xref: /freebsd/sys/vm/vm_phys.c (revision 30d239bc4c510432e65a84fa1c14ed67a3ab1c92)
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ddb.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/lock.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/queue.h>
44 #include <sys/sbuf.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 
49 #include <ddb/ddb.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_param.h>
53 #include <vm/vm_kern.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_page.h>
56 #include <vm/vm_phys.h>
57 
58 struct vm_freelist {
59 	struct pglist pl;
60 	int lcnt;
61 };
62 
63 struct vm_phys_seg {
64 	vm_paddr_t	start;
65 	vm_paddr_t	end;
66 	vm_page_t	first_page;
67 	struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
68 };
69 
70 static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
71 
72 static int vm_phys_nsegs;
73 
74 static struct vm_freelist
75     vm_phys_free_queues[VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
76 
77 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
78 
79 static int cnt_prezero;
80 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
81     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
82 
83 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
84 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
85     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
86 
87 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
88 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
89     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
90 
91 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
92 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
93 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
94     int order);
95 
96 /*
97  * Outputs the state of the physical memory allocator, specifically,
98  * the amount of physical memory in each free list.
99  */
100 static int
101 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
102 {
103 	struct sbuf sbuf;
104 	struct vm_freelist *fl;
105 	char *cbuf;
106 	const int cbufsize = vm_nfreelists*(VM_NFREEORDER + 1)*81;
107 	int error, flind, oind, pind;
108 
109 	cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
110 	sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
111 	for (flind = 0; flind < vm_nfreelists; flind++) {
112 		sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
113 		    "\n  ORDER (SIZE)  |  NUMBER"
114 		    "\n              ", flind);
115 		for (pind = 0; pind < VM_NFREEPOOL; pind++)
116 			sbuf_printf(&sbuf, "  |  POOL %d", pind);
117 		sbuf_printf(&sbuf, "\n--            ");
118 		for (pind = 0; pind < VM_NFREEPOOL; pind++)
119 			sbuf_printf(&sbuf, "-- --      ");
120 		sbuf_printf(&sbuf, "--\n");
121 		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
122 			sbuf_printf(&sbuf, "  %2.2d (%6.6dK)", oind,
123 			    1 << (PAGE_SHIFT - 10 + oind));
124 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
125 				fl = vm_phys_free_queues[flind][pind];
126 				sbuf_printf(&sbuf, "  |  %6.6d", fl[oind].lcnt);
127 			}
128 			sbuf_printf(&sbuf, "\n");
129 		}
130 	}
131 	sbuf_finish(&sbuf);
132 	error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
133 	sbuf_delete(&sbuf);
134 	free(cbuf, M_TEMP);
135 	return (error);
136 }
137 
138 /*
139  * Outputs the set of physical memory segments.
140  */
141 static int
142 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
143 {
144 	struct sbuf sbuf;
145 	struct vm_phys_seg *seg;
146 	char *cbuf;
147 	const int cbufsize = VM_PHYSSEG_MAX*(VM_NFREEORDER + 1)*81;
148 	int error, segind;
149 
150 	cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
151 	sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
152 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
153 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
154 		seg = &vm_phys_segs[segind];
155 		sbuf_printf(&sbuf, "start:     %#jx\n",
156 		    (uintmax_t)seg->start);
157 		sbuf_printf(&sbuf, "end:       %#jx\n",
158 		    (uintmax_t)seg->end);
159 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
160 	}
161 	sbuf_finish(&sbuf);
162 	error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
163 	sbuf_delete(&sbuf);
164 	free(cbuf, M_TEMP);
165 	return (error);
166 }
167 
168 /*
169  * Create a physical memory segment.
170  */
171 static void
172 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
173 {
174 	struct vm_phys_seg *seg;
175 #ifdef VM_PHYSSEG_SPARSE
176 	long pages;
177 	int segind;
178 
179 	pages = 0;
180 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
181 		seg = &vm_phys_segs[segind];
182 		pages += atop(seg->end - seg->start);
183 	}
184 #endif
185 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
186 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
187 	seg = &vm_phys_segs[vm_phys_nsegs++];
188 	seg->start = start;
189 	seg->end = end;
190 #ifdef VM_PHYSSEG_SPARSE
191 	seg->first_page = &vm_page_array[pages];
192 #else
193 	seg->first_page = PHYS_TO_VM_PAGE(start);
194 #endif
195 	seg->free_queues = &vm_phys_free_queues[flind];
196 }
197 
198 /*
199  * Initialize the physical memory allocator.
200  */
201 void
202 vm_phys_init(void)
203 {
204 	struct vm_freelist *fl;
205 	int flind, i, oind, pind;
206 
207 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
208 #ifdef	VM_FREELIST_ISADMA
209 		if (phys_avail[i] < 16777216) {
210 			if (phys_avail[i + 1] > 16777216) {
211 				vm_phys_create_seg(phys_avail[i], 16777216,
212 				    VM_FREELIST_ISADMA);
213 				vm_phys_create_seg(16777216, phys_avail[i + 1],
214 				    VM_FREELIST_DEFAULT);
215 			} else {
216 				vm_phys_create_seg(phys_avail[i],
217 				    phys_avail[i + 1], VM_FREELIST_ISADMA);
218 			}
219 			if (VM_FREELIST_ISADMA >= vm_nfreelists)
220 				vm_nfreelists = VM_FREELIST_ISADMA + 1;
221 		} else
222 #endif
223 #ifdef	VM_FREELIST_HIGHMEM
224 		if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
225 			if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
226 				vm_phys_create_seg(phys_avail[i],
227 				    VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
228 				vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
229 				    phys_avail[i + 1], VM_FREELIST_HIGHMEM);
230 			} else {
231 				vm_phys_create_seg(phys_avail[i],
232 				    phys_avail[i + 1], VM_FREELIST_HIGHMEM);
233 			}
234 			if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
235 				vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
236 		} else
237 #endif
238 		vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
239 		    VM_FREELIST_DEFAULT);
240 	}
241 	for (flind = 0; flind < vm_nfreelists; flind++) {
242 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
243 			fl = vm_phys_free_queues[flind][pind];
244 			for (oind = 0; oind < VM_NFREEORDER; oind++)
245 				TAILQ_INIT(&fl[oind].pl);
246 		}
247 	}
248 }
249 
250 /*
251  * Split a contiguous, power of two-sized set of physical pages.
252  */
253 static __inline void
254 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
255 {
256 	vm_page_t m_buddy;
257 
258 	while (oind > order) {
259 		oind--;
260 		m_buddy = &m[1 << oind];
261 		KASSERT(m_buddy->order == VM_NFREEORDER,
262 		    ("vm_phys_split_pages: page %p has unexpected order %d",
263 		    m_buddy, m_buddy->order));
264 		m_buddy->order = oind;
265 		TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq);
266 		fl[oind].lcnt++;
267         }
268 }
269 
270 /*
271  * Initialize a physical page and add it to the free lists.
272  */
273 void
274 vm_phys_add_page(vm_paddr_t pa)
275 {
276 	vm_page_t m;
277 
278 	cnt.v_page_count++;
279 	m = vm_phys_paddr_to_vm_page(pa);
280 	m->phys_addr = pa;
281 	m->segind = vm_phys_paddr_to_segind(pa);
282 	m->flags = PG_FREE;
283 	KASSERT(m->order == VM_NFREEORDER,
284 	    ("vm_phys_add_page: page %p has unexpected order %d",
285 	    m, m->order));
286 	m->pool = VM_FREEPOOL_DEFAULT;
287 	pmap_page_init(m);
288 	mtx_lock(&vm_page_queue_free_mtx);
289 	cnt.v_free_count++;
290 	vm_phys_free_pages(m, 0);
291 	mtx_unlock(&vm_page_queue_free_mtx);
292 }
293 
294 /*
295  * Allocate a contiguous, power of two-sized set of physical pages
296  * from the free lists.
297  *
298  * The free page queues must be locked.
299  */
300 vm_page_t
301 vm_phys_alloc_pages(int pool, int order)
302 {
303 	struct vm_freelist *fl;
304 	struct vm_freelist *alt;
305 	int flind, oind, pind;
306 	vm_page_t m;
307 
308 	KASSERT(pool < VM_NFREEPOOL,
309 	    ("vm_phys_alloc_pages: pool %d is out of range", pool));
310 	KASSERT(order < VM_NFREEORDER,
311 	    ("vm_phys_alloc_pages: order %d is out of range", order));
312 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
313 	for (flind = 0; flind < vm_nfreelists; flind++) {
314 		fl = vm_phys_free_queues[flind][pool];
315 		for (oind = order; oind < VM_NFREEORDER; oind++) {
316 			m = TAILQ_FIRST(&fl[oind].pl);
317 			if (m != NULL) {
318 				TAILQ_REMOVE(&fl[oind].pl, m, pageq);
319 				fl[oind].lcnt--;
320 				m->order = VM_NFREEORDER;
321 				vm_phys_split_pages(m, oind, fl, order);
322 				return (m);
323 			}
324 		}
325 
326 		/*
327 		 * The given pool was empty.  Find the largest
328 		 * contiguous, power-of-two-sized set of pages in any
329 		 * pool.  Transfer these pages to the given pool, and
330 		 * use them to satisfy the allocation.
331 		 */
332 		for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
333 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
334 				alt = vm_phys_free_queues[flind][pind];
335 				m = TAILQ_FIRST(&alt[oind].pl);
336 				if (m != NULL) {
337 					TAILQ_REMOVE(&alt[oind].pl, m, pageq);
338 					alt[oind].lcnt--;
339 					m->order = VM_NFREEORDER;
340 					vm_phys_set_pool(pool, m, oind);
341 					vm_phys_split_pages(m, oind, fl, order);
342 					return (m);
343 				}
344 			}
345 		}
346 	}
347 	return (NULL);
348 }
349 
350 /*
351  * Allocate physical memory from phys_avail[].
352  */
353 vm_paddr_t
354 vm_phys_bootstrap_alloc(vm_size_t size, unsigned long alignment)
355 {
356 	vm_paddr_t pa;
357 	int i;
358 
359 	size = round_page(size);
360 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
361 		if (phys_avail[i + 1] - phys_avail[i] < size)
362 			continue;
363 		pa = phys_avail[i];
364 		phys_avail[i] += size;
365 		return (pa);
366 	}
367 	panic("vm_phys_bootstrap_alloc");
368 }
369 
370 /*
371  * Find the vm_page corresponding to the given physical address.
372  */
373 vm_page_t
374 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
375 {
376 	struct vm_phys_seg *seg;
377 	int segind;
378 
379 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
380 		seg = &vm_phys_segs[segind];
381 		if (pa >= seg->start && pa < seg->end)
382 			return (&seg->first_page[atop(pa - seg->start)]);
383 	}
384 	panic("vm_phys_paddr_to_vm_page: paddr %#jx is not in any segment",
385 	    (uintmax_t)pa);
386 }
387 
388 /*
389  * Find the segment containing the given physical address.
390  */
391 static int
392 vm_phys_paddr_to_segind(vm_paddr_t pa)
393 {
394 	struct vm_phys_seg *seg;
395 	int segind;
396 
397 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
398 		seg = &vm_phys_segs[segind];
399 		if (pa >= seg->start && pa < seg->end)
400 			return (segind);
401 	}
402 	panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
403 	    (uintmax_t)pa);
404 }
405 
406 /*
407  * Free a contiguous, power of two-sized set of physical pages.
408  *
409  * The free page queues must be locked.
410  */
411 void
412 vm_phys_free_pages(vm_page_t m, int order)
413 {
414 	struct vm_freelist *fl;
415 	struct vm_phys_seg *seg;
416 	vm_paddr_t pa, pa_buddy;
417 	vm_page_t m_buddy;
418 
419 	KASSERT(m->order == VM_NFREEORDER,
420 	    ("vm_phys_free_pages: page %p has unexpected order %d",
421 	    m, m->order));
422 	KASSERT(m->pool < VM_NFREEPOOL,
423 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
424 	    m, m->pool));
425 	KASSERT(order < VM_NFREEORDER,
426 	    ("vm_phys_free_pages: order %d is out of range", order));
427 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
428 	pa = VM_PAGE_TO_PHYS(m);
429 	seg = &vm_phys_segs[m->segind];
430 	while (order < VM_NFREEORDER - 1) {
431 		pa_buddy = pa ^ (1 << (PAGE_SHIFT + order));
432 		if (pa_buddy < seg->start ||
433 		    pa_buddy >= seg->end)
434 			break;
435 		m_buddy = &seg->first_page[atop(pa_buddy - seg->start)];
436 		if (m_buddy->order != order)
437 			break;
438 		fl = (*seg->free_queues)[m_buddy->pool];
439 		TAILQ_REMOVE(&fl[m_buddy->order].pl, m_buddy, pageq);
440 		fl[m_buddy->order].lcnt--;
441 		m_buddy->order = VM_NFREEORDER;
442 		if (m_buddy->pool != m->pool)
443 			vm_phys_set_pool(m->pool, m_buddy, order);
444 		order++;
445 		pa &= ~((1 << (PAGE_SHIFT + order)) - 1);
446 		m = &seg->first_page[atop(pa - seg->start)];
447 	}
448 	m->order = order;
449 	fl = (*seg->free_queues)[m->pool];
450 	TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
451 	fl[order].lcnt++;
452 }
453 
454 /*
455  * Set the pool for a contiguous, power of two-sized set of physical pages.
456  */
457 void
458 vm_phys_set_pool(int pool, vm_page_t m, int order)
459 {
460 	vm_page_t m_tmp;
461 
462 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
463 		m_tmp->pool = pool;
464 }
465 
466 /*
467  * Remove the given physical page "m" from the free lists.
468  *
469  * The free page queues must be locked.
470  */
471 void
472 vm_phys_unfree_page(vm_page_t m)
473 {
474 	struct vm_freelist *fl;
475 	struct vm_phys_seg *seg;
476 	vm_paddr_t pa, pa_half;
477 	vm_page_t m_set, m_tmp;
478 	int order;
479 
480 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
481 
482 	/*
483 	 * First, find the contiguous, power of two-sized set of free
484 	 * physical pages containing the given physical page "m" and
485 	 * assign it to "m_set".
486 	 */
487 	seg = &vm_phys_segs[m->segind];
488 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
489 	    order < VM_NFREEORDER; ) {
490 		order++;
491 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
492 		KASSERT(pa >= seg->start && pa < seg->end,
493 		    ("vm_phys_unfree_page: paddr %#jx is not within segment %p",
494 		    (uintmax_t)pa, seg));
495 		m_set = &seg->first_page[atop(pa - seg->start)];
496 	}
497 	KASSERT(m_set->order >= order, ("vm_phys_unfree_page: page %p's order"
498 	    " (%d) is less than expected (%d)", m_set, m_set->order, order));
499 	KASSERT(m_set->order < VM_NFREEORDER,
500 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
501 	    m_set, m_set->order));
502 	KASSERT(order < VM_NFREEORDER,
503 	    ("vm_phys_unfree_page: order %d is out of range", order));
504 
505 	/*
506 	 * Next, remove "m_set" from the free lists.  Finally, extract
507 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
508 	 * is larger than a page, shrink "m_set" by returning the half
509 	 * of "m_set" that does not contain "m" to the free lists.
510 	 */
511 	fl = (*seg->free_queues)[m_set->pool];
512 	order = m_set->order;
513 	TAILQ_REMOVE(&fl[order].pl, m_set, pageq);
514 	fl[order].lcnt--;
515 	m_set->order = VM_NFREEORDER;
516 	while (order > 0) {
517 		order--;
518 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
519 		if (m->phys_addr < pa_half)
520 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
521 		else {
522 			m_tmp = m_set;
523 			m_set = &seg->first_page[atop(pa_half - seg->start)];
524 		}
525 		m_tmp->order = order;
526 		TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq);
527 		fl[order].lcnt++;
528 	}
529 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
530 }
531 
532 /*
533  * Try to zero one physical page.  Used by an idle priority thread.
534  */
535 boolean_t
536 vm_phys_zero_pages_idle(void)
537 {
538 	static struct vm_freelist *fl = vm_phys_free_queues[0][0];
539 	static int flind, oind, pind;
540 	vm_page_t m, m_tmp;
541 
542 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
543 	for (;;) {
544 		TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) {
545 			for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
546 				if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
547 					vm_phys_unfree_page(m_tmp);
548 					cnt.v_free_count--;
549 					mtx_unlock(&vm_page_queue_free_mtx);
550 					pmap_zero_page_idle(m_tmp);
551 					m_tmp->flags |= PG_ZERO;
552 					mtx_lock(&vm_page_queue_free_mtx);
553 					cnt.v_free_count++;
554 					vm_phys_free_pages(m_tmp, 0);
555 					vm_page_zero_count++;
556 					cnt_prezero++;
557 					return (TRUE);
558 				}
559 			}
560 		}
561 		oind++;
562 		if (oind == VM_NFREEORDER) {
563 			oind = 0;
564 			pind++;
565 			if (pind == VM_NFREEPOOL) {
566 				pind = 0;
567 				flind++;
568 				if (flind == vm_nfreelists)
569 					flind = 0;
570 			}
571 			fl = vm_phys_free_queues[flind][pind];
572 		}
573 	}
574 }
575 
576 /*
577  * Allocate a contiguous set of physical pages of the given size
578  * "npages" from the free lists.  All of the physical pages must be at
579  * or above the given physical address "low" and below the given
580  * physical address "high".  The given value "alignment" determines the
581  * alignment of the first physical page in the set.  If the given value
582  * "boundary" is non-zero, then the set of physical pages cannot cross
583  * any physical address boundary that is a multiple of that value.  Both
584  * "alignment" and "boundary" must be a power of two.
585  */
586 vm_page_t
587 vm_phys_alloc_contig(unsigned long npages, vm_paddr_t low, vm_paddr_t high,
588     unsigned long alignment, unsigned long boundary)
589 {
590 	struct vm_freelist *fl;
591 	struct vm_phys_seg *seg;
592 	vm_object_t m_object;
593 	vm_paddr_t pa, pa_last, size;
594 	vm_page_t m, m_ret;
595 	int flind, i, oind, order, pind;
596 
597 	size = npages << PAGE_SHIFT;
598 	KASSERT(size != 0,
599 	    ("vm_phys_alloc_contig: size must not be 0"));
600 	KASSERT((alignment & (alignment - 1)) == 0,
601 	    ("vm_phys_alloc_contig: alignment must be a power of 2"));
602 	KASSERT((boundary & (boundary - 1)) == 0,
603 	    ("vm_phys_alloc_contig: boundary must be a power of 2"));
604 	/* Compute the queue that is the best fit for npages. */
605 	for (order = 0; (1 << order) < npages; order++);
606 	mtx_lock(&vm_page_queue_free_mtx);
607 	for (flind = 0; flind < vm_nfreelists; flind++) {
608 		for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
609 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
610 				fl = vm_phys_free_queues[flind][pind];
611 				TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
612 					/*
613 					 * A free list may contain physical pages
614 					 * from one or more segments.
615 					 */
616 					seg = &vm_phys_segs[m_ret->segind];
617 					if (seg->start > high ||
618 					    low >= seg->end)
619 						continue;
620 
621 					/*
622 					 * Is the size of this allocation request
623 					 * larger than the largest block size?
624 					 */
625 					if (order >= VM_NFREEORDER) {
626 						/*
627 						 * Determine if a sufficient number
628 						 * of subsequent blocks to satisfy
629 						 * the allocation request are free.
630 						 */
631 						pa = VM_PAGE_TO_PHYS(m_ret);
632 						pa_last = pa + size;
633 						for (;;) {
634 							pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
635 							if (pa >= pa_last)
636 								break;
637 							if (pa < seg->start ||
638 							    pa >= seg->end)
639 								break;
640 							m = &seg->first_page[atop(pa - seg->start)];
641 							if (m->order != VM_NFREEORDER - 1)
642 								break;
643 						}
644 						/* If not, continue to the next block. */
645 						if (pa < pa_last)
646 							continue;
647 					}
648 
649 					/*
650 					 * Determine if the blocks are within the given range,
651 					 * satisfy the given alignment, and do not cross the
652 					 * given boundary.
653 					 */
654 					pa = VM_PAGE_TO_PHYS(m_ret);
655 					if (pa >= low &&
656 					    pa + size <= high &&
657 					    (pa & (alignment - 1)) == 0 &&
658 					    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
659 						goto done;
660 				}
661 			}
662 		}
663 	}
664 	mtx_unlock(&vm_page_queue_free_mtx);
665 	return (NULL);
666 done:
667 	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
668 		fl = (*seg->free_queues)[m->pool];
669 		TAILQ_REMOVE(&fl[m->order].pl, m, pageq);
670 		fl[m->order].lcnt--;
671 		m->order = VM_NFREEORDER;
672 	}
673 	if (m_ret->pool != VM_FREEPOOL_DEFAULT)
674 		vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
675 	fl = (*seg->free_queues)[m_ret->pool];
676 	vm_phys_split_pages(m_ret, oind, fl, order);
677 	for (i = 0; i < npages; i++) {
678 		m = &m_ret[i];
679 		KASSERT(m->queue == PQ_NONE,
680 		    ("vm_phys_alloc_contig: page %p has unexpected queue %d",
681 		    m, m->queue));
682 		m_object = m->object;
683 		if ((m->flags & PG_CACHED) != 0)
684 			vm_page_cache_remove(m);
685 		else {
686 			KASSERT(VM_PAGE_IS_FREE(m),
687 			    ("vm_phys_alloc_contig: page %p is not free", m));
688 			cnt.v_free_count--;
689 		}
690 		m->valid = VM_PAGE_BITS_ALL;
691 		if (m->flags & PG_ZERO)
692 			vm_page_zero_count--;
693 		/* Don't clear the PG_ZERO flag; we'll need it later. */
694 		m->flags = PG_UNMANAGED | (m->flags & PG_ZERO);
695 		m->oflags = 0;
696 		KASSERT(m->dirty == 0,
697 		    ("vm_phys_alloc_contig: page %p was dirty", m));
698 		m->wire_count = 0;
699 		m->busy = 0;
700 		if (m_object != NULL &&
701 		    m_object->type == OBJT_VNODE &&
702 		    m_object->cache == NULL) {
703 			mtx_unlock(&vm_page_queue_free_mtx);
704 			vdrop(m_object->handle);
705 			mtx_lock(&vm_page_queue_free_mtx);
706 		}
707 	}
708 	for (; i < roundup2(npages, 1 << imin(oind, order)); i++) {
709 		m = &m_ret[i];
710 		KASSERT(m->order == VM_NFREEORDER,
711 		    ("vm_phys_alloc_contig: page %p has unexpected order %d",
712 		    m, m->order));
713 		vm_phys_free_pages(m, 0);
714 	}
715 	mtx_unlock(&vm_page_queue_free_mtx);
716 	return (m_ret);
717 }
718 
719 #ifdef DDB
720 /*
721  * Show the number of physical pages in each of the free lists.
722  */
723 DB_SHOW_COMMAND(freepages, db_show_freepages)
724 {
725 	struct vm_freelist *fl;
726 	int flind, oind, pind;
727 
728 	for (flind = 0; flind < vm_nfreelists; flind++) {
729 		db_printf("FREE LIST %d:\n"
730 		    "\n  ORDER (SIZE)  |  NUMBER"
731 		    "\n              ", flind);
732 		for (pind = 0; pind < VM_NFREEPOOL; pind++)
733 			db_printf("  |  POOL %d", pind);
734 		db_printf("\n--            ");
735 		for (pind = 0; pind < VM_NFREEPOOL; pind++)
736 			db_printf("-- --      ");
737 		db_printf("--\n");
738 		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
739 			db_printf("  %2.2d (%6.6dK)", oind,
740 			    1 << (PAGE_SHIFT - 10 + oind));
741 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
742 				fl = vm_phys_free_queues[flind][pind];
743 				db_printf("  |  %6.6d", fl[oind].lcnt);
744 			}
745 			db_printf("\n");
746 		}
747 		db_printf("\n");
748 	}
749 }
750 #endif
751