1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Physical memory system implementation 34 * 35 * Any external functions defined by this module are only to be used by the 36 * virtual memory system. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ddb.h" 43 #include "opt_vm.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/lock.h> 48 #include <sys/kernel.h> 49 #include <sys/malloc.h> 50 #include <sys/mutex.h> 51 #if MAXMEMDOM > 1 52 #include <sys/proc.h> 53 #endif 54 #include <sys/queue.h> 55 #include <sys/sbuf.h> 56 #include <sys/sysctl.h> 57 #include <sys/vmmeter.h> 58 59 #include <ddb/ddb.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_param.h> 63 #include <vm/vm_kern.h> 64 #include <vm/vm_object.h> 65 #include <vm/vm_page.h> 66 #include <vm/vm_phys.h> 67 68 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX, 69 "Too many physsegs."); 70 71 struct mem_affinity *mem_affinity; 72 73 int vm_ndomains = 1; 74 75 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX]; 76 int vm_phys_nsegs; 77 78 #define VM_PHYS_FICTITIOUS_NSEGS 8 79 static struct vm_phys_fictitious_seg { 80 vm_paddr_t start; 81 vm_paddr_t end; 82 vm_page_t first_page; 83 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS]; 84 static struct mtx vm_phys_fictitious_reg_mtx; 85 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages"); 86 87 static struct vm_freelist 88 vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER]; 89 90 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1; 91 92 static int cnt_prezero; 93 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD, 94 &cnt_prezero, 0, "The number of physical pages prezeroed at idle time"); 95 96 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS); 97 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD, 98 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info"); 99 100 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS); 101 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD, 102 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info"); 103 104 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD, 105 &vm_ndomains, 0, "Number of physical memory domains available."); 106 107 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool, 108 int order); 109 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, 110 int domain); 111 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind); 112 static int vm_phys_paddr_to_segind(vm_paddr_t pa); 113 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, 114 int order); 115 116 static __inline int 117 vm_rr_selectdomain(void) 118 { 119 #if MAXMEMDOM > 1 120 struct thread *td; 121 122 td = curthread; 123 124 td->td_dom_rr_idx++; 125 td->td_dom_rr_idx %= vm_ndomains; 126 return (td->td_dom_rr_idx); 127 #else 128 return (0); 129 #endif 130 } 131 132 boolean_t 133 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high) 134 { 135 struct vm_phys_seg *s; 136 int idx; 137 138 while ((idx = ffsl(mask)) != 0) { 139 idx--; /* ffsl counts from 1 */ 140 mask &= ~(1UL << idx); 141 s = &vm_phys_segs[idx]; 142 if (low < s->end && high > s->start) 143 return (TRUE); 144 } 145 return (FALSE); 146 } 147 148 /* 149 * Outputs the state of the physical memory allocator, specifically, 150 * the amount of physical memory in each free list. 151 */ 152 static int 153 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS) 154 { 155 struct sbuf sbuf; 156 struct vm_freelist *fl; 157 int dom, error, flind, oind, pind; 158 159 error = sysctl_wire_old_buffer(req, 0); 160 if (error != 0) 161 return (error); 162 sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req); 163 for (dom = 0; dom < vm_ndomains; dom++) { 164 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom); 165 for (flind = 0; flind < vm_nfreelists; flind++) { 166 sbuf_printf(&sbuf, "\nFREE LIST %d:\n" 167 "\n ORDER (SIZE) | NUMBER" 168 "\n ", flind); 169 for (pind = 0; pind < VM_NFREEPOOL; pind++) 170 sbuf_printf(&sbuf, " | POOL %d", pind); 171 sbuf_printf(&sbuf, "\n-- "); 172 for (pind = 0; pind < VM_NFREEPOOL; pind++) 173 sbuf_printf(&sbuf, "-- -- "); 174 sbuf_printf(&sbuf, "--\n"); 175 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 176 sbuf_printf(&sbuf, " %2d (%6dK)", oind, 177 1 << (PAGE_SHIFT - 10 + oind)); 178 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 179 fl = vm_phys_free_queues[dom][flind][pind]; 180 sbuf_printf(&sbuf, " | %6d", 181 fl[oind].lcnt); 182 } 183 sbuf_printf(&sbuf, "\n"); 184 } 185 } 186 } 187 error = sbuf_finish(&sbuf); 188 sbuf_delete(&sbuf); 189 return (error); 190 } 191 192 /* 193 * Outputs the set of physical memory segments. 194 */ 195 static int 196 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS) 197 { 198 struct sbuf sbuf; 199 struct vm_phys_seg *seg; 200 int error, segind; 201 202 error = sysctl_wire_old_buffer(req, 0); 203 if (error != 0) 204 return (error); 205 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 206 for (segind = 0; segind < vm_phys_nsegs; segind++) { 207 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind); 208 seg = &vm_phys_segs[segind]; 209 sbuf_printf(&sbuf, "start: %#jx\n", 210 (uintmax_t)seg->start); 211 sbuf_printf(&sbuf, "end: %#jx\n", 212 (uintmax_t)seg->end); 213 sbuf_printf(&sbuf, "domain: %d\n", seg->domain); 214 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues); 215 } 216 error = sbuf_finish(&sbuf); 217 sbuf_delete(&sbuf); 218 return (error); 219 } 220 221 static void 222 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail) 223 { 224 225 m->order = order; 226 if (tail) 227 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q); 228 else 229 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q); 230 fl[order].lcnt++; 231 } 232 233 static void 234 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order) 235 { 236 237 TAILQ_REMOVE(&fl[order].pl, m, plinks.q); 238 fl[order].lcnt--; 239 m->order = VM_NFREEORDER; 240 } 241 242 /* 243 * Create a physical memory segment. 244 */ 245 static void 246 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain) 247 { 248 struct vm_phys_seg *seg; 249 #ifdef VM_PHYSSEG_SPARSE 250 long pages; 251 int segind; 252 253 pages = 0; 254 for (segind = 0; segind < vm_phys_nsegs; segind++) { 255 seg = &vm_phys_segs[segind]; 256 pages += atop(seg->end - seg->start); 257 } 258 #endif 259 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX, 260 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX")); 261 KASSERT(domain < vm_ndomains, 262 ("vm_phys_create_seg: invalid domain provided")); 263 seg = &vm_phys_segs[vm_phys_nsegs++]; 264 seg->start = start; 265 seg->end = end; 266 seg->domain = domain; 267 #ifdef VM_PHYSSEG_SPARSE 268 seg->first_page = &vm_page_array[pages]; 269 #else 270 seg->first_page = PHYS_TO_VM_PAGE(start); 271 #endif 272 seg->free_queues = &vm_phys_free_queues[domain][flind]; 273 } 274 275 static void 276 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind) 277 { 278 int i; 279 280 if (mem_affinity == NULL) { 281 _vm_phys_create_seg(start, end, flind, 0); 282 return; 283 } 284 285 for (i = 0;; i++) { 286 if (mem_affinity[i].end == 0) 287 panic("Reached end of affinity info"); 288 if (mem_affinity[i].end <= start) 289 continue; 290 if (mem_affinity[i].start > start) 291 panic("No affinity info for start %jx", 292 (uintmax_t)start); 293 if (mem_affinity[i].end >= end) { 294 _vm_phys_create_seg(start, end, flind, 295 mem_affinity[i].domain); 296 break; 297 } 298 _vm_phys_create_seg(start, mem_affinity[i].end, flind, 299 mem_affinity[i].domain); 300 start = mem_affinity[i].end; 301 } 302 } 303 304 /* 305 * Initialize the physical memory allocator. 306 */ 307 void 308 vm_phys_init(void) 309 { 310 struct vm_freelist *fl; 311 int dom, flind, i, oind, pind; 312 313 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 314 #ifdef VM_FREELIST_ISADMA 315 if (phys_avail[i] < 16777216) { 316 if (phys_avail[i + 1] > 16777216) { 317 vm_phys_create_seg(phys_avail[i], 16777216, 318 VM_FREELIST_ISADMA); 319 vm_phys_create_seg(16777216, phys_avail[i + 1], 320 VM_FREELIST_DEFAULT); 321 } else { 322 vm_phys_create_seg(phys_avail[i], 323 phys_avail[i + 1], VM_FREELIST_ISADMA); 324 } 325 if (VM_FREELIST_ISADMA >= vm_nfreelists) 326 vm_nfreelists = VM_FREELIST_ISADMA + 1; 327 } else 328 #endif 329 #ifdef VM_FREELIST_HIGHMEM 330 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) { 331 if (phys_avail[i] < VM_HIGHMEM_ADDRESS) { 332 vm_phys_create_seg(phys_avail[i], 333 VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT); 334 vm_phys_create_seg(VM_HIGHMEM_ADDRESS, 335 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 336 } else { 337 vm_phys_create_seg(phys_avail[i], 338 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 339 } 340 if (VM_FREELIST_HIGHMEM >= vm_nfreelists) 341 vm_nfreelists = VM_FREELIST_HIGHMEM + 1; 342 } else 343 #endif 344 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1], 345 VM_FREELIST_DEFAULT); 346 } 347 for (dom = 0; dom < vm_ndomains; dom++) { 348 for (flind = 0; flind < vm_nfreelists; flind++) { 349 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 350 fl = vm_phys_free_queues[dom][flind][pind]; 351 for (oind = 0; oind < VM_NFREEORDER; oind++) 352 TAILQ_INIT(&fl[oind].pl); 353 } 354 } 355 } 356 mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF); 357 } 358 359 /* 360 * Split a contiguous, power of two-sized set of physical pages. 361 */ 362 static __inline void 363 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order) 364 { 365 vm_page_t m_buddy; 366 367 while (oind > order) { 368 oind--; 369 m_buddy = &m[1 << oind]; 370 KASSERT(m_buddy->order == VM_NFREEORDER, 371 ("vm_phys_split_pages: page %p has unexpected order %d", 372 m_buddy, m_buddy->order)); 373 vm_freelist_add(fl, m_buddy, oind, 0); 374 } 375 } 376 377 /* 378 * Initialize a physical page and add it to the free lists. 379 */ 380 void 381 vm_phys_add_page(vm_paddr_t pa) 382 { 383 vm_page_t m; 384 struct vm_domain *vmd; 385 386 cnt.v_page_count++; 387 m = vm_phys_paddr_to_vm_page(pa); 388 m->phys_addr = pa; 389 m->queue = PQ_NONE; 390 m->segind = vm_phys_paddr_to_segind(pa); 391 vmd = vm_phys_domain(m); 392 vmd->vmd_page_count++; 393 vmd->vmd_segs |= 1UL << m->segind; 394 m->flags = PG_FREE; 395 KASSERT(m->order == VM_NFREEORDER, 396 ("vm_phys_add_page: page %p has unexpected order %d", 397 m, m->order)); 398 m->pool = VM_FREEPOOL_DEFAULT; 399 pmap_page_init(m); 400 mtx_lock(&vm_page_queue_free_mtx); 401 vm_phys_freecnt_adj(m, 1); 402 vm_phys_free_pages(m, 0); 403 mtx_unlock(&vm_page_queue_free_mtx); 404 } 405 406 /* 407 * Allocate a contiguous, power of two-sized set of physical pages 408 * from the free lists. 409 * 410 * The free page queues must be locked. 411 */ 412 vm_page_t 413 vm_phys_alloc_pages(int pool, int order) 414 { 415 vm_page_t m; 416 int dom, domain, flind; 417 418 KASSERT(pool < VM_NFREEPOOL, 419 ("vm_phys_alloc_pages: pool %d is out of range", pool)); 420 KASSERT(order < VM_NFREEORDER, 421 ("vm_phys_alloc_pages: order %d is out of range", order)); 422 423 for (dom = 0; dom < vm_ndomains; dom++) { 424 domain = vm_rr_selectdomain(); 425 for (flind = 0; flind < vm_nfreelists; flind++) { 426 m = vm_phys_alloc_domain_pages(domain, flind, pool, 427 order); 428 if (m != NULL) 429 return (m); 430 } 431 } 432 return (NULL); 433 } 434 435 /* 436 * Find and dequeue a free page on the given free list, with the 437 * specified pool and order 438 */ 439 vm_page_t 440 vm_phys_alloc_freelist_pages(int flind, int pool, int order) 441 { 442 vm_page_t m; 443 int dom, domain; 444 445 KASSERT(flind < VM_NFREELIST, 446 ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind)); 447 KASSERT(pool < VM_NFREEPOOL, 448 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool)); 449 KASSERT(order < VM_NFREEORDER, 450 ("vm_phys_alloc_freelist_pages: order %d is out of range", order)); 451 452 for (dom = 0; dom < vm_ndomains; dom++) { 453 domain = vm_rr_selectdomain(); 454 m = vm_phys_alloc_domain_pages(domain, flind, pool, order); 455 if (m != NULL) 456 return (m); 457 } 458 return (NULL); 459 } 460 461 static vm_page_t 462 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order) 463 { 464 struct vm_freelist *fl; 465 struct vm_freelist *alt; 466 int oind, pind; 467 vm_page_t m; 468 469 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 470 fl = &vm_phys_free_queues[domain][flind][pool][0]; 471 for (oind = order; oind < VM_NFREEORDER; oind++) { 472 m = TAILQ_FIRST(&fl[oind].pl); 473 if (m != NULL) { 474 vm_freelist_rem(fl, m, oind); 475 vm_phys_split_pages(m, oind, fl, order); 476 return (m); 477 } 478 } 479 480 /* 481 * The given pool was empty. Find the largest 482 * contiguous, power-of-two-sized set of pages in any 483 * pool. Transfer these pages to the given pool, and 484 * use them to satisfy the allocation. 485 */ 486 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) { 487 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 488 alt = &vm_phys_free_queues[domain][flind][pind][0]; 489 m = TAILQ_FIRST(&alt[oind].pl); 490 if (m != NULL) { 491 vm_freelist_rem(alt, m, oind); 492 vm_phys_set_pool(pool, m, oind); 493 vm_phys_split_pages(m, oind, fl, order); 494 return (m); 495 } 496 } 497 } 498 return (NULL); 499 } 500 501 /* 502 * Find the vm_page corresponding to the given physical address. 503 */ 504 vm_page_t 505 vm_phys_paddr_to_vm_page(vm_paddr_t pa) 506 { 507 struct vm_phys_seg *seg; 508 int segind; 509 510 for (segind = 0; segind < vm_phys_nsegs; segind++) { 511 seg = &vm_phys_segs[segind]; 512 if (pa >= seg->start && pa < seg->end) 513 return (&seg->first_page[atop(pa - seg->start)]); 514 } 515 return (NULL); 516 } 517 518 vm_page_t 519 vm_phys_fictitious_to_vm_page(vm_paddr_t pa) 520 { 521 struct vm_phys_fictitious_seg *seg; 522 vm_page_t m; 523 int segind; 524 525 m = NULL; 526 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) { 527 seg = &vm_phys_fictitious_segs[segind]; 528 if (pa >= seg->start && pa < seg->end) { 529 m = &seg->first_page[atop(pa - seg->start)]; 530 KASSERT((m->flags & PG_FICTITIOUS) != 0, 531 ("%p not fictitious", m)); 532 break; 533 } 534 } 535 return (m); 536 } 537 538 int 539 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end, 540 vm_memattr_t memattr) 541 { 542 struct vm_phys_fictitious_seg *seg; 543 vm_page_t fp; 544 long i, page_count; 545 int segind; 546 #ifdef VM_PHYSSEG_DENSE 547 long pi; 548 boolean_t malloced; 549 #endif 550 551 page_count = (end - start) / PAGE_SIZE; 552 553 #ifdef VM_PHYSSEG_DENSE 554 pi = atop(start); 555 if (pi >= first_page && atop(end) < vm_page_array_size) { 556 fp = &vm_page_array[pi - first_page]; 557 malloced = FALSE; 558 } else 559 #endif 560 { 561 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES, 562 M_WAITOK | M_ZERO); 563 #ifdef VM_PHYSSEG_DENSE 564 malloced = TRUE; 565 #endif 566 } 567 for (i = 0; i < page_count; i++) { 568 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr); 569 fp[i].oflags &= ~VPO_UNMANAGED; 570 fp[i].busy_lock = VPB_UNBUSIED; 571 } 572 mtx_lock(&vm_phys_fictitious_reg_mtx); 573 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) { 574 seg = &vm_phys_fictitious_segs[segind]; 575 if (seg->start == 0 && seg->end == 0) { 576 seg->start = start; 577 seg->end = end; 578 seg->first_page = fp; 579 mtx_unlock(&vm_phys_fictitious_reg_mtx); 580 return (0); 581 } 582 } 583 mtx_unlock(&vm_phys_fictitious_reg_mtx); 584 #ifdef VM_PHYSSEG_DENSE 585 if (malloced) 586 #endif 587 free(fp, M_FICT_PAGES); 588 return (EBUSY); 589 } 590 591 void 592 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end) 593 { 594 struct vm_phys_fictitious_seg *seg; 595 vm_page_t fp; 596 int segind; 597 #ifdef VM_PHYSSEG_DENSE 598 long pi; 599 #endif 600 601 #ifdef VM_PHYSSEG_DENSE 602 pi = atop(start); 603 #endif 604 605 mtx_lock(&vm_phys_fictitious_reg_mtx); 606 for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) { 607 seg = &vm_phys_fictitious_segs[segind]; 608 if (seg->start == start && seg->end == end) { 609 seg->start = seg->end = 0; 610 fp = seg->first_page; 611 seg->first_page = NULL; 612 mtx_unlock(&vm_phys_fictitious_reg_mtx); 613 #ifdef VM_PHYSSEG_DENSE 614 if (pi < first_page || atop(end) >= vm_page_array_size) 615 #endif 616 free(fp, M_FICT_PAGES); 617 return; 618 } 619 } 620 mtx_unlock(&vm_phys_fictitious_reg_mtx); 621 KASSERT(0, ("Unregistering not registered fictitious range")); 622 } 623 624 /* 625 * Find the segment containing the given physical address. 626 */ 627 static int 628 vm_phys_paddr_to_segind(vm_paddr_t pa) 629 { 630 struct vm_phys_seg *seg; 631 int segind; 632 633 for (segind = 0; segind < vm_phys_nsegs; segind++) { 634 seg = &vm_phys_segs[segind]; 635 if (pa >= seg->start && pa < seg->end) 636 return (segind); 637 } 638 panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" , 639 (uintmax_t)pa); 640 } 641 642 /* 643 * Free a contiguous, power of two-sized set of physical pages. 644 * 645 * The free page queues must be locked. 646 */ 647 void 648 vm_phys_free_pages(vm_page_t m, int order) 649 { 650 struct vm_freelist *fl; 651 struct vm_phys_seg *seg; 652 vm_paddr_t pa; 653 vm_page_t m_buddy; 654 655 KASSERT(m->order == VM_NFREEORDER, 656 ("vm_phys_free_pages: page %p has unexpected order %d", 657 m, m->order)); 658 KASSERT(m->pool < VM_NFREEPOOL, 659 ("vm_phys_free_pages: page %p has unexpected pool %d", 660 m, m->pool)); 661 KASSERT(order < VM_NFREEORDER, 662 ("vm_phys_free_pages: order %d is out of range", order)); 663 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 664 seg = &vm_phys_segs[m->segind]; 665 if (order < VM_NFREEORDER - 1) { 666 pa = VM_PAGE_TO_PHYS(m); 667 do { 668 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order)); 669 if (pa < seg->start || pa >= seg->end) 670 break; 671 m_buddy = &seg->first_page[atop(pa - seg->start)]; 672 if (m_buddy->order != order) 673 break; 674 fl = (*seg->free_queues)[m_buddy->pool]; 675 vm_freelist_rem(fl, m_buddy, order); 676 if (m_buddy->pool != m->pool) 677 vm_phys_set_pool(m->pool, m_buddy, order); 678 order++; 679 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1); 680 m = &seg->first_page[atop(pa - seg->start)]; 681 } while (order < VM_NFREEORDER - 1); 682 } 683 fl = (*seg->free_queues)[m->pool]; 684 vm_freelist_add(fl, m, order, 1); 685 } 686 687 /* 688 * Free a contiguous, arbitrarily sized set of physical pages. 689 * 690 * The free page queues must be locked. 691 */ 692 void 693 vm_phys_free_contig(vm_page_t m, u_long npages) 694 { 695 u_int n; 696 int order; 697 698 /* 699 * Avoid unnecessary coalescing by freeing the pages in the largest 700 * possible power-of-two-sized subsets. 701 */ 702 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 703 for (;; npages -= n) { 704 /* 705 * Unsigned "min" is used here so that "order" is assigned 706 * "VM_NFREEORDER - 1" when "m"'s physical address is zero 707 * or the low-order bits of its physical address are zero 708 * because the size of a physical address exceeds the size of 709 * a long. 710 */ 711 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1, 712 VM_NFREEORDER - 1); 713 n = 1 << order; 714 if (npages < n) 715 break; 716 vm_phys_free_pages(m, order); 717 m += n; 718 } 719 /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */ 720 for (; npages > 0; npages -= n) { 721 order = flsl(npages) - 1; 722 n = 1 << order; 723 vm_phys_free_pages(m, order); 724 m += n; 725 } 726 } 727 728 /* 729 * Set the pool for a contiguous, power of two-sized set of physical pages. 730 */ 731 void 732 vm_phys_set_pool(int pool, vm_page_t m, int order) 733 { 734 vm_page_t m_tmp; 735 736 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++) 737 m_tmp->pool = pool; 738 } 739 740 /* 741 * Search for the given physical page "m" in the free lists. If the search 742 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return 743 * FALSE, indicating that "m" is not in the free lists. 744 * 745 * The free page queues must be locked. 746 */ 747 boolean_t 748 vm_phys_unfree_page(vm_page_t m) 749 { 750 struct vm_freelist *fl; 751 struct vm_phys_seg *seg; 752 vm_paddr_t pa, pa_half; 753 vm_page_t m_set, m_tmp; 754 int order; 755 756 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 757 758 /* 759 * First, find the contiguous, power of two-sized set of free 760 * physical pages containing the given physical page "m" and 761 * assign it to "m_set". 762 */ 763 seg = &vm_phys_segs[m->segind]; 764 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER && 765 order < VM_NFREEORDER - 1; ) { 766 order++; 767 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order)); 768 if (pa >= seg->start) 769 m_set = &seg->first_page[atop(pa - seg->start)]; 770 else 771 return (FALSE); 772 } 773 if (m_set->order < order) 774 return (FALSE); 775 if (m_set->order == VM_NFREEORDER) 776 return (FALSE); 777 KASSERT(m_set->order < VM_NFREEORDER, 778 ("vm_phys_unfree_page: page %p has unexpected order %d", 779 m_set, m_set->order)); 780 781 /* 782 * Next, remove "m_set" from the free lists. Finally, extract 783 * "m" from "m_set" using an iterative algorithm: While "m_set" 784 * is larger than a page, shrink "m_set" by returning the half 785 * of "m_set" that does not contain "m" to the free lists. 786 */ 787 fl = (*seg->free_queues)[m_set->pool]; 788 order = m_set->order; 789 vm_freelist_rem(fl, m_set, order); 790 while (order > 0) { 791 order--; 792 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order)); 793 if (m->phys_addr < pa_half) 794 m_tmp = &seg->first_page[atop(pa_half - seg->start)]; 795 else { 796 m_tmp = m_set; 797 m_set = &seg->first_page[atop(pa_half - seg->start)]; 798 } 799 vm_freelist_add(fl, m_tmp, order, 0); 800 } 801 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency")); 802 return (TRUE); 803 } 804 805 /* 806 * Try to zero one physical page. Used by an idle priority thread. 807 */ 808 boolean_t 809 vm_phys_zero_pages_idle(void) 810 { 811 static struct vm_freelist *fl; 812 static int flind, oind, pind; 813 vm_page_t m, m_tmp; 814 int domain; 815 816 domain = vm_rr_selectdomain(); 817 fl = vm_phys_free_queues[domain][0][0]; 818 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 819 for (;;) { 820 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) { 821 for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) { 822 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) { 823 vm_phys_unfree_page(m_tmp); 824 vm_phys_freecnt_adj(m, -1); 825 mtx_unlock(&vm_page_queue_free_mtx); 826 pmap_zero_page_idle(m_tmp); 827 m_tmp->flags |= PG_ZERO; 828 mtx_lock(&vm_page_queue_free_mtx); 829 vm_phys_freecnt_adj(m, 1); 830 vm_phys_free_pages(m_tmp, 0); 831 vm_page_zero_count++; 832 cnt_prezero++; 833 return (TRUE); 834 } 835 } 836 } 837 oind++; 838 if (oind == VM_NFREEORDER) { 839 oind = 0; 840 pind++; 841 if (pind == VM_NFREEPOOL) { 842 pind = 0; 843 flind++; 844 if (flind == vm_nfreelists) 845 flind = 0; 846 } 847 fl = vm_phys_free_queues[domain][flind][pind]; 848 } 849 } 850 } 851 852 /* 853 * Allocate a contiguous set of physical pages of the given size 854 * "npages" from the free lists. All of the physical pages must be at 855 * or above the given physical address "low" and below the given 856 * physical address "high". The given value "alignment" determines the 857 * alignment of the first physical page in the set. If the given value 858 * "boundary" is non-zero, then the set of physical pages cannot cross 859 * any physical address boundary that is a multiple of that value. Both 860 * "alignment" and "boundary" must be a power of two. 861 */ 862 vm_page_t 863 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 864 u_long alignment, vm_paddr_t boundary) 865 { 866 struct vm_freelist *fl; 867 struct vm_phys_seg *seg; 868 vm_paddr_t pa, pa_last, size; 869 vm_page_t m, m_ret; 870 u_long npages_end; 871 int dom, domain, flind, oind, order, pind; 872 873 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 874 size = npages << PAGE_SHIFT; 875 KASSERT(size != 0, 876 ("vm_phys_alloc_contig: size must not be 0")); 877 KASSERT((alignment & (alignment - 1)) == 0, 878 ("vm_phys_alloc_contig: alignment must be a power of 2")); 879 KASSERT((boundary & (boundary - 1)) == 0, 880 ("vm_phys_alloc_contig: boundary must be a power of 2")); 881 /* Compute the queue that is the best fit for npages. */ 882 for (order = 0; (1 << order) < npages; order++); 883 dom = 0; 884 restartdom: 885 domain = vm_rr_selectdomain(); 886 for (flind = 0; flind < vm_nfreelists; flind++) { 887 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) { 888 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 889 fl = &vm_phys_free_queues[domain][flind][pind][0]; 890 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) { 891 /* 892 * A free list may contain physical pages 893 * from one or more segments. 894 */ 895 seg = &vm_phys_segs[m_ret->segind]; 896 if (seg->start > high || 897 low >= seg->end) 898 continue; 899 900 /* 901 * Is the size of this allocation request 902 * larger than the largest block size? 903 */ 904 if (order >= VM_NFREEORDER) { 905 /* 906 * Determine if a sufficient number 907 * of subsequent blocks to satisfy 908 * the allocation request are free. 909 */ 910 pa = VM_PAGE_TO_PHYS(m_ret); 911 pa_last = pa + size; 912 for (;;) { 913 pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1); 914 if (pa >= pa_last) 915 break; 916 if (pa < seg->start || 917 pa >= seg->end) 918 break; 919 m = &seg->first_page[atop(pa - seg->start)]; 920 if (m->order != VM_NFREEORDER - 1) 921 break; 922 } 923 /* If not, continue to the next block. */ 924 if (pa < pa_last) 925 continue; 926 } 927 928 /* 929 * Determine if the blocks are within the given range, 930 * satisfy the given alignment, and do not cross the 931 * given boundary. 932 */ 933 pa = VM_PAGE_TO_PHYS(m_ret); 934 if (pa >= low && 935 pa + size <= high && 936 (pa & (alignment - 1)) == 0 && 937 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0) 938 goto done; 939 } 940 } 941 } 942 } 943 if (++dom < vm_ndomains) 944 goto restartdom; 945 return (NULL); 946 done: 947 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) { 948 fl = (*seg->free_queues)[m->pool]; 949 vm_freelist_rem(fl, m, m->order); 950 } 951 if (m_ret->pool != VM_FREEPOOL_DEFAULT) 952 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind); 953 fl = (*seg->free_queues)[m_ret->pool]; 954 vm_phys_split_pages(m_ret, oind, fl, order); 955 /* Return excess pages to the free lists. */ 956 npages_end = roundup2(npages, 1 << imin(oind, order)); 957 if (npages < npages_end) 958 vm_phys_free_contig(&m_ret[npages], npages_end - npages); 959 return (m_ret); 960 } 961 962 #ifdef DDB 963 /* 964 * Show the number of physical pages in each of the free lists. 965 */ 966 DB_SHOW_COMMAND(freepages, db_show_freepages) 967 { 968 struct vm_freelist *fl; 969 int flind, oind, pind, dom; 970 971 for (dom = 0; dom < vm_ndomains; dom++) { 972 db_printf("DOMAIN: %d\n", dom); 973 for (flind = 0; flind < vm_nfreelists; flind++) { 974 db_printf("FREE LIST %d:\n" 975 "\n ORDER (SIZE) | NUMBER" 976 "\n ", flind); 977 for (pind = 0; pind < VM_NFREEPOOL; pind++) 978 db_printf(" | POOL %d", pind); 979 db_printf("\n-- "); 980 for (pind = 0; pind < VM_NFREEPOOL; pind++) 981 db_printf("-- -- "); 982 db_printf("--\n"); 983 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 984 db_printf(" %2.2d (%6.6dK)", oind, 985 1 << (PAGE_SHIFT - 10 + oind)); 986 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 987 fl = vm_phys_free_queues[dom][flind][pind]; 988 db_printf(" | %6.6d", fl[oind].lcnt); 989 } 990 db_printf("\n"); 991 } 992 db_printf("\n"); 993 } 994 db_printf("\n"); 995 } 996 } 997 #endif 998