelist_add(fl, m_tmp, order, 0); 1345 } 1346 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency")); 1347 return (TRUE); 1348 } 1349 1350 /* 1351 * Allocate a run of contiguous physical pages from the specified free list 1352 * table. 1353 */ 1354 static vm_page_t 1355 vm_phys_alloc_queues_contig( 1356 struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX], 1357 u_long npages, vm_paddr_t low, vm_paddr_t high, 1358 u_long alignment, vm_paddr_t boundary) 1359 { 1360 struct vm_phys_seg *seg; 1361 struct vm_freelist *fl; 1362 vm_paddr_t pa, pa_end, size; 1363 vm_page_t m, m_ret; 1364 u_long npages_end; 1365 int oind, order, pind; 1366 1367 KASSERT(npages > 0, ("npages is 0")); 1368 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 1369 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 1370 /* Compute the queue that is the best fit for npages. */ 1371 order = flsl(npages - 1); 1372 /* Search for a run satisfying the specified conditions. */ 1373 size = npages << PAGE_SHIFT; 1374 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; 1375 oind++) { 1376 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 1377 fl = (*queues)[pind]; 1378 TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) { 1379 /* 1380 * Determine if the address range starting at pa 1381 * is within the given range, satisfies the 1382 * given alignment, and does not cross the given 1383 * boundary. 1384 */ 1385 pa = VM_PAGE_TO_PHYS(m_ret); 1386 pa_end = pa + size; 1387 if (pa < low || pa_end > high || 1388 !vm_addr_ok(pa, size, alignment, boundary)) 1389 continue; 1390 1391 /* 1392 * Is the size of this allocation request 1393 * no more than the largest block size? 1394 */ 1395 if (order < VM_NFREEORDER) 1396 goto done; 1397 1398 /* 1399 * Determine if the address range is valid 1400 * (without overflow in pa_end calculation) 1401 * and fits within the segment. 1402 */ 1403 seg = &vm_phys_segs[m_ret->segind]; 1404 if (pa_end < pa || seg->end < pa_end) 1405 continue; 1406 1407 /* 1408 * Determine if a series of free oind-blocks 1409 * starting here can satisfy the allocation 1410 * request. 1411 */ 1412 do { 1413 pa += 1 << 1414 (PAGE_SHIFT + VM_NFREEORDER - 1); 1415 if (pa >= pa_end) 1416 goto done; 1417 } while (VM_NFREEORDER - 1 == seg->first_page[ 1418 atop(pa - seg->start)].order); 1419 1420 /* 1421 * Determine if an additional series of free 1422 * blocks of diminishing size can help to 1423 * satisfy the allocation request. 1424 */ 1425 for (;;) { 1426 m = &seg->first_page[ 1427 atop(pa - seg->start)]; 1428 if (m->order == VM_NFREEORDER || 1429 pa + (2 << (PAGE_SHIFT + m->order)) 1430 <= pa_end) 1431 break; 1432 pa += 1 << (PAGE_SHIFT + m->order); 1433 if (pa >= pa_end) 1434 goto done; 1435 } 1436 } 1437 } 1438 } 1439 return (NULL); 1440 done: 1441 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) { 1442 fl = (*queues)[m->pool]; 1443 oind = m->order; 1444 vm_freelist_rem(fl, m, oind); 1445 if (m->pool != VM_FREEPOOL_DEFAULT) 1446 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind); 1447 } 1448 /* Return excess pages to the free lists. */ 1449 npages_end = roundup2(npages, 1 << oind); 1450 if (npages < npages_end) { 1451 fl = (*queues)[VM_FREEPOOL_DEFAULT]; 1452 vm_phys_enq_range(&m_ret[npages], npages_end - npages, fl, 0); 1453 } 1454 return (m_ret); 1455 } 1456 1457 /* 1458 * Allocate a contiguous set of physical pages of the given size 1459 * "npages" from the free lists. All of the physical pages must be at 1460 * or above the given physical address "low" and below the given 1461 * physical address "high". The given value "alignment" determines the 1462 * alignment of the first physical page in the set. If the given value 1463 * "boundary" is non-zero, then the set of physical pages cannot cross 1464 * any physical address boundary that is a multiple of that value. Both 1465 * "alignment" and "boundary" must be a power of two. 1466 */ 1467 vm_page_t 1468 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, 1469 u_long alignment, vm_paddr_t boundary) 1470 { 1471 vm_paddr_t pa_end, pa_start; 1472 vm_page_t m_run; 1473 struct vm_phys_seg *seg; 1474 struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX]; 1475 int segind; 1476 1477 KASSERT(npages > 0, ("npages is 0")); 1478 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 1479 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 1480 vm_domain_free_assert_locked(VM_DOMAIN(domain)); 1481 if (low >= high) 1482 return (NULL); 1483 queues = NULL; 1484 m_run = NULL; 1485 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) { 1486 seg = &vm_phys_segs[segind]; 1487 if (seg->start >= high || seg->domain != domain) 1488 continue; 1489 if (low >= seg->end) 1490 break; 1491 if (low <= seg->start) 1492 pa_start = seg->start; 1493 else 1494 pa_start = low; 1495 if (high < seg->end) 1496 pa_end = high; 1497 else 1498 pa_end = seg->end; 1499 if (pa_end - pa_start < ptoa(npages)) 1500 continue; 1501 /* 1502 * If a previous segment led to a search using 1503 * the same free lists as would this segment, then 1504 * we've actually already searched within this 1505 * too. So skip it. 1506 */ 1507 if (seg->free_queues == queues) 1508 continue; 1509 queues = seg->free_queues; 1510 m_run = vm_phys_alloc_queues_contig(queues, npages, 1511 low, high, alignment, boundary); 1512 if (m_run != NULL) 1513 break; 1514 } 1515 return (m_run); 1516 } 1517 1518 /* 1519 * Return the index of the first unused slot which may be the terminating 1520 * entry. 1521 */ 1522 static int 1523 vm_phys_avail_count(void) 1524 { 1525 int i; 1526 1527 for (i = 0; phys_avail[i + 1]; i += 2) 1528 continue; 1529 if (i > PHYS_AVAIL_ENTRIES) 1530 panic("Improperly terminated phys_avail %d entries", i); 1531 1532 return (i); 1533 } 1534 1535 /* 1536 * Assert that a phys_avail entry is valid. 1537 */ 1538 static void 1539 vm_phys_avail_check(int i) 1540 { 1541 if (phys_avail[i] & PAGE_MASK) 1542 panic("Unaligned phys_avail[%d]: %#jx", i, 1543 (intmax_t)phys_avail[i]); 1544 if (phys_avail[i+1] & PAGE_MASK) 1545 panic("Unaligned phys_avail[%d + 1]: %#jx", i, 1546 (intmax_t)phys_avail[i]); 1547 if (phys_avail[i + 1] < phys_avail[i]) 1548 panic("phys_avail[%d] start %#jx < end %#jx", i, 1549 (intmax_t)phys_avail[i], (intmax_t)phys_avail[i+1]); 1550 } 1551 1552 /* 1553 * Return the index of an overlapping phys_avail entry or -1. 1554 */ 1555 #ifdef NUMA 1556 static int 1557 vm_phys_avail_find(vm_paddr_t pa) 1558 { 1559 int i; 1560 1561 for (i = 0; phys_avail[i + 1]; i += 2) 1562 if (phys_avail[i] <= pa && phys_avail[i + 1] > pa) 1563 return (i); 1564 return (-1); 1565 } 1566 #endif 1567 1568 /* 1569 * Return the index of the largest entry. 1570 */ 1571 int 1572 vm_phys_avail_largest(void) 1573 { 1574 vm_paddr_t sz, largesz; 1575 int largest; 1576 int i; 1577 1578 largest = 0; 1579 largesz = 0; 1580 for (i = 0; phys_avail[i + 1]; i += 2) { 1581 sz = vm_phys_avail_size(i); 1582 if (sz > largesz) { 1583 largesz = sz; 1584 largest = i; 1585 } 1586 } 1587 1588 return (largest); 1589 } 1590 1591 vm_paddr_t 1592 vm_phys_avail_size(int i) 1593 { 1594 1595 return (phys_avail[i + 1] - phys_avail[i]); 1596 } 1597 1598 /* 1599 * Split an entry at the address 'pa'. Return zero on success or errno. 1600 */ 1601 static int 1602 vm_phys_avail_split(vm_paddr_t pa, int i) 1603 { 1604 int cnt; 1605 1606 vm_phys_avail_check(i); 1607 if (pa <= phys_avail[i] || pa >= phys_avail[i + 1]) 1608 panic("vm_phys_avail_split: invalid address"); 1609 cnt = vm_phys_avail_count(); 1610 if (cnt >= PHYS_AVAIL_ENTRIES) 1611 return (ENOSPC); 1612 memmove(&phys_avail[i + 2], &phys_avail[i], 1613 (cnt - i) * sizeof(phys_avail[0])); 1614 phys_avail[i + 1] = pa; 1615 phys_avail[i + 2] = pa; 1616 vm_phys_avail_check(i); 1617 vm_phys_avail_check(i+2); 1618 1619 return (0); 1620 } 1621 1622 /* 1623 * Check if a given physical address can be included as part of a crash dump. 1624 */ 1625 bool 1626 vm_phys_is_dumpable(vm_paddr_t pa) 1627 { 1628 vm_page_t m; 1629 int i; 1630 1631 if ((m = vm_phys_paddr_to_vm_page(pa)) != NULL) 1632 return ((m->flags & PG_NODUMP) == 0); 1633 1634 for (i = 0; dump_avail[i] != 0 || dump_avail[i + 1] != 0; i += 2) { 1635 if (pa >= dump_avail[i] && pa < dump_avail[i + 1]) 1636 return (true); 1637 } 1638 return (false); 1639 } 1640 1641 void 1642 vm_phys_early_add_seg(vm_paddr_t start, vm_paddr_t end) 1643 { 1644 struct vm_phys_seg *seg; 1645 1646 if (vm_phys_early_nsegs == -1) 1647 panic("%s: called after initialization", __func__); 1648 if (vm_phys_early_nsegs == nitems(vm_phys_early_segs)) 1649 panic("%s: ran out of early segments", __func__); 1650 1651 seg = &vm_phys_early_segs[vm_phys_early_nsegs++]; 1652 seg->start = start; 1653 seg->end = end; 1654 } 1655 1656 /* 1657 * This routine allocates NUMA node specific memory before the page 1658 * allocator is bootstrapped. 1659 */ 1660 vm_paddr_t 1661 vm_phys_early_alloc(int domain, size_t alloc_size) 1662 { 1663 int i, mem_index, biggestone; 1664 vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align; 1665 1666 KASSERT(domain == -1 || (domain >= 0 && domain < vm_ndomains), 1667 ("%s: invalid domain index %d", __func__, domain)); 1668 1669 /* 1670 * Search the mem_affinity array for the biggest address 1671 * range in the desired domain. This is used to constrain 1672 * the phys_avail selection below. 1673 */ 1674 biggestsize = 0; 1675 mem_index = 0; 1676 mem_start = 0; 1677 mem_end = -1; 1678 #ifdef NUMA 1679 if (mem_affinity != NULL) { 1680 for (i = 0;; i++) { 1681 size = mem_affinity[i].end - mem_affinity[i].start; 1682 if (size == 0) 1683 break; 1684 if (domain != -1 && mem_affinity[i].domain != domain) 1685 continue; 1686 if (size > biggestsize) { 1687 mem_index = i; 1688 biggestsize = size; 1689 } 1690 } 1691 mem_start = mem_affinity[mem_index].start; 1692 mem_end = mem_affinity[mem_index].end; 1693 } 1694 #endif 1695 1696 /* 1697 * Now find biggest physical segment in within the desired 1698 * numa domain. 1699 */ 1700 biggestsize = 0; 1701 biggestone = 0; 1702 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 1703 /* skip regions that are out of range */ 1704 if (phys_avail[i+1] - alloc_size < mem_start || 1705 phys_avail[i+1] > mem_end) 1706 continue; 1707 size = vm_phys_avail_size(i); 1708 if (size > biggestsize) { 1709 biggestone = i; 1710 biggestsize = size; 1711 } 1712 } 1713 alloc_size = round_page(alloc_size); 1714 1715 /* 1716 * Grab single pages from the front to reduce fragmentation. 1717 */ 1718 if (alloc_size == PAGE_SIZE) { 1719 pa = phys_avail[biggestone]; 1720 phys_avail[biggestone] += PAGE_SIZE; 1721 vm_phys_avail_check(biggestone); 1722 return (pa); 1723 } 1724 1725 /* 1726 * Naturally align large allocations. 1727 */ 1728 align = phys_avail[biggestone + 1] & (alloc_size - 1); 1729 if (alloc_size + align > biggestsize) 1730 panic("cannot find a large enough size\n"); 1731 if (align != 0 && 1732 vm_phys_avail_split(phys_avail[biggestone + 1] - align, 1733 biggestone) != 0) 1734 /* Wasting memory. */ 1735 phys_avail[biggestone + 1] -= align; 1736 1737 phys_avail[biggestone + 1] -= alloc_size; 1738 vm_phys_avail_check(biggestone); 1739 pa = phys_avail[biggestone + 1]; 1740 return (pa); 1741 } 1742 1743 void 1744 vm_phys_early_startup(void) 1745 { 1746 struct vm_phys_seg *seg; 1747 int i; 1748 1749 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 1750 phys_avail[i] = round_page(phys_avail[i]); 1751 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 1752 } 1753 1754 for (i = 0; i < vm_phys_early_nsegs; i++) { 1755 seg = &vm_phys_early_segs[i]; 1756 vm_phys_add_seg(seg->start, seg->end); 1757 } 1758 vm_phys_early_nsegs = -1; 1759 1760 #ifdef NUMA 1761 /* Force phys_avail to be split by domain. */ 1762 if (mem_affinity != NULL) { 1763 int idx; 1764 1765 for (i = 0; mem_affinity[i].end != 0; i++) { 1766 idx = vm_phys_avail_find(mem_affinity[i].start); 1767 if (idx != -1 && 1768 phys_avail[idx] != mem_affinity[i].start) 1769 vm_phys_avail_split(mem_affinity[i].start, idx); 1770 idx = vm_phys_avail_find(mem_affinity[i].end); 1771 if (idx != -1 && 1772 phys_avail[idx] != mem_affinity[i].end) 1773 vm_phys_avail_split(mem_affinity[i].end, idx); 1774 } 1775 } 1776 #endif 1777 } 1778 1779 #ifdef DDB 1780 /* 1781 * Show the number of physical pages in each of the free lists. 1782 */ 1783 DB_SHOW_COMMAND(freepages, db_show_freepages) 1784 { 1785 struct vm_freelist *fl; 1786 int flind, oind, pind, dom; 1787 1788 for (dom = 0; dom < vm_ndomains; dom++) { 1789 db_printf("DOMAIN: %d\n", dom); 1790 for (flind = 0; flind < vm_nfreelists; flind++) { 1791 db_printf("FREE LIST %d:\n" 1792 "\n ORDER (SIZE) | NUMBER" 1793 "\n ", flind); 1794 for (pind = 0; pind < VM_NFREEPOOL; pind++) 1795 db_printf(" | POOL %d", pind); 1796 db_printf("\n-- "); 1797 for (pind = 0; pind < VM_NFREEPOOL; pind++) 1798 db_printf("-- -- "); 1799 db_printf("--\n"); 1800 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 1801 db_printf(" %2.2d (%6.6dK)", oind, 1802 1 << (PAGE_SHIFT - 10 + oind)); 1803 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 1804 fl = vm_phys_free_queues[dom][flind][pind]; 1805 db_printf(" | %6.6d", fl[oind].lcnt); 1806 } 1807 db_printf("\n"); 1808 } 1809 db_printf("\n"); 1810 } 1811 db_printf("\n"); 1812 } 1813 } 1814 #endif 1815