xref: /freebsd/sys/vm/vm_phys.c (revision 2da0fcde21e0b90384f61fd50b87ea7dbd820233)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_ddb.h"
45 #include "opt_vm.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/lock.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/queue.h>
55 #include <sys/rwlock.h>
56 #include <sys/sbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/tree.h>
59 #include <sys/vmmeter.h>
60 #include <sys/seq.h>
61 
62 #include <ddb/ddb.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_phys.h>
70 #include <vm/vm_pagequeue.h>
71 
72 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
73     "Too many physsegs.");
74 
75 #ifdef NUMA
76 struct mem_affinity __read_mostly *mem_affinity;
77 int __read_mostly *mem_locality;
78 #endif
79 
80 int __read_mostly vm_ndomains = 1;
81 
82 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
83 int __read_mostly vm_phys_nsegs;
84 
85 struct vm_phys_fictitious_seg;
86 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
87     struct vm_phys_fictitious_seg *);
88 
89 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
90     RB_INITIALIZER(_vm_phys_fictitious_tree);
91 
92 struct vm_phys_fictitious_seg {
93 	RB_ENTRY(vm_phys_fictitious_seg) node;
94 	/* Memory region data */
95 	vm_paddr_t	start;
96 	vm_paddr_t	end;
97 	vm_page_t	first_page;
98 };
99 
100 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
101     vm_phys_fictitious_cmp);
102 
103 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
104 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
105 
106 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
107     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
108 
109 static int __read_mostly vm_nfreelists;
110 
111 /*
112  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
113  */
114 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
115 
116 CTASSERT(VM_FREELIST_DEFAULT == 0);
117 
118 #ifdef VM_FREELIST_ISADMA
119 #define	VM_ISADMA_BOUNDARY	16777216
120 #endif
121 #ifdef VM_FREELIST_DMA32
122 #define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
123 #endif
124 
125 /*
126  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
127  * the ordering of the free list boundaries.
128  */
129 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
130 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
131 #endif
132 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
133 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
134 #endif
135 
136 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
137 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
138     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
139 
140 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
141 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
142     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
143 
144 #ifdef NUMA
145 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
146 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
147     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
148 #endif
149 
150 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
151     &vm_ndomains, 0, "Number of physical memory domains available.");
152 
153 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
154     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
155     vm_paddr_t boundary);
156 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
157 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
158 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
159     int order);
160 
161 /*
162  * Red-black tree helpers for vm fictitious range management.
163  */
164 static inline int
165 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
166     struct vm_phys_fictitious_seg *range)
167 {
168 
169 	KASSERT(range->start != 0 && range->end != 0,
170 	    ("Invalid range passed on search for vm_fictitious page"));
171 	if (p->start >= range->end)
172 		return (1);
173 	if (p->start < range->start)
174 		return (-1);
175 
176 	return (0);
177 }
178 
179 static int
180 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
181     struct vm_phys_fictitious_seg *p2)
182 {
183 
184 	/* Check if this is a search for a page */
185 	if (p1->end == 0)
186 		return (vm_phys_fictitious_in_range(p1, p2));
187 
188 	KASSERT(p2->end != 0,
189     ("Invalid range passed as second parameter to vm fictitious comparison"));
190 
191 	/* Searching to add a new range */
192 	if (p1->end <= p2->start)
193 		return (-1);
194 	if (p1->start >= p2->end)
195 		return (1);
196 
197 	panic("Trying to add overlapping vm fictitious ranges:\n"
198 	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
199 	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
200 }
201 
202 int
203 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
204 {
205 #ifdef NUMA
206 	domainset_t mask;
207 	int i;
208 
209 	if (vm_ndomains == 1 || mem_affinity == NULL)
210 		return (0);
211 
212 	DOMAINSET_ZERO(&mask);
213 	/*
214 	 * Check for any memory that overlaps low, high.
215 	 */
216 	for (i = 0; mem_affinity[i].end != 0; i++)
217 		if (mem_affinity[i].start <= high &&
218 		    mem_affinity[i].end >= low)
219 			DOMAINSET_SET(mem_affinity[i].domain, &mask);
220 	if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
221 		return (prefer);
222 	if (DOMAINSET_EMPTY(&mask))
223 		panic("vm_phys_domain_match:  Impossible constraint");
224 	return (DOMAINSET_FFS(&mask) - 1);
225 #else
226 	return (0);
227 #endif
228 }
229 
230 /*
231  * Outputs the state of the physical memory allocator, specifically,
232  * the amount of physical memory in each free list.
233  */
234 static int
235 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
236 {
237 	struct sbuf sbuf;
238 	struct vm_freelist *fl;
239 	int dom, error, flind, oind, pind;
240 
241 	error = sysctl_wire_old_buffer(req, 0);
242 	if (error != 0)
243 		return (error);
244 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
245 	for (dom = 0; dom < vm_ndomains; dom++) {
246 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
247 		for (flind = 0; flind < vm_nfreelists; flind++) {
248 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
249 			    "\n  ORDER (SIZE)  |  NUMBER"
250 			    "\n              ", flind);
251 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
252 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
253 			sbuf_printf(&sbuf, "\n--            ");
254 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
255 				sbuf_printf(&sbuf, "-- --      ");
256 			sbuf_printf(&sbuf, "--\n");
257 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
258 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
259 				    1 << (PAGE_SHIFT - 10 + oind));
260 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
261 				fl = vm_phys_free_queues[dom][flind][pind];
262 					sbuf_printf(&sbuf, "  |  %6d",
263 					    fl[oind].lcnt);
264 				}
265 				sbuf_printf(&sbuf, "\n");
266 			}
267 		}
268 	}
269 	error = sbuf_finish(&sbuf);
270 	sbuf_delete(&sbuf);
271 	return (error);
272 }
273 
274 /*
275  * Outputs the set of physical memory segments.
276  */
277 static int
278 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
279 {
280 	struct sbuf sbuf;
281 	struct vm_phys_seg *seg;
282 	int error, segind;
283 
284 	error = sysctl_wire_old_buffer(req, 0);
285 	if (error != 0)
286 		return (error);
287 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
288 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
289 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
290 		seg = &vm_phys_segs[segind];
291 		sbuf_printf(&sbuf, "start:     %#jx\n",
292 		    (uintmax_t)seg->start);
293 		sbuf_printf(&sbuf, "end:       %#jx\n",
294 		    (uintmax_t)seg->end);
295 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
296 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
297 	}
298 	error = sbuf_finish(&sbuf);
299 	sbuf_delete(&sbuf);
300 	return (error);
301 }
302 
303 /*
304  * Return affinity, or -1 if there's no affinity information.
305  */
306 int
307 vm_phys_mem_affinity(int f, int t)
308 {
309 
310 #ifdef NUMA
311 	if (mem_locality == NULL)
312 		return (-1);
313 	if (f >= vm_ndomains || t >= vm_ndomains)
314 		return (-1);
315 	return (mem_locality[f * vm_ndomains + t]);
316 #else
317 	return (-1);
318 #endif
319 }
320 
321 #ifdef NUMA
322 /*
323  * Outputs the VM locality table.
324  */
325 static int
326 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
327 {
328 	struct sbuf sbuf;
329 	int error, i, j;
330 
331 	error = sysctl_wire_old_buffer(req, 0);
332 	if (error != 0)
333 		return (error);
334 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
335 
336 	sbuf_printf(&sbuf, "\n");
337 
338 	for (i = 0; i < vm_ndomains; i++) {
339 		sbuf_printf(&sbuf, "%d: ", i);
340 		for (j = 0; j < vm_ndomains; j++) {
341 			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
342 		}
343 		sbuf_printf(&sbuf, "\n");
344 	}
345 	error = sbuf_finish(&sbuf);
346 	sbuf_delete(&sbuf);
347 	return (error);
348 }
349 #endif
350 
351 static void
352 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
353 {
354 
355 	m->order = order;
356 	if (tail)
357 		TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
358 	else
359 		TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
360 	fl[order].lcnt++;
361 }
362 
363 static void
364 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
365 {
366 
367 	TAILQ_REMOVE(&fl[order].pl, m, listq);
368 	fl[order].lcnt--;
369 	m->order = VM_NFREEORDER;
370 }
371 
372 /*
373  * Create a physical memory segment.
374  */
375 static void
376 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
377 {
378 	struct vm_phys_seg *seg;
379 
380 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
381 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
382 	KASSERT(domain >= 0 && domain < vm_ndomains,
383 	    ("vm_phys_create_seg: invalid domain provided"));
384 	seg = &vm_phys_segs[vm_phys_nsegs++];
385 	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
386 		*seg = *(seg - 1);
387 		seg--;
388 	}
389 	seg->start = start;
390 	seg->end = end;
391 	seg->domain = domain;
392 }
393 
394 static void
395 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
396 {
397 #ifdef NUMA
398 	int i;
399 
400 	if (mem_affinity == NULL) {
401 		_vm_phys_create_seg(start, end, 0);
402 		return;
403 	}
404 
405 	for (i = 0;; i++) {
406 		if (mem_affinity[i].end == 0)
407 			panic("Reached end of affinity info");
408 		if (mem_affinity[i].end <= start)
409 			continue;
410 		if (mem_affinity[i].start > start)
411 			panic("No affinity info for start %jx",
412 			    (uintmax_t)start);
413 		if (mem_affinity[i].end >= end) {
414 			_vm_phys_create_seg(start, end,
415 			    mem_affinity[i].domain);
416 			break;
417 		}
418 		_vm_phys_create_seg(start, mem_affinity[i].end,
419 		    mem_affinity[i].domain);
420 		start = mem_affinity[i].end;
421 	}
422 #else
423 	_vm_phys_create_seg(start, end, 0);
424 #endif
425 }
426 
427 /*
428  * Add a physical memory segment.
429  */
430 void
431 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
432 {
433 	vm_paddr_t paddr;
434 
435 	KASSERT((start & PAGE_MASK) == 0,
436 	    ("vm_phys_define_seg: start is not page aligned"));
437 	KASSERT((end & PAGE_MASK) == 0,
438 	    ("vm_phys_define_seg: end is not page aligned"));
439 
440 	/*
441 	 * Split the physical memory segment if it spans two or more free
442 	 * list boundaries.
443 	 */
444 	paddr = start;
445 #ifdef	VM_FREELIST_ISADMA
446 	if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
447 		vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
448 		paddr = VM_ISADMA_BOUNDARY;
449 	}
450 #endif
451 #ifdef	VM_FREELIST_LOWMEM
452 	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
453 		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
454 		paddr = VM_LOWMEM_BOUNDARY;
455 	}
456 #endif
457 #ifdef	VM_FREELIST_DMA32
458 	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
459 		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
460 		paddr = VM_DMA32_BOUNDARY;
461 	}
462 #endif
463 	vm_phys_create_seg(paddr, end);
464 }
465 
466 /*
467  * Initialize the physical memory allocator.
468  *
469  * Requires that vm_page_array is initialized!
470  */
471 void
472 vm_phys_init(void)
473 {
474 	struct vm_freelist *fl;
475 	struct vm_phys_seg *seg;
476 	u_long npages;
477 	int dom, flind, freelist, oind, pind, segind;
478 
479 	/*
480 	 * Compute the number of free lists, and generate the mapping from the
481 	 * manifest constants VM_FREELIST_* to the free list indices.
482 	 *
483 	 * Initially, the entries of vm_freelist_to_flind[] are set to either
484 	 * 0 or 1 to indicate which free lists should be created.
485 	 */
486 	npages = 0;
487 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
488 		seg = &vm_phys_segs[segind];
489 #ifdef	VM_FREELIST_ISADMA
490 		if (seg->end <= VM_ISADMA_BOUNDARY)
491 			vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
492 		else
493 #endif
494 #ifdef	VM_FREELIST_LOWMEM
495 		if (seg->end <= VM_LOWMEM_BOUNDARY)
496 			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
497 		else
498 #endif
499 #ifdef	VM_FREELIST_DMA32
500 		if (
501 #ifdef	VM_DMA32_NPAGES_THRESHOLD
502 		    /*
503 		     * Create the DMA32 free list only if the amount of
504 		     * physical memory above physical address 4G exceeds the
505 		     * given threshold.
506 		     */
507 		    npages > VM_DMA32_NPAGES_THRESHOLD &&
508 #endif
509 		    seg->end <= VM_DMA32_BOUNDARY)
510 			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
511 		else
512 #endif
513 		{
514 			npages += atop(seg->end - seg->start);
515 			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
516 		}
517 	}
518 	/* Change each entry into a running total of the free lists. */
519 	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
520 		vm_freelist_to_flind[freelist] +=
521 		    vm_freelist_to_flind[freelist - 1];
522 	}
523 	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
524 	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
525 	/* Change each entry into a free list index. */
526 	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
527 		vm_freelist_to_flind[freelist]--;
528 
529 	/*
530 	 * Initialize the first_page and free_queues fields of each physical
531 	 * memory segment.
532 	 */
533 #ifdef VM_PHYSSEG_SPARSE
534 	npages = 0;
535 #endif
536 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
537 		seg = &vm_phys_segs[segind];
538 #ifdef VM_PHYSSEG_SPARSE
539 		seg->first_page = &vm_page_array[npages];
540 		npages += atop(seg->end - seg->start);
541 #else
542 		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
543 #endif
544 #ifdef	VM_FREELIST_ISADMA
545 		if (seg->end <= VM_ISADMA_BOUNDARY) {
546 			flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
547 			KASSERT(flind >= 0,
548 			    ("vm_phys_init: ISADMA flind < 0"));
549 		} else
550 #endif
551 #ifdef	VM_FREELIST_LOWMEM
552 		if (seg->end <= VM_LOWMEM_BOUNDARY) {
553 			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
554 			KASSERT(flind >= 0,
555 			    ("vm_phys_init: LOWMEM flind < 0"));
556 		} else
557 #endif
558 #ifdef	VM_FREELIST_DMA32
559 		if (seg->end <= VM_DMA32_BOUNDARY) {
560 			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
561 			KASSERT(flind >= 0,
562 			    ("vm_phys_init: DMA32 flind < 0"));
563 		} else
564 #endif
565 		{
566 			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
567 			KASSERT(flind >= 0,
568 			    ("vm_phys_init: DEFAULT flind < 0"));
569 		}
570 		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
571 	}
572 
573 	/*
574 	 * Initialize the free queues.
575 	 */
576 	for (dom = 0; dom < vm_ndomains; dom++) {
577 		for (flind = 0; flind < vm_nfreelists; flind++) {
578 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
579 				fl = vm_phys_free_queues[dom][flind][pind];
580 				for (oind = 0; oind < VM_NFREEORDER; oind++)
581 					TAILQ_INIT(&fl[oind].pl);
582 			}
583 		}
584 	}
585 
586 	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
587 }
588 
589 /*
590  * Split a contiguous, power of two-sized set of physical pages.
591  */
592 static __inline void
593 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
594 {
595 	vm_page_t m_buddy;
596 
597 	while (oind > order) {
598 		oind--;
599 		m_buddy = &m[1 << oind];
600 		KASSERT(m_buddy->order == VM_NFREEORDER,
601 		    ("vm_phys_split_pages: page %p has unexpected order %d",
602 		    m_buddy, m_buddy->order));
603 		vm_freelist_add(fl, m_buddy, oind, 0);
604         }
605 }
606 
607 /*
608  * Tries to allocate the specified number of pages from the specified pool
609  * within the specified domain.  Returns the actual number of allocated pages
610  * and a pointer to each page through the array ma[].
611  *
612  * The returned pages may not be physically contiguous.  However, in contrast
613  * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
614  * calling this function once to allocate the desired number of pages will
615  * avoid wasted time in vm_phys_split_pages().
616  *
617  * The free page queues for the specified domain must be locked.
618  */
619 int
620 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
621 {
622 	struct vm_freelist *alt, *fl;
623 	vm_page_t m;
624 	int avail, end, flind, freelist, i, need, oind, pind;
625 
626 	KASSERT(domain >= 0 && domain < vm_ndomains,
627 	    ("vm_phys_alloc_npages: domain %d is out of range", domain));
628 	KASSERT(pool < VM_NFREEPOOL,
629 	    ("vm_phys_alloc_npages: pool %d is out of range", pool));
630 	KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
631 	    ("vm_phys_alloc_npages: npages %d is out of range", npages));
632 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
633 	i = 0;
634 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
635 		flind = vm_freelist_to_flind[freelist];
636 		if (flind < 0)
637 			continue;
638 		fl = vm_phys_free_queues[domain][flind][pool];
639 		for (oind = 0; oind < VM_NFREEORDER; oind++) {
640 			while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
641 				vm_freelist_rem(fl, m, oind);
642 				avail = 1 << oind;
643 				need = imin(npages - i, avail);
644 				for (end = i + need; i < end;)
645 					ma[i++] = m++;
646 				if (need < avail) {
647 					vm_phys_free_contig(m, avail - need);
648 					return (npages);
649 				} else if (i == npages)
650 					return (npages);
651 			}
652 		}
653 		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
654 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
655 				alt = vm_phys_free_queues[domain][flind][pind];
656 				while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
657 				    NULL) {
658 					vm_freelist_rem(alt, m, oind);
659 					vm_phys_set_pool(pool, m, oind);
660 					avail = 1 << oind;
661 					need = imin(npages - i, avail);
662 					for (end = i + need; i < end;)
663 						ma[i++] = m++;
664 					if (need < avail) {
665 						vm_phys_free_contig(m, avail -
666 						    need);
667 						return (npages);
668 					} else if (i == npages)
669 						return (npages);
670 				}
671 			}
672 		}
673 	}
674 	return (i);
675 }
676 
677 /*
678  * Allocate a contiguous, power of two-sized set of physical pages
679  * from the free lists.
680  *
681  * The free page queues must be locked.
682  */
683 vm_page_t
684 vm_phys_alloc_pages(int domain, int pool, int order)
685 {
686 	vm_page_t m;
687 	int freelist;
688 
689 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
690 		m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
691 		if (m != NULL)
692 			return (m);
693 	}
694 	return (NULL);
695 }
696 
697 /*
698  * Allocate a contiguous, power of two-sized set of physical pages from the
699  * specified free list.  The free list must be specified using one of the
700  * manifest constants VM_FREELIST_*.
701  *
702  * The free page queues must be locked.
703  */
704 vm_page_t
705 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
706 {
707 	struct vm_freelist *alt, *fl;
708 	vm_page_t m;
709 	int oind, pind, flind;
710 
711 	KASSERT(domain >= 0 && domain < vm_ndomains,
712 	    ("vm_phys_alloc_freelist_pages: domain %d is out of range",
713 	    domain));
714 	KASSERT(freelist < VM_NFREELIST,
715 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
716 	    freelist));
717 	KASSERT(pool < VM_NFREEPOOL,
718 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
719 	KASSERT(order < VM_NFREEORDER,
720 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
721 
722 	flind = vm_freelist_to_flind[freelist];
723 	/* Check if freelist is present */
724 	if (flind < 0)
725 		return (NULL);
726 
727 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
728 	fl = &vm_phys_free_queues[domain][flind][pool][0];
729 	for (oind = order; oind < VM_NFREEORDER; oind++) {
730 		m = TAILQ_FIRST(&fl[oind].pl);
731 		if (m != NULL) {
732 			vm_freelist_rem(fl, m, oind);
733 			vm_phys_split_pages(m, oind, fl, order);
734 			return (m);
735 		}
736 	}
737 
738 	/*
739 	 * The given pool was empty.  Find the largest
740 	 * contiguous, power-of-two-sized set of pages in any
741 	 * pool.  Transfer these pages to the given pool, and
742 	 * use them to satisfy the allocation.
743 	 */
744 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
745 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
746 			alt = &vm_phys_free_queues[domain][flind][pind][0];
747 			m = TAILQ_FIRST(&alt[oind].pl);
748 			if (m != NULL) {
749 				vm_freelist_rem(alt, m, oind);
750 				vm_phys_set_pool(pool, m, oind);
751 				vm_phys_split_pages(m, oind, fl, order);
752 				return (m);
753 			}
754 		}
755 	}
756 	return (NULL);
757 }
758 
759 /*
760  * Find the vm_page corresponding to the given physical address.
761  */
762 vm_page_t
763 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
764 {
765 	struct vm_phys_seg *seg;
766 	int segind;
767 
768 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
769 		seg = &vm_phys_segs[segind];
770 		if (pa >= seg->start && pa < seg->end)
771 			return (&seg->first_page[atop(pa - seg->start)]);
772 	}
773 	return (NULL);
774 }
775 
776 vm_page_t
777 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
778 {
779 	struct vm_phys_fictitious_seg tmp, *seg;
780 	vm_page_t m;
781 
782 	m = NULL;
783 	tmp.start = pa;
784 	tmp.end = 0;
785 
786 	rw_rlock(&vm_phys_fictitious_reg_lock);
787 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
788 	rw_runlock(&vm_phys_fictitious_reg_lock);
789 	if (seg == NULL)
790 		return (NULL);
791 
792 	m = &seg->first_page[atop(pa - seg->start)];
793 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
794 
795 	return (m);
796 }
797 
798 static inline void
799 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
800     long page_count, vm_memattr_t memattr)
801 {
802 	long i;
803 
804 	bzero(range, page_count * sizeof(*range));
805 	for (i = 0; i < page_count; i++) {
806 		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
807 		range[i].oflags &= ~VPO_UNMANAGED;
808 		range[i].busy_lock = VPB_UNBUSIED;
809 	}
810 }
811 
812 int
813 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
814     vm_memattr_t memattr)
815 {
816 	struct vm_phys_fictitious_seg *seg;
817 	vm_page_t fp;
818 	long page_count;
819 #ifdef VM_PHYSSEG_DENSE
820 	long pi, pe;
821 	long dpage_count;
822 #endif
823 
824 	KASSERT(start < end,
825 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
826 	    (uintmax_t)start, (uintmax_t)end));
827 
828 	page_count = (end - start) / PAGE_SIZE;
829 
830 #ifdef VM_PHYSSEG_DENSE
831 	pi = atop(start);
832 	pe = atop(end);
833 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
834 		fp = &vm_page_array[pi - first_page];
835 		if ((pe - first_page) > vm_page_array_size) {
836 			/*
837 			 * We have a segment that starts inside
838 			 * of vm_page_array, but ends outside of it.
839 			 *
840 			 * Use vm_page_array pages for those that are
841 			 * inside of the vm_page_array range, and
842 			 * allocate the remaining ones.
843 			 */
844 			dpage_count = vm_page_array_size - (pi - first_page);
845 			vm_phys_fictitious_init_range(fp, start, dpage_count,
846 			    memattr);
847 			page_count -= dpage_count;
848 			start += ptoa(dpage_count);
849 			goto alloc;
850 		}
851 		/*
852 		 * We can allocate the full range from vm_page_array,
853 		 * so there's no need to register the range in the tree.
854 		 */
855 		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
856 		return (0);
857 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
858 		/*
859 		 * We have a segment that ends inside of vm_page_array,
860 		 * but starts outside of it.
861 		 */
862 		fp = &vm_page_array[0];
863 		dpage_count = pe - first_page;
864 		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
865 		    memattr);
866 		end -= ptoa(dpage_count);
867 		page_count -= dpage_count;
868 		goto alloc;
869 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
870 		/*
871 		 * Trying to register a fictitious range that expands before
872 		 * and after vm_page_array.
873 		 */
874 		return (EINVAL);
875 	} else {
876 alloc:
877 #endif
878 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
879 		    M_WAITOK);
880 #ifdef VM_PHYSSEG_DENSE
881 	}
882 #endif
883 	vm_phys_fictitious_init_range(fp, start, page_count, memattr);
884 
885 	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
886 	seg->start = start;
887 	seg->end = end;
888 	seg->first_page = fp;
889 
890 	rw_wlock(&vm_phys_fictitious_reg_lock);
891 	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
892 	rw_wunlock(&vm_phys_fictitious_reg_lock);
893 
894 	return (0);
895 }
896 
897 void
898 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
899 {
900 	struct vm_phys_fictitious_seg *seg, tmp;
901 #ifdef VM_PHYSSEG_DENSE
902 	long pi, pe;
903 #endif
904 
905 	KASSERT(start < end,
906 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
907 	    (uintmax_t)start, (uintmax_t)end));
908 
909 #ifdef VM_PHYSSEG_DENSE
910 	pi = atop(start);
911 	pe = atop(end);
912 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
913 		if ((pe - first_page) <= vm_page_array_size) {
914 			/*
915 			 * This segment was allocated using vm_page_array
916 			 * only, there's nothing to do since those pages
917 			 * were never added to the tree.
918 			 */
919 			return;
920 		}
921 		/*
922 		 * We have a segment that starts inside
923 		 * of vm_page_array, but ends outside of it.
924 		 *
925 		 * Calculate how many pages were added to the
926 		 * tree and free them.
927 		 */
928 		start = ptoa(first_page + vm_page_array_size);
929 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
930 		/*
931 		 * We have a segment that ends inside of vm_page_array,
932 		 * but starts outside of it.
933 		 */
934 		end = ptoa(first_page);
935 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
936 		/* Since it's not possible to register such a range, panic. */
937 		panic(
938 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
939 		    (uintmax_t)start, (uintmax_t)end);
940 	}
941 #endif
942 	tmp.start = start;
943 	tmp.end = 0;
944 
945 	rw_wlock(&vm_phys_fictitious_reg_lock);
946 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
947 	if (seg->start != start || seg->end != end) {
948 		rw_wunlock(&vm_phys_fictitious_reg_lock);
949 		panic(
950 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
951 		    (uintmax_t)start, (uintmax_t)end);
952 	}
953 	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
954 	rw_wunlock(&vm_phys_fictitious_reg_lock);
955 	free(seg->first_page, M_FICT_PAGES);
956 	free(seg, M_FICT_PAGES);
957 }
958 
959 /*
960  * Free a contiguous, power of two-sized set of physical pages.
961  *
962  * The free page queues must be locked.
963  */
964 void
965 vm_phys_free_pages(vm_page_t m, int order)
966 {
967 	struct vm_freelist *fl;
968 	struct vm_phys_seg *seg;
969 	vm_paddr_t pa;
970 	vm_page_t m_buddy;
971 
972 	KASSERT(m->order == VM_NFREEORDER,
973 	    ("vm_phys_free_pages: page %p has unexpected order %d",
974 	    m, m->order));
975 	KASSERT(m->pool < VM_NFREEPOOL,
976 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
977 	    m, m->pool));
978 	KASSERT(order < VM_NFREEORDER,
979 	    ("vm_phys_free_pages: order %d is out of range", order));
980 	seg = &vm_phys_segs[m->segind];
981 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
982 	if (order < VM_NFREEORDER - 1) {
983 		pa = VM_PAGE_TO_PHYS(m);
984 		do {
985 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
986 			if (pa < seg->start || pa >= seg->end)
987 				break;
988 			m_buddy = &seg->first_page[atop(pa - seg->start)];
989 			if (m_buddy->order != order)
990 				break;
991 			fl = (*seg->free_queues)[m_buddy->pool];
992 			vm_freelist_rem(fl, m_buddy, order);
993 			if (m_buddy->pool != m->pool)
994 				vm_phys_set_pool(m->pool, m_buddy, order);
995 			order++;
996 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
997 			m = &seg->first_page[atop(pa - seg->start)];
998 		} while (order < VM_NFREEORDER - 1);
999 	}
1000 	fl = (*seg->free_queues)[m->pool];
1001 	vm_freelist_add(fl, m, order, 1);
1002 }
1003 
1004 /*
1005  * Free a contiguous, arbitrarily sized set of physical pages.
1006  *
1007  * The free page queues must be locked.
1008  */
1009 void
1010 vm_phys_free_contig(vm_page_t m, u_long npages)
1011 {
1012 	u_int n;
1013 	int order;
1014 
1015 	/*
1016 	 * Avoid unnecessary coalescing by freeing the pages in the largest
1017 	 * possible power-of-two-sized subsets.
1018 	 */
1019 	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1020 	for (;; npages -= n) {
1021 		/*
1022 		 * Unsigned "min" is used here so that "order" is assigned
1023 		 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1024 		 * or the low-order bits of its physical address are zero
1025 		 * because the size of a physical address exceeds the size of
1026 		 * a long.
1027 		 */
1028 		order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1029 		    VM_NFREEORDER - 1);
1030 		n = 1 << order;
1031 		if (npages < n)
1032 			break;
1033 		vm_phys_free_pages(m, order);
1034 		m += n;
1035 	}
1036 	/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
1037 	for (; npages > 0; npages -= n) {
1038 		order = flsl(npages) - 1;
1039 		n = 1 << order;
1040 		vm_phys_free_pages(m, order);
1041 		m += n;
1042 	}
1043 }
1044 
1045 /*
1046  * Scan physical memory between the specified addresses "low" and "high" for a
1047  * run of contiguous physical pages that satisfy the specified conditions, and
1048  * return the lowest page in the run.  The specified "alignment" determines
1049  * the alignment of the lowest physical page in the run.  If the specified
1050  * "boundary" is non-zero, then the run of physical pages cannot span a
1051  * physical address that is a multiple of "boundary".
1052  *
1053  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
1054  * be a power of two.
1055  */
1056 vm_page_t
1057 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1058     u_long alignment, vm_paddr_t boundary, int options)
1059 {
1060 	vm_paddr_t pa_end;
1061 	vm_page_t m_end, m_run, m_start;
1062 	struct vm_phys_seg *seg;
1063 	int segind;
1064 
1065 	KASSERT(npages > 0, ("npages is 0"));
1066 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1067 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1068 	if (low >= high)
1069 		return (NULL);
1070 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1071 		seg = &vm_phys_segs[segind];
1072 		if (seg->domain != domain)
1073 			continue;
1074 		if (seg->start >= high)
1075 			break;
1076 		if (low >= seg->end)
1077 			continue;
1078 		if (low <= seg->start)
1079 			m_start = seg->first_page;
1080 		else
1081 			m_start = &seg->first_page[atop(low - seg->start)];
1082 		if (high < seg->end)
1083 			pa_end = high;
1084 		else
1085 			pa_end = seg->end;
1086 		if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1087 			continue;
1088 		m_end = &seg->first_page[atop(pa_end - seg->start)];
1089 		m_run = vm_page_scan_contig(npages, m_start, m_end,
1090 		    alignment, boundary, options);
1091 		if (m_run != NULL)
1092 			return (m_run);
1093 	}
1094 	return (NULL);
1095 }
1096 
1097 /*
1098  * Set the pool for a contiguous, power of two-sized set of physical pages.
1099  */
1100 void
1101 vm_phys_set_pool(int pool, vm_page_t m, int order)
1102 {
1103 	vm_page_t m_tmp;
1104 
1105 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1106 		m_tmp->pool = pool;
1107 }
1108 
1109 /*
1110  * Search for the given physical page "m" in the free lists.  If the search
1111  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1112  * FALSE, indicating that "m" is not in the free lists.
1113  *
1114  * The free page queues must be locked.
1115  */
1116 boolean_t
1117 vm_phys_unfree_page(vm_page_t m)
1118 {
1119 	struct vm_freelist *fl;
1120 	struct vm_phys_seg *seg;
1121 	vm_paddr_t pa, pa_half;
1122 	vm_page_t m_set, m_tmp;
1123 	int order;
1124 
1125 	/*
1126 	 * First, find the contiguous, power of two-sized set of free
1127 	 * physical pages containing the given physical page "m" and
1128 	 * assign it to "m_set".
1129 	 */
1130 	seg = &vm_phys_segs[m->segind];
1131 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1132 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1133 	    order < VM_NFREEORDER - 1; ) {
1134 		order++;
1135 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1136 		if (pa >= seg->start)
1137 			m_set = &seg->first_page[atop(pa - seg->start)];
1138 		else
1139 			return (FALSE);
1140 	}
1141 	if (m_set->order < order)
1142 		return (FALSE);
1143 	if (m_set->order == VM_NFREEORDER)
1144 		return (FALSE);
1145 	KASSERT(m_set->order < VM_NFREEORDER,
1146 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
1147 	    m_set, m_set->order));
1148 
1149 	/*
1150 	 * Next, remove "m_set" from the free lists.  Finally, extract
1151 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
1152 	 * is larger than a page, shrink "m_set" by returning the half
1153 	 * of "m_set" that does not contain "m" to the free lists.
1154 	 */
1155 	fl = (*seg->free_queues)[m_set->pool];
1156 	order = m_set->order;
1157 	vm_freelist_rem(fl, m_set, order);
1158 	while (order > 0) {
1159 		order--;
1160 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1161 		if (m->phys_addr < pa_half)
1162 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1163 		else {
1164 			m_tmp = m_set;
1165 			m_set = &seg->first_page[atop(pa_half - seg->start)];
1166 		}
1167 		vm_freelist_add(fl, m_tmp, order, 0);
1168 	}
1169 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1170 	return (TRUE);
1171 }
1172 
1173 /*
1174  * Allocate a contiguous set of physical pages of the given size
1175  * "npages" from the free lists.  All of the physical pages must be at
1176  * or above the given physical address "low" and below the given
1177  * physical address "high".  The given value "alignment" determines the
1178  * alignment of the first physical page in the set.  If the given value
1179  * "boundary" is non-zero, then the set of physical pages cannot cross
1180  * any physical address boundary that is a multiple of that value.  Both
1181  * "alignment" and "boundary" must be a power of two.
1182  */
1183 vm_page_t
1184 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1185     u_long alignment, vm_paddr_t boundary)
1186 {
1187 	vm_paddr_t pa_end, pa_start;
1188 	vm_page_t m_run;
1189 	struct vm_phys_seg *seg;
1190 	int segind;
1191 
1192 	KASSERT(npages > 0, ("npages is 0"));
1193 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1194 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1195 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
1196 	if (low >= high)
1197 		return (NULL);
1198 	m_run = NULL;
1199 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1200 		seg = &vm_phys_segs[segind];
1201 		if (seg->start >= high || seg->domain != domain)
1202 			continue;
1203 		if (low >= seg->end)
1204 			break;
1205 		if (low <= seg->start)
1206 			pa_start = seg->start;
1207 		else
1208 			pa_start = low;
1209 		if (high < seg->end)
1210 			pa_end = high;
1211 		else
1212 			pa_end = seg->end;
1213 		if (pa_end - pa_start < ptoa(npages))
1214 			continue;
1215 		m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1216 		    alignment, boundary);
1217 		if (m_run != NULL)
1218 			break;
1219 	}
1220 	return (m_run);
1221 }
1222 
1223 /*
1224  * Allocate a run of contiguous physical pages from the free list for the
1225  * specified segment.
1226  */
1227 static vm_page_t
1228 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1229     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1230 {
1231 	struct vm_freelist *fl;
1232 	vm_paddr_t pa, pa_end, size;
1233 	vm_page_t m, m_ret;
1234 	u_long npages_end;
1235 	int oind, order, pind;
1236 
1237 	KASSERT(npages > 0, ("npages is 0"));
1238 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1239 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1240 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1241 	/* Compute the queue that is the best fit for npages. */
1242 	order = flsl(npages - 1);
1243 	/* Search for a run satisfying the specified conditions. */
1244 	size = npages << PAGE_SHIFT;
1245 	for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1246 	    oind++) {
1247 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1248 			fl = (*seg->free_queues)[pind];
1249 			TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1250 				/*
1251 				 * Is the size of this allocation request
1252 				 * larger than the largest block size?
1253 				 */
1254 				if (order >= VM_NFREEORDER) {
1255 					/*
1256 					 * Determine if a sufficient number of
1257 					 * subsequent blocks to satisfy the
1258 					 * allocation request are free.
1259 					 */
1260 					pa = VM_PAGE_TO_PHYS(m_ret);
1261 					pa_end = pa + size;
1262 					if (pa_end < pa)
1263 						continue;
1264 					for (;;) {
1265 						pa += 1 << (PAGE_SHIFT +
1266 						    VM_NFREEORDER - 1);
1267 						if (pa >= pa_end ||
1268 						    pa < seg->start ||
1269 						    pa >= seg->end)
1270 							break;
1271 						m = &seg->first_page[atop(pa -
1272 						    seg->start)];
1273 						if (m->order != VM_NFREEORDER -
1274 						    1)
1275 							break;
1276 					}
1277 					/* If not, go to the next block. */
1278 					if (pa < pa_end)
1279 						continue;
1280 				}
1281 
1282 				/*
1283 				 * Determine if the blocks are within the
1284 				 * given range, satisfy the given alignment,
1285 				 * and do not cross the given boundary.
1286 				 */
1287 				pa = VM_PAGE_TO_PHYS(m_ret);
1288 				pa_end = pa + size;
1289 				if (pa >= low && pa_end <= high &&
1290 				    (pa & (alignment - 1)) == 0 &&
1291 				    rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1292 					goto done;
1293 			}
1294 		}
1295 	}
1296 	return (NULL);
1297 done:
1298 	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1299 		fl = (*seg->free_queues)[m->pool];
1300 		vm_freelist_rem(fl, m, oind);
1301 		if (m->pool != VM_FREEPOOL_DEFAULT)
1302 			vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1303 	}
1304 	/* Return excess pages to the free lists. */
1305 	npages_end = roundup2(npages, 1 << oind);
1306 	if (npages < npages_end)
1307 		vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1308 	return (m_ret);
1309 }
1310 
1311 #ifdef DDB
1312 /*
1313  * Show the number of physical pages in each of the free lists.
1314  */
1315 DB_SHOW_COMMAND(freepages, db_show_freepages)
1316 {
1317 	struct vm_freelist *fl;
1318 	int flind, oind, pind, dom;
1319 
1320 	for (dom = 0; dom < vm_ndomains; dom++) {
1321 		db_printf("DOMAIN: %d\n", dom);
1322 		for (flind = 0; flind < vm_nfreelists; flind++) {
1323 			db_printf("FREE LIST %d:\n"
1324 			    "\n  ORDER (SIZE)  |  NUMBER"
1325 			    "\n              ", flind);
1326 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1327 				db_printf("  |  POOL %d", pind);
1328 			db_printf("\n--            ");
1329 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1330 				db_printf("-- --      ");
1331 			db_printf("--\n");
1332 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1333 				db_printf("  %2.2d (%6.6dK)", oind,
1334 				    1 << (PAGE_SHIFT - 10 + oind));
1335 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1336 				fl = vm_phys_free_queues[dom][flind][pind];
1337 					db_printf("  |  %6.6d", fl[oind].lcnt);
1338 				}
1339 				db_printf("\n");
1340 			}
1341 			db_printf("\n");
1342 		}
1343 		db_printf("\n");
1344 	}
1345 }
1346 #endif
1347