1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Physical memory system implementation 34 * 35 * Any external functions defined by this module are only to be used by the 36 * virtual memory system. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ddb.h" 43 #include "opt_vm.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/lock.h> 48 #include <sys/kernel.h> 49 #include <sys/malloc.h> 50 #include <sys/mutex.h> 51 #if MAXMEMDOM > 1 52 #include <sys/proc.h> 53 #endif 54 #include <sys/queue.h> 55 #include <sys/rwlock.h> 56 #include <sys/sbuf.h> 57 #include <sys/sysctl.h> 58 #include <sys/tree.h> 59 #include <sys/vmmeter.h> 60 61 #include <ddb/ddb.h> 62 63 #include <vm/vm.h> 64 #include <vm/vm_param.h> 65 #include <vm/vm_kern.h> 66 #include <vm/vm_object.h> 67 #include <vm/vm_page.h> 68 #include <vm/vm_phys.h> 69 70 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX, 71 "Too many physsegs."); 72 73 struct mem_affinity *mem_affinity; 74 75 int vm_ndomains = 1; 76 77 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX]; 78 int vm_phys_nsegs; 79 80 struct vm_phys_fictitious_seg; 81 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *, 82 struct vm_phys_fictitious_seg *); 83 84 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree = 85 RB_INITIALIZER(_vm_phys_fictitious_tree); 86 87 struct vm_phys_fictitious_seg { 88 RB_ENTRY(vm_phys_fictitious_seg) node; 89 /* Memory region data */ 90 vm_paddr_t start; 91 vm_paddr_t end; 92 vm_page_t first_page; 93 }; 94 95 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node, 96 vm_phys_fictitious_cmp); 97 98 static struct rwlock vm_phys_fictitious_reg_lock; 99 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages"); 100 101 static struct vm_freelist 102 vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER]; 103 104 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1; 105 106 static int cnt_prezero; 107 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD, 108 &cnt_prezero, 0, "The number of physical pages prezeroed at idle time"); 109 110 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS); 111 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD, 112 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info"); 113 114 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS); 115 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD, 116 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info"); 117 118 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD, 119 &vm_ndomains, 0, "Number of physical memory domains available."); 120 121 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool, 122 int order); 123 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, 124 int domain); 125 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind); 126 static int vm_phys_paddr_to_segind(vm_paddr_t pa); 127 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, 128 int order); 129 130 /* 131 * Red-black tree helpers for vm fictitious range management. 132 */ 133 static inline int 134 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p, 135 struct vm_phys_fictitious_seg *range) 136 { 137 138 KASSERT(range->start != 0 && range->end != 0, 139 ("Invalid range passed on search for vm_fictitious page")); 140 if (p->start >= range->end) 141 return (1); 142 if (p->start < range->start) 143 return (-1); 144 145 return (0); 146 } 147 148 static int 149 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1, 150 struct vm_phys_fictitious_seg *p2) 151 { 152 153 /* Check if this is a search for a page */ 154 if (p1->end == 0) 155 return (vm_phys_fictitious_in_range(p1, p2)); 156 157 KASSERT(p2->end != 0, 158 ("Invalid range passed as second parameter to vm fictitious comparison")); 159 160 /* Searching to add a new range */ 161 if (p1->end <= p2->start) 162 return (-1); 163 if (p1->start >= p2->end) 164 return (1); 165 166 panic("Trying to add overlapping vm fictitious ranges:\n" 167 "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start, 168 (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end); 169 } 170 171 static __inline int 172 vm_rr_selectdomain(void) 173 { 174 #if MAXMEMDOM > 1 175 struct thread *td; 176 177 td = curthread; 178 179 td->td_dom_rr_idx++; 180 td->td_dom_rr_idx %= vm_ndomains; 181 return (td->td_dom_rr_idx); 182 #else 183 return (0); 184 #endif 185 } 186 187 boolean_t 188 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high) 189 { 190 struct vm_phys_seg *s; 191 int idx; 192 193 while ((idx = ffsl(mask)) != 0) { 194 idx--; /* ffsl counts from 1 */ 195 mask &= ~(1UL << idx); 196 s = &vm_phys_segs[idx]; 197 if (low < s->end && high > s->start) 198 return (TRUE); 199 } 200 return (FALSE); 201 } 202 203 /* 204 * Outputs the state of the physical memory allocator, specifically, 205 * the amount of physical memory in each free list. 206 */ 207 static int 208 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS) 209 { 210 struct sbuf sbuf; 211 struct vm_freelist *fl; 212 int dom, error, flind, oind, pind; 213 214 error = sysctl_wire_old_buffer(req, 0); 215 if (error != 0) 216 return (error); 217 sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req); 218 for (dom = 0; dom < vm_ndomains; dom++) { 219 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom); 220 for (flind = 0; flind < vm_nfreelists; flind++) { 221 sbuf_printf(&sbuf, "\nFREE LIST %d:\n" 222 "\n ORDER (SIZE) | NUMBER" 223 "\n ", flind); 224 for (pind = 0; pind < VM_NFREEPOOL; pind++) 225 sbuf_printf(&sbuf, " | POOL %d", pind); 226 sbuf_printf(&sbuf, "\n-- "); 227 for (pind = 0; pind < VM_NFREEPOOL; pind++) 228 sbuf_printf(&sbuf, "-- -- "); 229 sbuf_printf(&sbuf, "--\n"); 230 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 231 sbuf_printf(&sbuf, " %2d (%6dK)", oind, 232 1 << (PAGE_SHIFT - 10 + oind)); 233 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 234 fl = vm_phys_free_queues[dom][flind][pind]; 235 sbuf_printf(&sbuf, " | %6d", 236 fl[oind].lcnt); 237 } 238 sbuf_printf(&sbuf, "\n"); 239 } 240 } 241 } 242 error = sbuf_finish(&sbuf); 243 sbuf_delete(&sbuf); 244 return (error); 245 } 246 247 /* 248 * Outputs the set of physical memory segments. 249 */ 250 static int 251 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS) 252 { 253 struct sbuf sbuf; 254 struct vm_phys_seg *seg; 255 int error, segind; 256 257 error = sysctl_wire_old_buffer(req, 0); 258 if (error != 0) 259 return (error); 260 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 261 for (segind = 0; segind < vm_phys_nsegs; segind++) { 262 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind); 263 seg = &vm_phys_segs[segind]; 264 sbuf_printf(&sbuf, "start: %#jx\n", 265 (uintmax_t)seg->start); 266 sbuf_printf(&sbuf, "end: %#jx\n", 267 (uintmax_t)seg->end); 268 sbuf_printf(&sbuf, "domain: %d\n", seg->domain); 269 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues); 270 } 271 error = sbuf_finish(&sbuf); 272 sbuf_delete(&sbuf); 273 return (error); 274 } 275 276 static void 277 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail) 278 { 279 280 m->order = order; 281 if (tail) 282 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q); 283 else 284 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q); 285 fl[order].lcnt++; 286 } 287 288 static void 289 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order) 290 { 291 292 TAILQ_REMOVE(&fl[order].pl, m, plinks.q); 293 fl[order].lcnt--; 294 m->order = VM_NFREEORDER; 295 } 296 297 /* 298 * Create a physical memory segment. 299 */ 300 static void 301 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain) 302 { 303 struct vm_phys_seg *seg; 304 #ifdef VM_PHYSSEG_SPARSE 305 long pages; 306 int segind; 307 308 pages = 0; 309 for (segind = 0; segind < vm_phys_nsegs; segind++) { 310 seg = &vm_phys_segs[segind]; 311 pages += atop(seg->end - seg->start); 312 } 313 #endif 314 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX, 315 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX")); 316 KASSERT(domain < vm_ndomains, 317 ("vm_phys_create_seg: invalid domain provided")); 318 seg = &vm_phys_segs[vm_phys_nsegs++]; 319 seg->start = start; 320 seg->end = end; 321 seg->domain = domain; 322 #ifdef VM_PHYSSEG_SPARSE 323 seg->first_page = &vm_page_array[pages]; 324 #else 325 seg->first_page = PHYS_TO_VM_PAGE(start); 326 #endif 327 seg->free_queues = &vm_phys_free_queues[domain][flind]; 328 } 329 330 static void 331 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind) 332 { 333 int i; 334 335 if (mem_affinity == NULL) { 336 _vm_phys_create_seg(start, end, flind, 0); 337 return; 338 } 339 340 for (i = 0;; i++) { 341 if (mem_affinity[i].end == 0) 342 panic("Reached end of affinity info"); 343 if (mem_affinity[i].end <= start) 344 continue; 345 if (mem_affinity[i].start > start) 346 panic("No affinity info for start %jx", 347 (uintmax_t)start); 348 if (mem_affinity[i].end >= end) { 349 _vm_phys_create_seg(start, end, flind, 350 mem_affinity[i].domain); 351 break; 352 } 353 _vm_phys_create_seg(start, mem_affinity[i].end, flind, 354 mem_affinity[i].domain); 355 start = mem_affinity[i].end; 356 } 357 } 358 359 /* 360 * Initialize the physical memory allocator. 361 */ 362 void 363 vm_phys_init(void) 364 { 365 struct vm_freelist *fl; 366 int dom, flind, i, oind, pind; 367 368 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 369 #ifdef VM_FREELIST_ISADMA 370 if (phys_avail[i] < 16777216) { 371 if (phys_avail[i + 1] > 16777216) { 372 vm_phys_create_seg(phys_avail[i], 16777216, 373 VM_FREELIST_ISADMA); 374 vm_phys_create_seg(16777216, phys_avail[i + 1], 375 VM_FREELIST_DEFAULT); 376 } else { 377 vm_phys_create_seg(phys_avail[i], 378 phys_avail[i + 1], VM_FREELIST_ISADMA); 379 } 380 if (VM_FREELIST_ISADMA >= vm_nfreelists) 381 vm_nfreelists = VM_FREELIST_ISADMA + 1; 382 } else 383 #endif 384 #ifdef VM_FREELIST_HIGHMEM 385 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) { 386 if (phys_avail[i] < VM_HIGHMEM_ADDRESS) { 387 vm_phys_create_seg(phys_avail[i], 388 VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT); 389 vm_phys_create_seg(VM_HIGHMEM_ADDRESS, 390 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 391 } else { 392 vm_phys_create_seg(phys_avail[i], 393 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 394 } 395 if (VM_FREELIST_HIGHMEM >= vm_nfreelists) 396 vm_nfreelists = VM_FREELIST_HIGHMEM + 1; 397 } else 398 #endif 399 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1], 400 VM_FREELIST_DEFAULT); 401 } 402 for (dom = 0; dom < vm_ndomains; dom++) { 403 for (flind = 0; flind < vm_nfreelists; flind++) { 404 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 405 fl = vm_phys_free_queues[dom][flind][pind]; 406 for (oind = 0; oind < VM_NFREEORDER; oind++) 407 TAILQ_INIT(&fl[oind].pl); 408 } 409 } 410 } 411 rw_init(&vm_phys_fictitious_reg_lock, "vmfctr"); 412 } 413 414 /* 415 * Split a contiguous, power of two-sized set of physical pages. 416 */ 417 static __inline void 418 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order) 419 { 420 vm_page_t m_buddy; 421 422 while (oind > order) { 423 oind--; 424 m_buddy = &m[1 << oind]; 425 KASSERT(m_buddy->order == VM_NFREEORDER, 426 ("vm_phys_split_pages: page %p has unexpected order %d", 427 m_buddy, m_buddy->order)); 428 vm_freelist_add(fl, m_buddy, oind, 0); 429 } 430 } 431 432 /* 433 * Initialize a physical page and add it to the free lists. 434 */ 435 void 436 vm_phys_add_page(vm_paddr_t pa) 437 { 438 vm_page_t m; 439 struct vm_domain *vmd; 440 441 vm_cnt.v_page_count++; 442 m = vm_phys_paddr_to_vm_page(pa); 443 m->phys_addr = pa; 444 m->queue = PQ_NONE; 445 m->segind = vm_phys_paddr_to_segind(pa); 446 vmd = vm_phys_domain(m); 447 vmd->vmd_page_count++; 448 vmd->vmd_segs |= 1UL << m->segind; 449 KASSERT(m->order == VM_NFREEORDER, 450 ("vm_phys_add_page: page %p has unexpected order %d", 451 m, m->order)); 452 m->pool = VM_FREEPOOL_DEFAULT; 453 pmap_page_init(m); 454 mtx_lock(&vm_page_queue_free_mtx); 455 vm_phys_freecnt_adj(m, 1); 456 vm_phys_free_pages(m, 0); 457 mtx_unlock(&vm_page_queue_free_mtx); 458 } 459 460 /* 461 * Allocate a contiguous, power of two-sized set of physical pages 462 * from the free lists. 463 * 464 * The free page queues must be locked. 465 */ 466 vm_page_t 467 vm_phys_alloc_pages(int pool, int order) 468 { 469 vm_page_t m; 470 int dom, domain, flind; 471 472 KASSERT(pool < VM_NFREEPOOL, 473 ("vm_phys_alloc_pages: pool %d is out of range", pool)); 474 KASSERT(order < VM_NFREEORDER, 475 ("vm_phys_alloc_pages: order %d is out of range", order)); 476 477 for (dom = 0; dom < vm_ndomains; dom++) { 478 domain = vm_rr_selectdomain(); 479 for (flind = 0; flind < vm_nfreelists; flind++) { 480 m = vm_phys_alloc_domain_pages(domain, flind, pool, 481 order); 482 if (m != NULL) 483 return (m); 484 } 485 } 486 return (NULL); 487 } 488 489 /* 490 * Find and dequeue a free page on the given free list, with the 491 * specified pool and order 492 */ 493 vm_page_t 494 vm_phys_alloc_freelist_pages(int flind, int pool, int order) 495 { 496 vm_page_t m; 497 int dom, domain; 498 499 KASSERT(flind < VM_NFREELIST, 500 ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind)); 501 KASSERT(pool < VM_NFREEPOOL, 502 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool)); 503 KASSERT(order < VM_NFREEORDER, 504 ("vm_phys_alloc_freelist_pages: order %d is out of range", order)); 505 506 for (dom = 0; dom < vm_ndomains; dom++) { 507 domain = vm_rr_selectdomain(); 508 m = vm_phys_alloc_domain_pages(domain, flind, pool, order); 509 if (m != NULL) 510 return (m); 511 } 512 return (NULL); 513 } 514 515 static vm_page_t 516 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order) 517 { 518 struct vm_freelist *fl; 519 struct vm_freelist *alt; 520 int oind, pind; 521 vm_page_t m; 522 523 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 524 fl = &vm_phys_free_queues[domain][flind][pool][0]; 525 for (oind = order; oind < VM_NFREEORDER; oind++) { 526 m = TAILQ_FIRST(&fl[oind].pl); 527 if (m != NULL) { 528 vm_freelist_rem(fl, m, oind); 529 vm_phys_split_pages(m, oind, fl, order); 530 return (m); 531 } 532 } 533 534 /* 535 * The given pool was empty. Find the largest 536 * contiguous, power-of-two-sized set of pages in any 537 * pool. Transfer these pages to the given pool, and 538 * use them to satisfy the allocation. 539 */ 540 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) { 541 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 542 alt = &vm_phys_free_queues[domain][flind][pind][0]; 543 m = TAILQ_FIRST(&alt[oind].pl); 544 if (m != NULL) { 545 vm_freelist_rem(alt, m, oind); 546 vm_phys_set_pool(pool, m, oind); 547 vm_phys_split_pages(m, oind, fl, order); 548 return (m); 549 } 550 } 551 } 552 return (NULL); 553 } 554 555 /* 556 * Find the vm_page corresponding to the given physical address. 557 */ 558 vm_page_t 559 vm_phys_paddr_to_vm_page(vm_paddr_t pa) 560 { 561 struct vm_phys_seg *seg; 562 int segind; 563 564 for (segind = 0; segind < vm_phys_nsegs; segind++) { 565 seg = &vm_phys_segs[segind]; 566 if (pa >= seg->start && pa < seg->end) 567 return (&seg->first_page[atop(pa - seg->start)]); 568 } 569 return (NULL); 570 } 571 572 vm_page_t 573 vm_phys_fictitious_to_vm_page(vm_paddr_t pa) 574 { 575 struct vm_phys_fictitious_seg tmp, *seg; 576 vm_page_t m; 577 578 m = NULL; 579 tmp.start = pa; 580 tmp.end = 0; 581 582 rw_rlock(&vm_phys_fictitious_reg_lock); 583 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp); 584 rw_runlock(&vm_phys_fictitious_reg_lock); 585 if (seg == NULL) 586 return (NULL); 587 588 m = &seg->first_page[atop(pa - seg->start)]; 589 KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m)); 590 591 return (m); 592 } 593 594 int 595 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end, 596 vm_memattr_t memattr) 597 { 598 struct vm_phys_fictitious_seg *seg; 599 vm_page_t fp; 600 long i, page_count; 601 #ifdef VM_PHYSSEG_DENSE 602 long pi; 603 #endif 604 605 page_count = (end - start) / PAGE_SIZE; 606 607 #ifdef VM_PHYSSEG_DENSE 608 pi = atop(start); 609 if (pi >= first_page && pi < vm_page_array_size + first_page) { 610 if (atop(end) >= vm_page_array_size + first_page) 611 return (EINVAL); 612 fp = &vm_page_array[pi - first_page]; 613 } else 614 #endif 615 { 616 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES, 617 M_WAITOK | M_ZERO); 618 } 619 for (i = 0; i < page_count; i++) { 620 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr); 621 fp[i].oflags &= ~VPO_UNMANAGED; 622 fp[i].busy_lock = VPB_UNBUSIED; 623 } 624 625 seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO); 626 seg->start = start; 627 seg->end = end; 628 seg->first_page = fp; 629 630 rw_wlock(&vm_phys_fictitious_reg_lock); 631 RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg); 632 rw_wunlock(&vm_phys_fictitious_reg_lock); 633 634 return (0); 635 } 636 637 void 638 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end) 639 { 640 struct vm_phys_fictitious_seg *seg, tmp; 641 #ifdef VM_PHYSSEG_DENSE 642 long pi; 643 #endif 644 645 #ifdef VM_PHYSSEG_DENSE 646 pi = atop(start); 647 #endif 648 tmp.start = start; 649 tmp.end = 0; 650 651 rw_wlock(&vm_phys_fictitious_reg_lock); 652 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp); 653 if (seg->start != start || seg->end != end) { 654 rw_wunlock(&vm_phys_fictitious_reg_lock); 655 panic( 656 "Unregistering not registered fictitious range [%#jx:%#jx]", 657 (uintmax_t)start, (uintmax_t)end); 658 } 659 RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg); 660 rw_wunlock(&vm_phys_fictitious_reg_lock); 661 #ifdef VM_PHYSSEG_DENSE 662 if (pi < first_page || atop(end) >= vm_page_array_size) 663 #endif 664 free(seg->first_page, M_FICT_PAGES); 665 free(seg, M_FICT_PAGES); 666 } 667 668 /* 669 * Find the segment containing the given physical address. 670 */ 671 static int 672 vm_phys_paddr_to_segind(vm_paddr_t pa) 673 { 674 struct vm_phys_seg *seg; 675 int segind; 676 677 for (segind = 0; segind < vm_phys_nsegs; segind++) { 678 seg = &vm_phys_segs[segind]; 679 if (pa >= seg->start && pa < seg->end) 680 return (segind); 681 } 682 panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" , 683 (uintmax_t)pa); 684 } 685 686 /* 687 * Free a contiguous, power of two-sized set of physical pages. 688 * 689 * The free page queues must be locked. 690 */ 691 void 692 vm_phys_free_pages(vm_page_t m, int order) 693 { 694 struct vm_freelist *fl; 695 struct vm_phys_seg *seg; 696 vm_paddr_t pa; 697 vm_page_t m_buddy; 698 699 KASSERT(m->order == VM_NFREEORDER, 700 ("vm_phys_free_pages: page %p has unexpected order %d", 701 m, m->order)); 702 KASSERT(m->pool < VM_NFREEPOOL, 703 ("vm_phys_free_pages: page %p has unexpected pool %d", 704 m, m->pool)); 705 KASSERT(order < VM_NFREEORDER, 706 ("vm_phys_free_pages: order %d is out of range", order)); 707 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 708 seg = &vm_phys_segs[m->segind]; 709 if (order < VM_NFREEORDER - 1) { 710 pa = VM_PAGE_TO_PHYS(m); 711 do { 712 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order)); 713 if (pa < seg->start || pa >= seg->end) 714 break; 715 m_buddy = &seg->first_page[atop(pa - seg->start)]; 716 if (m_buddy->order != order) 717 break; 718 fl = (*seg->free_queues)[m_buddy->pool]; 719 vm_freelist_rem(fl, m_buddy, order); 720 if (m_buddy->pool != m->pool) 721 vm_phys_set_pool(m->pool, m_buddy, order); 722 order++; 723 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1); 724 m = &seg->first_page[atop(pa - seg->start)]; 725 } while (order < VM_NFREEORDER - 1); 726 } 727 fl = (*seg->free_queues)[m->pool]; 728 vm_freelist_add(fl, m, order, 1); 729 } 730 731 /* 732 * Free a contiguous, arbitrarily sized set of physical pages. 733 * 734 * The free page queues must be locked. 735 */ 736 void 737 vm_phys_free_contig(vm_page_t m, u_long npages) 738 { 739 u_int n; 740 int order; 741 742 /* 743 * Avoid unnecessary coalescing by freeing the pages in the largest 744 * possible power-of-two-sized subsets. 745 */ 746 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 747 for (;; npages -= n) { 748 /* 749 * Unsigned "min" is used here so that "order" is assigned 750 * "VM_NFREEORDER - 1" when "m"'s physical address is zero 751 * or the low-order bits of its physical address are zero 752 * because the size of a physical address exceeds the size of 753 * a long. 754 */ 755 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1, 756 VM_NFREEORDER - 1); 757 n = 1 << order; 758 if (npages < n) 759 break; 760 vm_phys_free_pages(m, order); 761 m += n; 762 } 763 /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */ 764 for (; npages > 0; npages -= n) { 765 order = flsl(npages) - 1; 766 n = 1 << order; 767 vm_phys_free_pages(m, order); 768 m += n; 769 } 770 } 771 772 /* 773 * Set the pool for a contiguous, power of two-sized set of physical pages. 774 */ 775 void 776 vm_phys_set_pool(int pool, vm_page_t m, int order) 777 { 778 vm_page_t m_tmp; 779 780 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++) 781 m_tmp->pool = pool; 782 } 783 784 /* 785 * Search for the given physical page "m" in the free lists. If the search 786 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return 787 * FALSE, indicating that "m" is not in the free lists. 788 * 789 * The free page queues must be locked. 790 */ 791 boolean_t 792 vm_phys_unfree_page(vm_page_t m) 793 { 794 struct vm_freelist *fl; 795 struct vm_phys_seg *seg; 796 vm_paddr_t pa, pa_half; 797 vm_page_t m_set, m_tmp; 798 int order; 799 800 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 801 802 /* 803 * First, find the contiguous, power of two-sized set of free 804 * physical pages containing the given physical page "m" and 805 * assign it to "m_set". 806 */ 807 seg = &vm_phys_segs[m->segind]; 808 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER && 809 order < VM_NFREEORDER - 1; ) { 810 order++; 811 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order)); 812 if (pa >= seg->start) 813 m_set = &seg->first_page[atop(pa - seg->start)]; 814 else 815 return (FALSE); 816 } 817 if (m_set->order < order) 818 return (FALSE); 819 if (m_set->order == VM_NFREEORDER) 820 return (FALSE); 821 KASSERT(m_set->order < VM_NFREEORDER, 822 ("vm_phys_unfree_page: page %p has unexpected order %d", 823 m_set, m_set->order)); 824 825 /* 826 * Next, remove "m_set" from the free lists. Finally, extract 827 * "m" from "m_set" using an iterative algorithm: While "m_set" 828 * is larger than a page, shrink "m_set" by returning the half 829 * of "m_set" that does not contain "m" to the free lists. 830 */ 831 fl = (*seg->free_queues)[m_set->pool]; 832 order = m_set->order; 833 vm_freelist_rem(fl, m_set, order); 834 while (order > 0) { 835 order--; 836 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order)); 837 if (m->phys_addr < pa_half) 838 m_tmp = &seg->first_page[atop(pa_half - seg->start)]; 839 else { 840 m_tmp = m_set; 841 m_set = &seg->first_page[atop(pa_half - seg->start)]; 842 } 843 vm_freelist_add(fl, m_tmp, order, 0); 844 } 845 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency")); 846 return (TRUE); 847 } 848 849 /* 850 * Try to zero one physical page. Used by an idle priority thread. 851 */ 852 boolean_t 853 vm_phys_zero_pages_idle(void) 854 { 855 static struct vm_freelist *fl; 856 static int flind, oind, pind; 857 vm_page_t m, m_tmp; 858 int domain; 859 860 domain = vm_rr_selectdomain(); 861 fl = vm_phys_free_queues[domain][0][0]; 862 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 863 for (;;) { 864 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) { 865 for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) { 866 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) { 867 vm_phys_unfree_page(m_tmp); 868 vm_phys_freecnt_adj(m, -1); 869 mtx_unlock(&vm_page_queue_free_mtx); 870 pmap_zero_page_idle(m_tmp); 871 m_tmp->flags |= PG_ZERO; 872 mtx_lock(&vm_page_queue_free_mtx); 873 vm_phys_freecnt_adj(m, 1); 874 vm_phys_free_pages(m_tmp, 0); 875 vm_page_zero_count++; 876 cnt_prezero++; 877 return (TRUE); 878 } 879 } 880 } 881 oind++; 882 if (oind == VM_NFREEORDER) { 883 oind = 0; 884 pind++; 885 if (pind == VM_NFREEPOOL) { 886 pind = 0; 887 flind++; 888 if (flind == vm_nfreelists) 889 flind = 0; 890 } 891 fl = vm_phys_free_queues[domain][flind][pind]; 892 } 893 } 894 } 895 896 /* 897 * Allocate a contiguous set of physical pages of the given size 898 * "npages" from the free lists. All of the physical pages must be at 899 * or above the given physical address "low" and below the given 900 * physical address "high". The given value "alignment" determines the 901 * alignment of the first physical page in the set. If the given value 902 * "boundary" is non-zero, then the set of physical pages cannot cross 903 * any physical address boundary that is a multiple of that value. Both 904 * "alignment" and "boundary" must be a power of two. 905 */ 906 vm_page_t 907 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 908 u_long alignment, vm_paddr_t boundary) 909 { 910 struct vm_freelist *fl; 911 struct vm_phys_seg *seg; 912 vm_paddr_t pa, pa_last, size; 913 vm_page_t m, m_ret; 914 u_long npages_end; 915 int dom, domain, flind, oind, order, pind; 916 917 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 918 size = npages << PAGE_SHIFT; 919 KASSERT(size != 0, 920 ("vm_phys_alloc_contig: size must not be 0")); 921 KASSERT((alignment & (alignment - 1)) == 0, 922 ("vm_phys_alloc_contig: alignment must be a power of 2")); 923 KASSERT((boundary & (boundary - 1)) == 0, 924 ("vm_phys_alloc_contig: boundary must be a power of 2")); 925 /* Compute the queue that is the best fit for npages. */ 926 for (order = 0; (1 << order) < npages; order++); 927 dom = 0; 928 restartdom: 929 domain = vm_rr_selectdomain(); 930 for (flind = 0; flind < vm_nfreelists; flind++) { 931 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) { 932 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 933 fl = &vm_phys_free_queues[domain][flind][pind][0]; 934 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) { 935 /* 936 * A free list may contain physical pages 937 * from one or more segments. 938 */ 939 seg = &vm_phys_segs[m_ret->segind]; 940 if (seg->start > high || 941 low >= seg->end) 942 continue; 943 944 /* 945 * Is the size of this allocation request 946 * larger than the largest block size? 947 */ 948 if (order >= VM_NFREEORDER) { 949 /* 950 * Determine if a sufficient number 951 * of subsequent blocks to satisfy 952 * the allocation request are free. 953 */ 954 pa = VM_PAGE_TO_PHYS(m_ret); 955 pa_last = pa + size; 956 for (;;) { 957 pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1); 958 if (pa >= pa_last) 959 break; 960 if (pa < seg->start || 961 pa >= seg->end) 962 break; 963 m = &seg->first_page[atop(pa - seg->start)]; 964 if (m->order != VM_NFREEORDER - 1) 965 break; 966 } 967 /* If not, continue to the next block. */ 968 if (pa < pa_last) 969 continue; 970 } 971 972 /* 973 * Determine if the blocks are within the given range, 974 * satisfy the given alignment, and do not cross the 975 * given boundary. 976 */ 977 pa = VM_PAGE_TO_PHYS(m_ret); 978 if (pa >= low && 979 pa + size <= high && 980 (pa & (alignment - 1)) == 0 && 981 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0) 982 goto done; 983 } 984 } 985 } 986 } 987 if (++dom < vm_ndomains) 988 goto restartdom; 989 return (NULL); 990 done: 991 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) { 992 fl = (*seg->free_queues)[m->pool]; 993 vm_freelist_rem(fl, m, m->order); 994 } 995 if (m_ret->pool != VM_FREEPOOL_DEFAULT) 996 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind); 997 fl = (*seg->free_queues)[m_ret->pool]; 998 vm_phys_split_pages(m_ret, oind, fl, order); 999 /* Return excess pages to the free lists. */ 1000 npages_end = roundup2(npages, 1 << imin(oind, order)); 1001 if (npages < npages_end) 1002 vm_phys_free_contig(&m_ret[npages], npages_end - npages); 1003 return (m_ret); 1004 } 1005 1006 #ifdef DDB 1007 /* 1008 * Show the number of physical pages in each of the free lists. 1009 */ 1010 DB_SHOW_COMMAND(freepages, db_show_freepages) 1011 { 1012 struct vm_freelist *fl; 1013 int flind, oind, pind, dom; 1014 1015 for (dom = 0; dom < vm_ndomains; dom++) { 1016 db_printf("DOMAIN: %d\n", dom); 1017 for (flind = 0; flind < vm_nfreelists; flind++) { 1018 db_printf("FREE LIST %d:\n" 1019 "\n ORDER (SIZE) | NUMBER" 1020 "\n ", flind); 1021 for (pind = 0; pind < VM_NFREEPOOL; pind++) 1022 db_printf(" | POOL %d", pind); 1023 db_printf("\n-- "); 1024 for (pind = 0; pind < VM_NFREEPOOL; pind++) 1025 db_printf("-- -- "); 1026 db_printf("--\n"); 1027 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 1028 db_printf(" %2.2d (%6.6dK)", oind, 1029 1 << (PAGE_SHIFT - 10 + oind)); 1030 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 1031 fl = vm_phys_free_queues[dom][flind][pind]; 1032 db_printf(" | %6.6d", fl[oind].lcnt); 1033 } 1034 db_printf("\n"); 1035 } 1036 db_printf("\n"); 1037 } 1038 db_printf("\n"); 1039 } 1040 } 1041 #endif 1042