xref: /freebsd/sys/vm/vm_phys.c (revision 3af64f03119a159ac15eb75b92d346705b490385)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_ddb.h"
45 #include "opt_vm.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/lock.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/queue.h>
55 #include <sys/rwlock.h>
56 #include <sys/sbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/tree.h>
59 #include <sys/vmmeter.h>
60 #include <sys/seq.h>
61 
62 #include <ddb/ddb.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_phys.h>
70 #include <vm/vm_pagequeue.h>
71 
72 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
73     "Too many physsegs.");
74 
75 #ifdef NUMA
76 struct mem_affinity __read_mostly *mem_affinity;
77 int __read_mostly *mem_locality;
78 #endif
79 
80 int __read_mostly vm_ndomains = 1;
81 
82 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
83 int __read_mostly vm_phys_nsegs;
84 
85 struct vm_phys_fictitious_seg;
86 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
87     struct vm_phys_fictitious_seg *);
88 
89 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
90     RB_INITIALIZER(_vm_phys_fictitious_tree);
91 
92 struct vm_phys_fictitious_seg {
93 	RB_ENTRY(vm_phys_fictitious_seg) node;
94 	/* Memory region data */
95 	vm_paddr_t	start;
96 	vm_paddr_t	end;
97 	vm_page_t	first_page;
98 };
99 
100 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
101     vm_phys_fictitious_cmp);
102 
103 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
104 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
105 
106 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
107     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
108 
109 static int __read_mostly vm_nfreelists;
110 
111 /*
112  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
113  */
114 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
115 
116 CTASSERT(VM_FREELIST_DEFAULT == 0);
117 
118 #ifdef VM_FREELIST_DMA32
119 #define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
120 #endif
121 
122 /*
123  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
124  * the ordering of the free list boundaries.
125  */
126 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
127 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
128 #endif
129 
130 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
131 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
132     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
133 
134 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
135 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
136     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
137 
138 #ifdef NUMA
139 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
140 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
141     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
142 #endif
143 
144 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
145     &vm_ndomains, 0, "Number of physical memory domains available.");
146 
147 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
148     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
149     vm_paddr_t boundary);
150 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
151 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
152 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
153     int order, int tail);
154 
155 /*
156  * Red-black tree helpers for vm fictitious range management.
157  */
158 static inline int
159 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
160     struct vm_phys_fictitious_seg *range)
161 {
162 
163 	KASSERT(range->start != 0 && range->end != 0,
164 	    ("Invalid range passed on search for vm_fictitious page"));
165 	if (p->start >= range->end)
166 		return (1);
167 	if (p->start < range->start)
168 		return (-1);
169 
170 	return (0);
171 }
172 
173 static int
174 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
175     struct vm_phys_fictitious_seg *p2)
176 {
177 
178 	/* Check if this is a search for a page */
179 	if (p1->end == 0)
180 		return (vm_phys_fictitious_in_range(p1, p2));
181 
182 	KASSERT(p2->end != 0,
183     ("Invalid range passed as second parameter to vm fictitious comparison"));
184 
185 	/* Searching to add a new range */
186 	if (p1->end <= p2->start)
187 		return (-1);
188 	if (p1->start >= p2->end)
189 		return (1);
190 
191 	panic("Trying to add overlapping vm fictitious ranges:\n"
192 	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
193 	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
194 }
195 
196 int
197 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
198 {
199 #ifdef NUMA
200 	domainset_t mask;
201 	int i;
202 
203 	if (vm_ndomains == 1 || mem_affinity == NULL)
204 		return (0);
205 
206 	DOMAINSET_ZERO(&mask);
207 	/*
208 	 * Check for any memory that overlaps low, high.
209 	 */
210 	for (i = 0; mem_affinity[i].end != 0; i++)
211 		if (mem_affinity[i].start <= high &&
212 		    mem_affinity[i].end >= low)
213 			DOMAINSET_SET(mem_affinity[i].domain, &mask);
214 	if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
215 		return (prefer);
216 	if (DOMAINSET_EMPTY(&mask))
217 		panic("vm_phys_domain_match:  Impossible constraint");
218 	return (DOMAINSET_FFS(&mask) - 1);
219 #else
220 	return (0);
221 #endif
222 }
223 
224 /*
225  * Outputs the state of the physical memory allocator, specifically,
226  * the amount of physical memory in each free list.
227  */
228 static int
229 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
230 {
231 	struct sbuf sbuf;
232 	struct vm_freelist *fl;
233 	int dom, error, flind, oind, pind;
234 
235 	error = sysctl_wire_old_buffer(req, 0);
236 	if (error != 0)
237 		return (error);
238 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
239 	for (dom = 0; dom < vm_ndomains; dom++) {
240 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
241 		for (flind = 0; flind < vm_nfreelists; flind++) {
242 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
243 			    "\n  ORDER (SIZE)  |  NUMBER"
244 			    "\n              ", flind);
245 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
246 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
247 			sbuf_printf(&sbuf, "\n--            ");
248 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
249 				sbuf_printf(&sbuf, "-- --      ");
250 			sbuf_printf(&sbuf, "--\n");
251 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
252 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
253 				    1 << (PAGE_SHIFT - 10 + oind));
254 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
255 				fl = vm_phys_free_queues[dom][flind][pind];
256 					sbuf_printf(&sbuf, "  |  %6d",
257 					    fl[oind].lcnt);
258 				}
259 				sbuf_printf(&sbuf, "\n");
260 			}
261 		}
262 	}
263 	error = sbuf_finish(&sbuf);
264 	sbuf_delete(&sbuf);
265 	return (error);
266 }
267 
268 /*
269  * Outputs the set of physical memory segments.
270  */
271 static int
272 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
273 {
274 	struct sbuf sbuf;
275 	struct vm_phys_seg *seg;
276 	int error, segind;
277 
278 	error = sysctl_wire_old_buffer(req, 0);
279 	if (error != 0)
280 		return (error);
281 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
282 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
283 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
284 		seg = &vm_phys_segs[segind];
285 		sbuf_printf(&sbuf, "start:     %#jx\n",
286 		    (uintmax_t)seg->start);
287 		sbuf_printf(&sbuf, "end:       %#jx\n",
288 		    (uintmax_t)seg->end);
289 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
290 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
291 	}
292 	error = sbuf_finish(&sbuf);
293 	sbuf_delete(&sbuf);
294 	return (error);
295 }
296 
297 /*
298  * Return affinity, or -1 if there's no affinity information.
299  */
300 int
301 vm_phys_mem_affinity(int f, int t)
302 {
303 
304 #ifdef NUMA
305 	if (mem_locality == NULL)
306 		return (-1);
307 	if (f >= vm_ndomains || t >= vm_ndomains)
308 		return (-1);
309 	return (mem_locality[f * vm_ndomains + t]);
310 #else
311 	return (-1);
312 #endif
313 }
314 
315 #ifdef NUMA
316 /*
317  * Outputs the VM locality table.
318  */
319 static int
320 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
321 {
322 	struct sbuf sbuf;
323 	int error, i, j;
324 
325 	error = sysctl_wire_old_buffer(req, 0);
326 	if (error != 0)
327 		return (error);
328 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
329 
330 	sbuf_printf(&sbuf, "\n");
331 
332 	for (i = 0; i < vm_ndomains; i++) {
333 		sbuf_printf(&sbuf, "%d: ", i);
334 		for (j = 0; j < vm_ndomains; j++) {
335 			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
336 		}
337 		sbuf_printf(&sbuf, "\n");
338 	}
339 	error = sbuf_finish(&sbuf);
340 	sbuf_delete(&sbuf);
341 	return (error);
342 }
343 #endif
344 
345 static void
346 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
347 {
348 
349 	m->order = order;
350 	if (tail)
351 		TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
352 	else
353 		TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
354 	fl[order].lcnt++;
355 }
356 
357 static void
358 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
359 {
360 
361 	TAILQ_REMOVE(&fl[order].pl, m, listq);
362 	fl[order].lcnt--;
363 	m->order = VM_NFREEORDER;
364 }
365 
366 /*
367  * Create a physical memory segment.
368  */
369 static void
370 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
371 {
372 	struct vm_phys_seg *seg;
373 
374 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
375 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
376 	KASSERT(domain >= 0 && domain < vm_ndomains,
377 	    ("vm_phys_create_seg: invalid domain provided"));
378 	seg = &vm_phys_segs[vm_phys_nsegs++];
379 	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
380 		*seg = *(seg - 1);
381 		seg--;
382 	}
383 	seg->start = start;
384 	seg->end = end;
385 	seg->domain = domain;
386 }
387 
388 static void
389 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
390 {
391 #ifdef NUMA
392 	int i;
393 
394 	if (mem_affinity == NULL) {
395 		_vm_phys_create_seg(start, end, 0);
396 		return;
397 	}
398 
399 	for (i = 0;; i++) {
400 		if (mem_affinity[i].end == 0)
401 			panic("Reached end of affinity info");
402 		if (mem_affinity[i].end <= start)
403 			continue;
404 		if (mem_affinity[i].start > start)
405 			panic("No affinity info for start %jx",
406 			    (uintmax_t)start);
407 		if (mem_affinity[i].end >= end) {
408 			_vm_phys_create_seg(start, end,
409 			    mem_affinity[i].domain);
410 			break;
411 		}
412 		_vm_phys_create_seg(start, mem_affinity[i].end,
413 		    mem_affinity[i].domain);
414 		start = mem_affinity[i].end;
415 	}
416 #else
417 	_vm_phys_create_seg(start, end, 0);
418 #endif
419 }
420 
421 /*
422  * Add a physical memory segment.
423  */
424 void
425 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
426 {
427 	vm_paddr_t paddr;
428 
429 	KASSERT((start & PAGE_MASK) == 0,
430 	    ("vm_phys_define_seg: start is not page aligned"));
431 	KASSERT((end & PAGE_MASK) == 0,
432 	    ("vm_phys_define_seg: end is not page aligned"));
433 
434 	/*
435 	 * Split the physical memory segment if it spans two or more free
436 	 * list boundaries.
437 	 */
438 	paddr = start;
439 #ifdef	VM_FREELIST_LOWMEM
440 	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
441 		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
442 		paddr = VM_LOWMEM_BOUNDARY;
443 	}
444 #endif
445 #ifdef	VM_FREELIST_DMA32
446 	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
447 		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
448 		paddr = VM_DMA32_BOUNDARY;
449 	}
450 #endif
451 	vm_phys_create_seg(paddr, end);
452 }
453 
454 /*
455  * Initialize the physical memory allocator.
456  *
457  * Requires that vm_page_array is initialized!
458  */
459 void
460 vm_phys_init(void)
461 {
462 	struct vm_freelist *fl;
463 	struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
464 	u_long npages;
465 	int dom, flind, freelist, oind, pind, segind;
466 
467 	/*
468 	 * Compute the number of free lists, and generate the mapping from the
469 	 * manifest constants VM_FREELIST_* to the free list indices.
470 	 *
471 	 * Initially, the entries of vm_freelist_to_flind[] are set to either
472 	 * 0 or 1 to indicate which free lists should be created.
473 	 */
474 	npages = 0;
475 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
476 		seg = &vm_phys_segs[segind];
477 #ifdef	VM_FREELIST_LOWMEM
478 		if (seg->end <= VM_LOWMEM_BOUNDARY)
479 			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
480 		else
481 #endif
482 #ifdef	VM_FREELIST_DMA32
483 		if (
484 #ifdef	VM_DMA32_NPAGES_THRESHOLD
485 		    /*
486 		     * Create the DMA32 free list only if the amount of
487 		     * physical memory above physical address 4G exceeds the
488 		     * given threshold.
489 		     */
490 		    npages > VM_DMA32_NPAGES_THRESHOLD &&
491 #endif
492 		    seg->end <= VM_DMA32_BOUNDARY)
493 			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
494 		else
495 #endif
496 		{
497 			npages += atop(seg->end - seg->start);
498 			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
499 		}
500 	}
501 	/* Change each entry into a running total of the free lists. */
502 	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
503 		vm_freelist_to_flind[freelist] +=
504 		    vm_freelist_to_flind[freelist - 1];
505 	}
506 	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
507 	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
508 	/* Change each entry into a free list index. */
509 	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
510 		vm_freelist_to_flind[freelist]--;
511 
512 	/*
513 	 * Initialize the first_page and free_queues fields of each physical
514 	 * memory segment.
515 	 */
516 #ifdef VM_PHYSSEG_SPARSE
517 	npages = 0;
518 #endif
519 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
520 		seg = &vm_phys_segs[segind];
521 #ifdef VM_PHYSSEG_SPARSE
522 		seg->first_page = &vm_page_array[npages];
523 		npages += atop(seg->end - seg->start);
524 #else
525 		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
526 #endif
527 #ifdef	VM_FREELIST_LOWMEM
528 		if (seg->end <= VM_LOWMEM_BOUNDARY) {
529 			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
530 			KASSERT(flind >= 0,
531 			    ("vm_phys_init: LOWMEM flind < 0"));
532 		} else
533 #endif
534 #ifdef	VM_FREELIST_DMA32
535 		if (seg->end <= VM_DMA32_BOUNDARY) {
536 			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
537 			KASSERT(flind >= 0,
538 			    ("vm_phys_init: DMA32 flind < 0"));
539 		} else
540 #endif
541 		{
542 			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
543 			KASSERT(flind >= 0,
544 			    ("vm_phys_init: DEFAULT flind < 0"));
545 		}
546 		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
547 	}
548 
549 	/*
550 	 * Coalesce physical memory segments that are contiguous and share the
551 	 * same per-domain free queues.
552 	 */
553 	prev_seg = vm_phys_segs;
554 	seg = &vm_phys_segs[1];
555 	end_seg = &vm_phys_segs[vm_phys_nsegs];
556 	while (seg < end_seg) {
557 		if (prev_seg->end == seg->start &&
558 		    prev_seg->free_queues == seg->free_queues) {
559 			prev_seg->end = seg->end;
560 			KASSERT(prev_seg->domain == seg->domain,
561 			    ("vm_phys_init: free queues cannot span domains"));
562 			vm_phys_nsegs--;
563 			end_seg--;
564 			for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
565 				*tmp_seg = *(tmp_seg + 1);
566 		} else {
567 			prev_seg = seg;
568 			seg++;
569 		}
570 	}
571 
572 	/*
573 	 * Initialize the free queues.
574 	 */
575 	for (dom = 0; dom < vm_ndomains; dom++) {
576 		for (flind = 0; flind < vm_nfreelists; flind++) {
577 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
578 				fl = vm_phys_free_queues[dom][flind][pind];
579 				for (oind = 0; oind < VM_NFREEORDER; oind++)
580 					TAILQ_INIT(&fl[oind].pl);
581 			}
582 		}
583 	}
584 
585 	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
586 }
587 
588 /*
589  * Split a contiguous, power of two-sized set of physical pages.
590  *
591  * When this function is called by a page allocation function, the caller
592  * should request insertion at the head unless the order [order, oind) queues
593  * are known to be empty.  The objective being to reduce the likelihood of
594  * long-term fragmentation by promoting contemporaneous allocation and
595  * (hopefully) deallocation.
596  */
597 static __inline void
598 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
599     int tail)
600 {
601 	vm_page_t m_buddy;
602 
603 	while (oind > order) {
604 		oind--;
605 		m_buddy = &m[1 << oind];
606 		KASSERT(m_buddy->order == VM_NFREEORDER,
607 		    ("vm_phys_split_pages: page %p has unexpected order %d",
608 		    m_buddy, m_buddy->order));
609 		vm_freelist_add(fl, m_buddy, oind, tail);
610         }
611 }
612 
613 /*
614  * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
615  * and sized set to the specified free list.
616  *
617  * When this function is called by a page allocation function, the caller
618  * should request insertion at the head unless the lower-order queues are
619  * known to be empty.  The objective being to reduce the likelihood of long-
620  * term fragmentation by promoting contemporaneous allocation and (hopefully)
621  * deallocation.
622  *
623  * The physical page m's buddy must not be free.
624  */
625 static void
626 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
627 {
628 	u_int n;
629 	int order;
630 
631 	KASSERT(npages > 0, ("vm_phys_enq_range: npages is 0"));
632 	KASSERT(((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
633 	    ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
634 	    ("vm_phys_enq_range: page %p and npages %u are misaligned",
635 	    m, npages));
636 	do {
637 		KASSERT(m->order == VM_NFREEORDER,
638 		    ("vm_phys_enq_range: page %p has unexpected order %d",
639 		    m, m->order));
640 		order = ffs(npages) - 1;
641 		KASSERT(order < VM_NFREEORDER,
642 		    ("vm_phys_enq_range: order %d is out of range", order));
643 		vm_freelist_add(fl, m, order, tail);
644 		n = 1 << order;
645 		m += n;
646 		npages -= n;
647 	} while (npages > 0);
648 }
649 
650 /*
651  * Tries to allocate the specified number of pages from the specified pool
652  * within the specified domain.  Returns the actual number of allocated pages
653  * and a pointer to each page through the array ma[].
654  *
655  * The returned pages may not be physically contiguous.  However, in contrast
656  * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
657  * calling this function once to allocate the desired number of pages will
658  * avoid wasted time in vm_phys_split_pages().
659  *
660  * The free page queues for the specified domain must be locked.
661  */
662 int
663 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
664 {
665 	struct vm_freelist *alt, *fl;
666 	vm_page_t m;
667 	int avail, end, flind, freelist, i, need, oind, pind;
668 
669 	KASSERT(domain >= 0 && domain < vm_ndomains,
670 	    ("vm_phys_alloc_npages: domain %d is out of range", domain));
671 	KASSERT(pool < VM_NFREEPOOL,
672 	    ("vm_phys_alloc_npages: pool %d is out of range", pool));
673 	KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
674 	    ("vm_phys_alloc_npages: npages %d is out of range", npages));
675 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
676 	i = 0;
677 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
678 		flind = vm_freelist_to_flind[freelist];
679 		if (flind < 0)
680 			continue;
681 		fl = vm_phys_free_queues[domain][flind][pool];
682 		for (oind = 0; oind < VM_NFREEORDER; oind++) {
683 			while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
684 				vm_freelist_rem(fl, m, oind);
685 				avail = 1 << oind;
686 				need = imin(npages - i, avail);
687 				for (end = i + need; i < end;)
688 					ma[i++] = m++;
689 				if (need < avail) {
690 					/*
691 					 * Return excess pages to fl.  Its
692 					 * order [0, oind) queues are empty.
693 					 */
694 					vm_phys_enq_range(m, avail - need, fl,
695 					    1);
696 					return (npages);
697 				} else if (i == npages)
698 					return (npages);
699 			}
700 		}
701 		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
702 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
703 				alt = vm_phys_free_queues[domain][flind][pind];
704 				while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
705 				    NULL) {
706 					vm_freelist_rem(alt, m, oind);
707 					vm_phys_set_pool(pool, m, oind);
708 					avail = 1 << oind;
709 					need = imin(npages - i, avail);
710 					for (end = i + need; i < end;)
711 						ma[i++] = m++;
712 					if (need < avail) {
713 						/*
714 						 * Return excess pages to fl.
715 						 * Its order [0, oind) queues
716 						 * are empty.
717 						 */
718 						vm_phys_enq_range(m, avail -
719 						    need, fl, 1);
720 						return (npages);
721 					} else if (i == npages)
722 						return (npages);
723 				}
724 			}
725 		}
726 	}
727 	return (i);
728 }
729 
730 /*
731  * Allocate a contiguous, power of two-sized set of physical pages
732  * from the free lists.
733  *
734  * The free page queues must be locked.
735  */
736 vm_page_t
737 vm_phys_alloc_pages(int domain, int pool, int order)
738 {
739 	vm_page_t m;
740 	int freelist;
741 
742 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
743 		m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
744 		if (m != NULL)
745 			return (m);
746 	}
747 	return (NULL);
748 }
749 
750 /*
751  * Allocate a contiguous, power of two-sized set of physical pages from the
752  * specified free list.  The free list must be specified using one of the
753  * manifest constants VM_FREELIST_*.
754  *
755  * The free page queues must be locked.
756  */
757 vm_page_t
758 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
759 {
760 	struct vm_freelist *alt, *fl;
761 	vm_page_t m;
762 	int oind, pind, flind;
763 
764 	KASSERT(domain >= 0 && domain < vm_ndomains,
765 	    ("vm_phys_alloc_freelist_pages: domain %d is out of range",
766 	    domain));
767 	KASSERT(freelist < VM_NFREELIST,
768 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
769 	    freelist));
770 	KASSERT(pool < VM_NFREEPOOL,
771 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
772 	KASSERT(order < VM_NFREEORDER,
773 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
774 
775 	flind = vm_freelist_to_flind[freelist];
776 	/* Check if freelist is present */
777 	if (flind < 0)
778 		return (NULL);
779 
780 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
781 	fl = &vm_phys_free_queues[domain][flind][pool][0];
782 	for (oind = order; oind < VM_NFREEORDER; oind++) {
783 		m = TAILQ_FIRST(&fl[oind].pl);
784 		if (m != NULL) {
785 			vm_freelist_rem(fl, m, oind);
786 			/* The order [order, oind) queues are empty. */
787 			vm_phys_split_pages(m, oind, fl, order, 1);
788 			return (m);
789 		}
790 	}
791 
792 	/*
793 	 * The given pool was empty.  Find the largest
794 	 * contiguous, power-of-two-sized set of pages in any
795 	 * pool.  Transfer these pages to the given pool, and
796 	 * use them to satisfy the allocation.
797 	 */
798 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
799 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
800 			alt = &vm_phys_free_queues[domain][flind][pind][0];
801 			m = TAILQ_FIRST(&alt[oind].pl);
802 			if (m != NULL) {
803 				vm_freelist_rem(alt, m, oind);
804 				vm_phys_set_pool(pool, m, oind);
805 				/* The order [order, oind) queues are empty. */
806 				vm_phys_split_pages(m, oind, fl, order, 1);
807 				return (m);
808 			}
809 		}
810 	}
811 	return (NULL);
812 }
813 
814 /*
815  * Find the vm_page corresponding to the given physical address.
816  */
817 vm_page_t
818 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
819 {
820 	struct vm_phys_seg *seg;
821 	int segind;
822 
823 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
824 		seg = &vm_phys_segs[segind];
825 		if (pa >= seg->start && pa < seg->end)
826 			return (&seg->first_page[atop(pa - seg->start)]);
827 	}
828 	return (NULL);
829 }
830 
831 vm_page_t
832 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
833 {
834 	struct vm_phys_fictitious_seg tmp, *seg;
835 	vm_page_t m;
836 
837 	m = NULL;
838 	tmp.start = pa;
839 	tmp.end = 0;
840 
841 	rw_rlock(&vm_phys_fictitious_reg_lock);
842 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
843 	rw_runlock(&vm_phys_fictitious_reg_lock);
844 	if (seg == NULL)
845 		return (NULL);
846 
847 	m = &seg->first_page[atop(pa - seg->start)];
848 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
849 
850 	return (m);
851 }
852 
853 static inline void
854 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
855     long page_count, vm_memattr_t memattr)
856 {
857 	long i;
858 
859 	bzero(range, page_count * sizeof(*range));
860 	for (i = 0; i < page_count; i++) {
861 		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
862 		range[i].oflags &= ~VPO_UNMANAGED;
863 		range[i].busy_lock = VPB_UNBUSIED;
864 	}
865 }
866 
867 int
868 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
869     vm_memattr_t memattr)
870 {
871 	struct vm_phys_fictitious_seg *seg;
872 	vm_page_t fp;
873 	long page_count;
874 #ifdef VM_PHYSSEG_DENSE
875 	long pi, pe;
876 	long dpage_count;
877 #endif
878 
879 	KASSERT(start < end,
880 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
881 	    (uintmax_t)start, (uintmax_t)end));
882 
883 	page_count = (end - start) / PAGE_SIZE;
884 
885 #ifdef VM_PHYSSEG_DENSE
886 	pi = atop(start);
887 	pe = atop(end);
888 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
889 		fp = &vm_page_array[pi - first_page];
890 		if ((pe - first_page) > vm_page_array_size) {
891 			/*
892 			 * We have a segment that starts inside
893 			 * of vm_page_array, but ends outside of it.
894 			 *
895 			 * Use vm_page_array pages for those that are
896 			 * inside of the vm_page_array range, and
897 			 * allocate the remaining ones.
898 			 */
899 			dpage_count = vm_page_array_size - (pi - first_page);
900 			vm_phys_fictitious_init_range(fp, start, dpage_count,
901 			    memattr);
902 			page_count -= dpage_count;
903 			start += ptoa(dpage_count);
904 			goto alloc;
905 		}
906 		/*
907 		 * We can allocate the full range from vm_page_array,
908 		 * so there's no need to register the range in the tree.
909 		 */
910 		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
911 		return (0);
912 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
913 		/*
914 		 * We have a segment that ends inside of vm_page_array,
915 		 * but starts outside of it.
916 		 */
917 		fp = &vm_page_array[0];
918 		dpage_count = pe - first_page;
919 		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
920 		    memattr);
921 		end -= ptoa(dpage_count);
922 		page_count -= dpage_count;
923 		goto alloc;
924 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
925 		/*
926 		 * Trying to register a fictitious range that expands before
927 		 * and after vm_page_array.
928 		 */
929 		return (EINVAL);
930 	} else {
931 alloc:
932 #endif
933 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
934 		    M_WAITOK);
935 #ifdef VM_PHYSSEG_DENSE
936 	}
937 #endif
938 	vm_phys_fictitious_init_range(fp, start, page_count, memattr);
939 
940 	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
941 	seg->start = start;
942 	seg->end = end;
943 	seg->first_page = fp;
944 
945 	rw_wlock(&vm_phys_fictitious_reg_lock);
946 	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
947 	rw_wunlock(&vm_phys_fictitious_reg_lock);
948 
949 	return (0);
950 }
951 
952 void
953 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
954 {
955 	struct vm_phys_fictitious_seg *seg, tmp;
956 #ifdef VM_PHYSSEG_DENSE
957 	long pi, pe;
958 #endif
959 
960 	KASSERT(start < end,
961 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
962 	    (uintmax_t)start, (uintmax_t)end));
963 
964 #ifdef VM_PHYSSEG_DENSE
965 	pi = atop(start);
966 	pe = atop(end);
967 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
968 		if ((pe - first_page) <= vm_page_array_size) {
969 			/*
970 			 * This segment was allocated using vm_page_array
971 			 * only, there's nothing to do since those pages
972 			 * were never added to the tree.
973 			 */
974 			return;
975 		}
976 		/*
977 		 * We have a segment that starts inside
978 		 * of vm_page_array, but ends outside of it.
979 		 *
980 		 * Calculate how many pages were added to the
981 		 * tree and free them.
982 		 */
983 		start = ptoa(first_page + vm_page_array_size);
984 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
985 		/*
986 		 * We have a segment that ends inside of vm_page_array,
987 		 * but starts outside of it.
988 		 */
989 		end = ptoa(first_page);
990 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
991 		/* Since it's not possible to register such a range, panic. */
992 		panic(
993 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
994 		    (uintmax_t)start, (uintmax_t)end);
995 	}
996 #endif
997 	tmp.start = start;
998 	tmp.end = 0;
999 
1000 	rw_wlock(&vm_phys_fictitious_reg_lock);
1001 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1002 	if (seg->start != start || seg->end != end) {
1003 		rw_wunlock(&vm_phys_fictitious_reg_lock);
1004 		panic(
1005 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1006 		    (uintmax_t)start, (uintmax_t)end);
1007 	}
1008 	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1009 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1010 	free(seg->first_page, M_FICT_PAGES);
1011 	free(seg, M_FICT_PAGES);
1012 }
1013 
1014 /*
1015  * Free a contiguous, power of two-sized set of physical pages.
1016  *
1017  * The free page queues must be locked.
1018  */
1019 void
1020 vm_phys_free_pages(vm_page_t m, int order)
1021 {
1022 	struct vm_freelist *fl;
1023 	struct vm_phys_seg *seg;
1024 	vm_paddr_t pa;
1025 	vm_page_t m_buddy;
1026 
1027 	KASSERT(m->order == VM_NFREEORDER,
1028 	    ("vm_phys_free_pages: page %p has unexpected order %d",
1029 	    m, m->order));
1030 	KASSERT(m->pool < VM_NFREEPOOL,
1031 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
1032 	    m, m->pool));
1033 	KASSERT(order < VM_NFREEORDER,
1034 	    ("vm_phys_free_pages: order %d is out of range", order));
1035 	seg = &vm_phys_segs[m->segind];
1036 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1037 	if (order < VM_NFREEORDER - 1) {
1038 		pa = VM_PAGE_TO_PHYS(m);
1039 		do {
1040 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1041 			if (pa < seg->start || pa >= seg->end)
1042 				break;
1043 			m_buddy = &seg->first_page[atop(pa - seg->start)];
1044 			if (m_buddy->order != order)
1045 				break;
1046 			fl = (*seg->free_queues)[m_buddy->pool];
1047 			vm_freelist_rem(fl, m_buddy, order);
1048 			if (m_buddy->pool != m->pool)
1049 				vm_phys_set_pool(m->pool, m_buddy, order);
1050 			order++;
1051 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1052 			m = &seg->first_page[atop(pa - seg->start)];
1053 		} while (order < VM_NFREEORDER - 1);
1054 	}
1055 	fl = (*seg->free_queues)[m->pool];
1056 	vm_freelist_add(fl, m, order, 1);
1057 }
1058 
1059 /*
1060  * Free a contiguous, arbitrarily sized set of physical pages.
1061  *
1062  * The free page queues must be locked.
1063  */
1064 void
1065 vm_phys_free_contig(vm_page_t m, u_long npages)
1066 {
1067 	u_int n;
1068 	int order;
1069 
1070 	/*
1071 	 * Avoid unnecessary coalescing by freeing the pages in the largest
1072 	 * possible power-of-two-sized subsets.
1073 	 */
1074 	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1075 	for (;; npages -= n) {
1076 		/*
1077 		 * Unsigned "min" is used here so that "order" is assigned
1078 		 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1079 		 * or the low-order bits of its physical address are zero
1080 		 * because the size of a physical address exceeds the size of
1081 		 * a long.
1082 		 */
1083 		order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1084 		    VM_NFREEORDER - 1);
1085 		n = 1 << order;
1086 		if (npages < n)
1087 			break;
1088 		vm_phys_free_pages(m, order);
1089 		m += n;
1090 	}
1091 	/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
1092 	for (; npages > 0; npages -= n) {
1093 		order = flsl(npages) - 1;
1094 		n = 1 << order;
1095 		vm_phys_free_pages(m, order);
1096 		m += n;
1097 	}
1098 }
1099 
1100 /*
1101  * Scan physical memory between the specified addresses "low" and "high" for a
1102  * run of contiguous physical pages that satisfy the specified conditions, and
1103  * return the lowest page in the run.  The specified "alignment" determines
1104  * the alignment of the lowest physical page in the run.  If the specified
1105  * "boundary" is non-zero, then the run of physical pages cannot span a
1106  * physical address that is a multiple of "boundary".
1107  *
1108  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
1109  * be a power of two.
1110  */
1111 vm_page_t
1112 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1113     u_long alignment, vm_paddr_t boundary, int options)
1114 {
1115 	vm_paddr_t pa_end;
1116 	vm_page_t m_end, m_run, m_start;
1117 	struct vm_phys_seg *seg;
1118 	int segind;
1119 
1120 	KASSERT(npages > 0, ("npages is 0"));
1121 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1122 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1123 	if (low >= high)
1124 		return (NULL);
1125 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1126 		seg = &vm_phys_segs[segind];
1127 		if (seg->domain != domain)
1128 			continue;
1129 		if (seg->start >= high)
1130 			break;
1131 		if (low >= seg->end)
1132 			continue;
1133 		if (low <= seg->start)
1134 			m_start = seg->first_page;
1135 		else
1136 			m_start = &seg->first_page[atop(low - seg->start)];
1137 		if (high < seg->end)
1138 			pa_end = high;
1139 		else
1140 			pa_end = seg->end;
1141 		if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1142 			continue;
1143 		m_end = &seg->first_page[atop(pa_end - seg->start)];
1144 		m_run = vm_page_scan_contig(npages, m_start, m_end,
1145 		    alignment, boundary, options);
1146 		if (m_run != NULL)
1147 			return (m_run);
1148 	}
1149 	return (NULL);
1150 }
1151 
1152 /*
1153  * Set the pool for a contiguous, power of two-sized set of physical pages.
1154  */
1155 void
1156 vm_phys_set_pool(int pool, vm_page_t m, int order)
1157 {
1158 	vm_page_t m_tmp;
1159 
1160 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1161 		m_tmp->pool = pool;
1162 }
1163 
1164 /*
1165  * Search for the given physical page "m" in the free lists.  If the search
1166  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1167  * FALSE, indicating that "m" is not in the free lists.
1168  *
1169  * The free page queues must be locked.
1170  */
1171 boolean_t
1172 vm_phys_unfree_page(vm_page_t m)
1173 {
1174 	struct vm_freelist *fl;
1175 	struct vm_phys_seg *seg;
1176 	vm_paddr_t pa, pa_half;
1177 	vm_page_t m_set, m_tmp;
1178 	int order;
1179 
1180 	/*
1181 	 * First, find the contiguous, power of two-sized set of free
1182 	 * physical pages containing the given physical page "m" and
1183 	 * assign it to "m_set".
1184 	 */
1185 	seg = &vm_phys_segs[m->segind];
1186 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1187 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1188 	    order < VM_NFREEORDER - 1; ) {
1189 		order++;
1190 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1191 		if (pa >= seg->start)
1192 			m_set = &seg->first_page[atop(pa - seg->start)];
1193 		else
1194 			return (FALSE);
1195 	}
1196 	if (m_set->order < order)
1197 		return (FALSE);
1198 	if (m_set->order == VM_NFREEORDER)
1199 		return (FALSE);
1200 	KASSERT(m_set->order < VM_NFREEORDER,
1201 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
1202 	    m_set, m_set->order));
1203 
1204 	/*
1205 	 * Next, remove "m_set" from the free lists.  Finally, extract
1206 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
1207 	 * is larger than a page, shrink "m_set" by returning the half
1208 	 * of "m_set" that does not contain "m" to the free lists.
1209 	 */
1210 	fl = (*seg->free_queues)[m_set->pool];
1211 	order = m_set->order;
1212 	vm_freelist_rem(fl, m_set, order);
1213 	while (order > 0) {
1214 		order--;
1215 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1216 		if (m->phys_addr < pa_half)
1217 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1218 		else {
1219 			m_tmp = m_set;
1220 			m_set = &seg->first_page[atop(pa_half - seg->start)];
1221 		}
1222 		vm_freelist_add(fl, m_tmp, order, 0);
1223 	}
1224 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1225 	return (TRUE);
1226 }
1227 
1228 /*
1229  * Allocate a contiguous set of physical pages of the given size
1230  * "npages" from the free lists.  All of the physical pages must be at
1231  * or above the given physical address "low" and below the given
1232  * physical address "high".  The given value "alignment" determines the
1233  * alignment of the first physical page in the set.  If the given value
1234  * "boundary" is non-zero, then the set of physical pages cannot cross
1235  * any physical address boundary that is a multiple of that value.  Both
1236  * "alignment" and "boundary" must be a power of two.
1237  */
1238 vm_page_t
1239 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1240     u_long alignment, vm_paddr_t boundary)
1241 {
1242 	vm_paddr_t pa_end, pa_start;
1243 	vm_page_t m_run;
1244 	struct vm_phys_seg *seg;
1245 	int segind;
1246 
1247 	KASSERT(npages > 0, ("npages is 0"));
1248 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1249 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1250 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
1251 	if (low >= high)
1252 		return (NULL);
1253 	m_run = NULL;
1254 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1255 		seg = &vm_phys_segs[segind];
1256 		if (seg->start >= high || seg->domain != domain)
1257 			continue;
1258 		if (low >= seg->end)
1259 			break;
1260 		if (low <= seg->start)
1261 			pa_start = seg->start;
1262 		else
1263 			pa_start = low;
1264 		if (high < seg->end)
1265 			pa_end = high;
1266 		else
1267 			pa_end = seg->end;
1268 		if (pa_end - pa_start < ptoa(npages))
1269 			continue;
1270 		m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1271 		    alignment, boundary);
1272 		if (m_run != NULL)
1273 			break;
1274 	}
1275 	return (m_run);
1276 }
1277 
1278 /*
1279  * Allocate a run of contiguous physical pages from the free list for the
1280  * specified segment.
1281  */
1282 static vm_page_t
1283 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1284     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1285 {
1286 	struct vm_freelist *fl;
1287 	vm_paddr_t pa, pa_end, size;
1288 	vm_page_t m, m_ret;
1289 	u_long npages_end;
1290 	int oind, order, pind;
1291 
1292 	KASSERT(npages > 0, ("npages is 0"));
1293 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1294 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1295 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1296 	/* Compute the queue that is the best fit for npages. */
1297 	order = flsl(npages - 1);
1298 	/* Search for a run satisfying the specified conditions. */
1299 	size = npages << PAGE_SHIFT;
1300 	for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1301 	    oind++) {
1302 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1303 			fl = (*seg->free_queues)[pind];
1304 			TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1305 				/*
1306 				 * Is the size of this allocation request
1307 				 * larger than the largest block size?
1308 				 */
1309 				if (order >= VM_NFREEORDER) {
1310 					/*
1311 					 * Determine if a sufficient number of
1312 					 * subsequent blocks to satisfy the
1313 					 * allocation request are free.
1314 					 */
1315 					pa = VM_PAGE_TO_PHYS(m_ret);
1316 					pa_end = pa + size;
1317 					if (pa_end < pa)
1318 						continue;
1319 					for (;;) {
1320 						pa += 1 << (PAGE_SHIFT +
1321 						    VM_NFREEORDER - 1);
1322 						if (pa >= pa_end ||
1323 						    pa < seg->start ||
1324 						    pa >= seg->end)
1325 							break;
1326 						m = &seg->first_page[atop(pa -
1327 						    seg->start)];
1328 						if (m->order != VM_NFREEORDER -
1329 						    1)
1330 							break;
1331 					}
1332 					/* If not, go to the next block. */
1333 					if (pa < pa_end)
1334 						continue;
1335 				}
1336 
1337 				/*
1338 				 * Determine if the blocks are within the
1339 				 * given range, satisfy the given alignment,
1340 				 * and do not cross the given boundary.
1341 				 */
1342 				pa = VM_PAGE_TO_PHYS(m_ret);
1343 				pa_end = pa + size;
1344 				if (pa >= low && pa_end <= high &&
1345 				    (pa & (alignment - 1)) == 0 &&
1346 				    rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1347 					goto done;
1348 			}
1349 		}
1350 	}
1351 	return (NULL);
1352 done:
1353 	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1354 		fl = (*seg->free_queues)[m->pool];
1355 		vm_freelist_rem(fl, m, oind);
1356 		if (m->pool != VM_FREEPOOL_DEFAULT)
1357 			vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1358 	}
1359 	/* Return excess pages to the free lists. */
1360 	npages_end = roundup2(npages, 1 << oind);
1361 	if (npages < npages_end) {
1362 		fl = (*seg->free_queues)[VM_FREEPOOL_DEFAULT];
1363 		vm_phys_enq_range(&m_ret[npages], npages_end - npages, fl, 0);
1364 	}
1365 	return (m_ret);
1366 }
1367 
1368 #ifdef DDB
1369 /*
1370  * Show the number of physical pages in each of the free lists.
1371  */
1372 DB_SHOW_COMMAND(freepages, db_show_freepages)
1373 {
1374 	struct vm_freelist *fl;
1375 	int flind, oind, pind, dom;
1376 
1377 	for (dom = 0; dom < vm_ndomains; dom++) {
1378 		db_printf("DOMAIN: %d\n", dom);
1379 		for (flind = 0; flind < vm_nfreelists; flind++) {
1380 			db_printf("FREE LIST %d:\n"
1381 			    "\n  ORDER (SIZE)  |  NUMBER"
1382 			    "\n              ", flind);
1383 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1384 				db_printf("  |  POOL %d", pind);
1385 			db_printf("\n--            ");
1386 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1387 				db_printf("-- --      ");
1388 			db_printf("--\n");
1389 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1390 				db_printf("  %2.2d (%6.6dK)", oind,
1391 				    1 << (PAGE_SHIFT - 10 + oind));
1392 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1393 				fl = vm_phys_free_queues[dom][flind][pind];
1394 					db_printf("  |  %6.6d", fl[oind].lcnt);
1395 				}
1396 				db_printf("\n");
1397 			}
1398 			db_printf("\n");
1399 		}
1400 		db_printf("\n");
1401 	}
1402 }
1403 #endif
1404