xref: /freebsd/sys/vm/vm_phys.c (revision 39ee7a7a6bdd1557b1c3532abf60d139798ac88b)
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *	Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/rwlock.h>
56 #include <sys/sbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/tree.h>
59 #include <sys/vmmeter.h>
60 #include <sys/seq.h>
61 
62 #include <ddb/ddb.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_phys.h>
70 
71 #include <vm/vm_domain.h>
72 
73 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
74     "Too many physsegs.");
75 
76 struct mem_affinity *mem_affinity;
77 int *mem_locality;
78 
79 int vm_ndomains = 1;
80 
81 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
82 int vm_phys_nsegs;
83 
84 struct vm_phys_fictitious_seg;
85 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
86     struct vm_phys_fictitious_seg *);
87 
88 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
89     RB_INITIALIZER(_vm_phys_fictitious_tree);
90 
91 struct vm_phys_fictitious_seg {
92 	RB_ENTRY(vm_phys_fictitious_seg) node;
93 	/* Memory region data */
94 	vm_paddr_t	start;
95 	vm_paddr_t	end;
96 	vm_page_t	first_page;
97 };
98 
99 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
100     vm_phys_fictitious_cmp);
101 
102 static struct rwlock vm_phys_fictitious_reg_lock;
103 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
104 
105 static struct vm_freelist
106     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
107 
108 static int vm_nfreelists;
109 
110 /*
111  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
112  */
113 static int vm_freelist_to_flind[VM_NFREELIST];
114 
115 CTASSERT(VM_FREELIST_DEFAULT == 0);
116 
117 #ifdef VM_FREELIST_ISADMA
118 #define	VM_ISADMA_BOUNDARY	16777216
119 #endif
120 #ifdef VM_FREELIST_DMA32
121 #define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
122 #endif
123 
124 /*
125  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
126  * the ordering of the free list boundaries.
127  */
128 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
129 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
130 #endif
131 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
132 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
133 #endif
134 
135 static int cnt_prezero;
136 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
137     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
138 
139 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
140 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
141     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
142 
143 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
144 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
145     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
146 
147 #if MAXMEMDOM > 1
148 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
149 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
150     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
151 #endif
152 
153 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
154     &vm_ndomains, 0, "Number of physical memory domains available.");
155 
156 /*
157  * Default to first-touch + round-robin.
158  */
159 static struct mtx vm_default_policy_mtx;
160 MTX_SYSINIT(vm_default_policy, &vm_default_policy_mtx, "default policy mutex",
161     MTX_DEF);
162 #if MAXMEMDOM > 1
163 static struct vm_domain_policy vm_default_policy =
164     VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
165 #else
166 /* Use round-robin so the domain policy code will only try once per allocation */
167 static struct vm_domain_policy vm_default_policy =
168     VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_ROUND_ROBIN, 0);
169 #endif
170 
171 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
172     int order);
173 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
174 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
175 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
176 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
177     int order);
178 
179 static int
180 sysctl_vm_default_policy(SYSCTL_HANDLER_ARGS)
181 {
182 	char policy_name[32];
183 	int error;
184 
185 	mtx_lock(&vm_default_policy_mtx);
186 
187 	/* Map policy to output string */
188 	switch (vm_default_policy.p.policy) {
189 	case VM_POLICY_FIRST_TOUCH:
190 		strcpy(policy_name, "first-touch");
191 		break;
192 	case VM_POLICY_FIRST_TOUCH_ROUND_ROBIN:
193 		strcpy(policy_name, "first-touch-rr");
194 		break;
195 	case VM_POLICY_ROUND_ROBIN:
196 	default:
197 		strcpy(policy_name, "rr");
198 		break;
199 	}
200 	mtx_unlock(&vm_default_policy_mtx);
201 
202 	error = sysctl_handle_string(oidp, &policy_name[0],
203 	    sizeof(policy_name), req);
204 	if (error != 0 || req->newptr == NULL)
205 		return (error);
206 
207 	mtx_lock(&vm_default_policy_mtx);
208 	/* Set: match on the subset of policies that make sense as a default */
209 	if (strcmp("first-touch-rr", policy_name) == 0) {
210 		vm_domain_policy_set(&vm_default_policy,
211 		    VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
212 	} else if (strcmp("first-touch", policy_name) == 0) {
213 		vm_domain_policy_set(&vm_default_policy,
214 		    VM_POLICY_FIRST_TOUCH, 0);
215 	} else if (strcmp("rr", policy_name) == 0) {
216 		vm_domain_policy_set(&vm_default_policy,
217 		    VM_POLICY_ROUND_ROBIN, 0);
218 	} else {
219 		error = EINVAL;
220 		goto finish;
221 	}
222 
223 	error = 0;
224 finish:
225 	mtx_unlock(&vm_default_policy_mtx);
226 	return (error);
227 }
228 
229 SYSCTL_PROC(_vm, OID_AUTO, default_policy, CTLTYPE_STRING | CTLFLAG_RW,
230     0, 0, sysctl_vm_default_policy, "A",
231     "Default policy (rr, first-touch, first-touch-rr");
232 
233 /*
234  * Red-black tree helpers for vm fictitious range management.
235  */
236 static inline int
237 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
238     struct vm_phys_fictitious_seg *range)
239 {
240 
241 	KASSERT(range->start != 0 && range->end != 0,
242 	    ("Invalid range passed on search for vm_fictitious page"));
243 	if (p->start >= range->end)
244 		return (1);
245 	if (p->start < range->start)
246 		return (-1);
247 
248 	return (0);
249 }
250 
251 static int
252 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
253     struct vm_phys_fictitious_seg *p2)
254 {
255 
256 	/* Check if this is a search for a page */
257 	if (p1->end == 0)
258 		return (vm_phys_fictitious_in_range(p1, p2));
259 
260 	KASSERT(p2->end != 0,
261     ("Invalid range passed as second parameter to vm fictitious comparison"));
262 
263 	/* Searching to add a new range */
264 	if (p1->end <= p2->start)
265 		return (-1);
266 	if (p1->start >= p2->end)
267 		return (1);
268 
269 	panic("Trying to add overlapping vm fictitious ranges:\n"
270 	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
271 	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
272 }
273 
274 static __inline int
275 vm_rr_selectdomain(void)
276 {
277 #if MAXMEMDOM > 1
278 	struct thread *td;
279 
280 	td = curthread;
281 
282 	td->td_dom_rr_idx++;
283 	td->td_dom_rr_idx %= vm_ndomains;
284 	return (td->td_dom_rr_idx);
285 #else
286 	return (0);
287 #endif
288 }
289 
290 /*
291  * Initialise a VM domain iterator.
292  *
293  * Check the thread policy, then the proc policy,
294  * then default to the system policy.
295  *
296  * Later on the various layers will have this logic
297  * plumbed into them and the phys code will be explicitly
298  * handed a VM domain policy to use.
299  */
300 static void
301 vm_policy_iterator_init(struct vm_domain_iterator *vi)
302 {
303 #if MAXMEMDOM > 1
304 	struct vm_domain_policy lcl;
305 #endif
306 
307 	vm_domain_iterator_init(vi);
308 
309 #if MAXMEMDOM > 1
310 	/* Copy out the thread policy */
311 	vm_domain_policy_localcopy(&lcl, &curthread->td_vm_dom_policy);
312 	if (lcl.p.policy != VM_POLICY_NONE) {
313 		/* Thread policy is present; use it */
314 		vm_domain_iterator_set_policy(vi, &lcl);
315 		return;
316 	}
317 
318 	vm_domain_policy_localcopy(&lcl,
319 	    &curthread->td_proc->p_vm_dom_policy);
320 	if (lcl.p.policy != VM_POLICY_NONE) {
321 		/* Process policy is present; use it */
322 		vm_domain_iterator_set_policy(vi, &lcl);
323 		return;
324 	}
325 #endif
326 	/* Use system default policy */
327 	vm_domain_iterator_set_policy(vi, &vm_default_policy);
328 }
329 
330 static void
331 vm_policy_iterator_finish(struct vm_domain_iterator *vi)
332 {
333 
334 	vm_domain_iterator_cleanup(vi);
335 }
336 
337 boolean_t
338 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
339 {
340 	struct vm_phys_seg *s;
341 	int idx;
342 
343 	while ((idx = ffsl(mask)) != 0) {
344 		idx--;	/* ffsl counts from 1 */
345 		mask &= ~(1UL << idx);
346 		s = &vm_phys_segs[idx];
347 		if (low < s->end && high > s->start)
348 			return (TRUE);
349 	}
350 	return (FALSE);
351 }
352 
353 /*
354  * Outputs the state of the physical memory allocator, specifically,
355  * the amount of physical memory in each free list.
356  */
357 static int
358 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
359 {
360 	struct sbuf sbuf;
361 	struct vm_freelist *fl;
362 	int dom, error, flind, oind, pind;
363 
364 	error = sysctl_wire_old_buffer(req, 0);
365 	if (error != 0)
366 		return (error);
367 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
368 	for (dom = 0; dom < vm_ndomains; dom++) {
369 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
370 		for (flind = 0; flind < vm_nfreelists; flind++) {
371 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
372 			    "\n  ORDER (SIZE)  |  NUMBER"
373 			    "\n              ", flind);
374 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
375 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
376 			sbuf_printf(&sbuf, "\n--            ");
377 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
378 				sbuf_printf(&sbuf, "-- --      ");
379 			sbuf_printf(&sbuf, "--\n");
380 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
381 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
382 				    1 << (PAGE_SHIFT - 10 + oind));
383 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
384 				fl = vm_phys_free_queues[dom][flind][pind];
385 					sbuf_printf(&sbuf, "  |  %6d",
386 					    fl[oind].lcnt);
387 				}
388 				sbuf_printf(&sbuf, "\n");
389 			}
390 		}
391 	}
392 	error = sbuf_finish(&sbuf);
393 	sbuf_delete(&sbuf);
394 	return (error);
395 }
396 
397 /*
398  * Outputs the set of physical memory segments.
399  */
400 static int
401 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
402 {
403 	struct sbuf sbuf;
404 	struct vm_phys_seg *seg;
405 	int error, segind;
406 
407 	error = sysctl_wire_old_buffer(req, 0);
408 	if (error != 0)
409 		return (error);
410 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
411 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
412 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
413 		seg = &vm_phys_segs[segind];
414 		sbuf_printf(&sbuf, "start:     %#jx\n",
415 		    (uintmax_t)seg->start);
416 		sbuf_printf(&sbuf, "end:       %#jx\n",
417 		    (uintmax_t)seg->end);
418 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
419 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
420 	}
421 	error = sbuf_finish(&sbuf);
422 	sbuf_delete(&sbuf);
423 	return (error);
424 }
425 
426 /*
427  * Return affinity, or -1 if there's no affinity information.
428  */
429 int
430 vm_phys_mem_affinity(int f, int t)
431 {
432 
433 #if MAXMEMDOM > 1
434 	if (mem_locality == NULL)
435 		return (-1);
436 	if (f >= vm_ndomains || t >= vm_ndomains)
437 		return (-1);
438 	return (mem_locality[f * vm_ndomains + t]);
439 #else
440 	return (-1);
441 #endif
442 }
443 
444 #if MAXMEMDOM > 1
445 /*
446  * Outputs the VM locality table.
447  */
448 static int
449 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
450 {
451 	struct sbuf sbuf;
452 	int error, i, j;
453 
454 	error = sysctl_wire_old_buffer(req, 0);
455 	if (error != 0)
456 		return (error);
457 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
458 
459 	sbuf_printf(&sbuf, "\n");
460 
461 	for (i = 0; i < vm_ndomains; i++) {
462 		sbuf_printf(&sbuf, "%d: ", i);
463 		for (j = 0; j < vm_ndomains; j++) {
464 			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
465 		}
466 		sbuf_printf(&sbuf, "\n");
467 	}
468 	error = sbuf_finish(&sbuf);
469 	sbuf_delete(&sbuf);
470 	return (error);
471 }
472 #endif
473 
474 static void
475 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
476 {
477 
478 	m->order = order;
479 	if (tail)
480 		TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
481 	else
482 		TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
483 	fl[order].lcnt++;
484 }
485 
486 static void
487 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
488 {
489 
490 	TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
491 	fl[order].lcnt--;
492 	m->order = VM_NFREEORDER;
493 }
494 
495 /*
496  * Create a physical memory segment.
497  */
498 static void
499 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
500 {
501 	struct vm_phys_seg *seg;
502 
503 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
504 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
505 	KASSERT(domain < vm_ndomains,
506 	    ("vm_phys_create_seg: invalid domain provided"));
507 	seg = &vm_phys_segs[vm_phys_nsegs++];
508 	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
509 		*seg = *(seg - 1);
510 		seg--;
511 	}
512 	seg->start = start;
513 	seg->end = end;
514 	seg->domain = domain;
515 }
516 
517 static void
518 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
519 {
520 	int i;
521 
522 	if (mem_affinity == NULL) {
523 		_vm_phys_create_seg(start, end, 0);
524 		return;
525 	}
526 
527 	for (i = 0;; i++) {
528 		if (mem_affinity[i].end == 0)
529 			panic("Reached end of affinity info");
530 		if (mem_affinity[i].end <= start)
531 			continue;
532 		if (mem_affinity[i].start > start)
533 			panic("No affinity info for start %jx",
534 			    (uintmax_t)start);
535 		if (mem_affinity[i].end >= end) {
536 			_vm_phys_create_seg(start, end,
537 			    mem_affinity[i].domain);
538 			break;
539 		}
540 		_vm_phys_create_seg(start, mem_affinity[i].end,
541 		    mem_affinity[i].domain);
542 		start = mem_affinity[i].end;
543 	}
544 }
545 
546 /*
547  * Add a physical memory segment.
548  */
549 void
550 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
551 {
552 	vm_paddr_t paddr;
553 
554 	KASSERT((start & PAGE_MASK) == 0,
555 	    ("vm_phys_define_seg: start is not page aligned"));
556 	KASSERT((end & PAGE_MASK) == 0,
557 	    ("vm_phys_define_seg: end is not page aligned"));
558 
559 	/*
560 	 * Split the physical memory segment if it spans two or more free
561 	 * list boundaries.
562 	 */
563 	paddr = start;
564 #ifdef	VM_FREELIST_ISADMA
565 	if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
566 		vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
567 		paddr = VM_ISADMA_BOUNDARY;
568 	}
569 #endif
570 #ifdef	VM_FREELIST_LOWMEM
571 	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
572 		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
573 		paddr = VM_LOWMEM_BOUNDARY;
574 	}
575 #endif
576 #ifdef	VM_FREELIST_DMA32
577 	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
578 		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
579 		paddr = VM_DMA32_BOUNDARY;
580 	}
581 #endif
582 	vm_phys_create_seg(paddr, end);
583 }
584 
585 /*
586  * Initialize the physical memory allocator.
587  *
588  * Requires that vm_page_array is initialized!
589  */
590 void
591 vm_phys_init(void)
592 {
593 	struct vm_freelist *fl;
594 	struct vm_phys_seg *seg;
595 	u_long npages;
596 	int dom, flind, freelist, oind, pind, segind;
597 
598 	/*
599 	 * Compute the number of free lists, and generate the mapping from the
600 	 * manifest constants VM_FREELIST_* to the free list indices.
601 	 *
602 	 * Initially, the entries of vm_freelist_to_flind[] are set to either
603 	 * 0 or 1 to indicate which free lists should be created.
604 	 */
605 	npages = 0;
606 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
607 		seg = &vm_phys_segs[segind];
608 #ifdef	VM_FREELIST_ISADMA
609 		if (seg->end <= VM_ISADMA_BOUNDARY)
610 			vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
611 		else
612 #endif
613 #ifdef	VM_FREELIST_LOWMEM
614 		if (seg->end <= VM_LOWMEM_BOUNDARY)
615 			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
616 		else
617 #endif
618 #ifdef	VM_FREELIST_DMA32
619 		if (
620 #ifdef	VM_DMA32_NPAGES_THRESHOLD
621 		    /*
622 		     * Create the DMA32 free list only if the amount of
623 		     * physical memory above physical address 4G exceeds the
624 		     * given threshold.
625 		     */
626 		    npages > VM_DMA32_NPAGES_THRESHOLD &&
627 #endif
628 		    seg->end <= VM_DMA32_BOUNDARY)
629 			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
630 		else
631 #endif
632 		{
633 			npages += atop(seg->end - seg->start);
634 			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
635 		}
636 	}
637 	/* Change each entry into a running total of the free lists. */
638 	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
639 		vm_freelist_to_flind[freelist] +=
640 		    vm_freelist_to_flind[freelist - 1];
641 	}
642 	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
643 	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
644 	/* Change each entry into a free list index. */
645 	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
646 		vm_freelist_to_flind[freelist]--;
647 
648 	/*
649 	 * Initialize the first_page and free_queues fields of each physical
650 	 * memory segment.
651 	 */
652 #ifdef VM_PHYSSEG_SPARSE
653 	npages = 0;
654 #endif
655 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
656 		seg = &vm_phys_segs[segind];
657 #ifdef VM_PHYSSEG_SPARSE
658 		seg->first_page = &vm_page_array[npages];
659 		npages += atop(seg->end - seg->start);
660 #else
661 		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
662 #endif
663 #ifdef	VM_FREELIST_ISADMA
664 		if (seg->end <= VM_ISADMA_BOUNDARY) {
665 			flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
666 			KASSERT(flind >= 0,
667 			    ("vm_phys_init: ISADMA flind < 0"));
668 		} else
669 #endif
670 #ifdef	VM_FREELIST_LOWMEM
671 		if (seg->end <= VM_LOWMEM_BOUNDARY) {
672 			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
673 			KASSERT(flind >= 0,
674 			    ("vm_phys_init: LOWMEM flind < 0"));
675 		} else
676 #endif
677 #ifdef	VM_FREELIST_DMA32
678 		if (seg->end <= VM_DMA32_BOUNDARY) {
679 			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
680 			KASSERT(flind >= 0,
681 			    ("vm_phys_init: DMA32 flind < 0"));
682 		} else
683 #endif
684 		{
685 			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
686 			KASSERT(flind >= 0,
687 			    ("vm_phys_init: DEFAULT flind < 0"));
688 		}
689 		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
690 	}
691 
692 	/*
693 	 * Initialize the free queues.
694 	 */
695 	for (dom = 0; dom < vm_ndomains; dom++) {
696 		for (flind = 0; flind < vm_nfreelists; flind++) {
697 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
698 				fl = vm_phys_free_queues[dom][flind][pind];
699 				for (oind = 0; oind < VM_NFREEORDER; oind++)
700 					TAILQ_INIT(&fl[oind].pl);
701 			}
702 		}
703 	}
704 
705 	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
706 }
707 
708 /*
709  * Split a contiguous, power of two-sized set of physical pages.
710  */
711 static __inline void
712 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
713 {
714 	vm_page_t m_buddy;
715 
716 	while (oind > order) {
717 		oind--;
718 		m_buddy = &m[1 << oind];
719 		KASSERT(m_buddy->order == VM_NFREEORDER,
720 		    ("vm_phys_split_pages: page %p has unexpected order %d",
721 		    m_buddy, m_buddy->order));
722 		vm_freelist_add(fl, m_buddy, oind, 0);
723         }
724 }
725 
726 /*
727  * Initialize a physical page and add it to the free lists.
728  */
729 void
730 vm_phys_add_page(vm_paddr_t pa)
731 {
732 	vm_page_t m;
733 	struct vm_domain *vmd;
734 
735 	vm_cnt.v_page_count++;
736 	m = vm_phys_paddr_to_vm_page(pa);
737 	m->phys_addr = pa;
738 	m->queue = PQ_NONE;
739 	m->segind = vm_phys_paddr_to_segind(pa);
740 	vmd = vm_phys_domain(m);
741 	vmd->vmd_page_count++;
742 	vmd->vmd_segs |= 1UL << m->segind;
743 	KASSERT(m->order == VM_NFREEORDER,
744 	    ("vm_phys_add_page: page %p has unexpected order %d",
745 	    m, m->order));
746 	m->pool = VM_FREEPOOL_DEFAULT;
747 	pmap_page_init(m);
748 	mtx_lock(&vm_page_queue_free_mtx);
749 	vm_phys_freecnt_adj(m, 1);
750 	vm_phys_free_pages(m, 0);
751 	mtx_unlock(&vm_page_queue_free_mtx);
752 }
753 
754 /*
755  * Allocate a contiguous, power of two-sized set of physical pages
756  * from the free lists.
757  *
758  * The free page queues must be locked.
759  */
760 vm_page_t
761 vm_phys_alloc_pages(int pool, int order)
762 {
763 	vm_page_t m;
764 	int domain, flind;
765 	struct vm_domain_iterator vi;
766 
767 	KASSERT(pool < VM_NFREEPOOL,
768 	    ("vm_phys_alloc_pages: pool %d is out of range", pool));
769 	KASSERT(order < VM_NFREEORDER,
770 	    ("vm_phys_alloc_pages: order %d is out of range", order));
771 
772 	vm_policy_iterator_init(&vi);
773 
774 	while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
775 		for (flind = 0; flind < vm_nfreelists; flind++) {
776 			m = vm_phys_alloc_domain_pages(domain, flind, pool,
777 			    order);
778 			if (m != NULL)
779 				return (m);
780 		}
781 	}
782 
783 	vm_policy_iterator_finish(&vi);
784 	return (NULL);
785 }
786 
787 /*
788  * Allocate a contiguous, power of two-sized set of physical pages from the
789  * specified free list.  The free list must be specified using one of the
790  * manifest constants VM_FREELIST_*.
791  *
792  * The free page queues must be locked.
793  */
794 vm_page_t
795 vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
796 {
797 	vm_page_t m;
798 	struct vm_domain_iterator vi;
799 	int domain;
800 
801 	KASSERT(freelist < VM_NFREELIST,
802 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
803 	    freelist));
804 	KASSERT(pool < VM_NFREEPOOL,
805 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
806 	KASSERT(order < VM_NFREEORDER,
807 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
808 
809 	vm_policy_iterator_init(&vi);
810 
811 	while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
812 		m = vm_phys_alloc_domain_pages(domain,
813 		    vm_freelist_to_flind[freelist], pool, order);
814 		if (m != NULL)
815 			return (m);
816 	}
817 
818 	vm_policy_iterator_finish(&vi);
819 	return (NULL);
820 }
821 
822 static vm_page_t
823 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
824 {
825 	struct vm_freelist *fl;
826 	struct vm_freelist *alt;
827 	int oind, pind;
828 	vm_page_t m;
829 
830 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
831 	fl = &vm_phys_free_queues[domain][flind][pool][0];
832 	for (oind = order; oind < VM_NFREEORDER; oind++) {
833 		m = TAILQ_FIRST(&fl[oind].pl);
834 		if (m != NULL) {
835 			vm_freelist_rem(fl, m, oind);
836 			vm_phys_split_pages(m, oind, fl, order);
837 			return (m);
838 		}
839 	}
840 
841 	/*
842 	 * The given pool was empty.  Find the largest
843 	 * contiguous, power-of-two-sized set of pages in any
844 	 * pool.  Transfer these pages to the given pool, and
845 	 * use them to satisfy the allocation.
846 	 */
847 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
848 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
849 			alt = &vm_phys_free_queues[domain][flind][pind][0];
850 			m = TAILQ_FIRST(&alt[oind].pl);
851 			if (m != NULL) {
852 				vm_freelist_rem(alt, m, oind);
853 				vm_phys_set_pool(pool, m, oind);
854 				vm_phys_split_pages(m, oind, fl, order);
855 				return (m);
856 			}
857 		}
858 	}
859 	return (NULL);
860 }
861 
862 /*
863  * Find the vm_page corresponding to the given physical address.
864  */
865 vm_page_t
866 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
867 {
868 	struct vm_phys_seg *seg;
869 	int segind;
870 
871 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
872 		seg = &vm_phys_segs[segind];
873 		if (pa >= seg->start && pa < seg->end)
874 			return (&seg->first_page[atop(pa - seg->start)]);
875 	}
876 	return (NULL);
877 }
878 
879 vm_page_t
880 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
881 {
882 	struct vm_phys_fictitious_seg tmp, *seg;
883 	vm_page_t m;
884 
885 	m = NULL;
886 	tmp.start = pa;
887 	tmp.end = 0;
888 
889 	rw_rlock(&vm_phys_fictitious_reg_lock);
890 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
891 	rw_runlock(&vm_phys_fictitious_reg_lock);
892 	if (seg == NULL)
893 		return (NULL);
894 
895 	m = &seg->first_page[atop(pa - seg->start)];
896 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
897 
898 	return (m);
899 }
900 
901 static inline void
902 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
903     long page_count, vm_memattr_t memattr)
904 {
905 	long i;
906 
907 	for (i = 0; i < page_count; i++) {
908 		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
909 		range[i].oflags &= ~VPO_UNMANAGED;
910 		range[i].busy_lock = VPB_UNBUSIED;
911 	}
912 }
913 
914 int
915 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
916     vm_memattr_t memattr)
917 {
918 	struct vm_phys_fictitious_seg *seg;
919 	vm_page_t fp;
920 	long page_count;
921 #ifdef VM_PHYSSEG_DENSE
922 	long pi, pe;
923 	long dpage_count;
924 #endif
925 
926 	KASSERT(start < end,
927 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
928 	    (uintmax_t)start, (uintmax_t)end));
929 
930 	page_count = (end - start) / PAGE_SIZE;
931 
932 #ifdef VM_PHYSSEG_DENSE
933 	pi = atop(start);
934 	pe = atop(end);
935 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
936 		fp = &vm_page_array[pi - first_page];
937 		if ((pe - first_page) > vm_page_array_size) {
938 			/*
939 			 * We have a segment that starts inside
940 			 * of vm_page_array, but ends outside of it.
941 			 *
942 			 * Use vm_page_array pages for those that are
943 			 * inside of the vm_page_array range, and
944 			 * allocate the remaining ones.
945 			 */
946 			dpage_count = vm_page_array_size - (pi - first_page);
947 			vm_phys_fictitious_init_range(fp, start, dpage_count,
948 			    memattr);
949 			page_count -= dpage_count;
950 			start += ptoa(dpage_count);
951 			goto alloc;
952 		}
953 		/*
954 		 * We can allocate the full range from vm_page_array,
955 		 * so there's no need to register the range in the tree.
956 		 */
957 		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
958 		return (0);
959 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
960 		/*
961 		 * We have a segment that ends inside of vm_page_array,
962 		 * but starts outside of it.
963 		 */
964 		fp = &vm_page_array[0];
965 		dpage_count = pe - first_page;
966 		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
967 		    memattr);
968 		end -= ptoa(dpage_count);
969 		page_count -= dpage_count;
970 		goto alloc;
971 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
972 		/*
973 		 * Trying to register a fictitious range that expands before
974 		 * and after vm_page_array.
975 		 */
976 		return (EINVAL);
977 	} else {
978 alloc:
979 #endif
980 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
981 		    M_WAITOK | M_ZERO);
982 #ifdef VM_PHYSSEG_DENSE
983 	}
984 #endif
985 	vm_phys_fictitious_init_range(fp, start, page_count, memattr);
986 
987 	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
988 	seg->start = start;
989 	seg->end = end;
990 	seg->first_page = fp;
991 
992 	rw_wlock(&vm_phys_fictitious_reg_lock);
993 	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
994 	rw_wunlock(&vm_phys_fictitious_reg_lock);
995 
996 	return (0);
997 }
998 
999 void
1000 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1001 {
1002 	struct vm_phys_fictitious_seg *seg, tmp;
1003 #ifdef VM_PHYSSEG_DENSE
1004 	long pi, pe;
1005 #endif
1006 
1007 	KASSERT(start < end,
1008 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
1009 	    (uintmax_t)start, (uintmax_t)end));
1010 
1011 #ifdef VM_PHYSSEG_DENSE
1012 	pi = atop(start);
1013 	pe = atop(end);
1014 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1015 		if ((pe - first_page) <= vm_page_array_size) {
1016 			/*
1017 			 * This segment was allocated using vm_page_array
1018 			 * only, there's nothing to do since those pages
1019 			 * were never added to the tree.
1020 			 */
1021 			return;
1022 		}
1023 		/*
1024 		 * We have a segment that starts inside
1025 		 * of vm_page_array, but ends outside of it.
1026 		 *
1027 		 * Calculate how many pages were added to the
1028 		 * tree and free them.
1029 		 */
1030 		start = ptoa(first_page + vm_page_array_size);
1031 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1032 		/*
1033 		 * We have a segment that ends inside of vm_page_array,
1034 		 * but starts outside of it.
1035 		 */
1036 		end = ptoa(first_page);
1037 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1038 		/* Since it's not possible to register such a range, panic. */
1039 		panic(
1040 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1041 		    (uintmax_t)start, (uintmax_t)end);
1042 	}
1043 #endif
1044 	tmp.start = start;
1045 	tmp.end = 0;
1046 
1047 	rw_wlock(&vm_phys_fictitious_reg_lock);
1048 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1049 	if (seg->start != start || seg->end != end) {
1050 		rw_wunlock(&vm_phys_fictitious_reg_lock);
1051 		panic(
1052 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1053 		    (uintmax_t)start, (uintmax_t)end);
1054 	}
1055 	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1056 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1057 	free(seg->first_page, M_FICT_PAGES);
1058 	free(seg, M_FICT_PAGES);
1059 }
1060 
1061 /*
1062  * Find the segment containing the given physical address.
1063  */
1064 static int
1065 vm_phys_paddr_to_segind(vm_paddr_t pa)
1066 {
1067 	struct vm_phys_seg *seg;
1068 	int segind;
1069 
1070 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1071 		seg = &vm_phys_segs[segind];
1072 		if (pa >= seg->start && pa < seg->end)
1073 			return (segind);
1074 	}
1075 	panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
1076 	    (uintmax_t)pa);
1077 }
1078 
1079 /*
1080  * Free a contiguous, power of two-sized set of physical pages.
1081  *
1082  * The free page queues must be locked.
1083  */
1084 void
1085 vm_phys_free_pages(vm_page_t m, int order)
1086 {
1087 	struct vm_freelist *fl;
1088 	struct vm_phys_seg *seg;
1089 	vm_paddr_t pa;
1090 	vm_page_t m_buddy;
1091 
1092 	KASSERT(m->order == VM_NFREEORDER,
1093 	    ("vm_phys_free_pages: page %p has unexpected order %d",
1094 	    m, m->order));
1095 	KASSERT(m->pool < VM_NFREEPOOL,
1096 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
1097 	    m, m->pool));
1098 	KASSERT(order < VM_NFREEORDER,
1099 	    ("vm_phys_free_pages: order %d is out of range", order));
1100 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1101 	seg = &vm_phys_segs[m->segind];
1102 	if (order < VM_NFREEORDER - 1) {
1103 		pa = VM_PAGE_TO_PHYS(m);
1104 		do {
1105 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1106 			if (pa < seg->start || pa >= seg->end)
1107 				break;
1108 			m_buddy = &seg->first_page[atop(pa - seg->start)];
1109 			if (m_buddy->order != order)
1110 				break;
1111 			fl = (*seg->free_queues)[m_buddy->pool];
1112 			vm_freelist_rem(fl, m_buddy, order);
1113 			if (m_buddy->pool != m->pool)
1114 				vm_phys_set_pool(m->pool, m_buddy, order);
1115 			order++;
1116 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1117 			m = &seg->first_page[atop(pa - seg->start)];
1118 		} while (order < VM_NFREEORDER - 1);
1119 	}
1120 	fl = (*seg->free_queues)[m->pool];
1121 	vm_freelist_add(fl, m, order, 1);
1122 }
1123 
1124 /*
1125  * Free a contiguous, arbitrarily sized set of physical pages.
1126  *
1127  * The free page queues must be locked.
1128  */
1129 void
1130 vm_phys_free_contig(vm_page_t m, u_long npages)
1131 {
1132 	u_int n;
1133 	int order;
1134 
1135 	/*
1136 	 * Avoid unnecessary coalescing by freeing the pages in the largest
1137 	 * possible power-of-two-sized subsets.
1138 	 */
1139 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1140 	for (;; npages -= n) {
1141 		/*
1142 		 * Unsigned "min" is used here so that "order" is assigned
1143 		 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1144 		 * or the low-order bits of its physical address are zero
1145 		 * because the size of a physical address exceeds the size of
1146 		 * a long.
1147 		 */
1148 		order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1149 		    VM_NFREEORDER - 1);
1150 		n = 1 << order;
1151 		if (npages < n)
1152 			break;
1153 		vm_phys_free_pages(m, order);
1154 		m += n;
1155 	}
1156 	/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
1157 	for (; npages > 0; npages -= n) {
1158 		order = flsl(npages) - 1;
1159 		n = 1 << order;
1160 		vm_phys_free_pages(m, order);
1161 		m += n;
1162 	}
1163 }
1164 
1165 /*
1166  * Set the pool for a contiguous, power of two-sized set of physical pages.
1167  */
1168 void
1169 vm_phys_set_pool(int pool, vm_page_t m, int order)
1170 {
1171 	vm_page_t m_tmp;
1172 
1173 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1174 		m_tmp->pool = pool;
1175 }
1176 
1177 /*
1178  * Search for the given physical page "m" in the free lists.  If the search
1179  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1180  * FALSE, indicating that "m" is not in the free lists.
1181  *
1182  * The free page queues must be locked.
1183  */
1184 boolean_t
1185 vm_phys_unfree_page(vm_page_t m)
1186 {
1187 	struct vm_freelist *fl;
1188 	struct vm_phys_seg *seg;
1189 	vm_paddr_t pa, pa_half;
1190 	vm_page_t m_set, m_tmp;
1191 	int order;
1192 
1193 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1194 
1195 	/*
1196 	 * First, find the contiguous, power of two-sized set of free
1197 	 * physical pages containing the given physical page "m" and
1198 	 * assign it to "m_set".
1199 	 */
1200 	seg = &vm_phys_segs[m->segind];
1201 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1202 	    order < VM_NFREEORDER - 1; ) {
1203 		order++;
1204 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1205 		if (pa >= seg->start)
1206 			m_set = &seg->first_page[atop(pa - seg->start)];
1207 		else
1208 			return (FALSE);
1209 	}
1210 	if (m_set->order < order)
1211 		return (FALSE);
1212 	if (m_set->order == VM_NFREEORDER)
1213 		return (FALSE);
1214 	KASSERT(m_set->order < VM_NFREEORDER,
1215 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
1216 	    m_set, m_set->order));
1217 
1218 	/*
1219 	 * Next, remove "m_set" from the free lists.  Finally, extract
1220 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
1221 	 * is larger than a page, shrink "m_set" by returning the half
1222 	 * of "m_set" that does not contain "m" to the free lists.
1223 	 */
1224 	fl = (*seg->free_queues)[m_set->pool];
1225 	order = m_set->order;
1226 	vm_freelist_rem(fl, m_set, order);
1227 	while (order > 0) {
1228 		order--;
1229 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1230 		if (m->phys_addr < pa_half)
1231 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1232 		else {
1233 			m_tmp = m_set;
1234 			m_set = &seg->first_page[atop(pa_half - seg->start)];
1235 		}
1236 		vm_freelist_add(fl, m_tmp, order, 0);
1237 	}
1238 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1239 	return (TRUE);
1240 }
1241 
1242 /*
1243  * Try to zero one physical page.  Used by an idle priority thread.
1244  */
1245 boolean_t
1246 vm_phys_zero_pages_idle(void)
1247 {
1248 	static struct vm_freelist *fl;
1249 	static int flind, oind, pind;
1250 	vm_page_t m, m_tmp;
1251 	int domain;
1252 
1253 	domain = vm_rr_selectdomain();
1254 	fl = vm_phys_free_queues[domain][0][0];
1255 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1256 	for (;;) {
1257 		TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
1258 			for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
1259 				if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
1260 					vm_phys_unfree_page(m_tmp);
1261 					vm_phys_freecnt_adj(m, -1);
1262 					mtx_unlock(&vm_page_queue_free_mtx);
1263 					pmap_zero_page_idle(m_tmp);
1264 					m_tmp->flags |= PG_ZERO;
1265 					mtx_lock(&vm_page_queue_free_mtx);
1266 					vm_phys_freecnt_adj(m, 1);
1267 					vm_phys_free_pages(m_tmp, 0);
1268 					vm_page_zero_count++;
1269 					cnt_prezero++;
1270 					return (TRUE);
1271 				}
1272 			}
1273 		}
1274 		oind++;
1275 		if (oind == VM_NFREEORDER) {
1276 			oind = 0;
1277 			pind++;
1278 			if (pind == VM_NFREEPOOL) {
1279 				pind = 0;
1280 				flind++;
1281 				if (flind == vm_nfreelists)
1282 					flind = 0;
1283 			}
1284 			fl = vm_phys_free_queues[domain][flind][pind];
1285 		}
1286 	}
1287 }
1288 
1289 /*
1290  * Allocate a contiguous set of physical pages of the given size
1291  * "npages" from the free lists.  All of the physical pages must be at
1292  * or above the given physical address "low" and below the given
1293  * physical address "high".  The given value "alignment" determines the
1294  * alignment of the first physical page in the set.  If the given value
1295  * "boundary" is non-zero, then the set of physical pages cannot cross
1296  * any physical address boundary that is a multiple of that value.  Both
1297  * "alignment" and "boundary" must be a power of two.
1298  */
1299 vm_page_t
1300 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1301     u_long alignment, vm_paddr_t boundary)
1302 {
1303 	struct vm_freelist *fl;
1304 	struct vm_phys_seg *seg;
1305 	vm_paddr_t pa, pa_last, size;
1306 	vm_page_t m, m_ret;
1307 	u_long npages_end;
1308 	int domain, flind, oind, order, pind;
1309 	struct vm_domain_iterator vi;
1310 
1311 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1312 	size = npages << PAGE_SHIFT;
1313 	KASSERT(size != 0,
1314 	    ("vm_phys_alloc_contig: size must not be 0"));
1315 	KASSERT((alignment & (alignment - 1)) == 0,
1316 	    ("vm_phys_alloc_contig: alignment must be a power of 2"));
1317 	KASSERT((boundary & (boundary - 1)) == 0,
1318 	    ("vm_phys_alloc_contig: boundary must be a power of 2"));
1319 	/* Compute the queue that is the best fit for npages. */
1320 	for (order = 0; (1 << order) < npages; order++);
1321 
1322 	vm_policy_iterator_init(&vi);
1323 
1324 restartdom:
1325 	if (vm_domain_iterator_run(&vi, &domain) != 0) {
1326 		vm_policy_iterator_finish(&vi);
1327 		return (NULL);
1328 	}
1329 
1330 	for (flind = 0; flind < vm_nfreelists; flind++) {
1331 		for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
1332 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1333 				fl = &vm_phys_free_queues[domain][flind][pind][0];
1334 				TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1335 					/*
1336 					 * A free list may contain physical pages
1337 					 * from one or more segments.
1338 					 */
1339 					seg = &vm_phys_segs[m_ret->segind];
1340 					if (seg->start > high ||
1341 					    low >= seg->end)
1342 						continue;
1343 
1344 					/*
1345 					 * Is the size of this allocation request
1346 					 * larger than the largest block size?
1347 					 */
1348 					if (order >= VM_NFREEORDER) {
1349 						/*
1350 						 * Determine if a sufficient number
1351 						 * of subsequent blocks to satisfy
1352 						 * the allocation request are free.
1353 						 */
1354 						pa = VM_PAGE_TO_PHYS(m_ret);
1355 						pa_last = pa + size;
1356 						for (;;) {
1357 							pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
1358 							if (pa >= pa_last)
1359 								break;
1360 							if (pa < seg->start ||
1361 							    pa >= seg->end)
1362 								break;
1363 							m = &seg->first_page[atop(pa - seg->start)];
1364 							if (m->order != VM_NFREEORDER - 1)
1365 								break;
1366 						}
1367 						/* If not, continue to the next block. */
1368 						if (pa < pa_last)
1369 							continue;
1370 					}
1371 
1372 					/*
1373 					 * Determine if the blocks are within the given range,
1374 					 * satisfy the given alignment, and do not cross the
1375 					 * given boundary.
1376 					 */
1377 					pa = VM_PAGE_TO_PHYS(m_ret);
1378 					if (pa >= low &&
1379 					    pa + size <= high &&
1380 					    (pa & (alignment - 1)) == 0 &&
1381 					    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
1382 						goto done;
1383 				}
1384 			}
1385 		}
1386 	}
1387 	if (!vm_domain_iterator_isdone(&vi))
1388 		goto restartdom;
1389 	vm_policy_iterator_finish(&vi);
1390 	return (NULL);
1391 done:
1392 	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1393 		fl = (*seg->free_queues)[m->pool];
1394 		vm_freelist_rem(fl, m, m->order);
1395 	}
1396 	if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1397 		vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1398 	fl = (*seg->free_queues)[m_ret->pool];
1399 	vm_phys_split_pages(m_ret, oind, fl, order);
1400 	/* Return excess pages to the free lists. */
1401 	npages_end = roundup2(npages, 1 << imin(oind, order));
1402 	if (npages < npages_end)
1403 		vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1404 	return (m_ret);
1405 }
1406 
1407 #ifdef DDB
1408 /*
1409  * Show the number of physical pages in each of the free lists.
1410  */
1411 DB_SHOW_COMMAND(freepages, db_show_freepages)
1412 {
1413 	struct vm_freelist *fl;
1414 	int flind, oind, pind, dom;
1415 
1416 	for (dom = 0; dom < vm_ndomains; dom++) {
1417 		db_printf("DOMAIN: %d\n", dom);
1418 		for (flind = 0; flind < vm_nfreelists; flind++) {
1419 			db_printf("FREE LIST %d:\n"
1420 			    "\n  ORDER (SIZE)  |  NUMBER"
1421 			    "\n              ", flind);
1422 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1423 				db_printf("  |  POOL %d", pind);
1424 			db_printf("\n--            ");
1425 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1426 				db_printf("-- --      ");
1427 			db_printf("--\n");
1428 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1429 				db_printf("  %2.2d (%6.6dK)", oind,
1430 				    1 << (PAGE_SHIFT - 10 + oind));
1431 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1432 				fl = vm_phys_free_queues[dom][flind][pind];
1433 					db_printf("  |  %6.6d", fl[oind].lcnt);
1434 				}
1435 				db_printf("\n");
1436 			}
1437 			db_printf("\n");
1438 		}
1439 		db_printf("\n");
1440 	}
1441 }
1442 #endif
1443