xref: /freebsd/sys/vm/vm_phys.c (revision 3f0164abf32b9b761e0a2cb4bdca3a8b84f156d4)
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *	Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/vmmeter.h>
58 
59 #include <ddb/ddb.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_phys.h>
67 
68 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
69     "Too many physsegs.");
70 
71 struct mem_affinity *mem_affinity;
72 
73 int vm_ndomains = 1;
74 
75 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
76 int vm_phys_nsegs;
77 
78 #define VM_PHYS_FICTITIOUS_NSEGS	8
79 static struct vm_phys_fictitious_seg {
80 	vm_paddr_t	start;
81 	vm_paddr_t	end;
82 	vm_page_t	first_page;
83 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
84 static struct mtx vm_phys_fictitious_reg_mtx;
85 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
86 
87 static struct vm_freelist
88     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
89 
90 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
91 
92 static int cnt_prezero;
93 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
94     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
95 
96 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
97 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
98     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
99 
100 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
101 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
102     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
103 
104 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
105     &vm_ndomains, 0, "Number of physical memory domains available.");
106 
107 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
108     int order);
109 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
110     int domain);
111 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
112 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
113 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
114     int order);
115 
116 static __inline int
117 vm_rr_selectdomain(void)
118 {
119 #if MAXMEMDOM > 1
120 	struct thread *td;
121 
122 	td = curthread;
123 
124 	td->td_dom_rr_idx++;
125 	td->td_dom_rr_idx %= vm_ndomains;
126 	return (td->td_dom_rr_idx);
127 #else
128 	return (0);
129 #endif
130 }
131 
132 boolean_t
133 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
134 {
135 	struct vm_phys_seg *s;
136 	int idx;
137 
138 	while ((idx = ffsl(mask)) != 0) {
139 		idx--;	/* ffsl counts from 1 */
140 		mask &= ~(1UL << idx);
141 		s = &vm_phys_segs[idx];
142 		if (low < s->end && high > s->start)
143 			return (TRUE);
144 	}
145 	return (FALSE);
146 }
147 
148 /*
149  * Outputs the state of the physical memory allocator, specifically,
150  * the amount of physical memory in each free list.
151  */
152 static int
153 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
154 {
155 	struct sbuf sbuf;
156 	struct vm_freelist *fl;
157 	int dom, error, flind, oind, pind;
158 
159 	error = sysctl_wire_old_buffer(req, 0);
160 	if (error != 0)
161 		return (error);
162 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
163 	for (dom = 0; dom < vm_ndomains; dom++) {
164 		sbuf_printf(&sbuf,"DOMAIN: %d\n", dom);
165 		for (flind = 0; flind < vm_nfreelists; flind++) {
166 			sbuf_printf(&sbuf, "FREE LIST %d:\n"
167 			    "\n  ORDER (SIZE)  |  NUMBER"
168 			    "\n              ", flind);
169 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
170 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
171 			sbuf_printf(&sbuf, "\n--            ");
172 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
173 				sbuf_printf(&sbuf, "-- --      ");
174 			sbuf_printf(&sbuf, "--\n");
175 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
176 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
177 				    1 << (PAGE_SHIFT - 10 + oind));
178 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
179 				fl = vm_phys_free_queues[dom][flind][pind];
180 					sbuf_printf(&sbuf, "  |  %6.6d",
181 					    fl[oind].lcnt);
182 				}
183 				sbuf_printf(&sbuf, "\n");
184 			}
185 			sbuf_printf(&sbuf, "\n");
186 		}
187 		sbuf_printf(&sbuf, "\n");
188 	}
189 	error = sbuf_finish(&sbuf);
190 	sbuf_delete(&sbuf);
191 	return (error);
192 }
193 
194 /*
195  * Outputs the set of physical memory segments.
196  */
197 static int
198 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
199 {
200 	struct sbuf sbuf;
201 	struct vm_phys_seg *seg;
202 	int error, segind;
203 
204 	error = sysctl_wire_old_buffer(req, 0);
205 	if (error != 0)
206 		return (error);
207 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
208 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
209 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
210 		seg = &vm_phys_segs[segind];
211 		sbuf_printf(&sbuf, "start:     %#jx\n",
212 		    (uintmax_t)seg->start);
213 		sbuf_printf(&sbuf, "end:       %#jx\n",
214 		    (uintmax_t)seg->end);
215 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
216 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
217 	}
218 	error = sbuf_finish(&sbuf);
219 	sbuf_delete(&sbuf);
220 	return (error);
221 }
222 
223 static void
224 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
225 {
226 
227 	m->order = order;
228 	if (tail)
229 		TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
230 	else
231 		TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
232 	fl[order].lcnt++;
233 }
234 
235 static void
236 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
237 {
238 
239 	TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
240 	fl[order].lcnt--;
241 	m->order = VM_NFREEORDER;
242 }
243 
244 /*
245  * Create a physical memory segment.
246  */
247 static void
248 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
249 {
250 	struct vm_phys_seg *seg;
251 #ifdef VM_PHYSSEG_SPARSE
252 	long pages;
253 	int segind;
254 
255 	pages = 0;
256 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
257 		seg = &vm_phys_segs[segind];
258 		pages += atop(seg->end - seg->start);
259 	}
260 #endif
261 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
262 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
263 	KASSERT(domain < vm_ndomains,
264 	    ("vm_phys_create_seg: invalid domain provided"));
265 	seg = &vm_phys_segs[vm_phys_nsegs++];
266 	seg->start = start;
267 	seg->end = end;
268 	seg->domain = domain;
269 #ifdef VM_PHYSSEG_SPARSE
270 	seg->first_page = &vm_page_array[pages];
271 #else
272 	seg->first_page = PHYS_TO_VM_PAGE(start);
273 #endif
274 	seg->free_queues = &vm_phys_free_queues[domain][flind];
275 }
276 
277 static void
278 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
279 {
280 	int i;
281 
282 	if (mem_affinity == NULL) {
283 		_vm_phys_create_seg(start, end, flind, 0);
284 		return;
285 	}
286 
287 	for (i = 0;; i++) {
288 		if (mem_affinity[i].end == 0)
289 			panic("Reached end of affinity info");
290 		if (mem_affinity[i].end <= start)
291 			continue;
292 		if (mem_affinity[i].start > start)
293 			panic("No affinity info for start %jx",
294 			    (uintmax_t)start);
295 		if (mem_affinity[i].end >= end) {
296 			_vm_phys_create_seg(start, end, flind,
297 			    mem_affinity[i].domain);
298 			break;
299 		}
300 		_vm_phys_create_seg(start, mem_affinity[i].end, flind,
301 		    mem_affinity[i].domain);
302 		start = mem_affinity[i].end;
303 	}
304 }
305 
306 /*
307  * Initialize the physical memory allocator.
308  */
309 void
310 vm_phys_init(void)
311 {
312 	struct vm_freelist *fl;
313 	int dom, flind, i, oind, pind;
314 
315 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
316 #ifdef	VM_FREELIST_ISADMA
317 		if (phys_avail[i] < 16777216) {
318 			if (phys_avail[i + 1] > 16777216) {
319 				vm_phys_create_seg(phys_avail[i], 16777216,
320 				    VM_FREELIST_ISADMA);
321 				vm_phys_create_seg(16777216, phys_avail[i + 1],
322 				    VM_FREELIST_DEFAULT);
323 			} else {
324 				vm_phys_create_seg(phys_avail[i],
325 				    phys_avail[i + 1], VM_FREELIST_ISADMA);
326 			}
327 			if (VM_FREELIST_ISADMA >= vm_nfreelists)
328 				vm_nfreelists = VM_FREELIST_ISADMA + 1;
329 		} else
330 #endif
331 #ifdef	VM_FREELIST_HIGHMEM
332 		if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
333 			if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
334 				vm_phys_create_seg(phys_avail[i],
335 				    VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
336 				vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
337 				    phys_avail[i + 1], VM_FREELIST_HIGHMEM);
338 			} else {
339 				vm_phys_create_seg(phys_avail[i],
340 				    phys_avail[i + 1], VM_FREELIST_HIGHMEM);
341 			}
342 			if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
343 				vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
344 		} else
345 #endif
346 		vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
347 		    VM_FREELIST_DEFAULT);
348 	}
349 	for (dom = 0; dom < vm_ndomains; dom++) {
350 		for (flind = 0; flind < vm_nfreelists; flind++) {
351 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
352 				fl = vm_phys_free_queues[dom][flind][pind];
353 				for (oind = 0; oind < VM_NFREEORDER; oind++)
354 					TAILQ_INIT(&fl[oind].pl);
355 			}
356 		}
357 	}
358 	mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
359 }
360 
361 /*
362  * Split a contiguous, power of two-sized set of physical pages.
363  */
364 static __inline void
365 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
366 {
367 	vm_page_t m_buddy;
368 
369 	while (oind > order) {
370 		oind--;
371 		m_buddy = &m[1 << oind];
372 		KASSERT(m_buddy->order == VM_NFREEORDER,
373 		    ("vm_phys_split_pages: page %p has unexpected order %d",
374 		    m_buddy, m_buddy->order));
375 		vm_freelist_add(fl, m_buddy, oind, 0);
376         }
377 }
378 
379 /*
380  * Initialize a physical page and add it to the free lists.
381  */
382 void
383 vm_phys_add_page(vm_paddr_t pa)
384 {
385 	vm_page_t m;
386 	struct vm_domain *vmd;
387 
388 	cnt.v_page_count++;
389 	m = vm_phys_paddr_to_vm_page(pa);
390 	m->phys_addr = pa;
391 	m->queue = PQ_NONE;
392 	m->segind = vm_phys_paddr_to_segind(pa);
393 	vmd = vm_phys_domain(m);
394 	vmd->vmd_page_count++;
395 	vmd->vmd_segs |= 1UL << m->segind;
396 	m->flags = PG_FREE;
397 	KASSERT(m->order == VM_NFREEORDER,
398 	    ("vm_phys_add_page: page %p has unexpected order %d",
399 	    m, m->order));
400 	m->pool = VM_FREEPOOL_DEFAULT;
401 	pmap_page_init(m);
402 	mtx_lock(&vm_page_queue_free_mtx);
403 	vm_phys_freecnt_adj(m, 1);
404 	vm_phys_free_pages(m, 0);
405 	mtx_unlock(&vm_page_queue_free_mtx);
406 }
407 
408 /*
409  * Allocate a contiguous, power of two-sized set of physical pages
410  * from the free lists.
411  *
412  * The free page queues must be locked.
413  */
414 vm_page_t
415 vm_phys_alloc_pages(int pool, int order)
416 {
417 	vm_page_t m;
418 	int dom, domain, flind;
419 
420 	KASSERT(pool < VM_NFREEPOOL,
421 	    ("vm_phys_alloc_pages: pool %d is out of range", pool));
422 	KASSERT(order < VM_NFREEORDER,
423 	    ("vm_phys_alloc_pages: order %d is out of range", order));
424 
425 	for (dom = 0; dom < vm_ndomains; dom++) {
426 		domain = vm_rr_selectdomain();
427 		for (flind = 0; flind < vm_nfreelists; flind++) {
428 			m = vm_phys_alloc_domain_pages(domain, flind, pool,
429 			    order);
430 			if (m != NULL)
431 				return (m);
432 		}
433 	}
434 	return (NULL);
435 }
436 
437 /*
438  * Find and dequeue a free page on the given free list, with the
439  * specified pool and order
440  */
441 vm_page_t
442 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
443 {
444 	vm_page_t m;
445 	int dom, domain;
446 
447 	KASSERT(flind < VM_NFREELIST,
448 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
449 	KASSERT(pool < VM_NFREEPOOL,
450 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
451 	KASSERT(order < VM_NFREEORDER,
452 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
453 
454 	for (dom = 0; dom < vm_ndomains; dom++) {
455 		domain = vm_rr_selectdomain();
456 		m = vm_phys_alloc_domain_pages(domain, flind, pool, order);
457 		if (m != NULL)
458 			return (m);
459 	}
460 	return (NULL);
461 }
462 
463 static vm_page_t
464 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
465 {
466 	struct vm_freelist *fl;
467 	struct vm_freelist *alt;
468 	int oind, pind;
469 	vm_page_t m;
470 
471 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
472 	fl = &vm_phys_free_queues[domain][flind][pool][0];
473 	for (oind = order; oind < VM_NFREEORDER; oind++) {
474 		m = TAILQ_FIRST(&fl[oind].pl);
475 		if (m != NULL) {
476 			vm_freelist_rem(fl, m, oind);
477 			vm_phys_split_pages(m, oind, fl, order);
478 			return (m);
479 		}
480 	}
481 
482 	/*
483 	 * The given pool was empty.  Find the largest
484 	 * contiguous, power-of-two-sized set of pages in any
485 	 * pool.  Transfer these pages to the given pool, and
486 	 * use them to satisfy the allocation.
487 	 */
488 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
489 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
490 			alt = &vm_phys_free_queues[domain][flind][pind][0];
491 			m = TAILQ_FIRST(&alt[oind].pl);
492 			if (m != NULL) {
493 				vm_freelist_rem(alt, m, oind);
494 				vm_phys_set_pool(pool, m, oind);
495 				vm_phys_split_pages(m, oind, fl, order);
496 				return (m);
497 			}
498 		}
499 	}
500 	return (NULL);
501 }
502 
503 /*
504  * Find the vm_page corresponding to the given physical address.
505  */
506 vm_page_t
507 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
508 {
509 	struct vm_phys_seg *seg;
510 	int segind;
511 
512 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
513 		seg = &vm_phys_segs[segind];
514 		if (pa >= seg->start && pa < seg->end)
515 			return (&seg->first_page[atop(pa - seg->start)]);
516 	}
517 	return (NULL);
518 }
519 
520 vm_page_t
521 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
522 {
523 	struct vm_phys_fictitious_seg *seg;
524 	vm_page_t m;
525 	int segind;
526 
527 	m = NULL;
528 	for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
529 		seg = &vm_phys_fictitious_segs[segind];
530 		if (pa >= seg->start && pa < seg->end) {
531 			m = &seg->first_page[atop(pa - seg->start)];
532 			KASSERT((m->flags & PG_FICTITIOUS) != 0,
533 			    ("%p not fictitious", m));
534 			break;
535 		}
536 	}
537 	return (m);
538 }
539 
540 int
541 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
542     vm_memattr_t memattr)
543 {
544 	struct vm_phys_fictitious_seg *seg;
545 	vm_page_t fp;
546 	long i, page_count;
547 	int segind;
548 #ifdef VM_PHYSSEG_DENSE
549 	long pi;
550 	boolean_t malloced;
551 #endif
552 
553 	page_count = (end - start) / PAGE_SIZE;
554 
555 #ifdef VM_PHYSSEG_DENSE
556 	pi = atop(start);
557 	if (pi >= first_page && atop(end) < vm_page_array_size) {
558 		fp = &vm_page_array[pi - first_page];
559 		malloced = FALSE;
560 	} else
561 #endif
562 	{
563 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
564 		    M_WAITOK | M_ZERO);
565 #ifdef VM_PHYSSEG_DENSE
566 		malloced = TRUE;
567 #endif
568 	}
569 	for (i = 0; i < page_count; i++) {
570 		vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
571 		fp[i].oflags &= ~VPO_UNMANAGED;
572 		fp[i].busy_lock = VPB_UNBUSIED;
573 	}
574 	mtx_lock(&vm_phys_fictitious_reg_mtx);
575 	for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
576 		seg = &vm_phys_fictitious_segs[segind];
577 		if (seg->start == 0 && seg->end == 0) {
578 			seg->start = start;
579 			seg->end = end;
580 			seg->first_page = fp;
581 			mtx_unlock(&vm_phys_fictitious_reg_mtx);
582 			return (0);
583 		}
584 	}
585 	mtx_unlock(&vm_phys_fictitious_reg_mtx);
586 #ifdef VM_PHYSSEG_DENSE
587 	if (malloced)
588 #endif
589 		free(fp, M_FICT_PAGES);
590 	return (EBUSY);
591 }
592 
593 void
594 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
595 {
596 	struct vm_phys_fictitious_seg *seg;
597 	vm_page_t fp;
598 	int segind;
599 #ifdef VM_PHYSSEG_DENSE
600 	long pi;
601 #endif
602 
603 #ifdef VM_PHYSSEG_DENSE
604 	pi = atop(start);
605 #endif
606 
607 	mtx_lock(&vm_phys_fictitious_reg_mtx);
608 	for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
609 		seg = &vm_phys_fictitious_segs[segind];
610 		if (seg->start == start && seg->end == end) {
611 			seg->start = seg->end = 0;
612 			fp = seg->first_page;
613 			seg->first_page = NULL;
614 			mtx_unlock(&vm_phys_fictitious_reg_mtx);
615 #ifdef VM_PHYSSEG_DENSE
616 			if (pi < first_page || atop(end) >= vm_page_array_size)
617 #endif
618 				free(fp, M_FICT_PAGES);
619 			return;
620 		}
621 	}
622 	mtx_unlock(&vm_phys_fictitious_reg_mtx);
623 	KASSERT(0, ("Unregistering not registered fictitious range"));
624 }
625 
626 /*
627  * Find the segment containing the given physical address.
628  */
629 static int
630 vm_phys_paddr_to_segind(vm_paddr_t pa)
631 {
632 	struct vm_phys_seg *seg;
633 	int segind;
634 
635 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
636 		seg = &vm_phys_segs[segind];
637 		if (pa >= seg->start && pa < seg->end)
638 			return (segind);
639 	}
640 	panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
641 	    (uintmax_t)pa);
642 }
643 
644 /*
645  * Free a contiguous, power of two-sized set of physical pages.
646  *
647  * The free page queues must be locked.
648  */
649 void
650 vm_phys_free_pages(vm_page_t m, int order)
651 {
652 	struct vm_freelist *fl;
653 	struct vm_phys_seg *seg;
654 	vm_paddr_t pa;
655 	vm_page_t m_buddy;
656 
657 	KASSERT(m->order == VM_NFREEORDER,
658 	    ("vm_phys_free_pages: page %p has unexpected order %d",
659 	    m, m->order));
660 	KASSERT(m->pool < VM_NFREEPOOL,
661 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
662 	    m, m->pool));
663 	KASSERT(order < VM_NFREEORDER,
664 	    ("vm_phys_free_pages: order %d is out of range", order));
665 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
666 	seg = &vm_phys_segs[m->segind];
667 	if (order < VM_NFREEORDER - 1) {
668 		pa = VM_PAGE_TO_PHYS(m);
669 		do {
670 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
671 			if (pa < seg->start || pa >= seg->end)
672 				break;
673 			m_buddy = &seg->first_page[atop(pa - seg->start)];
674 			if (m_buddy->order != order)
675 				break;
676 			fl = (*seg->free_queues)[m_buddy->pool];
677 			vm_freelist_rem(fl, m_buddy, order);
678 			if (m_buddy->pool != m->pool)
679 				vm_phys_set_pool(m->pool, m_buddy, order);
680 			order++;
681 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
682 			m = &seg->first_page[atop(pa - seg->start)];
683 		} while (order < VM_NFREEORDER - 1);
684 	}
685 	fl = (*seg->free_queues)[m->pool];
686 	vm_freelist_add(fl, m, order, 1);
687 }
688 
689 /*
690  * Free a contiguous, arbitrarily sized set of physical pages.
691  *
692  * The free page queues must be locked.
693  */
694 void
695 vm_phys_free_contig(vm_page_t m, u_long npages)
696 {
697 	u_int n;
698 	int order;
699 
700 	/*
701 	 * Avoid unnecessary coalescing by freeing the pages in the largest
702 	 * possible power-of-two-sized subsets.
703 	 */
704 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
705 	for (;; npages -= n) {
706 		/*
707 		 * Unsigned "min" is used here so that "order" is assigned
708 		 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
709 		 * or the low-order bits of its physical address are zero
710 		 * because the size of a physical address exceeds the size of
711 		 * a long.
712 		 */
713 		order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
714 		    VM_NFREEORDER - 1);
715 		n = 1 << order;
716 		if (npages < n)
717 			break;
718 		vm_phys_free_pages(m, order);
719 		m += n;
720 	}
721 	/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
722 	for (; npages > 0; npages -= n) {
723 		order = flsl(npages) - 1;
724 		n = 1 << order;
725 		vm_phys_free_pages(m, order);
726 		m += n;
727 	}
728 }
729 
730 /*
731  * Set the pool for a contiguous, power of two-sized set of physical pages.
732  */
733 void
734 vm_phys_set_pool(int pool, vm_page_t m, int order)
735 {
736 	vm_page_t m_tmp;
737 
738 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
739 		m_tmp->pool = pool;
740 }
741 
742 /*
743  * Search for the given physical page "m" in the free lists.  If the search
744  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
745  * FALSE, indicating that "m" is not in the free lists.
746  *
747  * The free page queues must be locked.
748  */
749 boolean_t
750 vm_phys_unfree_page(vm_page_t m)
751 {
752 	struct vm_freelist *fl;
753 	struct vm_phys_seg *seg;
754 	vm_paddr_t pa, pa_half;
755 	vm_page_t m_set, m_tmp;
756 	int order;
757 
758 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
759 
760 	/*
761 	 * First, find the contiguous, power of two-sized set of free
762 	 * physical pages containing the given physical page "m" and
763 	 * assign it to "m_set".
764 	 */
765 	seg = &vm_phys_segs[m->segind];
766 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
767 	    order < VM_NFREEORDER - 1; ) {
768 		order++;
769 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
770 		if (pa >= seg->start)
771 			m_set = &seg->first_page[atop(pa - seg->start)];
772 		else
773 			return (FALSE);
774 	}
775 	if (m_set->order < order)
776 		return (FALSE);
777 	if (m_set->order == VM_NFREEORDER)
778 		return (FALSE);
779 	KASSERT(m_set->order < VM_NFREEORDER,
780 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
781 	    m_set, m_set->order));
782 
783 	/*
784 	 * Next, remove "m_set" from the free lists.  Finally, extract
785 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
786 	 * is larger than a page, shrink "m_set" by returning the half
787 	 * of "m_set" that does not contain "m" to the free lists.
788 	 */
789 	fl = (*seg->free_queues)[m_set->pool];
790 	order = m_set->order;
791 	vm_freelist_rem(fl, m_set, order);
792 	while (order > 0) {
793 		order--;
794 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
795 		if (m->phys_addr < pa_half)
796 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
797 		else {
798 			m_tmp = m_set;
799 			m_set = &seg->first_page[atop(pa_half - seg->start)];
800 		}
801 		vm_freelist_add(fl, m_tmp, order, 0);
802 	}
803 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
804 	return (TRUE);
805 }
806 
807 /*
808  * Try to zero one physical page.  Used by an idle priority thread.
809  */
810 boolean_t
811 vm_phys_zero_pages_idle(void)
812 {
813 	static struct vm_freelist *fl;
814 	static int flind, oind, pind;
815 	vm_page_t m, m_tmp;
816 	int domain;
817 
818 	domain = vm_rr_selectdomain();
819 	fl = vm_phys_free_queues[domain][0][0];
820 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
821 	for (;;) {
822 		TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
823 			for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
824 				if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
825 					vm_phys_unfree_page(m_tmp);
826 					vm_phys_freecnt_adj(m, -1);
827 					mtx_unlock(&vm_page_queue_free_mtx);
828 					pmap_zero_page_idle(m_tmp);
829 					m_tmp->flags |= PG_ZERO;
830 					mtx_lock(&vm_page_queue_free_mtx);
831 					vm_phys_freecnt_adj(m, 1);
832 					vm_phys_free_pages(m_tmp, 0);
833 					vm_page_zero_count++;
834 					cnt_prezero++;
835 					return (TRUE);
836 				}
837 			}
838 		}
839 		oind++;
840 		if (oind == VM_NFREEORDER) {
841 			oind = 0;
842 			pind++;
843 			if (pind == VM_NFREEPOOL) {
844 				pind = 0;
845 				flind++;
846 				if (flind == vm_nfreelists)
847 					flind = 0;
848 			}
849 			fl = vm_phys_free_queues[domain][flind][pind];
850 		}
851 	}
852 }
853 
854 /*
855  * Allocate a contiguous set of physical pages of the given size
856  * "npages" from the free lists.  All of the physical pages must be at
857  * or above the given physical address "low" and below the given
858  * physical address "high".  The given value "alignment" determines the
859  * alignment of the first physical page in the set.  If the given value
860  * "boundary" is non-zero, then the set of physical pages cannot cross
861  * any physical address boundary that is a multiple of that value.  Both
862  * "alignment" and "boundary" must be a power of two.
863  */
864 vm_page_t
865 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
866     u_long alignment, vm_paddr_t boundary)
867 {
868 	struct vm_freelist *fl;
869 	struct vm_phys_seg *seg;
870 	vm_paddr_t pa, pa_last, size;
871 	vm_page_t m, m_ret;
872 	u_long npages_end;
873 	int dom, domain, flind, oind, order, pind;
874 
875 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
876 	size = npages << PAGE_SHIFT;
877 	KASSERT(size != 0,
878 	    ("vm_phys_alloc_contig: size must not be 0"));
879 	KASSERT((alignment & (alignment - 1)) == 0,
880 	    ("vm_phys_alloc_contig: alignment must be a power of 2"));
881 	KASSERT((boundary & (boundary - 1)) == 0,
882 	    ("vm_phys_alloc_contig: boundary must be a power of 2"));
883 	/* Compute the queue that is the best fit for npages. */
884 	for (order = 0; (1 << order) < npages; order++);
885 	dom = 0;
886 restartdom:
887 	domain = vm_rr_selectdomain();
888 	for (flind = 0; flind < vm_nfreelists; flind++) {
889 		for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
890 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
891 				fl = &vm_phys_free_queues[domain][flind][pind][0];
892 				TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
893 					/*
894 					 * A free list may contain physical pages
895 					 * from one or more segments.
896 					 */
897 					seg = &vm_phys_segs[m_ret->segind];
898 					if (seg->start > high ||
899 					    low >= seg->end)
900 						continue;
901 
902 					/*
903 					 * Is the size of this allocation request
904 					 * larger than the largest block size?
905 					 */
906 					if (order >= VM_NFREEORDER) {
907 						/*
908 						 * Determine if a sufficient number
909 						 * of subsequent blocks to satisfy
910 						 * the allocation request are free.
911 						 */
912 						pa = VM_PAGE_TO_PHYS(m_ret);
913 						pa_last = pa + size;
914 						for (;;) {
915 							pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
916 							if (pa >= pa_last)
917 								break;
918 							if (pa < seg->start ||
919 							    pa >= seg->end)
920 								break;
921 							m = &seg->first_page[atop(pa - seg->start)];
922 							if (m->order != VM_NFREEORDER - 1)
923 								break;
924 						}
925 						/* If not, continue to the next block. */
926 						if (pa < pa_last)
927 							continue;
928 					}
929 
930 					/*
931 					 * Determine if the blocks are within the given range,
932 					 * satisfy the given alignment, and do not cross the
933 					 * given boundary.
934 					 */
935 					pa = VM_PAGE_TO_PHYS(m_ret);
936 					if (pa >= low &&
937 					    pa + size <= high &&
938 					    (pa & (alignment - 1)) == 0 &&
939 					    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
940 						goto done;
941 				}
942 			}
943 		}
944 	}
945 	if (++dom < vm_ndomains)
946 		goto restartdom;
947 	return (NULL);
948 done:
949 	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
950 		fl = (*seg->free_queues)[m->pool];
951 		vm_freelist_rem(fl, m, m->order);
952 	}
953 	if (m_ret->pool != VM_FREEPOOL_DEFAULT)
954 		vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
955 	fl = (*seg->free_queues)[m_ret->pool];
956 	vm_phys_split_pages(m_ret, oind, fl, order);
957 	/* Return excess pages to the free lists. */
958 	npages_end = roundup2(npages, 1 << imin(oind, order));
959 	if (npages < npages_end)
960 		vm_phys_free_contig(&m_ret[npages], npages_end - npages);
961 	return (m_ret);
962 }
963 
964 #ifdef DDB
965 /*
966  * Show the number of physical pages in each of the free lists.
967  */
968 DB_SHOW_COMMAND(freepages, db_show_freepages)
969 {
970 	struct vm_freelist *fl;
971 	int flind, oind, pind, dom;
972 
973 	for (dom = 0; dom < vm_ndomains; dom++) {
974 		db_printf("DOMAIN: %d\n", dom);
975 		for (flind = 0; flind < vm_nfreelists; flind++) {
976 			db_printf("FREE LIST %d:\n"
977 			    "\n  ORDER (SIZE)  |  NUMBER"
978 			    "\n              ", flind);
979 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
980 				db_printf("  |  POOL %d", pind);
981 			db_printf("\n--            ");
982 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
983 				db_printf("-- --      ");
984 			db_printf("--\n");
985 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
986 				db_printf("  %2.2d (%6.6dK)", oind,
987 				    1 << (PAGE_SHIFT - 10 + oind));
988 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
989 				fl = vm_phys_free_queues[dom][flind][pind];
990 					db_printf("  |  %6.6d", fl[oind].lcnt);
991 				}
992 				db_printf("\n");
993 			}
994 			db_printf("\n");
995 		}
996 		db_printf("\n");
997 	}
998 }
999 #endif
1000