xref: /freebsd/sys/vm/vm_phys.c (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/domainset.h>
48 #include <sys/lock.h>
49 #include <sys/kernel.h>
50 #include <sys/malloc.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/queue.h>
54 #include <sys/rwlock.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/tree.h>
58 #include <sys/vmmeter.h>
59 
60 #include <ddb/ddb.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_extern.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_phys.h>
69 #include <vm/vm_pagequeue.h>
70 
71 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
72     "Too many physsegs.");
73 _Static_assert(sizeof(long long) >= sizeof(vm_paddr_t),
74     "vm_paddr_t too big for ffsll, flsll.");
75 
76 #ifdef NUMA
77 struct mem_affinity __read_mostly *mem_affinity;
78 int __read_mostly *mem_locality;
79 
80 static int numa_disabled;
81 static SYSCTL_NODE(_vm, OID_AUTO, numa, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
82     "NUMA options");
83 SYSCTL_INT(_vm_numa, OID_AUTO, disabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
84     &numa_disabled, 0, "NUMA-awareness in the allocators is disabled");
85 #endif
86 
87 int __read_mostly vm_ndomains = 1;
88 domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);
89 
90 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
91 int __read_mostly vm_phys_nsegs;
92 static struct vm_phys_seg vm_phys_early_segs[8];
93 static int vm_phys_early_nsegs;
94 
95 struct vm_phys_fictitious_seg;
96 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
97     struct vm_phys_fictitious_seg *);
98 
99 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
100     RB_INITIALIZER(&vm_phys_fictitious_tree);
101 
102 struct vm_phys_fictitious_seg {
103 	RB_ENTRY(vm_phys_fictitious_seg) node;
104 	/* Memory region data */
105 	vm_paddr_t	start;
106 	vm_paddr_t	end;
107 	vm_page_t	first_page;
108 };
109 
110 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
111     vm_phys_fictitious_cmp);
112 
113 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
114 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
115 
116 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
117     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
118     [VM_NFREEORDER_MAX];
119 
120 static int __read_mostly vm_nfreelists;
121 
122 /*
123  * These "avail lists" are globals used to communicate boot-time physical
124  * memory layout to other parts of the kernel.  Each physically contiguous
125  * region of memory is defined by a start address at an even index and an
126  * end address at the following odd index.  Each list is terminated by a
127  * pair of zero entries.
128  *
129  * dump_avail tells the dump code what regions to include in a crash dump, and
130  * phys_avail is all of the remaining physical memory that is available for
131  * the vm system.
132  *
133  * Initially dump_avail and phys_avail are identical.  Boot time memory
134  * allocations remove extents from phys_avail that may still be included
135  * in dumps.
136  */
137 vm_paddr_t phys_avail[PHYS_AVAIL_COUNT];
138 vm_paddr_t dump_avail[PHYS_AVAIL_COUNT];
139 
140 /*
141  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
142  */
143 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
144 
145 CTASSERT(VM_FREELIST_DEFAULT == 0);
146 
147 #ifdef VM_FREELIST_DMA32
148 #define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
149 #endif
150 
151 /*
152  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
153  * the ordering of the free list boundaries.
154  */
155 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
156 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
157 #endif
158 
159 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
160 SYSCTL_OID(_vm, OID_AUTO, phys_free,
161     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
162     sysctl_vm_phys_free, "A",
163     "Phys Free Info");
164 
165 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
166 SYSCTL_OID(_vm, OID_AUTO, phys_segs,
167     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
168     sysctl_vm_phys_segs, "A",
169     "Phys Seg Info");
170 
171 #ifdef NUMA
172 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
173 SYSCTL_OID(_vm, OID_AUTO, phys_locality,
174     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
175     sysctl_vm_phys_locality, "A",
176     "Phys Locality Info");
177 #endif
178 
179 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
180     &vm_ndomains, 0, "Number of physical memory domains available.");
181 
182 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
183 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
184 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
185     int order, int tail);
186 
187 /*
188  * Red-black tree helpers for vm fictitious range management.
189  */
190 static inline int
191 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
192     struct vm_phys_fictitious_seg *range)
193 {
194 
195 	KASSERT(range->start != 0 && range->end != 0,
196 	    ("Invalid range passed on search for vm_fictitious page"));
197 	if (p->start >= range->end)
198 		return (1);
199 	if (p->start < range->start)
200 		return (-1);
201 
202 	return (0);
203 }
204 
205 static int
206 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
207     struct vm_phys_fictitious_seg *p2)
208 {
209 
210 	/* Check if this is a search for a page */
211 	if (p1->end == 0)
212 		return (vm_phys_fictitious_in_range(p1, p2));
213 
214 	KASSERT(p2->end != 0,
215     ("Invalid range passed as second parameter to vm fictitious comparison"));
216 
217 	/* Searching to add a new range */
218 	if (p1->end <= p2->start)
219 		return (-1);
220 	if (p1->start >= p2->end)
221 		return (1);
222 
223 	panic("Trying to add overlapping vm fictitious ranges:\n"
224 	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
225 	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
226 }
227 
228 int
229 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
230 {
231 #ifdef NUMA
232 	domainset_t mask;
233 	int i;
234 
235 	if (vm_ndomains == 1 || mem_affinity == NULL)
236 		return (0);
237 
238 	DOMAINSET_ZERO(&mask);
239 	/*
240 	 * Check for any memory that overlaps low, high.
241 	 */
242 	for (i = 0; mem_affinity[i].end != 0; i++)
243 		if (mem_affinity[i].start <= high &&
244 		    mem_affinity[i].end >= low)
245 			DOMAINSET_SET(mem_affinity[i].domain, &mask);
246 	if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
247 		return (prefer);
248 	if (DOMAINSET_EMPTY(&mask))
249 		panic("vm_phys_domain_match:  Impossible constraint");
250 	return (DOMAINSET_FFS(&mask) - 1);
251 #else
252 	return (0);
253 #endif
254 }
255 
256 /*
257  * Outputs the state of the physical memory allocator, specifically,
258  * the amount of physical memory in each free list.
259  */
260 static int
261 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
262 {
263 	struct sbuf sbuf;
264 	struct vm_freelist *fl;
265 	int dom, error, flind, oind, pind;
266 
267 	error = sysctl_wire_old_buffer(req, 0);
268 	if (error != 0)
269 		return (error);
270 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
271 	for (dom = 0; dom < vm_ndomains; dom++) {
272 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
273 		for (flind = 0; flind < vm_nfreelists; flind++) {
274 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
275 			    "\n  ORDER (SIZE)  |  NUMBER"
276 			    "\n              ", flind);
277 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
278 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
279 			sbuf_printf(&sbuf, "\n--            ");
280 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
281 				sbuf_printf(&sbuf, "-- --      ");
282 			sbuf_printf(&sbuf, "--\n");
283 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
284 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
285 				    1 << (PAGE_SHIFT - 10 + oind));
286 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
287 				fl = vm_phys_free_queues[dom][flind][pind];
288 					sbuf_printf(&sbuf, "  |  %6d",
289 					    fl[oind].lcnt);
290 				}
291 				sbuf_printf(&sbuf, "\n");
292 			}
293 		}
294 	}
295 	error = sbuf_finish(&sbuf);
296 	sbuf_delete(&sbuf);
297 	return (error);
298 }
299 
300 /*
301  * Outputs the set of physical memory segments.
302  */
303 static int
304 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
305 {
306 	struct sbuf sbuf;
307 	struct vm_phys_seg *seg;
308 	int error, segind;
309 
310 	error = sysctl_wire_old_buffer(req, 0);
311 	if (error != 0)
312 		return (error);
313 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
314 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
315 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
316 		seg = &vm_phys_segs[segind];
317 		sbuf_printf(&sbuf, "start:     %#jx\n",
318 		    (uintmax_t)seg->start);
319 		sbuf_printf(&sbuf, "end:       %#jx\n",
320 		    (uintmax_t)seg->end);
321 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
322 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
323 	}
324 	error = sbuf_finish(&sbuf);
325 	sbuf_delete(&sbuf);
326 	return (error);
327 }
328 
329 /*
330  * Return affinity, or -1 if there's no affinity information.
331  */
332 int
333 vm_phys_mem_affinity(int f, int t)
334 {
335 
336 #ifdef NUMA
337 	if (mem_locality == NULL)
338 		return (-1);
339 	if (f >= vm_ndomains || t >= vm_ndomains)
340 		return (-1);
341 	return (mem_locality[f * vm_ndomains + t]);
342 #else
343 	return (-1);
344 #endif
345 }
346 
347 #ifdef NUMA
348 /*
349  * Outputs the VM locality table.
350  */
351 static int
352 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
353 {
354 	struct sbuf sbuf;
355 	int error, i, j;
356 
357 	error = sysctl_wire_old_buffer(req, 0);
358 	if (error != 0)
359 		return (error);
360 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
361 
362 	sbuf_printf(&sbuf, "\n");
363 
364 	for (i = 0; i < vm_ndomains; i++) {
365 		sbuf_printf(&sbuf, "%d: ", i);
366 		for (j = 0; j < vm_ndomains; j++) {
367 			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
368 		}
369 		sbuf_printf(&sbuf, "\n");
370 	}
371 	error = sbuf_finish(&sbuf);
372 	sbuf_delete(&sbuf);
373 	return (error);
374 }
375 #endif
376 
377 static void
378 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
379 {
380 
381 	m->order = order;
382 	if (tail)
383 		TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
384 	else
385 		TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
386 	fl[order].lcnt++;
387 }
388 
389 static void
390 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
391 {
392 
393 	TAILQ_REMOVE(&fl[order].pl, m, listq);
394 	fl[order].lcnt--;
395 	m->order = VM_NFREEORDER;
396 }
397 
398 /*
399  * Create a physical memory segment.
400  */
401 static void
402 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
403 {
404 	struct vm_phys_seg *seg;
405 
406 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
407 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
408 	KASSERT(domain >= 0 && domain < vm_ndomains,
409 	    ("vm_phys_create_seg: invalid domain provided"));
410 	seg = &vm_phys_segs[vm_phys_nsegs++];
411 	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
412 		*seg = *(seg - 1);
413 		seg--;
414 	}
415 	seg->start = start;
416 	seg->end = end;
417 	seg->domain = domain;
418 }
419 
420 static void
421 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
422 {
423 #ifdef NUMA
424 	int i;
425 
426 	if (mem_affinity == NULL) {
427 		_vm_phys_create_seg(start, end, 0);
428 		return;
429 	}
430 
431 	for (i = 0;; i++) {
432 		if (mem_affinity[i].end == 0)
433 			panic("Reached end of affinity info");
434 		if (mem_affinity[i].end <= start)
435 			continue;
436 		if (mem_affinity[i].start > start)
437 			panic("No affinity info for start %jx",
438 			    (uintmax_t)start);
439 		if (mem_affinity[i].end >= end) {
440 			_vm_phys_create_seg(start, end,
441 			    mem_affinity[i].domain);
442 			break;
443 		}
444 		_vm_phys_create_seg(start, mem_affinity[i].end,
445 		    mem_affinity[i].domain);
446 		start = mem_affinity[i].end;
447 	}
448 #else
449 	_vm_phys_create_seg(start, end, 0);
450 #endif
451 }
452 
453 /*
454  * Add a physical memory segment.
455  */
456 void
457 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
458 {
459 	vm_paddr_t paddr;
460 
461 	KASSERT((start & PAGE_MASK) == 0,
462 	    ("vm_phys_define_seg: start is not page aligned"));
463 	KASSERT((end & PAGE_MASK) == 0,
464 	    ("vm_phys_define_seg: end is not page aligned"));
465 
466 	/*
467 	 * Split the physical memory segment if it spans two or more free
468 	 * list boundaries.
469 	 */
470 	paddr = start;
471 #ifdef	VM_FREELIST_LOWMEM
472 	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
473 		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
474 		paddr = VM_LOWMEM_BOUNDARY;
475 	}
476 #endif
477 #ifdef	VM_FREELIST_DMA32
478 	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
479 		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
480 		paddr = VM_DMA32_BOUNDARY;
481 	}
482 #endif
483 	vm_phys_create_seg(paddr, end);
484 }
485 
486 /*
487  * Initialize the physical memory allocator.
488  *
489  * Requires that vm_page_array is initialized!
490  */
491 void
492 vm_phys_init(void)
493 {
494 	struct vm_freelist *fl;
495 	struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
496 #if defined(VM_DMA32_NPAGES_THRESHOLD) || defined(VM_PHYSSEG_SPARSE)
497 	u_long npages;
498 #endif
499 	int dom, flind, freelist, oind, pind, segind;
500 
501 	/*
502 	 * Compute the number of free lists, and generate the mapping from the
503 	 * manifest constants VM_FREELIST_* to the free list indices.
504 	 *
505 	 * Initially, the entries of vm_freelist_to_flind[] are set to either
506 	 * 0 or 1 to indicate which free lists should be created.
507 	 */
508 #ifdef	VM_DMA32_NPAGES_THRESHOLD
509 	npages = 0;
510 #endif
511 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
512 		seg = &vm_phys_segs[segind];
513 #ifdef	VM_FREELIST_LOWMEM
514 		if (seg->end <= VM_LOWMEM_BOUNDARY)
515 			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
516 		else
517 #endif
518 #ifdef	VM_FREELIST_DMA32
519 		if (
520 #ifdef	VM_DMA32_NPAGES_THRESHOLD
521 		    /*
522 		     * Create the DMA32 free list only if the amount of
523 		     * physical memory above physical address 4G exceeds the
524 		     * given threshold.
525 		     */
526 		    npages > VM_DMA32_NPAGES_THRESHOLD &&
527 #endif
528 		    seg->end <= VM_DMA32_BOUNDARY)
529 			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
530 		else
531 #endif
532 		{
533 #ifdef	VM_DMA32_NPAGES_THRESHOLD
534 			npages += atop(seg->end - seg->start);
535 #endif
536 			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
537 		}
538 	}
539 	/* Change each entry into a running total of the free lists. */
540 	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
541 		vm_freelist_to_flind[freelist] +=
542 		    vm_freelist_to_flind[freelist - 1];
543 	}
544 	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
545 	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
546 	/* Change each entry into a free list index. */
547 	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
548 		vm_freelist_to_flind[freelist]--;
549 
550 	/*
551 	 * Initialize the first_page and free_queues fields of each physical
552 	 * memory segment.
553 	 */
554 #ifdef VM_PHYSSEG_SPARSE
555 	npages = 0;
556 #endif
557 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
558 		seg = &vm_phys_segs[segind];
559 #ifdef VM_PHYSSEG_SPARSE
560 		seg->first_page = &vm_page_array[npages];
561 		npages += atop(seg->end - seg->start);
562 #else
563 		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
564 #endif
565 #ifdef	VM_FREELIST_LOWMEM
566 		if (seg->end <= VM_LOWMEM_BOUNDARY) {
567 			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
568 			KASSERT(flind >= 0,
569 			    ("vm_phys_init: LOWMEM flind < 0"));
570 		} else
571 #endif
572 #ifdef	VM_FREELIST_DMA32
573 		if (seg->end <= VM_DMA32_BOUNDARY) {
574 			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
575 			KASSERT(flind >= 0,
576 			    ("vm_phys_init: DMA32 flind < 0"));
577 		} else
578 #endif
579 		{
580 			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
581 			KASSERT(flind >= 0,
582 			    ("vm_phys_init: DEFAULT flind < 0"));
583 		}
584 		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
585 	}
586 
587 	/*
588 	 * Coalesce physical memory segments that are contiguous and share the
589 	 * same per-domain free queues.
590 	 */
591 	prev_seg = vm_phys_segs;
592 	seg = &vm_phys_segs[1];
593 	end_seg = &vm_phys_segs[vm_phys_nsegs];
594 	while (seg < end_seg) {
595 		if (prev_seg->end == seg->start &&
596 		    prev_seg->free_queues == seg->free_queues) {
597 			prev_seg->end = seg->end;
598 			KASSERT(prev_seg->domain == seg->domain,
599 			    ("vm_phys_init: free queues cannot span domains"));
600 			vm_phys_nsegs--;
601 			end_seg--;
602 			for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
603 				*tmp_seg = *(tmp_seg + 1);
604 		} else {
605 			prev_seg = seg;
606 			seg++;
607 		}
608 	}
609 
610 	/*
611 	 * Initialize the free queues.
612 	 */
613 	for (dom = 0; dom < vm_ndomains; dom++) {
614 		for (flind = 0; flind < vm_nfreelists; flind++) {
615 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
616 				fl = vm_phys_free_queues[dom][flind][pind];
617 				for (oind = 0; oind < VM_NFREEORDER; oind++)
618 					TAILQ_INIT(&fl[oind].pl);
619 			}
620 		}
621 	}
622 
623 	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
624 }
625 
626 /*
627  * Register info about the NUMA topology of the system.
628  *
629  * Invoked by platform-dependent code prior to vm_phys_init().
630  */
631 void
632 vm_phys_register_domains(int ndomains, struct mem_affinity *affinity,
633     int *locality)
634 {
635 #ifdef NUMA
636 	int i;
637 
638 	/*
639 	 * For now the only override value that we support is 1, which
640 	 * effectively disables NUMA-awareness in the allocators.
641 	 */
642 	TUNABLE_INT_FETCH("vm.numa.disabled", &numa_disabled);
643 	if (numa_disabled)
644 		ndomains = 1;
645 
646 	if (ndomains > 1) {
647 		vm_ndomains = ndomains;
648 		mem_affinity = affinity;
649 		mem_locality = locality;
650 	}
651 
652 	for (i = 0; i < vm_ndomains; i++)
653 		DOMAINSET_SET(i, &all_domains);
654 #else
655 	(void)ndomains;
656 	(void)affinity;
657 	(void)locality;
658 #endif
659 }
660 
661 /*
662  * Split a contiguous, power of two-sized set of physical pages.
663  *
664  * When this function is called by a page allocation function, the caller
665  * should request insertion at the head unless the order [order, oind) queues
666  * are known to be empty.  The objective being to reduce the likelihood of
667  * long-term fragmentation by promoting contemporaneous allocation and
668  * (hopefully) deallocation.
669  */
670 static __inline void
671 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
672     int tail)
673 {
674 	vm_page_t m_buddy;
675 
676 	while (oind > order) {
677 		oind--;
678 		m_buddy = &m[1 << oind];
679 		KASSERT(m_buddy->order == VM_NFREEORDER,
680 		    ("vm_phys_split_pages: page %p has unexpected order %d",
681 		    m_buddy, m_buddy->order));
682 		vm_freelist_add(fl, m_buddy, oind, tail);
683         }
684 }
685 
686 /*
687  * Add the physical pages [m, m + npages) at the beginning of a power-of-two
688  * aligned and sized set to the specified free list.
689  *
690  * When this function is called by a page allocation function, the caller
691  * should request insertion at the head unless the lower-order queues are
692  * known to be empty.  The objective being to reduce the likelihood of long-
693  * term fragmentation by promoting contemporaneous allocation and (hopefully)
694  * deallocation.
695  *
696  * The physical page m's buddy must not be free.
697  */
698 static void
699 vm_phys_enq_beg(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
700 {
701         int order;
702 
703 	KASSERT(npages == 0 ||
704 	    (VM_PAGE_TO_PHYS(m) &
705 	    ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
706 	    ("%s: page %p and npages %u are misaligned",
707 	    __func__, m, npages));
708         while (npages > 0) {
709 		KASSERT(m->order == VM_NFREEORDER,
710 		    ("%s: page %p has unexpected order %d",
711 		    __func__, m, m->order));
712                 order = fls(npages) - 1;
713 		KASSERT(order < VM_NFREEORDER,
714 		    ("%s: order %d is out of range", __func__, order));
715                 vm_freelist_add(fl, m, order, tail);
716 		m += 1 << order;
717                 npages -= 1 << order;
718         }
719 }
720 
721 /*
722  * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
723  * and sized set to the specified free list.
724  *
725  * When this function is called by a page allocation function, the caller
726  * should request insertion at the head unless the lower-order queues are
727  * known to be empty.  The objective being to reduce the likelihood of long-
728  * term fragmentation by promoting contemporaneous allocation and (hopefully)
729  * deallocation.
730  *
731  * If npages is zero, this function does nothing and ignores the physical page
732  * parameter m.  Otherwise, the physical page m's buddy must not be free.
733  */
734 static vm_page_t
735 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
736 {
737 	int order;
738 
739 	KASSERT(npages == 0 ||
740 	    ((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
741 	    ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
742 	    ("vm_phys_enq_range: page %p and npages %u are misaligned",
743 	    m, npages));
744 	while (npages > 0) {
745 		KASSERT(m->order == VM_NFREEORDER,
746 		    ("vm_phys_enq_range: page %p has unexpected order %d",
747 		    m, m->order));
748 		order = ffs(npages) - 1;
749 		KASSERT(order < VM_NFREEORDER,
750 		    ("vm_phys_enq_range: order %d is out of range", order));
751 		vm_freelist_add(fl, m, order, tail);
752 		m += 1 << order;
753 		npages -= 1 << order;
754 	}
755 	return (m);
756 }
757 
758 /*
759  * Set the pool for a contiguous, power of two-sized set of physical pages.
760  */
761 static void
762 vm_phys_set_pool(int pool, vm_page_t m, int order)
763 {
764 	vm_page_t m_tmp;
765 
766 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
767 		m_tmp->pool = pool;
768 }
769 
770 /*
771  * Tries to allocate the specified number of pages from the specified pool
772  * within the specified domain.  Returns the actual number of allocated pages
773  * and a pointer to each page through the array ma[].
774  *
775  * The returned pages may not be physically contiguous.  However, in contrast
776  * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
777  * calling this function once to allocate the desired number of pages will
778  * avoid wasted time in vm_phys_split_pages().
779  *
780  * The free page queues for the specified domain must be locked.
781  */
782 int
783 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
784 {
785 	struct vm_freelist *alt, *fl;
786 	vm_page_t m;
787 	int avail, end, flind, freelist, i, oind, pind;
788 
789 	KASSERT(domain >= 0 && domain < vm_ndomains,
790 	    ("vm_phys_alloc_npages: domain %d is out of range", domain));
791 	KASSERT(pool < VM_NFREEPOOL,
792 	    ("vm_phys_alloc_npages: pool %d is out of range", pool));
793 	KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
794 	    ("vm_phys_alloc_npages: npages %d is out of range", npages));
795 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
796 	i = 0;
797 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
798 		flind = vm_freelist_to_flind[freelist];
799 		if (flind < 0)
800 			continue;
801 		fl = vm_phys_free_queues[domain][flind][pool];
802 		for (oind = 0; oind < VM_NFREEORDER; oind++) {
803 			while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
804 				vm_freelist_rem(fl, m, oind);
805 				avail = i + (1 << oind);
806 				end = imin(npages, avail);
807 				while (i < end)
808 					ma[i++] = m++;
809 				if (i == npages) {
810 					/*
811 					 * Return excess pages to fl.  Its order
812 					 * [0, oind) queues are empty.
813 					 */
814 					vm_phys_enq_range(m, avail - i, fl, 1);
815 					return (npages);
816 				}
817 			}
818 		}
819 		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
820 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
821 				alt = vm_phys_free_queues[domain][flind][pind];
822 				while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
823 				    NULL) {
824 					vm_freelist_rem(alt, m, oind);
825 					vm_phys_set_pool(pool, m, oind);
826 					avail = i + (1 << oind);
827 					end = imin(npages, avail);
828 					while (i < end)
829 						ma[i++] = m++;
830 					if (i == npages) {
831 						/*
832 						 * Return excess pages to fl.
833 						 * Its order [0, oind) queues
834 						 * are empty.
835 						 */
836 						vm_phys_enq_range(m, avail - i,
837 						    fl, 1);
838 						return (npages);
839 					}
840 				}
841 			}
842 		}
843 	}
844 	return (i);
845 }
846 
847 /*
848  * Allocate a contiguous, power of two-sized set of physical pages
849  * from the free lists.
850  *
851  * The free page queues must be locked.
852  */
853 vm_page_t
854 vm_phys_alloc_pages(int domain, int pool, int order)
855 {
856 	vm_page_t m;
857 	int freelist;
858 
859 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
860 		m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
861 		if (m != NULL)
862 			return (m);
863 	}
864 	return (NULL);
865 }
866 
867 /*
868  * Allocate a contiguous, power of two-sized set of physical pages from the
869  * specified free list.  The free list must be specified using one of the
870  * manifest constants VM_FREELIST_*.
871  *
872  * The free page queues must be locked.
873  */
874 vm_page_t
875 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
876 {
877 	struct vm_freelist *alt, *fl;
878 	vm_page_t m;
879 	int oind, pind, flind;
880 
881 	KASSERT(domain >= 0 && domain < vm_ndomains,
882 	    ("vm_phys_alloc_freelist_pages: domain %d is out of range",
883 	    domain));
884 	KASSERT(freelist < VM_NFREELIST,
885 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
886 	    freelist));
887 	KASSERT(pool < VM_NFREEPOOL,
888 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
889 	KASSERT(order < VM_NFREEORDER,
890 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
891 
892 	flind = vm_freelist_to_flind[freelist];
893 	/* Check if freelist is present */
894 	if (flind < 0)
895 		return (NULL);
896 
897 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
898 	fl = &vm_phys_free_queues[domain][flind][pool][0];
899 	for (oind = order; oind < VM_NFREEORDER; oind++) {
900 		m = TAILQ_FIRST(&fl[oind].pl);
901 		if (m != NULL) {
902 			vm_freelist_rem(fl, m, oind);
903 			/* The order [order, oind) queues are empty. */
904 			vm_phys_split_pages(m, oind, fl, order, 1);
905 			return (m);
906 		}
907 	}
908 
909 	/*
910 	 * The given pool was empty.  Find the largest
911 	 * contiguous, power-of-two-sized set of pages in any
912 	 * pool.  Transfer these pages to the given pool, and
913 	 * use them to satisfy the allocation.
914 	 */
915 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
916 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
917 			alt = &vm_phys_free_queues[domain][flind][pind][0];
918 			m = TAILQ_FIRST(&alt[oind].pl);
919 			if (m != NULL) {
920 				vm_freelist_rem(alt, m, oind);
921 				vm_phys_set_pool(pool, m, oind);
922 				/* The order [order, oind) queues are empty. */
923 				vm_phys_split_pages(m, oind, fl, order, 1);
924 				return (m);
925 			}
926 		}
927 	}
928 	return (NULL);
929 }
930 
931 /*
932  * Find the vm_page corresponding to the given physical address.
933  */
934 vm_page_t
935 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
936 {
937 	struct vm_phys_seg *seg;
938 
939 	if ((seg = vm_phys_paddr_to_seg(pa)) != NULL)
940 		return (&seg->first_page[atop(pa - seg->start)]);
941 	return (NULL);
942 }
943 
944 vm_page_t
945 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
946 {
947 	struct vm_phys_fictitious_seg tmp, *seg;
948 	vm_page_t m;
949 
950 	m = NULL;
951 	tmp.start = pa;
952 	tmp.end = 0;
953 
954 	rw_rlock(&vm_phys_fictitious_reg_lock);
955 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
956 	rw_runlock(&vm_phys_fictitious_reg_lock);
957 	if (seg == NULL)
958 		return (NULL);
959 
960 	m = &seg->first_page[atop(pa - seg->start)];
961 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
962 
963 	return (m);
964 }
965 
966 static inline void
967 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
968     long page_count, vm_memattr_t memattr)
969 {
970 	long i;
971 
972 	bzero(range, page_count * sizeof(*range));
973 	for (i = 0; i < page_count; i++) {
974 		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
975 		range[i].oflags &= ~VPO_UNMANAGED;
976 		range[i].busy_lock = VPB_UNBUSIED;
977 	}
978 }
979 
980 int
981 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
982     vm_memattr_t memattr)
983 {
984 	struct vm_phys_fictitious_seg *seg;
985 	vm_page_t fp;
986 	long page_count;
987 #ifdef VM_PHYSSEG_DENSE
988 	long pi, pe;
989 	long dpage_count;
990 #endif
991 
992 	KASSERT(start < end,
993 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
994 	    (uintmax_t)start, (uintmax_t)end));
995 
996 	page_count = (end - start) / PAGE_SIZE;
997 
998 #ifdef VM_PHYSSEG_DENSE
999 	pi = atop(start);
1000 	pe = atop(end);
1001 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1002 		fp = &vm_page_array[pi - first_page];
1003 		if ((pe - first_page) > vm_page_array_size) {
1004 			/*
1005 			 * We have a segment that starts inside
1006 			 * of vm_page_array, but ends outside of it.
1007 			 *
1008 			 * Use vm_page_array pages for those that are
1009 			 * inside of the vm_page_array range, and
1010 			 * allocate the remaining ones.
1011 			 */
1012 			dpage_count = vm_page_array_size - (pi - first_page);
1013 			vm_phys_fictitious_init_range(fp, start, dpage_count,
1014 			    memattr);
1015 			page_count -= dpage_count;
1016 			start += ptoa(dpage_count);
1017 			goto alloc;
1018 		}
1019 		/*
1020 		 * We can allocate the full range from vm_page_array,
1021 		 * so there's no need to register the range in the tree.
1022 		 */
1023 		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1024 		return (0);
1025 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1026 		/*
1027 		 * We have a segment that ends inside of vm_page_array,
1028 		 * but starts outside of it.
1029 		 */
1030 		fp = &vm_page_array[0];
1031 		dpage_count = pe - first_page;
1032 		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
1033 		    memattr);
1034 		end -= ptoa(dpage_count);
1035 		page_count -= dpage_count;
1036 		goto alloc;
1037 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1038 		/*
1039 		 * Trying to register a fictitious range that expands before
1040 		 * and after vm_page_array.
1041 		 */
1042 		return (EINVAL);
1043 	} else {
1044 alloc:
1045 #endif
1046 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
1047 		    M_WAITOK);
1048 #ifdef VM_PHYSSEG_DENSE
1049 	}
1050 #endif
1051 	vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1052 
1053 	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
1054 	seg->start = start;
1055 	seg->end = end;
1056 	seg->first_page = fp;
1057 
1058 	rw_wlock(&vm_phys_fictitious_reg_lock);
1059 	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1060 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1061 
1062 	return (0);
1063 }
1064 
1065 void
1066 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1067 {
1068 	struct vm_phys_fictitious_seg *seg, tmp;
1069 #ifdef VM_PHYSSEG_DENSE
1070 	long pi, pe;
1071 #endif
1072 
1073 	KASSERT(start < end,
1074 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
1075 	    (uintmax_t)start, (uintmax_t)end));
1076 
1077 #ifdef VM_PHYSSEG_DENSE
1078 	pi = atop(start);
1079 	pe = atop(end);
1080 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1081 		if ((pe - first_page) <= vm_page_array_size) {
1082 			/*
1083 			 * This segment was allocated using vm_page_array
1084 			 * only, there's nothing to do since those pages
1085 			 * were never added to the tree.
1086 			 */
1087 			return;
1088 		}
1089 		/*
1090 		 * We have a segment that starts inside
1091 		 * of vm_page_array, but ends outside of it.
1092 		 *
1093 		 * Calculate how many pages were added to the
1094 		 * tree and free them.
1095 		 */
1096 		start = ptoa(first_page + vm_page_array_size);
1097 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1098 		/*
1099 		 * We have a segment that ends inside of vm_page_array,
1100 		 * but starts outside of it.
1101 		 */
1102 		end = ptoa(first_page);
1103 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1104 		/* Since it's not possible to register such a range, panic. */
1105 		panic(
1106 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1107 		    (uintmax_t)start, (uintmax_t)end);
1108 	}
1109 #endif
1110 	tmp.start = start;
1111 	tmp.end = 0;
1112 
1113 	rw_wlock(&vm_phys_fictitious_reg_lock);
1114 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1115 	if (seg->start != start || seg->end != end) {
1116 		rw_wunlock(&vm_phys_fictitious_reg_lock);
1117 		panic(
1118 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1119 		    (uintmax_t)start, (uintmax_t)end);
1120 	}
1121 	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1122 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1123 	free(seg->first_page, M_FICT_PAGES);
1124 	free(seg, M_FICT_PAGES);
1125 }
1126 
1127 /*
1128  * Free a contiguous, power of two-sized set of physical pages.
1129  *
1130  * The free page queues must be locked.
1131  */
1132 void
1133 vm_phys_free_pages(vm_page_t m, int order)
1134 {
1135 	struct vm_freelist *fl;
1136 	struct vm_phys_seg *seg;
1137 	vm_paddr_t pa;
1138 	vm_page_t m_buddy;
1139 
1140 	KASSERT(m->order == VM_NFREEORDER,
1141 	    ("vm_phys_free_pages: page %p has unexpected order %d",
1142 	    m, m->order));
1143 	KASSERT(m->pool < VM_NFREEPOOL,
1144 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
1145 	    m, m->pool));
1146 	KASSERT(order < VM_NFREEORDER,
1147 	    ("vm_phys_free_pages: order %d is out of range", order));
1148 	seg = &vm_phys_segs[m->segind];
1149 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1150 	if (order < VM_NFREEORDER - 1) {
1151 		pa = VM_PAGE_TO_PHYS(m);
1152 		do {
1153 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1154 			if (pa < seg->start || pa >= seg->end)
1155 				break;
1156 			m_buddy = &seg->first_page[atop(pa - seg->start)];
1157 			if (m_buddy->order != order)
1158 				break;
1159 			fl = (*seg->free_queues)[m_buddy->pool];
1160 			vm_freelist_rem(fl, m_buddy, order);
1161 			if (m_buddy->pool != m->pool)
1162 				vm_phys_set_pool(m->pool, m_buddy, order);
1163 			order++;
1164 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1165 			m = &seg->first_page[atop(pa - seg->start)];
1166 		} while (order < VM_NFREEORDER - 1);
1167 	}
1168 	fl = (*seg->free_queues)[m->pool];
1169 	vm_freelist_add(fl, m, order, 1);
1170 }
1171 
1172 /*
1173  * Free a contiguous, arbitrarily sized set of physical pages, without
1174  * merging across set boundaries.
1175  *
1176  * The free page queues must be locked.
1177  */
1178 void
1179 vm_phys_enqueue_contig(vm_page_t m, u_long npages)
1180 {
1181 	struct vm_freelist *fl;
1182 	struct vm_phys_seg *seg;
1183 	vm_page_t m_end;
1184 	vm_paddr_t diff, lo;
1185 	int order;
1186 
1187 	/*
1188 	 * Avoid unnecessary coalescing by freeing the pages in the largest
1189 	 * possible power-of-two-sized subsets.
1190 	 */
1191 	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1192 	seg = &vm_phys_segs[m->segind];
1193 	fl = (*seg->free_queues)[m->pool];
1194 	m_end = m + npages;
1195 	/* Free blocks of increasing size. */
1196 	lo = atop(VM_PAGE_TO_PHYS(m));
1197 	if (m < m_end &&
1198 	    (diff = lo ^ (lo + npages - 1)) != 0) {
1199 		order = min(flsll(diff) - 1, VM_NFREEORDER - 1);
1200 		m = vm_phys_enq_range(m, roundup2(lo, 1 << order) - lo, fl, 1);
1201 	}
1202 
1203 	/* Free blocks of maximum size. */
1204 	order = VM_NFREEORDER - 1;
1205 	while (m + (1 << order) <= m_end) {
1206 		KASSERT(seg == &vm_phys_segs[m->segind],
1207 		    ("%s: page range [%p,%p) spans multiple segments",
1208 		    __func__, m_end - npages, m));
1209 		vm_freelist_add(fl, m, order, 1);
1210 		m += 1 << order;
1211 	}
1212 	/* Free blocks of diminishing size. */
1213 	vm_phys_enq_beg(m, m_end - m, fl, 1);
1214 }
1215 
1216 /*
1217  * Free a contiguous, arbitrarily sized set of physical pages.
1218  *
1219  * The free page queues must be locked.
1220  */
1221 void
1222 vm_phys_free_contig(vm_page_t m, u_long npages)
1223 {
1224 	vm_paddr_t lo;
1225 	vm_page_t m_start, m_end;
1226 	unsigned max_order, order_start, order_end;
1227 
1228 	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1229 
1230 	lo = atop(VM_PAGE_TO_PHYS(m));
1231 	max_order = min(flsll(lo ^ (lo + npages)) - 1, VM_NFREEORDER - 1);
1232 
1233 	m_start = m;
1234 	order_start = ffsll(lo) - 1;
1235 	if (order_start < max_order)
1236 		m_start += 1 << order_start;
1237 	m_end = m + npages;
1238 	order_end = ffsll(lo + npages) - 1;
1239 	if (order_end < max_order)
1240 		m_end -= 1 << order_end;
1241 	/*
1242 	 * Avoid unnecessary coalescing by freeing the pages at the start and
1243 	 * end of the range last.
1244 	 */
1245 	if (m_start < m_end)
1246 		vm_phys_enqueue_contig(m_start, m_end - m_start);
1247 	if (order_start < max_order)
1248 		vm_phys_free_pages(m, order_start);
1249 	if (order_end < max_order)
1250 		vm_phys_free_pages(m_end, order_end);
1251 }
1252 
1253 /*
1254  * Identify the first address range within segment segind or greater
1255  * that matches the domain, lies within the low/high range, and has
1256  * enough pages.  Return -1 if there is none.
1257  */
1258 int
1259 vm_phys_find_range(vm_page_t bounds[], int segind, int domain,
1260     u_long npages, vm_paddr_t low, vm_paddr_t high)
1261 {
1262 	vm_paddr_t pa_end, pa_start;
1263 	struct vm_phys_seg *end_seg, *seg;
1264 
1265 	KASSERT(npages > 0, ("npages is zero"));
1266 	KASSERT(domain >= 0 && domain < vm_ndomains, ("domain out of range"));
1267 	end_seg = &vm_phys_segs[vm_phys_nsegs];
1268 	for (seg = &vm_phys_segs[segind]; seg < end_seg; seg++) {
1269 		if (seg->domain != domain)
1270 			continue;
1271 		if (seg->start >= high)
1272 			return (-1);
1273 		pa_start = MAX(low, seg->start);
1274 		pa_end = MIN(high, seg->end);
1275 		if (pa_end - pa_start < ptoa(npages))
1276 			continue;
1277 		bounds[0] = &seg->first_page[atop(pa_start - seg->start)];
1278 		bounds[1] = &seg->first_page[atop(pa_end - seg->start)];
1279 		return (seg - vm_phys_segs);
1280 	}
1281 	return (-1);
1282 }
1283 
1284 /*
1285  * Search for the given physical page "m" in the free lists.  If the search
1286  * succeeds, remove "m" from the free lists and return true.  Otherwise, return
1287  * false, indicating that "m" is not in the free lists.
1288  *
1289  * The free page queues must be locked.
1290  */
1291 bool
1292 vm_phys_unfree_page(vm_page_t m)
1293 {
1294 	struct vm_freelist *fl;
1295 	struct vm_phys_seg *seg;
1296 	vm_paddr_t pa, pa_half;
1297 	vm_page_t m_set, m_tmp;
1298 	int order;
1299 
1300 	/*
1301 	 * First, find the contiguous, power of two-sized set of free
1302 	 * physical pages containing the given physical page "m" and
1303 	 * assign it to "m_set".
1304 	 */
1305 	seg = &vm_phys_segs[m->segind];
1306 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1307 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1308 	    order < VM_NFREEORDER - 1; ) {
1309 		order++;
1310 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1311 		if (pa >= seg->start)
1312 			m_set = &seg->first_page[atop(pa - seg->start)];
1313 		else
1314 			return (false);
1315 	}
1316 	if (m_set->order < order)
1317 		return (false);
1318 	if (m_set->order == VM_NFREEORDER)
1319 		return (false);
1320 	KASSERT(m_set->order < VM_NFREEORDER,
1321 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
1322 	    m_set, m_set->order));
1323 
1324 	/*
1325 	 * Next, remove "m_set" from the free lists.  Finally, extract
1326 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
1327 	 * is larger than a page, shrink "m_set" by returning the half
1328 	 * of "m_set" that does not contain "m" to the free lists.
1329 	 */
1330 	fl = (*seg->free_queues)[m_set->pool];
1331 	order = m_set->order;
1332 	vm_freelist_rem(fl, m_set, order);
1333 	while (order > 0) {
1334 		order--;
1335 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1336 		if (m->phys_addr < pa_half)
1337 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1338 		else {
1339 			m_tmp = m_set;
1340 			m_set = &seg->first_page[atop(pa_half - seg->start)];
1341 		}
1342 		vm_freelist_add(fl, m_tmp, order, 0);
1343 	}
1344 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1345 	return (true);
1346 }
1347 
1348 /*
1349  * Find a run of contiguous physical pages, meeting alignment requirements, from
1350  * a list of max-sized page blocks, where we need at least two consecutive
1351  * blocks to satisfy the (large) page request.
1352  */
1353 static vm_page_t
1354 vm_phys_find_freelist_contig(struct vm_freelist *fl, u_long npages,
1355     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1356 {
1357 	struct vm_phys_seg *seg;
1358 	vm_page_t m, m_iter, m_ret;
1359 	vm_paddr_t max_size, size;
1360 	int max_order;
1361 
1362 	max_order = VM_NFREEORDER - 1;
1363 	size = npages << PAGE_SHIFT;
1364 	max_size = (vm_paddr_t)1 << (PAGE_SHIFT + max_order);
1365 	KASSERT(size > max_size, ("size is too small"));
1366 
1367 	/*
1368 	 * In order to avoid examining any free max-sized page block more than
1369 	 * twice, identify the ones that are first in a physically-contiguous
1370 	 * sequence of such blocks, and only for those walk the sequence to
1371 	 * check if there are enough free blocks starting at a properly aligned
1372 	 * block.  Thus, no block is checked for free-ness more than twice.
1373 	 */
1374 	TAILQ_FOREACH(m, &fl[max_order].pl, listq) {
1375 		/*
1376 		 * Skip m unless it is first in a sequence of free max page
1377 		 * blocks >= low in its segment.
1378 		 */
1379 		seg = &vm_phys_segs[m->segind];
1380 		if (VM_PAGE_TO_PHYS(m) < MAX(low, seg->start))
1381 			continue;
1382 		if (VM_PAGE_TO_PHYS(m) >= max_size &&
1383 		    VM_PAGE_TO_PHYS(m) - max_size >= MAX(low, seg->start) &&
1384 		    max_order == m[-1 << max_order].order)
1385 			continue;
1386 
1387 		/*
1388 		 * Advance m_ret from m to the first of the sequence, if any,
1389 		 * that satisfies alignment conditions and might leave enough
1390 		 * space.
1391 		 */
1392 		m_ret = m;
1393 		while (!vm_addr_ok(VM_PAGE_TO_PHYS(m_ret),
1394 		    size, alignment, boundary) &&
1395 		    VM_PAGE_TO_PHYS(m_ret) + size <= MIN(high, seg->end) &&
1396 		    max_order == m_ret[1 << max_order].order)
1397 			m_ret += 1 << max_order;
1398 
1399 		/*
1400 		 * Skip m unless some block m_ret in the sequence is properly
1401 		 * aligned, and begins a sequence of enough pages less than
1402 		 * high, and in the same segment.
1403 		 */
1404 		if (VM_PAGE_TO_PHYS(m_ret) + size > MIN(high, seg->end))
1405 			continue;
1406 
1407 		/*
1408 		 * Skip m unless the blocks to allocate starting at m_ret are
1409 		 * all free.
1410 		 */
1411 		for (m_iter = m_ret;
1412 		    m_iter < m_ret + npages && max_order == m_iter->order;
1413 		    m_iter += 1 << max_order) {
1414 		}
1415 		if (m_iter < m_ret + npages)
1416 			continue;
1417 		return (m_ret);
1418 	}
1419 	return (NULL);
1420 }
1421 
1422 /*
1423  * Find a run of contiguous physical pages from the specified free list
1424  * table.
1425  */
1426 static vm_page_t
1427 vm_phys_find_queues_contig(
1428     struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX],
1429     u_long npages, vm_paddr_t low, vm_paddr_t high,
1430     u_long alignment, vm_paddr_t boundary)
1431 {
1432 	struct vm_freelist *fl;
1433 	vm_page_t m_ret;
1434 	vm_paddr_t pa, pa_end, size;
1435 	int oind, order, pind;
1436 
1437 	KASSERT(npages > 0, ("npages is 0"));
1438 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1439 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1440 	/* Compute the queue that is the best fit for npages. */
1441 	order = flsl(npages - 1);
1442 	/* Search for a large enough free block. */
1443 	size = npages << PAGE_SHIFT;
1444 	for (oind = order; oind < VM_NFREEORDER; oind++) {
1445 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1446 			fl = (*queues)[pind];
1447 			TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1448 				/*
1449 				 * Determine if the address range starting at pa
1450 				 * is within the given range, satisfies the
1451 				 * given alignment, and does not cross the given
1452 				 * boundary.
1453 				 */
1454 				pa = VM_PAGE_TO_PHYS(m_ret);
1455 				pa_end = pa + size;
1456 				if (low <= pa && pa_end <= high &&
1457 				    vm_addr_ok(pa, size, alignment, boundary))
1458 					return (m_ret);
1459 			}
1460 		}
1461 	}
1462 	if (order < VM_NFREEORDER)
1463 		return (NULL);
1464 	/* Search for a long-enough sequence of max-order blocks. */
1465 	for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1466 		fl = (*queues)[pind];
1467 		m_ret = vm_phys_find_freelist_contig(fl, npages,
1468 		    low, high, alignment, boundary);
1469 		if (m_ret != NULL)
1470 			return (m_ret);
1471 	}
1472 	return (NULL);
1473 }
1474 
1475 /*
1476  * Allocate a contiguous set of physical pages of the given size
1477  * "npages" from the free lists.  All of the physical pages must be at
1478  * or above the given physical address "low" and below the given
1479  * physical address "high".  The given value "alignment" determines the
1480  * alignment of the first physical page in the set.  If the given value
1481  * "boundary" is non-zero, then the set of physical pages cannot cross
1482  * any physical address boundary that is a multiple of that value.  Both
1483  * "alignment" and "boundary" must be a power of two.
1484  */
1485 vm_page_t
1486 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1487     u_long alignment, vm_paddr_t boundary)
1488 {
1489 	vm_paddr_t pa_end, pa_start;
1490 	struct vm_freelist *fl;
1491 	vm_page_t m, m_run;
1492 	struct vm_phys_seg *seg;
1493 	struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX];
1494 	int oind, segind;
1495 
1496 	KASSERT(npages > 0, ("npages is 0"));
1497 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1498 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1499 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
1500 	if (low >= high)
1501 		return (NULL);
1502 	queues = NULL;
1503 	m_run = NULL;
1504 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1505 		seg = &vm_phys_segs[segind];
1506 		if (seg->start >= high || seg->domain != domain)
1507 			continue;
1508 		if (low >= seg->end)
1509 			break;
1510 		if (low <= seg->start)
1511 			pa_start = seg->start;
1512 		else
1513 			pa_start = low;
1514 		if (high < seg->end)
1515 			pa_end = high;
1516 		else
1517 			pa_end = seg->end;
1518 		if (pa_end - pa_start < ptoa(npages))
1519 			continue;
1520 		/*
1521 		 * If a previous segment led to a search using
1522 		 * the same free lists as would this segment, then
1523 		 * we've actually already searched within this
1524 		 * too.  So skip it.
1525 		 */
1526 		if (seg->free_queues == queues)
1527 			continue;
1528 		queues = seg->free_queues;
1529 		m_run = vm_phys_find_queues_contig(queues, npages,
1530 		    low, high, alignment, boundary);
1531 		if (m_run != NULL)
1532 			break;
1533 	}
1534 	if (m_run == NULL)
1535 		return (NULL);
1536 
1537 	/* Allocate pages from the page-range found. */
1538 	for (m = m_run; m < &m_run[npages]; m = &m[1 << oind]) {
1539 		fl = (*queues)[m->pool];
1540 		oind = m->order;
1541 		vm_freelist_rem(fl, m, oind);
1542 		if (m->pool != VM_FREEPOOL_DEFAULT)
1543 			vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1544 	}
1545 	/* Return excess pages to the free lists. */
1546 	fl = (*queues)[VM_FREEPOOL_DEFAULT];
1547 	vm_phys_enq_range(&m_run[npages], m - &m_run[npages], fl, 0);
1548 
1549 	/* Return page verified to satisfy conditions of request. */
1550 	pa_start = VM_PAGE_TO_PHYS(m_run);
1551 	KASSERT(low <= pa_start,
1552 	    ("memory allocated below minimum requested range"));
1553 	KASSERT(pa_start + ptoa(npages) <= high,
1554 	    ("memory allocated above maximum requested range"));
1555 	seg = &vm_phys_segs[m_run->segind];
1556 	KASSERT(seg->domain == domain,
1557 	    ("memory not allocated from specified domain"));
1558 	KASSERT(vm_addr_ok(pa_start, ptoa(npages), alignment, boundary),
1559 	    ("memory alignment/boundary constraints not satisfied"));
1560 	return (m_run);
1561 }
1562 
1563 /*
1564  * Return the index of the first unused slot which may be the terminating
1565  * entry.
1566  */
1567 static int
1568 vm_phys_avail_count(void)
1569 {
1570 	int i;
1571 
1572 	for (i = 0; phys_avail[i + 1]; i += 2)
1573 		continue;
1574 	if (i > PHYS_AVAIL_ENTRIES)
1575 		panic("Improperly terminated phys_avail %d entries", i);
1576 
1577 	return (i);
1578 }
1579 
1580 /*
1581  * Assert that a phys_avail entry is valid.
1582  */
1583 static void
1584 vm_phys_avail_check(int i)
1585 {
1586 	if (phys_avail[i] & PAGE_MASK)
1587 		panic("Unaligned phys_avail[%d]: %#jx", i,
1588 		    (intmax_t)phys_avail[i]);
1589 	if (phys_avail[i+1] & PAGE_MASK)
1590 		panic("Unaligned phys_avail[%d + 1]: %#jx", i,
1591 		    (intmax_t)phys_avail[i]);
1592 	if (phys_avail[i + 1] < phys_avail[i])
1593 		panic("phys_avail[%d] start %#jx < end %#jx", i,
1594 		    (intmax_t)phys_avail[i], (intmax_t)phys_avail[i+1]);
1595 }
1596 
1597 /*
1598  * Return the index of an overlapping phys_avail entry or -1.
1599  */
1600 #ifdef NUMA
1601 static int
1602 vm_phys_avail_find(vm_paddr_t pa)
1603 {
1604 	int i;
1605 
1606 	for (i = 0; phys_avail[i + 1]; i += 2)
1607 		if (phys_avail[i] <= pa && phys_avail[i + 1] > pa)
1608 			return (i);
1609 	return (-1);
1610 }
1611 #endif
1612 
1613 /*
1614  * Return the index of the largest entry.
1615  */
1616 int
1617 vm_phys_avail_largest(void)
1618 {
1619 	vm_paddr_t sz, largesz;
1620 	int largest;
1621 	int i;
1622 
1623 	largest = 0;
1624 	largesz = 0;
1625 	for (i = 0; phys_avail[i + 1]; i += 2) {
1626 		sz = vm_phys_avail_size(i);
1627 		if (sz > largesz) {
1628 			largesz = sz;
1629 			largest = i;
1630 		}
1631 	}
1632 
1633 	return (largest);
1634 }
1635 
1636 vm_paddr_t
1637 vm_phys_avail_size(int i)
1638 {
1639 
1640 	return (phys_avail[i + 1] - phys_avail[i]);
1641 }
1642 
1643 /*
1644  * Split an entry at the address 'pa'.  Return zero on success or errno.
1645  */
1646 static int
1647 vm_phys_avail_split(vm_paddr_t pa, int i)
1648 {
1649 	int cnt;
1650 
1651 	vm_phys_avail_check(i);
1652 	if (pa <= phys_avail[i] || pa >= phys_avail[i + 1])
1653 		panic("vm_phys_avail_split: invalid address");
1654 	cnt = vm_phys_avail_count();
1655 	if (cnt >= PHYS_AVAIL_ENTRIES)
1656 		return (ENOSPC);
1657 	memmove(&phys_avail[i + 2], &phys_avail[i],
1658 	    (cnt - i) * sizeof(phys_avail[0]));
1659 	phys_avail[i + 1] = pa;
1660 	phys_avail[i + 2] = pa;
1661 	vm_phys_avail_check(i);
1662 	vm_phys_avail_check(i+2);
1663 
1664 	return (0);
1665 }
1666 
1667 /*
1668  * Check if a given physical address can be included as part of a crash dump.
1669  */
1670 bool
1671 vm_phys_is_dumpable(vm_paddr_t pa)
1672 {
1673 	vm_page_t m;
1674 	int i;
1675 
1676 	if ((m = vm_phys_paddr_to_vm_page(pa)) != NULL)
1677 		return ((m->flags & PG_NODUMP) == 0);
1678 
1679 	for (i = 0; dump_avail[i] != 0 || dump_avail[i + 1] != 0; i += 2) {
1680 		if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
1681 			return (true);
1682 	}
1683 	return (false);
1684 }
1685 
1686 void
1687 vm_phys_early_add_seg(vm_paddr_t start, vm_paddr_t end)
1688 {
1689 	struct vm_phys_seg *seg;
1690 
1691 	if (vm_phys_early_nsegs == -1)
1692 		panic("%s: called after initialization", __func__);
1693 	if (vm_phys_early_nsegs == nitems(vm_phys_early_segs))
1694 		panic("%s: ran out of early segments", __func__);
1695 
1696 	seg = &vm_phys_early_segs[vm_phys_early_nsegs++];
1697 	seg->start = start;
1698 	seg->end = end;
1699 }
1700 
1701 /*
1702  * This routine allocates NUMA node specific memory before the page
1703  * allocator is bootstrapped.
1704  */
1705 vm_paddr_t
1706 vm_phys_early_alloc(int domain, size_t alloc_size)
1707 {
1708 #ifdef NUMA
1709 	int mem_index;
1710 #endif
1711 	int i, biggestone;
1712 	vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align;
1713 
1714 	KASSERT(domain == -1 || (domain >= 0 && domain < vm_ndomains),
1715 	    ("%s: invalid domain index %d", __func__, domain));
1716 
1717 	/*
1718 	 * Search the mem_affinity array for the biggest address
1719 	 * range in the desired domain.  This is used to constrain
1720 	 * the phys_avail selection below.
1721 	 */
1722 	biggestsize = 0;
1723 	mem_start = 0;
1724 	mem_end = -1;
1725 #ifdef NUMA
1726 	mem_index = 0;
1727 	if (mem_affinity != NULL) {
1728 		for (i = 0;; i++) {
1729 			size = mem_affinity[i].end - mem_affinity[i].start;
1730 			if (size == 0)
1731 				break;
1732 			if (domain != -1 && mem_affinity[i].domain != domain)
1733 				continue;
1734 			if (size > biggestsize) {
1735 				mem_index = i;
1736 				biggestsize = size;
1737 			}
1738 		}
1739 		mem_start = mem_affinity[mem_index].start;
1740 		mem_end = mem_affinity[mem_index].end;
1741 	}
1742 #endif
1743 
1744 	/*
1745 	 * Now find biggest physical segment in within the desired
1746 	 * numa domain.
1747 	 */
1748 	biggestsize = 0;
1749 	biggestone = 0;
1750 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1751 		/* skip regions that are out of range */
1752 		if (phys_avail[i+1] - alloc_size < mem_start ||
1753 		    phys_avail[i+1] > mem_end)
1754 			continue;
1755 		size = vm_phys_avail_size(i);
1756 		if (size > biggestsize) {
1757 			biggestone = i;
1758 			biggestsize = size;
1759 		}
1760 	}
1761 	alloc_size = round_page(alloc_size);
1762 
1763 	/*
1764 	 * Grab single pages from the front to reduce fragmentation.
1765 	 */
1766 	if (alloc_size == PAGE_SIZE) {
1767 		pa = phys_avail[biggestone];
1768 		phys_avail[biggestone] += PAGE_SIZE;
1769 		vm_phys_avail_check(biggestone);
1770 		return (pa);
1771 	}
1772 
1773 	/*
1774 	 * Naturally align large allocations.
1775 	 */
1776 	align = phys_avail[biggestone + 1] & (alloc_size - 1);
1777 	if (alloc_size + align > biggestsize)
1778 		panic("cannot find a large enough size\n");
1779 	if (align != 0 &&
1780 	    vm_phys_avail_split(phys_avail[biggestone + 1] - align,
1781 	    biggestone) != 0)
1782 		/* Wasting memory. */
1783 		phys_avail[biggestone + 1] -= align;
1784 
1785 	phys_avail[biggestone + 1] -= alloc_size;
1786 	vm_phys_avail_check(biggestone);
1787 	pa = phys_avail[biggestone + 1];
1788 	return (pa);
1789 }
1790 
1791 void
1792 vm_phys_early_startup(void)
1793 {
1794 	struct vm_phys_seg *seg;
1795 	int i;
1796 
1797 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1798 		phys_avail[i] = round_page(phys_avail[i]);
1799 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
1800 	}
1801 
1802 	for (i = 0; i < vm_phys_early_nsegs; i++) {
1803 		seg = &vm_phys_early_segs[i];
1804 		vm_phys_add_seg(seg->start, seg->end);
1805 	}
1806 	vm_phys_early_nsegs = -1;
1807 
1808 #ifdef NUMA
1809 	/* Force phys_avail to be split by domain. */
1810 	if (mem_affinity != NULL) {
1811 		int idx;
1812 
1813 		for (i = 0; mem_affinity[i].end != 0; i++) {
1814 			idx = vm_phys_avail_find(mem_affinity[i].start);
1815 			if (idx != -1 &&
1816 			    phys_avail[idx] != mem_affinity[i].start)
1817 				vm_phys_avail_split(mem_affinity[i].start, idx);
1818 			idx = vm_phys_avail_find(mem_affinity[i].end);
1819 			if (idx != -1 &&
1820 			    phys_avail[idx] != mem_affinity[i].end)
1821 				vm_phys_avail_split(mem_affinity[i].end, idx);
1822 		}
1823 	}
1824 #endif
1825 }
1826 
1827 #ifdef DDB
1828 /*
1829  * Show the number of physical pages in each of the free lists.
1830  */
1831 DB_SHOW_COMMAND_FLAGS(freepages, db_show_freepages, DB_CMD_MEMSAFE)
1832 {
1833 	struct vm_freelist *fl;
1834 	int flind, oind, pind, dom;
1835 
1836 	for (dom = 0; dom < vm_ndomains; dom++) {
1837 		db_printf("DOMAIN: %d\n", dom);
1838 		for (flind = 0; flind < vm_nfreelists; flind++) {
1839 			db_printf("FREE LIST %d:\n"
1840 			    "\n  ORDER (SIZE)  |  NUMBER"
1841 			    "\n              ", flind);
1842 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1843 				db_printf("  |  POOL %d", pind);
1844 			db_printf("\n--            ");
1845 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1846 				db_printf("-- --      ");
1847 			db_printf("--\n");
1848 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1849 				db_printf("  %2.2d (%6.6dK)", oind,
1850 				    1 << (PAGE_SHIFT - 10 + oind));
1851 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1852 				fl = vm_phys_free_queues[dom][flind][pind];
1853 					db_printf("  |  %6.6d", fl[oind].lcnt);
1854 				}
1855 				db_printf("\n");
1856 			}
1857 			db_printf("\n");
1858 		}
1859 		db_printf("\n");
1860 	}
1861 }
1862 #endif
1863