1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2006 Rice University 5 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu> 6 * All rights reserved. 7 * 8 * This software was developed for the FreeBSD Project by Alan L. Cox, 9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Physical memory system implementation 36 * 37 * Any external functions defined by this module are only to be used by the 38 * virtual memory system. 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_ddb.h" 45 #include "opt_vm.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/lock.h> 50 #include <sys/kernel.h> 51 #include <sys/malloc.h> 52 #include <sys/mutex.h> 53 #include <sys/proc.h> 54 #include <sys/queue.h> 55 #include <sys/rwlock.h> 56 #include <sys/sbuf.h> 57 #include <sys/sysctl.h> 58 #include <sys/tree.h> 59 #include <sys/vmmeter.h> 60 #include <sys/seq.h> 61 62 #include <ddb/ddb.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_param.h> 66 #include <vm/vm_kern.h> 67 #include <vm/vm_object.h> 68 #include <vm/vm_page.h> 69 #include <vm/vm_phys.h> 70 #include <vm/vm_pagequeue.h> 71 72 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX, 73 "Too many physsegs."); 74 75 #ifdef NUMA 76 struct mem_affinity __read_mostly *mem_affinity; 77 int __read_mostly *mem_locality; 78 #endif 79 80 int __read_mostly vm_ndomains = 1; 81 82 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX]; 83 int __read_mostly vm_phys_nsegs; 84 85 struct vm_phys_fictitious_seg; 86 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *, 87 struct vm_phys_fictitious_seg *); 88 89 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree = 90 RB_INITIALIZER(_vm_phys_fictitious_tree); 91 92 struct vm_phys_fictitious_seg { 93 RB_ENTRY(vm_phys_fictitious_seg) node; 94 /* Memory region data */ 95 vm_paddr_t start; 96 vm_paddr_t end; 97 vm_page_t first_page; 98 }; 99 100 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node, 101 vm_phys_fictitious_cmp); 102 103 static struct rwlock_padalign vm_phys_fictitious_reg_lock; 104 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages"); 105 106 static struct vm_freelist __aligned(CACHE_LINE_SIZE) 107 vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER]; 108 109 static int __read_mostly vm_nfreelists; 110 111 /* 112 * Provides the mapping from VM_FREELIST_* to free list indices (flind). 113 */ 114 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST]; 115 116 CTASSERT(VM_FREELIST_DEFAULT == 0); 117 118 #ifdef VM_FREELIST_ISADMA 119 #define VM_ISADMA_BOUNDARY 16777216 120 #endif 121 #ifdef VM_FREELIST_DMA32 122 #define VM_DMA32_BOUNDARY ((vm_paddr_t)1 << 32) 123 #endif 124 125 /* 126 * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about 127 * the ordering of the free list boundaries. 128 */ 129 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY) 130 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY); 131 #endif 132 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY) 133 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY); 134 #endif 135 136 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS); 137 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD, 138 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info"); 139 140 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS); 141 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD, 142 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info"); 143 144 #ifdef NUMA 145 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS); 146 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD, 147 NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info"); 148 #endif 149 150 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD, 151 &vm_ndomains, 0, "Number of physical memory domains available."); 152 153 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, 154 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 155 vm_paddr_t boundary); 156 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain); 157 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end); 158 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, 159 int order, int tail); 160 161 /* 162 * Red-black tree helpers for vm fictitious range management. 163 */ 164 static inline int 165 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p, 166 struct vm_phys_fictitious_seg *range) 167 { 168 169 KASSERT(range->start != 0 && range->end != 0, 170 ("Invalid range passed on search for vm_fictitious page")); 171 if (p->start >= range->end) 172 return (1); 173 if (p->start < range->start) 174 return (-1); 175 176 return (0); 177 } 178 179 static int 180 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1, 181 struct vm_phys_fictitious_seg *p2) 182 { 183 184 /* Check if this is a search for a page */ 185 if (p1->end == 0) 186 return (vm_phys_fictitious_in_range(p1, p2)); 187 188 KASSERT(p2->end != 0, 189 ("Invalid range passed as second parameter to vm fictitious comparison")); 190 191 /* Searching to add a new range */ 192 if (p1->end <= p2->start) 193 return (-1); 194 if (p1->start >= p2->end) 195 return (1); 196 197 panic("Trying to add overlapping vm fictitious ranges:\n" 198 "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start, 199 (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end); 200 } 201 202 int 203 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high) 204 { 205 #ifdef NUMA 206 domainset_t mask; 207 int i; 208 209 if (vm_ndomains == 1 || mem_affinity == NULL) 210 return (0); 211 212 DOMAINSET_ZERO(&mask); 213 /* 214 * Check for any memory that overlaps low, high. 215 */ 216 for (i = 0; mem_affinity[i].end != 0; i++) 217 if (mem_affinity[i].start <= high && 218 mem_affinity[i].end >= low) 219 DOMAINSET_SET(mem_affinity[i].domain, &mask); 220 if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask)) 221 return (prefer); 222 if (DOMAINSET_EMPTY(&mask)) 223 panic("vm_phys_domain_match: Impossible constraint"); 224 return (DOMAINSET_FFS(&mask) - 1); 225 #else 226 return (0); 227 #endif 228 } 229 230 /* 231 * Outputs the state of the physical memory allocator, specifically, 232 * the amount of physical memory in each free list. 233 */ 234 static int 235 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS) 236 { 237 struct sbuf sbuf; 238 struct vm_freelist *fl; 239 int dom, error, flind, oind, pind; 240 241 error = sysctl_wire_old_buffer(req, 0); 242 if (error != 0) 243 return (error); 244 sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req); 245 for (dom = 0; dom < vm_ndomains; dom++) { 246 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom); 247 for (flind = 0; flind < vm_nfreelists; flind++) { 248 sbuf_printf(&sbuf, "\nFREE LIST %d:\n" 249 "\n ORDER (SIZE) | NUMBER" 250 "\n ", flind); 251 for (pind = 0; pind < VM_NFREEPOOL; pind++) 252 sbuf_printf(&sbuf, " | POOL %d", pind); 253 sbuf_printf(&sbuf, "\n-- "); 254 for (pind = 0; pind < VM_NFREEPOOL; pind++) 255 sbuf_printf(&sbuf, "-- -- "); 256 sbuf_printf(&sbuf, "--\n"); 257 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 258 sbuf_printf(&sbuf, " %2d (%6dK)", oind, 259 1 << (PAGE_SHIFT - 10 + oind)); 260 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 261 fl = vm_phys_free_queues[dom][flind][pind]; 262 sbuf_printf(&sbuf, " | %6d", 263 fl[oind].lcnt); 264 } 265 sbuf_printf(&sbuf, "\n"); 266 } 267 } 268 } 269 error = sbuf_finish(&sbuf); 270 sbuf_delete(&sbuf); 271 return (error); 272 } 273 274 /* 275 * Outputs the set of physical memory segments. 276 */ 277 static int 278 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS) 279 { 280 struct sbuf sbuf; 281 struct vm_phys_seg *seg; 282 int error, segind; 283 284 error = sysctl_wire_old_buffer(req, 0); 285 if (error != 0) 286 return (error); 287 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 288 for (segind = 0; segind < vm_phys_nsegs; segind++) { 289 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind); 290 seg = &vm_phys_segs[segind]; 291 sbuf_printf(&sbuf, "start: %#jx\n", 292 (uintmax_t)seg->start); 293 sbuf_printf(&sbuf, "end: %#jx\n", 294 (uintmax_t)seg->end); 295 sbuf_printf(&sbuf, "domain: %d\n", seg->domain); 296 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues); 297 } 298 error = sbuf_finish(&sbuf); 299 sbuf_delete(&sbuf); 300 return (error); 301 } 302 303 /* 304 * Return affinity, or -1 if there's no affinity information. 305 */ 306 int 307 vm_phys_mem_affinity(int f, int t) 308 { 309 310 #ifdef NUMA 311 if (mem_locality == NULL) 312 return (-1); 313 if (f >= vm_ndomains || t >= vm_ndomains) 314 return (-1); 315 return (mem_locality[f * vm_ndomains + t]); 316 #else 317 return (-1); 318 #endif 319 } 320 321 #ifdef NUMA 322 /* 323 * Outputs the VM locality table. 324 */ 325 static int 326 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS) 327 { 328 struct sbuf sbuf; 329 int error, i, j; 330 331 error = sysctl_wire_old_buffer(req, 0); 332 if (error != 0) 333 return (error); 334 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 335 336 sbuf_printf(&sbuf, "\n"); 337 338 for (i = 0; i < vm_ndomains; i++) { 339 sbuf_printf(&sbuf, "%d: ", i); 340 for (j = 0; j < vm_ndomains; j++) { 341 sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j)); 342 } 343 sbuf_printf(&sbuf, "\n"); 344 } 345 error = sbuf_finish(&sbuf); 346 sbuf_delete(&sbuf); 347 return (error); 348 } 349 #endif 350 351 static void 352 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail) 353 { 354 355 m->order = order; 356 if (tail) 357 TAILQ_INSERT_TAIL(&fl[order].pl, m, listq); 358 else 359 TAILQ_INSERT_HEAD(&fl[order].pl, m, listq); 360 fl[order].lcnt++; 361 } 362 363 static void 364 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order) 365 { 366 367 TAILQ_REMOVE(&fl[order].pl, m, listq); 368 fl[order].lcnt--; 369 m->order = VM_NFREEORDER; 370 } 371 372 /* 373 * Create a physical memory segment. 374 */ 375 static void 376 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain) 377 { 378 struct vm_phys_seg *seg; 379 380 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX, 381 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX")); 382 KASSERT(domain >= 0 && domain < vm_ndomains, 383 ("vm_phys_create_seg: invalid domain provided")); 384 seg = &vm_phys_segs[vm_phys_nsegs++]; 385 while (seg > vm_phys_segs && (seg - 1)->start >= end) { 386 *seg = *(seg - 1); 387 seg--; 388 } 389 seg->start = start; 390 seg->end = end; 391 seg->domain = domain; 392 } 393 394 static void 395 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end) 396 { 397 #ifdef NUMA 398 int i; 399 400 if (mem_affinity == NULL) { 401 _vm_phys_create_seg(start, end, 0); 402 return; 403 } 404 405 for (i = 0;; i++) { 406 if (mem_affinity[i].end == 0) 407 panic("Reached end of affinity info"); 408 if (mem_affinity[i].end <= start) 409 continue; 410 if (mem_affinity[i].start > start) 411 panic("No affinity info for start %jx", 412 (uintmax_t)start); 413 if (mem_affinity[i].end >= end) { 414 _vm_phys_create_seg(start, end, 415 mem_affinity[i].domain); 416 break; 417 } 418 _vm_phys_create_seg(start, mem_affinity[i].end, 419 mem_affinity[i].domain); 420 start = mem_affinity[i].end; 421 } 422 #else 423 _vm_phys_create_seg(start, end, 0); 424 #endif 425 } 426 427 /* 428 * Add a physical memory segment. 429 */ 430 void 431 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end) 432 { 433 vm_paddr_t paddr; 434 435 KASSERT((start & PAGE_MASK) == 0, 436 ("vm_phys_define_seg: start is not page aligned")); 437 KASSERT((end & PAGE_MASK) == 0, 438 ("vm_phys_define_seg: end is not page aligned")); 439 440 /* 441 * Split the physical memory segment if it spans two or more free 442 * list boundaries. 443 */ 444 paddr = start; 445 #ifdef VM_FREELIST_ISADMA 446 if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) { 447 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY); 448 paddr = VM_ISADMA_BOUNDARY; 449 } 450 #endif 451 #ifdef VM_FREELIST_LOWMEM 452 if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) { 453 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY); 454 paddr = VM_LOWMEM_BOUNDARY; 455 } 456 #endif 457 #ifdef VM_FREELIST_DMA32 458 if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) { 459 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY); 460 paddr = VM_DMA32_BOUNDARY; 461 } 462 #endif 463 vm_phys_create_seg(paddr, end); 464 } 465 466 /* 467 * Initialize the physical memory allocator. 468 * 469 * Requires that vm_page_array is initialized! 470 */ 471 void 472 vm_phys_init(void) 473 { 474 struct vm_freelist *fl; 475 struct vm_phys_seg *seg; 476 u_long npages; 477 int dom, flind, freelist, oind, pind, segind; 478 479 /* 480 * Compute the number of free lists, and generate the mapping from the 481 * manifest constants VM_FREELIST_* to the free list indices. 482 * 483 * Initially, the entries of vm_freelist_to_flind[] are set to either 484 * 0 or 1 to indicate which free lists should be created. 485 */ 486 npages = 0; 487 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) { 488 seg = &vm_phys_segs[segind]; 489 #ifdef VM_FREELIST_ISADMA 490 if (seg->end <= VM_ISADMA_BOUNDARY) 491 vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1; 492 else 493 #endif 494 #ifdef VM_FREELIST_LOWMEM 495 if (seg->end <= VM_LOWMEM_BOUNDARY) 496 vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1; 497 else 498 #endif 499 #ifdef VM_FREELIST_DMA32 500 if ( 501 #ifdef VM_DMA32_NPAGES_THRESHOLD 502 /* 503 * Create the DMA32 free list only if the amount of 504 * physical memory above physical address 4G exceeds the 505 * given threshold. 506 */ 507 npages > VM_DMA32_NPAGES_THRESHOLD && 508 #endif 509 seg->end <= VM_DMA32_BOUNDARY) 510 vm_freelist_to_flind[VM_FREELIST_DMA32] = 1; 511 else 512 #endif 513 { 514 npages += atop(seg->end - seg->start); 515 vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1; 516 } 517 } 518 /* Change each entry into a running total of the free lists. */ 519 for (freelist = 1; freelist < VM_NFREELIST; freelist++) { 520 vm_freelist_to_flind[freelist] += 521 vm_freelist_to_flind[freelist - 1]; 522 } 523 vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1]; 524 KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists")); 525 /* Change each entry into a free list index. */ 526 for (freelist = 0; freelist < VM_NFREELIST; freelist++) 527 vm_freelist_to_flind[freelist]--; 528 529 /* 530 * Initialize the first_page and free_queues fields of each physical 531 * memory segment. 532 */ 533 #ifdef VM_PHYSSEG_SPARSE 534 npages = 0; 535 #endif 536 for (segind = 0; segind < vm_phys_nsegs; segind++) { 537 seg = &vm_phys_segs[segind]; 538 #ifdef VM_PHYSSEG_SPARSE 539 seg->first_page = &vm_page_array[npages]; 540 npages += atop(seg->end - seg->start); 541 #else 542 seg->first_page = PHYS_TO_VM_PAGE(seg->start); 543 #endif 544 #ifdef VM_FREELIST_ISADMA 545 if (seg->end <= VM_ISADMA_BOUNDARY) { 546 flind = vm_freelist_to_flind[VM_FREELIST_ISADMA]; 547 KASSERT(flind >= 0, 548 ("vm_phys_init: ISADMA flind < 0")); 549 } else 550 #endif 551 #ifdef VM_FREELIST_LOWMEM 552 if (seg->end <= VM_LOWMEM_BOUNDARY) { 553 flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM]; 554 KASSERT(flind >= 0, 555 ("vm_phys_init: LOWMEM flind < 0")); 556 } else 557 #endif 558 #ifdef VM_FREELIST_DMA32 559 if (seg->end <= VM_DMA32_BOUNDARY) { 560 flind = vm_freelist_to_flind[VM_FREELIST_DMA32]; 561 KASSERT(flind >= 0, 562 ("vm_phys_init: DMA32 flind < 0")); 563 } else 564 #endif 565 { 566 flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT]; 567 KASSERT(flind >= 0, 568 ("vm_phys_init: DEFAULT flind < 0")); 569 } 570 seg->free_queues = &vm_phys_free_queues[seg->domain][flind]; 571 } 572 573 /* 574 * Initialize the free queues. 575 */ 576 for (dom = 0; dom < vm_ndomains; dom++) { 577 for (flind = 0; flind < vm_nfreelists; flind++) { 578 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 579 fl = vm_phys_free_queues[dom][flind][pind]; 580 for (oind = 0; oind < VM_NFREEORDER; oind++) 581 TAILQ_INIT(&fl[oind].pl); 582 } 583 } 584 } 585 586 rw_init(&vm_phys_fictitious_reg_lock, "vmfctr"); 587 } 588 589 /* 590 * Split a contiguous, power of two-sized set of physical pages. 591 * 592 * When this function is called by a page allocation function, the caller 593 * should request insertion at the head unless the order [order, oind) queues 594 * are known to be empty. The objective being to reduce the likelihood of 595 * long-term fragmentation by promoting contemporaneous allocation and 596 * (hopefully) deallocation. 597 */ 598 static __inline void 599 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order, 600 int tail) 601 { 602 vm_page_t m_buddy; 603 604 while (oind > order) { 605 oind--; 606 m_buddy = &m[1 << oind]; 607 KASSERT(m_buddy->order == VM_NFREEORDER, 608 ("vm_phys_split_pages: page %p has unexpected order %d", 609 m_buddy, m_buddy->order)); 610 vm_freelist_add(fl, m_buddy, oind, tail); 611 } 612 } 613 614 /* 615 * Add the physical pages [m, m + npages) at the end of a power-of-two aligned 616 * and sized set to the specified free list. 617 * 618 * When this function is called by a page allocation function, the caller 619 * should request insertion at the head unless the lower-order queues are 620 * known to be empty. The objective being to reduce the likelihood of long- 621 * term fragmentation by promoting contemporaneous allocation and (hopefully) 622 * deallocation. 623 * 624 * The physical page m's buddy must not be free. 625 */ 626 static void 627 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail) 628 { 629 u_int n; 630 int order; 631 632 KASSERT(npages > 0, ("vm_phys_enq_range: npages is 0")); 633 KASSERT(((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) & 634 ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0, 635 ("vm_phys_enq_range: page %p and npages %u are misaligned", 636 m, npages)); 637 do { 638 KASSERT(m->order == VM_NFREEORDER, 639 ("vm_phys_enq_range: page %p has unexpected order %d", 640 m, m->order)); 641 order = ffs(npages) - 1; 642 KASSERT(order < VM_NFREEORDER, 643 ("vm_phys_enq_range: order %d is out of range", order)); 644 vm_freelist_add(fl, m, order, tail); 645 n = 1 << order; 646 m += n; 647 npages -= n; 648 } while (npages > 0); 649 } 650 651 /* 652 * Tries to allocate the specified number of pages from the specified pool 653 * within the specified domain. Returns the actual number of allocated pages 654 * and a pointer to each page through the array ma[]. 655 * 656 * The returned pages may not be physically contiguous. However, in contrast 657 * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0), 658 * calling this function once to allocate the desired number of pages will 659 * avoid wasted time in vm_phys_split_pages(). 660 * 661 * The free page queues for the specified domain must be locked. 662 */ 663 int 664 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[]) 665 { 666 struct vm_freelist *alt, *fl; 667 vm_page_t m; 668 int avail, end, flind, freelist, i, need, oind, pind; 669 670 KASSERT(domain >= 0 && domain < vm_ndomains, 671 ("vm_phys_alloc_npages: domain %d is out of range", domain)); 672 KASSERT(pool < VM_NFREEPOOL, 673 ("vm_phys_alloc_npages: pool %d is out of range", pool)); 674 KASSERT(npages <= 1 << (VM_NFREEORDER - 1), 675 ("vm_phys_alloc_npages: npages %d is out of range", npages)); 676 vm_domain_free_assert_locked(VM_DOMAIN(domain)); 677 i = 0; 678 for (freelist = 0; freelist < VM_NFREELIST; freelist++) { 679 flind = vm_freelist_to_flind[freelist]; 680 if (flind < 0) 681 continue; 682 fl = vm_phys_free_queues[domain][flind][pool]; 683 for (oind = 0; oind < VM_NFREEORDER; oind++) { 684 while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) { 685 vm_freelist_rem(fl, m, oind); 686 avail = 1 << oind; 687 need = imin(npages - i, avail); 688 for (end = i + need; i < end;) 689 ma[i++] = m++; 690 if (need < avail) { 691 /* 692 * Return excess pages to fl. Its 693 * order [0, oind) queues are empty. 694 */ 695 vm_phys_enq_range(m, avail - need, fl, 696 1); 697 return (npages); 698 } else if (i == npages) 699 return (npages); 700 } 701 } 702 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 703 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 704 alt = vm_phys_free_queues[domain][flind][pind]; 705 while ((m = TAILQ_FIRST(&alt[oind].pl)) != 706 NULL) { 707 vm_freelist_rem(alt, m, oind); 708 vm_phys_set_pool(pool, m, oind); 709 avail = 1 << oind; 710 need = imin(npages - i, avail); 711 for (end = i + need; i < end;) 712 ma[i++] = m++; 713 if (need < avail) { 714 /* 715 * Return excess pages to fl. 716 * Its order [0, oind) queues 717 * are empty. 718 */ 719 vm_phys_enq_range(m, avail - 720 need, fl, 1); 721 return (npages); 722 } else if (i == npages) 723 return (npages); 724 } 725 } 726 } 727 } 728 return (i); 729 } 730 731 /* 732 * Allocate a contiguous, power of two-sized set of physical pages 733 * from the free lists. 734 * 735 * The free page queues must be locked. 736 */ 737 vm_page_t 738 vm_phys_alloc_pages(int domain, int pool, int order) 739 { 740 vm_page_t m; 741 int freelist; 742 743 for (freelist = 0; freelist < VM_NFREELIST; freelist++) { 744 m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order); 745 if (m != NULL) 746 return (m); 747 } 748 return (NULL); 749 } 750 751 /* 752 * Allocate a contiguous, power of two-sized set of physical pages from the 753 * specified free list. The free list must be specified using one of the 754 * manifest constants VM_FREELIST_*. 755 * 756 * The free page queues must be locked. 757 */ 758 vm_page_t 759 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order) 760 { 761 struct vm_freelist *alt, *fl; 762 vm_page_t m; 763 int oind, pind, flind; 764 765 KASSERT(domain >= 0 && domain < vm_ndomains, 766 ("vm_phys_alloc_freelist_pages: domain %d is out of range", 767 domain)); 768 KASSERT(freelist < VM_NFREELIST, 769 ("vm_phys_alloc_freelist_pages: freelist %d is out of range", 770 freelist)); 771 KASSERT(pool < VM_NFREEPOOL, 772 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool)); 773 KASSERT(order < VM_NFREEORDER, 774 ("vm_phys_alloc_freelist_pages: order %d is out of range", order)); 775 776 flind = vm_freelist_to_flind[freelist]; 777 /* Check if freelist is present */ 778 if (flind < 0) 779 return (NULL); 780 781 vm_domain_free_assert_locked(VM_DOMAIN(domain)); 782 fl = &vm_phys_free_queues[domain][flind][pool][0]; 783 for (oind = order; oind < VM_NFREEORDER; oind++) { 784 m = TAILQ_FIRST(&fl[oind].pl); 785 if (m != NULL) { 786 vm_freelist_rem(fl, m, oind); 787 /* The order [order, oind) queues are empty. */ 788 vm_phys_split_pages(m, oind, fl, order, 1); 789 return (m); 790 } 791 } 792 793 /* 794 * The given pool was empty. Find the largest 795 * contiguous, power-of-two-sized set of pages in any 796 * pool. Transfer these pages to the given pool, and 797 * use them to satisfy the allocation. 798 */ 799 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) { 800 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 801 alt = &vm_phys_free_queues[domain][flind][pind][0]; 802 m = TAILQ_FIRST(&alt[oind].pl); 803 if (m != NULL) { 804 vm_freelist_rem(alt, m, oind); 805 vm_phys_set_pool(pool, m, oind); 806 /* The order [order, oind) queues are empty. */ 807 vm_phys_split_pages(m, oind, fl, order, 1); 808 return (m); 809 } 810 } 811 } 812 return (NULL); 813 } 814 815 /* 816 * Find the vm_page corresponding to the given physical address. 817 */ 818 vm_page_t 819 vm_phys_paddr_to_vm_page(vm_paddr_t pa) 820 { 821 struct vm_phys_seg *seg; 822 int segind; 823 824 for (segind = 0; segind < vm_phys_nsegs; segind++) { 825 seg = &vm_phys_segs[segind]; 826 if (pa >= seg->start && pa < seg->end) 827 return (&seg->first_page[atop(pa - seg->start)]); 828 } 829 return (NULL); 830 } 831 832 vm_page_t 833 vm_phys_fictitious_to_vm_page(vm_paddr_t pa) 834 { 835 struct vm_phys_fictitious_seg tmp, *seg; 836 vm_page_t m; 837 838 m = NULL; 839 tmp.start = pa; 840 tmp.end = 0; 841 842 rw_rlock(&vm_phys_fictitious_reg_lock); 843 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp); 844 rw_runlock(&vm_phys_fictitious_reg_lock); 845 if (seg == NULL) 846 return (NULL); 847 848 m = &seg->first_page[atop(pa - seg->start)]; 849 KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m)); 850 851 return (m); 852 } 853 854 static inline void 855 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start, 856 long page_count, vm_memattr_t memattr) 857 { 858 long i; 859 860 bzero(range, page_count * sizeof(*range)); 861 for (i = 0; i < page_count; i++) { 862 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr); 863 range[i].oflags &= ~VPO_UNMANAGED; 864 range[i].busy_lock = VPB_UNBUSIED; 865 } 866 } 867 868 int 869 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end, 870 vm_memattr_t memattr) 871 { 872 struct vm_phys_fictitious_seg *seg; 873 vm_page_t fp; 874 long page_count; 875 #ifdef VM_PHYSSEG_DENSE 876 long pi, pe; 877 long dpage_count; 878 #endif 879 880 KASSERT(start < end, 881 ("Start of segment isn't less than end (start: %jx end: %jx)", 882 (uintmax_t)start, (uintmax_t)end)); 883 884 page_count = (end - start) / PAGE_SIZE; 885 886 #ifdef VM_PHYSSEG_DENSE 887 pi = atop(start); 888 pe = atop(end); 889 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 890 fp = &vm_page_array[pi - first_page]; 891 if ((pe - first_page) > vm_page_array_size) { 892 /* 893 * We have a segment that starts inside 894 * of vm_page_array, but ends outside of it. 895 * 896 * Use vm_page_array pages for those that are 897 * inside of the vm_page_array range, and 898 * allocate the remaining ones. 899 */ 900 dpage_count = vm_page_array_size - (pi - first_page); 901 vm_phys_fictitious_init_range(fp, start, dpage_count, 902 memattr); 903 page_count -= dpage_count; 904 start += ptoa(dpage_count); 905 goto alloc; 906 } 907 /* 908 * We can allocate the full range from vm_page_array, 909 * so there's no need to register the range in the tree. 910 */ 911 vm_phys_fictitious_init_range(fp, start, page_count, memattr); 912 return (0); 913 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) { 914 /* 915 * We have a segment that ends inside of vm_page_array, 916 * but starts outside of it. 917 */ 918 fp = &vm_page_array[0]; 919 dpage_count = pe - first_page; 920 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count, 921 memattr); 922 end -= ptoa(dpage_count); 923 page_count -= dpage_count; 924 goto alloc; 925 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) { 926 /* 927 * Trying to register a fictitious range that expands before 928 * and after vm_page_array. 929 */ 930 return (EINVAL); 931 } else { 932 alloc: 933 #endif 934 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES, 935 M_WAITOK); 936 #ifdef VM_PHYSSEG_DENSE 937 } 938 #endif 939 vm_phys_fictitious_init_range(fp, start, page_count, memattr); 940 941 seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO); 942 seg->start = start; 943 seg->end = end; 944 seg->first_page = fp; 945 946 rw_wlock(&vm_phys_fictitious_reg_lock); 947 RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg); 948 rw_wunlock(&vm_phys_fictitious_reg_lock); 949 950 return (0); 951 } 952 953 void 954 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end) 955 { 956 struct vm_phys_fictitious_seg *seg, tmp; 957 #ifdef VM_PHYSSEG_DENSE 958 long pi, pe; 959 #endif 960 961 KASSERT(start < end, 962 ("Start of segment isn't less than end (start: %jx end: %jx)", 963 (uintmax_t)start, (uintmax_t)end)); 964 965 #ifdef VM_PHYSSEG_DENSE 966 pi = atop(start); 967 pe = atop(end); 968 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 969 if ((pe - first_page) <= vm_page_array_size) { 970 /* 971 * This segment was allocated using vm_page_array 972 * only, there's nothing to do since those pages 973 * were never added to the tree. 974 */ 975 return; 976 } 977 /* 978 * We have a segment that starts inside 979 * of vm_page_array, but ends outside of it. 980 * 981 * Calculate how many pages were added to the 982 * tree and free them. 983 */ 984 start = ptoa(first_page + vm_page_array_size); 985 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) { 986 /* 987 * We have a segment that ends inside of vm_page_array, 988 * but starts outside of it. 989 */ 990 end = ptoa(first_page); 991 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) { 992 /* Since it's not possible to register such a range, panic. */ 993 panic( 994 "Unregistering not registered fictitious range [%#jx:%#jx]", 995 (uintmax_t)start, (uintmax_t)end); 996 } 997 #endif 998 tmp.start = start; 999 tmp.end = 0; 1000 1001 rw_wlock(&vm_phys_fictitious_reg_lock); 1002 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp); 1003 if (seg->start != start || seg->end != end) { 1004 rw_wunlock(&vm_phys_fictitious_reg_lock); 1005 panic( 1006 "Unregistering not registered fictitious range [%#jx:%#jx]", 1007 (uintmax_t)start, (uintmax_t)end); 1008 } 1009 RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg); 1010 rw_wunlock(&vm_phys_fictitious_reg_lock); 1011 free(seg->first_page, M_FICT_PAGES); 1012 free(seg, M_FICT_PAGES); 1013 } 1014 1015 /* 1016 * Free a contiguous, power of two-sized set of physical pages. 1017 * 1018 * The free page queues must be locked. 1019 */ 1020 void 1021 vm_phys_free_pages(vm_page_t m, int order) 1022 { 1023 struct vm_freelist *fl; 1024 struct vm_phys_seg *seg; 1025 vm_paddr_t pa; 1026 vm_page_t m_buddy; 1027 1028 KASSERT(m->order == VM_NFREEORDER, 1029 ("vm_phys_free_pages: page %p has unexpected order %d", 1030 m, m->order)); 1031 KASSERT(m->pool < VM_NFREEPOOL, 1032 ("vm_phys_free_pages: page %p has unexpected pool %d", 1033 m, m->pool)); 1034 KASSERT(order < VM_NFREEORDER, 1035 ("vm_phys_free_pages: order %d is out of range", order)); 1036 seg = &vm_phys_segs[m->segind]; 1037 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain)); 1038 if (order < VM_NFREEORDER - 1) { 1039 pa = VM_PAGE_TO_PHYS(m); 1040 do { 1041 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order)); 1042 if (pa < seg->start || pa >= seg->end) 1043 break; 1044 m_buddy = &seg->first_page[atop(pa - seg->start)]; 1045 if (m_buddy->order != order) 1046 break; 1047 fl = (*seg->free_queues)[m_buddy->pool]; 1048 vm_freelist_rem(fl, m_buddy, order); 1049 if (m_buddy->pool != m->pool) 1050 vm_phys_set_pool(m->pool, m_buddy, order); 1051 order++; 1052 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1); 1053 m = &seg->first_page[atop(pa - seg->start)]; 1054 } while (order < VM_NFREEORDER - 1); 1055 } 1056 fl = (*seg->free_queues)[m->pool]; 1057 vm_freelist_add(fl, m, order, 1); 1058 } 1059 1060 /* 1061 * Free a contiguous, arbitrarily sized set of physical pages. 1062 * 1063 * The free page queues must be locked. 1064 */ 1065 void 1066 vm_phys_free_contig(vm_page_t m, u_long npages) 1067 { 1068 u_int n; 1069 int order; 1070 1071 /* 1072 * Avoid unnecessary coalescing by freeing the pages in the largest 1073 * possible power-of-two-sized subsets. 1074 */ 1075 vm_domain_free_assert_locked(vm_pagequeue_domain(m)); 1076 for (;; npages -= n) { 1077 /* 1078 * Unsigned "min" is used here so that "order" is assigned 1079 * "VM_NFREEORDER - 1" when "m"'s physical address is zero 1080 * or the low-order bits of its physical address are zero 1081 * because the size of a physical address exceeds the size of 1082 * a long. 1083 */ 1084 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1, 1085 VM_NFREEORDER - 1); 1086 n = 1 << order; 1087 if (npages < n) 1088 break; 1089 vm_phys_free_pages(m, order); 1090 m += n; 1091 } 1092 /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */ 1093 for (; npages > 0; npages -= n) { 1094 order = flsl(npages) - 1; 1095 n = 1 << order; 1096 vm_phys_free_pages(m, order); 1097 m += n; 1098 } 1099 } 1100 1101 /* 1102 * Scan physical memory between the specified addresses "low" and "high" for a 1103 * run of contiguous physical pages that satisfy the specified conditions, and 1104 * return the lowest page in the run. The specified "alignment" determines 1105 * the alignment of the lowest physical page in the run. If the specified 1106 * "boundary" is non-zero, then the run of physical pages cannot span a 1107 * physical address that is a multiple of "boundary". 1108 * 1109 * "npages" must be greater than zero. Both "alignment" and "boundary" must 1110 * be a power of two. 1111 */ 1112 vm_page_t 1113 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, 1114 u_long alignment, vm_paddr_t boundary, int options) 1115 { 1116 vm_paddr_t pa_end; 1117 vm_page_t m_end, m_run, m_start; 1118 struct vm_phys_seg *seg; 1119 int segind; 1120 1121 KASSERT(npages > 0, ("npages is 0")); 1122 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 1123 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 1124 if (low >= high) 1125 return (NULL); 1126 for (segind = 0; segind < vm_phys_nsegs; segind++) { 1127 seg = &vm_phys_segs[segind]; 1128 if (seg->domain != domain) 1129 continue; 1130 if (seg->start >= high) 1131 break; 1132 if (low >= seg->end) 1133 continue; 1134 if (low <= seg->start) 1135 m_start = seg->first_page; 1136 else 1137 m_start = &seg->first_page[atop(low - seg->start)]; 1138 if (high < seg->end) 1139 pa_end = high; 1140 else 1141 pa_end = seg->end; 1142 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages)) 1143 continue; 1144 m_end = &seg->first_page[atop(pa_end - seg->start)]; 1145 m_run = vm_page_scan_contig(npages, m_start, m_end, 1146 alignment, boundary, options); 1147 if (m_run != NULL) 1148 return (m_run); 1149 } 1150 return (NULL); 1151 } 1152 1153 /* 1154 * Set the pool for a contiguous, power of two-sized set of physical pages. 1155 */ 1156 void 1157 vm_phys_set_pool(int pool, vm_page_t m, int order) 1158 { 1159 vm_page_t m_tmp; 1160 1161 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++) 1162 m_tmp->pool = pool; 1163 } 1164 1165 /* 1166 * Search for the given physical page "m" in the free lists. If the search 1167 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return 1168 * FALSE, indicating that "m" is not in the free lists. 1169 * 1170 * The free page queues must be locked. 1171 */ 1172 boolean_t 1173 vm_phys_unfree_page(vm_page_t m) 1174 { 1175 struct vm_freelist *fl; 1176 struct vm_phys_seg *seg; 1177 vm_paddr_t pa, pa_half; 1178 vm_page_t m_set, m_tmp; 1179 int order; 1180 1181 /* 1182 * First, find the contiguous, power of two-sized set of free 1183 * physical pages containing the given physical page "m" and 1184 * assign it to "m_set". 1185 */ 1186 seg = &vm_phys_segs[m->segind]; 1187 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain)); 1188 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER && 1189 order < VM_NFREEORDER - 1; ) { 1190 order++; 1191 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order)); 1192 if (pa >= seg->start) 1193 m_set = &seg->first_page[atop(pa - seg->start)]; 1194 else 1195 return (FALSE); 1196 } 1197 if (m_set->order < order) 1198 return (FALSE); 1199 if (m_set->order == VM_NFREEORDER) 1200 return (FALSE); 1201 KASSERT(m_set->order < VM_NFREEORDER, 1202 ("vm_phys_unfree_page: page %p has unexpected order %d", 1203 m_set, m_set->order)); 1204 1205 /* 1206 * Next, remove "m_set" from the free lists. Finally, extract 1207 * "m" from "m_set" using an iterative algorithm: While "m_set" 1208 * is larger than a page, shrink "m_set" by returning the half 1209 * of "m_set" that does not contain "m" to the free lists. 1210 */ 1211 fl = (*seg->free_queues)[m_set->pool]; 1212 order = m_set->order; 1213 vm_freelist_rem(fl, m_set, order); 1214 while (order > 0) { 1215 order--; 1216 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order)); 1217 if (m->phys_addr < pa_half) 1218 m_tmp = &seg->first_page[atop(pa_half - seg->start)]; 1219 else { 1220 m_tmp = m_set; 1221 m_set = &seg->first_page[atop(pa_half - seg->start)]; 1222 } 1223 vm_freelist_add(fl, m_tmp, order, 0); 1224 } 1225 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency")); 1226 return (TRUE); 1227 } 1228 1229 /* 1230 * Allocate a contiguous set of physical pages of the given size 1231 * "npages" from the free lists. All of the physical pages must be at 1232 * or above the given physical address "low" and below the given 1233 * physical address "high". The given value "alignment" determines the 1234 * alignment of the first physical page in the set. If the given value 1235 * "boundary" is non-zero, then the set of physical pages cannot cross 1236 * any physical address boundary that is a multiple of that value. Both 1237 * "alignment" and "boundary" must be a power of two. 1238 */ 1239 vm_page_t 1240 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, 1241 u_long alignment, vm_paddr_t boundary) 1242 { 1243 vm_paddr_t pa_end, pa_start; 1244 vm_page_t m_run; 1245 struct vm_phys_seg *seg; 1246 int segind; 1247 1248 KASSERT(npages > 0, ("npages is 0")); 1249 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 1250 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 1251 vm_domain_free_assert_locked(VM_DOMAIN(domain)); 1252 if (low >= high) 1253 return (NULL); 1254 m_run = NULL; 1255 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) { 1256 seg = &vm_phys_segs[segind]; 1257 if (seg->start >= high || seg->domain != domain) 1258 continue; 1259 if (low >= seg->end) 1260 break; 1261 if (low <= seg->start) 1262 pa_start = seg->start; 1263 else 1264 pa_start = low; 1265 if (high < seg->end) 1266 pa_end = high; 1267 else 1268 pa_end = seg->end; 1269 if (pa_end - pa_start < ptoa(npages)) 1270 continue; 1271 m_run = vm_phys_alloc_seg_contig(seg, npages, low, high, 1272 alignment, boundary); 1273 if (m_run != NULL) 1274 break; 1275 } 1276 return (m_run); 1277 } 1278 1279 /* 1280 * Allocate a run of contiguous physical pages from the free list for the 1281 * specified segment. 1282 */ 1283 static vm_page_t 1284 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages, 1285 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 1286 { 1287 struct vm_freelist *fl; 1288 vm_paddr_t pa, pa_end, size; 1289 vm_page_t m, m_ret; 1290 u_long npages_end; 1291 int oind, order, pind; 1292 1293 KASSERT(npages > 0, ("npages is 0")); 1294 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 1295 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 1296 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain)); 1297 /* Compute the queue that is the best fit for npages. */ 1298 order = flsl(npages - 1); 1299 /* Search for a run satisfying the specified conditions. */ 1300 size = npages << PAGE_SHIFT; 1301 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; 1302 oind++) { 1303 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 1304 fl = (*seg->free_queues)[pind]; 1305 TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) { 1306 /* 1307 * Is the size of this allocation request 1308 * larger than the largest block size? 1309 */ 1310 if (order >= VM_NFREEORDER) { 1311 /* 1312 * Determine if a sufficient number of 1313 * subsequent blocks to satisfy the 1314 * allocation request are free. 1315 */ 1316 pa = VM_PAGE_TO_PHYS(m_ret); 1317 pa_end = pa + size; 1318 if (pa_end < pa) 1319 continue; 1320 for (;;) { 1321 pa += 1 << (PAGE_SHIFT + 1322 VM_NFREEORDER - 1); 1323 if (pa >= pa_end || 1324 pa < seg->start || 1325 pa >= seg->end) 1326 break; 1327 m = &seg->first_page[atop(pa - 1328 seg->start)]; 1329 if (m->order != VM_NFREEORDER - 1330 1) 1331 break; 1332 } 1333 /* If not, go to the next block. */ 1334 if (pa < pa_end) 1335 continue; 1336 } 1337 1338 /* 1339 * Determine if the blocks are within the 1340 * given range, satisfy the given alignment, 1341 * and do not cross the given boundary. 1342 */ 1343 pa = VM_PAGE_TO_PHYS(m_ret); 1344 pa_end = pa + size; 1345 if (pa >= low && pa_end <= high && 1346 (pa & (alignment - 1)) == 0 && 1347 rounddown2(pa ^ (pa_end - 1), boundary) == 0) 1348 goto done; 1349 } 1350 } 1351 } 1352 return (NULL); 1353 done: 1354 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) { 1355 fl = (*seg->free_queues)[m->pool]; 1356 vm_freelist_rem(fl, m, oind); 1357 if (m->pool != VM_FREEPOOL_DEFAULT) 1358 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind); 1359 } 1360 /* Return excess pages to the free lists. */ 1361 npages_end = roundup2(npages, 1 << oind); 1362 if (npages < npages_end) { 1363 fl = (*seg->free_queues)[VM_FREEPOOL_DEFAULT]; 1364 vm_phys_enq_range(&m_ret[npages], npages_end - npages, fl, 0); 1365 } 1366 return (m_ret); 1367 } 1368 1369 #ifdef DDB 1370 /* 1371 * Show the number of physical pages in each of the free lists. 1372 */ 1373 DB_SHOW_COMMAND(freepages, db_show_freepages) 1374 { 1375 struct vm_freelist *fl; 1376 int flind, oind, pind, dom; 1377 1378 for (dom = 0; dom < vm_ndomains; dom++) { 1379 db_printf("DOMAIN: %d\n", dom); 1380 for (flind = 0; flind < vm_nfreelists; flind++) { 1381 db_printf("FREE LIST %d:\n" 1382 "\n ORDER (SIZE) | NUMBER" 1383 "\n ", flind); 1384 for (pind = 0; pind < VM_NFREEPOOL; pind++) 1385 db_printf(" | POOL %d", pind); 1386 db_printf("\n-- "); 1387 for (pind = 0; pind < VM_NFREEPOOL; pind++) 1388 db_printf("-- -- "); 1389 db_printf("--\n"); 1390 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 1391 db_printf(" %2.2d (%6.6dK)", oind, 1392 1 << (PAGE_SHIFT - 10 + oind)); 1393 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 1394 fl = vm_phys_free_queues[dom][flind][pind]; 1395 db_printf(" | %6.6d", fl[oind].lcnt); 1396 } 1397 db_printf("\n"); 1398 } 1399 db_printf("\n"); 1400 } 1401 db_printf("\n"); 1402 } 1403 } 1404 #endif 1405