xref: /freebsd/sys/vm/vm_phys.c (revision 2a9021898c4ee2154787da862c238cfeccd655df)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/domainset.h>
48 #include <sys/lock.h>
49 #include <sys/kernel.h>
50 #include <sys/malloc.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/queue.h>
54 #include <sys/rwlock.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/tree.h>
58 #include <sys/vmmeter.h>
59 
60 #include <ddb/ddb.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_extern.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_phys.h>
69 #include <vm/vm_pagequeue.h>
70 
71 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
72     "Too many physsegs.");
73 _Static_assert(sizeof(long long) >= sizeof(vm_paddr_t),
74     "vm_paddr_t too big for ffsll, flsll.");
75 
76 #ifdef NUMA
77 struct mem_affinity __read_mostly *mem_affinity;
78 int __read_mostly *mem_locality;
79 #endif
80 
81 int __read_mostly vm_ndomains = 1;
82 domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);
83 
84 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
85 int __read_mostly vm_phys_nsegs;
86 static struct vm_phys_seg vm_phys_early_segs[8];
87 static int vm_phys_early_nsegs;
88 
89 struct vm_phys_fictitious_seg;
90 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
91     struct vm_phys_fictitious_seg *);
92 
93 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
94     RB_INITIALIZER(&vm_phys_fictitious_tree);
95 
96 struct vm_phys_fictitious_seg {
97 	RB_ENTRY(vm_phys_fictitious_seg) node;
98 	/* Memory region data */
99 	vm_paddr_t	start;
100 	vm_paddr_t	end;
101 	vm_page_t	first_page;
102 };
103 
104 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
105     vm_phys_fictitious_cmp);
106 
107 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
108 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
109 
110 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
111     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
112     [VM_NFREEORDER_MAX];
113 
114 static int __read_mostly vm_nfreelists;
115 
116 /*
117  * These "avail lists" are globals used to communicate boot-time physical
118  * memory layout to other parts of the kernel.  Each physically contiguous
119  * region of memory is defined by a start address at an even index and an
120  * end address at the following odd index.  Each list is terminated by a
121  * pair of zero entries.
122  *
123  * dump_avail tells the dump code what regions to include in a crash dump, and
124  * phys_avail is all of the remaining physical memory that is available for
125  * the vm system.
126  *
127  * Initially dump_avail and phys_avail are identical.  Boot time memory
128  * allocations remove extents from phys_avail that may still be included
129  * in dumps.
130  */
131 vm_paddr_t phys_avail[PHYS_AVAIL_COUNT];
132 vm_paddr_t dump_avail[PHYS_AVAIL_COUNT];
133 
134 /*
135  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
136  */
137 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
138 
139 CTASSERT(VM_FREELIST_DEFAULT == 0);
140 
141 #ifdef VM_FREELIST_DMA32
142 #define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
143 #endif
144 
145 /*
146  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
147  * the ordering of the free list boundaries.
148  */
149 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
150 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
151 #endif
152 
153 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
154 SYSCTL_OID(_vm, OID_AUTO, phys_free,
155     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
156     sysctl_vm_phys_free, "A",
157     "Phys Free Info");
158 
159 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
160 SYSCTL_OID(_vm, OID_AUTO, phys_segs,
161     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
162     sysctl_vm_phys_segs, "A",
163     "Phys Seg Info");
164 
165 #ifdef NUMA
166 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
167 SYSCTL_OID(_vm, OID_AUTO, phys_locality,
168     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
169     sysctl_vm_phys_locality, "A",
170     "Phys Locality Info");
171 #endif
172 
173 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
174     &vm_ndomains, 0, "Number of physical memory domains available.");
175 
176 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
177 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
178 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
179     int order, int tail);
180 
181 /*
182  * Red-black tree helpers for vm fictitious range management.
183  */
184 static inline int
185 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
186     struct vm_phys_fictitious_seg *range)
187 {
188 
189 	KASSERT(range->start != 0 && range->end != 0,
190 	    ("Invalid range passed on search for vm_fictitious page"));
191 	if (p->start >= range->end)
192 		return (1);
193 	if (p->start < range->start)
194 		return (-1);
195 
196 	return (0);
197 }
198 
199 static int
200 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
201     struct vm_phys_fictitious_seg *p2)
202 {
203 
204 	/* Check if this is a search for a page */
205 	if (p1->end == 0)
206 		return (vm_phys_fictitious_in_range(p1, p2));
207 
208 	KASSERT(p2->end != 0,
209     ("Invalid range passed as second parameter to vm fictitious comparison"));
210 
211 	/* Searching to add a new range */
212 	if (p1->end <= p2->start)
213 		return (-1);
214 	if (p1->start >= p2->end)
215 		return (1);
216 
217 	panic("Trying to add overlapping vm fictitious ranges:\n"
218 	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
219 	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
220 }
221 
222 int
223 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
224 {
225 #ifdef NUMA
226 	domainset_t mask;
227 	int i;
228 
229 	if (vm_ndomains == 1 || mem_affinity == NULL)
230 		return (0);
231 
232 	DOMAINSET_ZERO(&mask);
233 	/*
234 	 * Check for any memory that overlaps low, high.
235 	 */
236 	for (i = 0; mem_affinity[i].end != 0; i++)
237 		if (mem_affinity[i].start <= high &&
238 		    mem_affinity[i].end >= low)
239 			DOMAINSET_SET(mem_affinity[i].domain, &mask);
240 	if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
241 		return (prefer);
242 	if (DOMAINSET_EMPTY(&mask))
243 		panic("vm_phys_domain_match:  Impossible constraint");
244 	return (DOMAINSET_FFS(&mask) - 1);
245 #else
246 	return (0);
247 #endif
248 }
249 
250 /*
251  * Outputs the state of the physical memory allocator, specifically,
252  * the amount of physical memory in each free list.
253  */
254 static int
255 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
256 {
257 	struct sbuf sbuf;
258 	struct vm_freelist *fl;
259 	int dom, error, flind, oind, pind;
260 
261 	error = sysctl_wire_old_buffer(req, 0);
262 	if (error != 0)
263 		return (error);
264 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
265 	for (dom = 0; dom < vm_ndomains; dom++) {
266 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
267 		for (flind = 0; flind < vm_nfreelists; flind++) {
268 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
269 			    "\n  ORDER (SIZE)  |  NUMBER"
270 			    "\n              ", flind);
271 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
272 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
273 			sbuf_printf(&sbuf, "\n--            ");
274 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
275 				sbuf_printf(&sbuf, "-- --      ");
276 			sbuf_printf(&sbuf, "--\n");
277 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
278 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
279 				    1 << (PAGE_SHIFT - 10 + oind));
280 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
281 				fl = vm_phys_free_queues[dom][flind][pind];
282 					sbuf_printf(&sbuf, "  |  %6d",
283 					    fl[oind].lcnt);
284 				}
285 				sbuf_printf(&sbuf, "\n");
286 			}
287 		}
288 	}
289 	error = sbuf_finish(&sbuf);
290 	sbuf_delete(&sbuf);
291 	return (error);
292 }
293 
294 /*
295  * Outputs the set of physical memory segments.
296  */
297 static int
298 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
299 {
300 	struct sbuf sbuf;
301 	struct vm_phys_seg *seg;
302 	int error, segind;
303 
304 	error = sysctl_wire_old_buffer(req, 0);
305 	if (error != 0)
306 		return (error);
307 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
308 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
309 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
310 		seg = &vm_phys_segs[segind];
311 		sbuf_printf(&sbuf, "start:     %#jx\n",
312 		    (uintmax_t)seg->start);
313 		sbuf_printf(&sbuf, "end:       %#jx\n",
314 		    (uintmax_t)seg->end);
315 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
316 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
317 	}
318 	error = sbuf_finish(&sbuf);
319 	sbuf_delete(&sbuf);
320 	return (error);
321 }
322 
323 /*
324  * Return affinity, or -1 if there's no affinity information.
325  */
326 int
327 vm_phys_mem_affinity(int f, int t)
328 {
329 
330 #ifdef NUMA
331 	if (mem_locality == NULL)
332 		return (-1);
333 	if (f >= vm_ndomains || t >= vm_ndomains)
334 		return (-1);
335 	return (mem_locality[f * vm_ndomains + t]);
336 #else
337 	return (-1);
338 #endif
339 }
340 
341 #ifdef NUMA
342 /*
343  * Outputs the VM locality table.
344  */
345 static int
346 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
347 {
348 	struct sbuf sbuf;
349 	int error, i, j;
350 
351 	error = sysctl_wire_old_buffer(req, 0);
352 	if (error != 0)
353 		return (error);
354 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
355 
356 	sbuf_printf(&sbuf, "\n");
357 
358 	for (i = 0; i < vm_ndomains; i++) {
359 		sbuf_printf(&sbuf, "%d: ", i);
360 		for (j = 0; j < vm_ndomains; j++) {
361 			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
362 		}
363 		sbuf_printf(&sbuf, "\n");
364 	}
365 	error = sbuf_finish(&sbuf);
366 	sbuf_delete(&sbuf);
367 	return (error);
368 }
369 #endif
370 
371 static void
372 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
373 {
374 
375 	m->order = order;
376 	if (tail)
377 		TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
378 	else
379 		TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
380 	fl[order].lcnt++;
381 }
382 
383 static void
384 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
385 {
386 
387 	TAILQ_REMOVE(&fl[order].pl, m, listq);
388 	fl[order].lcnt--;
389 	m->order = VM_NFREEORDER;
390 }
391 
392 /*
393  * Create a physical memory segment.
394  */
395 static void
396 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
397 {
398 	struct vm_phys_seg *seg;
399 
400 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
401 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
402 	KASSERT(domain >= 0 && domain < vm_ndomains,
403 	    ("vm_phys_create_seg: invalid domain provided"));
404 	seg = &vm_phys_segs[vm_phys_nsegs++];
405 	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
406 		*seg = *(seg - 1);
407 		seg--;
408 	}
409 	seg->start = start;
410 	seg->end = end;
411 	seg->domain = domain;
412 }
413 
414 static void
415 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
416 {
417 #ifdef NUMA
418 	int i;
419 
420 	if (mem_affinity == NULL) {
421 		_vm_phys_create_seg(start, end, 0);
422 		return;
423 	}
424 
425 	for (i = 0;; i++) {
426 		if (mem_affinity[i].end == 0)
427 			panic("Reached end of affinity info");
428 		if (mem_affinity[i].end <= start)
429 			continue;
430 		if (mem_affinity[i].start > start)
431 			panic("No affinity info for start %jx",
432 			    (uintmax_t)start);
433 		if (mem_affinity[i].end >= end) {
434 			_vm_phys_create_seg(start, end,
435 			    mem_affinity[i].domain);
436 			break;
437 		}
438 		_vm_phys_create_seg(start, mem_affinity[i].end,
439 		    mem_affinity[i].domain);
440 		start = mem_affinity[i].end;
441 	}
442 #else
443 	_vm_phys_create_seg(start, end, 0);
444 #endif
445 }
446 
447 /*
448  * Add a physical memory segment.
449  */
450 void
451 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
452 {
453 	vm_paddr_t paddr;
454 
455 	KASSERT((start & PAGE_MASK) == 0,
456 	    ("vm_phys_define_seg: start is not page aligned"));
457 	KASSERT((end & PAGE_MASK) == 0,
458 	    ("vm_phys_define_seg: end is not page aligned"));
459 
460 	/*
461 	 * Split the physical memory segment if it spans two or more free
462 	 * list boundaries.
463 	 */
464 	paddr = start;
465 #ifdef	VM_FREELIST_LOWMEM
466 	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
467 		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
468 		paddr = VM_LOWMEM_BOUNDARY;
469 	}
470 #endif
471 #ifdef	VM_FREELIST_DMA32
472 	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
473 		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
474 		paddr = VM_DMA32_BOUNDARY;
475 	}
476 #endif
477 	vm_phys_create_seg(paddr, end);
478 }
479 
480 /*
481  * Initialize the physical memory allocator.
482  *
483  * Requires that vm_page_array is initialized!
484  */
485 void
486 vm_phys_init(void)
487 {
488 	struct vm_freelist *fl;
489 	struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
490 #if defined(VM_DMA32_NPAGES_THRESHOLD) || defined(VM_PHYSSEG_SPARSE)
491 	u_long npages;
492 #endif
493 	int dom, flind, freelist, oind, pind, segind;
494 
495 	/*
496 	 * Compute the number of free lists, and generate the mapping from the
497 	 * manifest constants VM_FREELIST_* to the free list indices.
498 	 *
499 	 * Initially, the entries of vm_freelist_to_flind[] are set to either
500 	 * 0 or 1 to indicate which free lists should be created.
501 	 */
502 #ifdef	VM_DMA32_NPAGES_THRESHOLD
503 	npages = 0;
504 #endif
505 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
506 		seg = &vm_phys_segs[segind];
507 #ifdef	VM_FREELIST_LOWMEM
508 		if (seg->end <= VM_LOWMEM_BOUNDARY)
509 			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
510 		else
511 #endif
512 #ifdef	VM_FREELIST_DMA32
513 		if (
514 #ifdef	VM_DMA32_NPAGES_THRESHOLD
515 		    /*
516 		     * Create the DMA32 free list only if the amount of
517 		     * physical memory above physical address 4G exceeds the
518 		     * given threshold.
519 		     */
520 		    npages > VM_DMA32_NPAGES_THRESHOLD &&
521 #endif
522 		    seg->end <= VM_DMA32_BOUNDARY)
523 			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
524 		else
525 #endif
526 		{
527 #ifdef	VM_DMA32_NPAGES_THRESHOLD
528 			npages += atop(seg->end - seg->start);
529 #endif
530 			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
531 		}
532 	}
533 	/* Change each entry into a running total of the free lists. */
534 	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
535 		vm_freelist_to_flind[freelist] +=
536 		    vm_freelist_to_flind[freelist - 1];
537 	}
538 	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
539 	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
540 	/* Change each entry into a free list index. */
541 	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
542 		vm_freelist_to_flind[freelist]--;
543 
544 	/*
545 	 * Initialize the first_page and free_queues fields of each physical
546 	 * memory segment.
547 	 */
548 #ifdef VM_PHYSSEG_SPARSE
549 	npages = 0;
550 #endif
551 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
552 		seg = &vm_phys_segs[segind];
553 #ifdef VM_PHYSSEG_SPARSE
554 		seg->first_page = &vm_page_array[npages];
555 		npages += atop(seg->end - seg->start);
556 #else
557 		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
558 #endif
559 #ifdef	VM_FREELIST_LOWMEM
560 		if (seg->end <= VM_LOWMEM_BOUNDARY) {
561 			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
562 			KASSERT(flind >= 0,
563 			    ("vm_phys_init: LOWMEM flind < 0"));
564 		} else
565 #endif
566 #ifdef	VM_FREELIST_DMA32
567 		if (seg->end <= VM_DMA32_BOUNDARY) {
568 			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
569 			KASSERT(flind >= 0,
570 			    ("vm_phys_init: DMA32 flind < 0"));
571 		} else
572 #endif
573 		{
574 			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
575 			KASSERT(flind >= 0,
576 			    ("vm_phys_init: DEFAULT flind < 0"));
577 		}
578 		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
579 	}
580 
581 	/*
582 	 * Coalesce physical memory segments that are contiguous and share the
583 	 * same per-domain free queues.
584 	 */
585 	prev_seg = vm_phys_segs;
586 	seg = &vm_phys_segs[1];
587 	end_seg = &vm_phys_segs[vm_phys_nsegs];
588 	while (seg < end_seg) {
589 		if (prev_seg->end == seg->start &&
590 		    prev_seg->free_queues == seg->free_queues) {
591 			prev_seg->end = seg->end;
592 			KASSERT(prev_seg->domain == seg->domain,
593 			    ("vm_phys_init: free queues cannot span domains"));
594 			vm_phys_nsegs--;
595 			end_seg--;
596 			for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
597 				*tmp_seg = *(tmp_seg + 1);
598 		} else {
599 			prev_seg = seg;
600 			seg++;
601 		}
602 	}
603 
604 	/*
605 	 * Initialize the free queues.
606 	 */
607 	for (dom = 0; dom < vm_ndomains; dom++) {
608 		for (flind = 0; flind < vm_nfreelists; flind++) {
609 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
610 				fl = vm_phys_free_queues[dom][flind][pind];
611 				for (oind = 0; oind < VM_NFREEORDER; oind++)
612 					TAILQ_INIT(&fl[oind].pl);
613 			}
614 		}
615 	}
616 
617 	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
618 }
619 
620 /*
621  * Register info about the NUMA topology of the system.
622  *
623  * Invoked by platform-dependent code prior to vm_phys_init().
624  */
625 void
626 vm_phys_register_domains(int ndomains, struct mem_affinity *affinity,
627     int *locality)
628 {
629 #ifdef NUMA
630 	int d, i;
631 
632 	/*
633 	 * For now the only override value that we support is 1, which
634 	 * effectively disables NUMA-awareness in the allocators.
635 	 */
636 	d = 0;
637 	TUNABLE_INT_FETCH("vm.numa.disabled", &d);
638 	if (d)
639 		ndomains = 1;
640 
641 	if (ndomains > 1) {
642 		vm_ndomains = ndomains;
643 		mem_affinity = affinity;
644 		mem_locality = locality;
645 	}
646 
647 	for (i = 0; i < vm_ndomains; i++)
648 		DOMAINSET_SET(i, &all_domains);
649 #else
650 	(void)ndomains;
651 	(void)affinity;
652 	(void)locality;
653 #endif
654 }
655 
656 /*
657  * Split a contiguous, power of two-sized set of physical pages.
658  *
659  * When this function is called by a page allocation function, the caller
660  * should request insertion at the head unless the order [order, oind) queues
661  * are known to be empty.  The objective being to reduce the likelihood of
662  * long-term fragmentation by promoting contemporaneous allocation and
663  * (hopefully) deallocation.
664  */
665 static __inline void
666 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
667     int tail)
668 {
669 	vm_page_t m_buddy;
670 
671 	while (oind > order) {
672 		oind--;
673 		m_buddy = &m[1 << oind];
674 		KASSERT(m_buddy->order == VM_NFREEORDER,
675 		    ("vm_phys_split_pages: page %p has unexpected order %d",
676 		    m_buddy, m_buddy->order));
677 		vm_freelist_add(fl, m_buddy, oind, tail);
678         }
679 }
680 
681 /*
682  * Add the physical pages [m, m + npages) at the beginning of a power-of-two
683  * aligned and sized set to the specified free list.
684  *
685  * When this function is called by a page allocation function, the caller
686  * should request insertion at the head unless the lower-order queues are
687  * known to be empty.  The objective being to reduce the likelihood of long-
688  * term fragmentation by promoting contemporaneous allocation and (hopefully)
689  * deallocation.
690  *
691  * The physical page m's buddy must not be free.
692  */
693 static void
694 vm_phys_enq_beg(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
695 {
696         int order;
697 
698 	KASSERT(npages == 0 ||
699 	    (VM_PAGE_TO_PHYS(m) &
700 	    ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
701 	    ("%s: page %p and npages %u are misaligned",
702 	    __func__, m, npages));
703         while (npages > 0) {
704 		KASSERT(m->order == VM_NFREEORDER,
705 		    ("%s: page %p has unexpected order %d",
706 		    __func__, m, m->order));
707                 order = fls(npages) - 1;
708 		KASSERT(order < VM_NFREEORDER,
709 		    ("%s: order %d is out of range", __func__, order));
710                 vm_freelist_add(fl, m, order, tail);
711 		m += 1 << order;
712                 npages -= 1 << order;
713         }
714 }
715 
716 /*
717  * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
718  * and sized set to the specified free list.
719  *
720  * When this function is called by a page allocation function, the caller
721  * should request insertion at the head unless the lower-order queues are
722  * known to be empty.  The objective being to reduce the likelihood of long-
723  * term fragmentation by promoting contemporaneous allocation and (hopefully)
724  * deallocation.
725  *
726  * If npages is zero, this function does nothing and ignores the physical page
727  * parameter m.  Otherwise, the physical page m's buddy must not be free.
728  */
729 static vm_page_t
730 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
731 {
732 	int order;
733 
734 	KASSERT(npages == 0 ||
735 	    ((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
736 	    ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
737 	    ("vm_phys_enq_range: page %p and npages %u are misaligned",
738 	    m, npages));
739 	while (npages > 0) {
740 		KASSERT(m->order == VM_NFREEORDER,
741 		    ("vm_phys_enq_range: page %p has unexpected order %d",
742 		    m, m->order));
743 		order = ffs(npages) - 1;
744 		KASSERT(order < VM_NFREEORDER,
745 		    ("vm_phys_enq_range: order %d is out of range", order));
746 		vm_freelist_add(fl, m, order, tail);
747 		m += 1 << order;
748 		npages -= 1 << order;
749 	}
750 	return (m);
751 }
752 
753 /*
754  * Set the pool for a contiguous, power of two-sized set of physical pages.
755  */
756 static void
757 vm_phys_set_pool(int pool, vm_page_t m, int order)
758 {
759 	vm_page_t m_tmp;
760 
761 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
762 		m_tmp->pool = pool;
763 }
764 
765 /*
766  * Tries to allocate the specified number of pages from the specified pool
767  * within the specified domain.  Returns the actual number of allocated pages
768  * and a pointer to each page through the array ma[].
769  *
770  * The returned pages may not be physically contiguous.  However, in contrast
771  * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
772  * calling this function once to allocate the desired number of pages will
773  * avoid wasted time in vm_phys_split_pages().
774  *
775  * The free page queues for the specified domain must be locked.
776  */
777 int
778 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
779 {
780 	struct vm_freelist *alt, *fl;
781 	vm_page_t m;
782 	int avail, end, flind, freelist, i, oind, pind;
783 
784 	KASSERT(domain >= 0 && domain < vm_ndomains,
785 	    ("vm_phys_alloc_npages: domain %d is out of range", domain));
786 	KASSERT(pool < VM_NFREEPOOL,
787 	    ("vm_phys_alloc_npages: pool %d is out of range", pool));
788 	KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
789 	    ("vm_phys_alloc_npages: npages %d is out of range", npages));
790 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
791 	i = 0;
792 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
793 		flind = vm_freelist_to_flind[freelist];
794 		if (flind < 0)
795 			continue;
796 		fl = vm_phys_free_queues[domain][flind][pool];
797 		for (oind = 0; oind < VM_NFREEORDER; oind++) {
798 			while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
799 				vm_freelist_rem(fl, m, oind);
800 				avail = i + (1 << oind);
801 				end = imin(npages, avail);
802 				while (i < end)
803 					ma[i++] = m++;
804 				if (i == npages) {
805 					/*
806 					 * Return excess pages to fl.  Its order
807 					 * [0, oind) queues are empty.
808 					 */
809 					vm_phys_enq_range(m, avail - i, fl, 1);
810 					return (npages);
811 				}
812 			}
813 		}
814 		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
815 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
816 				alt = vm_phys_free_queues[domain][flind][pind];
817 				while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
818 				    NULL) {
819 					vm_freelist_rem(alt, m, oind);
820 					vm_phys_set_pool(pool, m, oind);
821 					avail = i + (1 << oind);
822 					end = imin(npages, avail);
823 					while (i < end)
824 						ma[i++] = m++;
825 					if (i == npages) {
826 						/*
827 						 * Return excess pages to fl.
828 						 * Its order [0, oind) queues
829 						 * are empty.
830 						 */
831 						vm_phys_enq_range(m, avail - i,
832 						    fl, 1);
833 						return (npages);
834 					}
835 				}
836 			}
837 		}
838 	}
839 	return (i);
840 }
841 
842 /*
843  * Allocate a contiguous, power of two-sized set of physical pages
844  * from the free lists.
845  *
846  * The free page queues must be locked.
847  */
848 vm_page_t
849 vm_phys_alloc_pages(int domain, int pool, int order)
850 {
851 	vm_page_t m;
852 	int freelist;
853 
854 	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
855 		m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
856 		if (m != NULL)
857 			return (m);
858 	}
859 	return (NULL);
860 }
861 
862 /*
863  * Allocate a contiguous, power of two-sized set of physical pages from the
864  * specified free list.  The free list must be specified using one of the
865  * manifest constants VM_FREELIST_*.
866  *
867  * The free page queues must be locked.
868  */
869 vm_page_t
870 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
871 {
872 	struct vm_freelist *alt, *fl;
873 	vm_page_t m;
874 	int oind, pind, flind;
875 
876 	KASSERT(domain >= 0 && domain < vm_ndomains,
877 	    ("vm_phys_alloc_freelist_pages: domain %d is out of range",
878 	    domain));
879 	KASSERT(freelist < VM_NFREELIST,
880 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
881 	    freelist));
882 	KASSERT(pool < VM_NFREEPOOL,
883 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
884 	KASSERT(order < VM_NFREEORDER,
885 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
886 
887 	flind = vm_freelist_to_flind[freelist];
888 	/* Check if freelist is present */
889 	if (flind < 0)
890 		return (NULL);
891 
892 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
893 	fl = &vm_phys_free_queues[domain][flind][pool][0];
894 	for (oind = order; oind < VM_NFREEORDER; oind++) {
895 		m = TAILQ_FIRST(&fl[oind].pl);
896 		if (m != NULL) {
897 			vm_freelist_rem(fl, m, oind);
898 			/* The order [order, oind) queues are empty. */
899 			vm_phys_split_pages(m, oind, fl, order, 1);
900 			return (m);
901 		}
902 	}
903 
904 	/*
905 	 * The given pool was empty.  Find the largest
906 	 * contiguous, power-of-two-sized set of pages in any
907 	 * pool.  Transfer these pages to the given pool, and
908 	 * use them to satisfy the allocation.
909 	 */
910 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
911 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
912 			alt = &vm_phys_free_queues[domain][flind][pind][0];
913 			m = TAILQ_FIRST(&alt[oind].pl);
914 			if (m != NULL) {
915 				vm_freelist_rem(alt, m, oind);
916 				vm_phys_set_pool(pool, m, oind);
917 				/* The order [order, oind) queues are empty. */
918 				vm_phys_split_pages(m, oind, fl, order, 1);
919 				return (m);
920 			}
921 		}
922 	}
923 	return (NULL);
924 }
925 
926 /*
927  * Find the vm_page corresponding to the given physical address.
928  */
929 vm_page_t
930 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
931 {
932 	struct vm_phys_seg *seg;
933 
934 	if ((seg = vm_phys_paddr_to_seg(pa)) != NULL)
935 		return (&seg->first_page[atop(pa - seg->start)]);
936 	return (NULL);
937 }
938 
939 vm_page_t
940 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
941 {
942 	struct vm_phys_fictitious_seg tmp, *seg;
943 	vm_page_t m;
944 
945 	m = NULL;
946 	tmp.start = pa;
947 	tmp.end = 0;
948 
949 	rw_rlock(&vm_phys_fictitious_reg_lock);
950 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
951 	rw_runlock(&vm_phys_fictitious_reg_lock);
952 	if (seg == NULL)
953 		return (NULL);
954 
955 	m = &seg->first_page[atop(pa - seg->start)];
956 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
957 
958 	return (m);
959 }
960 
961 static inline void
962 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
963     long page_count, vm_memattr_t memattr)
964 {
965 	long i;
966 
967 	bzero(range, page_count * sizeof(*range));
968 	for (i = 0; i < page_count; i++) {
969 		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
970 		range[i].oflags &= ~VPO_UNMANAGED;
971 		range[i].busy_lock = VPB_UNBUSIED;
972 	}
973 }
974 
975 int
976 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
977     vm_memattr_t memattr)
978 {
979 	struct vm_phys_fictitious_seg *seg;
980 	vm_page_t fp;
981 	long page_count;
982 #ifdef VM_PHYSSEG_DENSE
983 	long pi, pe;
984 	long dpage_count;
985 #endif
986 
987 	KASSERT(start < end,
988 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
989 	    (uintmax_t)start, (uintmax_t)end));
990 
991 	page_count = (end - start) / PAGE_SIZE;
992 
993 #ifdef VM_PHYSSEG_DENSE
994 	pi = atop(start);
995 	pe = atop(end);
996 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
997 		fp = &vm_page_array[pi - first_page];
998 		if ((pe - first_page) > vm_page_array_size) {
999 			/*
1000 			 * We have a segment that starts inside
1001 			 * of vm_page_array, but ends outside of it.
1002 			 *
1003 			 * Use vm_page_array pages for those that are
1004 			 * inside of the vm_page_array range, and
1005 			 * allocate the remaining ones.
1006 			 */
1007 			dpage_count = vm_page_array_size - (pi - first_page);
1008 			vm_phys_fictitious_init_range(fp, start, dpage_count,
1009 			    memattr);
1010 			page_count -= dpage_count;
1011 			start += ptoa(dpage_count);
1012 			goto alloc;
1013 		}
1014 		/*
1015 		 * We can allocate the full range from vm_page_array,
1016 		 * so there's no need to register the range in the tree.
1017 		 */
1018 		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1019 		return (0);
1020 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1021 		/*
1022 		 * We have a segment that ends inside of vm_page_array,
1023 		 * but starts outside of it.
1024 		 */
1025 		fp = &vm_page_array[0];
1026 		dpage_count = pe - first_page;
1027 		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
1028 		    memattr);
1029 		end -= ptoa(dpage_count);
1030 		page_count -= dpage_count;
1031 		goto alloc;
1032 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1033 		/*
1034 		 * Trying to register a fictitious range that expands before
1035 		 * and after vm_page_array.
1036 		 */
1037 		return (EINVAL);
1038 	} else {
1039 alloc:
1040 #endif
1041 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
1042 		    M_WAITOK);
1043 #ifdef VM_PHYSSEG_DENSE
1044 	}
1045 #endif
1046 	vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1047 
1048 	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
1049 	seg->start = start;
1050 	seg->end = end;
1051 	seg->first_page = fp;
1052 
1053 	rw_wlock(&vm_phys_fictitious_reg_lock);
1054 	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1055 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1056 
1057 	return (0);
1058 }
1059 
1060 void
1061 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1062 {
1063 	struct vm_phys_fictitious_seg *seg, tmp;
1064 #ifdef VM_PHYSSEG_DENSE
1065 	long pi, pe;
1066 #endif
1067 
1068 	KASSERT(start < end,
1069 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
1070 	    (uintmax_t)start, (uintmax_t)end));
1071 
1072 #ifdef VM_PHYSSEG_DENSE
1073 	pi = atop(start);
1074 	pe = atop(end);
1075 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1076 		if ((pe - first_page) <= vm_page_array_size) {
1077 			/*
1078 			 * This segment was allocated using vm_page_array
1079 			 * only, there's nothing to do since those pages
1080 			 * were never added to the tree.
1081 			 */
1082 			return;
1083 		}
1084 		/*
1085 		 * We have a segment that starts inside
1086 		 * of vm_page_array, but ends outside of it.
1087 		 *
1088 		 * Calculate how many pages were added to the
1089 		 * tree and free them.
1090 		 */
1091 		start = ptoa(first_page + vm_page_array_size);
1092 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1093 		/*
1094 		 * We have a segment that ends inside of vm_page_array,
1095 		 * but starts outside of it.
1096 		 */
1097 		end = ptoa(first_page);
1098 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1099 		/* Since it's not possible to register such a range, panic. */
1100 		panic(
1101 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1102 		    (uintmax_t)start, (uintmax_t)end);
1103 	}
1104 #endif
1105 	tmp.start = start;
1106 	tmp.end = 0;
1107 
1108 	rw_wlock(&vm_phys_fictitious_reg_lock);
1109 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1110 	if (seg->start != start || seg->end != end) {
1111 		rw_wunlock(&vm_phys_fictitious_reg_lock);
1112 		panic(
1113 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1114 		    (uintmax_t)start, (uintmax_t)end);
1115 	}
1116 	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1117 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1118 	free(seg->first_page, M_FICT_PAGES);
1119 	free(seg, M_FICT_PAGES);
1120 }
1121 
1122 /*
1123  * Free a contiguous, power of two-sized set of physical pages.
1124  *
1125  * The free page queues must be locked.
1126  */
1127 void
1128 vm_phys_free_pages(vm_page_t m, int order)
1129 {
1130 	struct vm_freelist *fl;
1131 	struct vm_phys_seg *seg;
1132 	vm_paddr_t pa;
1133 	vm_page_t m_buddy;
1134 
1135 	KASSERT(m->order == VM_NFREEORDER,
1136 	    ("vm_phys_free_pages: page %p has unexpected order %d",
1137 	    m, m->order));
1138 	KASSERT(m->pool < VM_NFREEPOOL,
1139 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
1140 	    m, m->pool));
1141 	KASSERT(order < VM_NFREEORDER,
1142 	    ("vm_phys_free_pages: order %d is out of range", order));
1143 	seg = &vm_phys_segs[m->segind];
1144 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1145 	if (order < VM_NFREEORDER - 1) {
1146 		pa = VM_PAGE_TO_PHYS(m);
1147 		do {
1148 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1149 			if (pa < seg->start || pa >= seg->end)
1150 				break;
1151 			m_buddy = &seg->first_page[atop(pa - seg->start)];
1152 			if (m_buddy->order != order)
1153 				break;
1154 			fl = (*seg->free_queues)[m_buddy->pool];
1155 			vm_freelist_rem(fl, m_buddy, order);
1156 			if (m_buddy->pool != m->pool)
1157 				vm_phys_set_pool(m->pool, m_buddy, order);
1158 			order++;
1159 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1160 			m = &seg->first_page[atop(pa - seg->start)];
1161 		} while (order < VM_NFREEORDER - 1);
1162 	}
1163 	fl = (*seg->free_queues)[m->pool];
1164 	vm_freelist_add(fl, m, order, 1);
1165 }
1166 
1167 /*
1168  * Return the largest possible order of a set of pages starting at m.
1169  */
1170 static int
1171 max_order(vm_page_t m)
1172 {
1173 
1174 	/*
1175 	 * Unsigned "min" is used here so that "order" is assigned
1176 	 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1177 	 * or the low-order bits of its physical address are zero
1178 	 * because the size of a physical address exceeds the size of
1179 	 * a long.
1180 	 */
1181 	return (min(ffsll(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1182 	    VM_NFREEORDER - 1));
1183 }
1184 
1185 /*
1186  * Free a contiguous, arbitrarily sized set of physical pages, without
1187  * merging across set boundaries.
1188  *
1189  * The free page queues must be locked.
1190  */
1191 void
1192 vm_phys_enqueue_contig(vm_page_t m, u_long npages)
1193 {
1194 	struct vm_freelist *fl;
1195 	struct vm_phys_seg *seg;
1196 	vm_page_t m_end;
1197 	vm_paddr_t diff, lo;
1198 	int order;
1199 
1200 	/*
1201 	 * Avoid unnecessary coalescing by freeing the pages in the largest
1202 	 * possible power-of-two-sized subsets.
1203 	 */
1204 	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1205 	seg = &vm_phys_segs[m->segind];
1206 	fl = (*seg->free_queues)[m->pool];
1207 	m_end = m + npages;
1208 	/* Free blocks of increasing size. */
1209 	lo = VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT;
1210 	if (m < m_end &&
1211 	    (diff = lo ^ (lo + npages - 1)) != 0) {
1212 		order = min(flsll(diff) - 1, VM_NFREEORDER - 1);
1213 		m = vm_phys_enq_range(m, roundup2(lo, 1 << order) - lo, fl, 1);
1214 	}
1215 
1216 	/* Free blocks of maximum size. */
1217 	order = VM_NFREEORDER - 1;
1218 	while (m + (1 << order) <= m_end) {
1219 		KASSERT(seg == &vm_phys_segs[m->segind],
1220 		    ("%s: page range [%p,%p) spans multiple segments",
1221 		    __func__, m_end - npages, m));
1222 		vm_freelist_add(fl, m, order, 1);
1223 		m += 1 << order;
1224 	}
1225 	/* Free blocks of diminishing size. */
1226 	vm_phys_enq_beg(m, m_end - m, fl, 1);
1227 }
1228 
1229 /*
1230  * Free a contiguous, arbitrarily sized set of physical pages.
1231  *
1232  * The free page queues must be locked.
1233  */
1234 void
1235 vm_phys_free_contig(vm_page_t m, u_long npages)
1236 {
1237 	int order_start, order_end;
1238 	vm_page_t m_start, m_end;
1239 
1240 	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1241 
1242 	m_start = m;
1243 	order_start = max_order(m_start);
1244 	if (order_start < VM_NFREEORDER - 1)
1245 		m_start += 1 << order_start;
1246 	m_end = m + npages;
1247 	order_end = max_order(m_end);
1248 	if (order_end < VM_NFREEORDER - 1)
1249 		m_end -= 1 << order_end;
1250 	/*
1251 	 * Avoid unnecessary coalescing by freeing the pages at the start and
1252 	 * end of the range last.
1253 	 */
1254 	if (m_start < m_end)
1255 		vm_phys_enqueue_contig(m_start, m_end - m_start);
1256 	if (order_start < VM_NFREEORDER - 1)
1257 		vm_phys_free_pages(m, order_start);
1258 	if (order_end < VM_NFREEORDER - 1)
1259 		vm_phys_free_pages(m_end, order_end);
1260 }
1261 
1262 /*
1263  * Identify the first address range within segment segind or greater
1264  * that matches the domain, lies within the low/high range, and has
1265  * enough pages.  Return -1 if there is none.
1266  */
1267 int
1268 vm_phys_find_range(vm_page_t bounds[], int segind, int domain,
1269     u_long npages, vm_paddr_t low, vm_paddr_t high)
1270 {
1271 	vm_paddr_t pa_end, pa_start;
1272 	struct vm_phys_seg *end_seg, *seg;
1273 
1274 	KASSERT(npages > 0, ("npages is zero"));
1275 	KASSERT(domain >= 0 && domain < vm_ndomains, ("domain out of range"));
1276 	end_seg = &vm_phys_segs[vm_phys_nsegs];
1277 	for (seg = &vm_phys_segs[segind]; seg < end_seg; seg++) {
1278 		if (seg->domain != domain)
1279 			continue;
1280 		if (seg->start >= high)
1281 			return (-1);
1282 		pa_start = MAX(low, seg->start);
1283 		pa_end = MIN(high, seg->end);
1284 		if (pa_end - pa_start < ptoa(npages))
1285 			continue;
1286 		bounds[0] = &seg->first_page[atop(pa_start - seg->start)];
1287 		bounds[1] = &seg->first_page[atop(pa_end - seg->start)];
1288 		return (seg - vm_phys_segs);
1289 	}
1290 	return (-1);
1291 }
1292 
1293 /*
1294  * Search for the given physical page "m" in the free lists.  If the search
1295  * succeeds, remove "m" from the free lists and return true.  Otherwise, return
1296  * false, indicating that "m" is not in the free lists.
1297  *
1298  * The free page queues must be locked.
1299  */
1300 bool
1301 vm_phys_unfree_page(vm_page_t m)
1302 {
1303 	struct vm_freelist *fl;
1304 	struct vm_phys_seg *seg;
1305 	vm_paddr_t pa, pa_half;
1306 	vm_page_t m_set, m_tmp;
1307 	int order;
1308 
1309 	/*
1310 	 * First, find the contiguous, power of two-sized set of free
1311 	 * physical pages containing the given physical page "m" and
1312 	 * assign it to "m_set".
1313 	 */
1314 	seg = &vm_phys_segs[m->segind];
1315 	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1316 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1317 	    order < VM_NFREEORDER - 1; ) {
1318 		order++;
1319 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1320 		if (pa >= seg->start)
1321 			m_set = &seg->first_page[atop(pa - seg->start)];
1322 		else
1323 			return (false);
1324 	}
1325 	if (m_set->order < order)
1326 		return (false);
1327 	if (m_set->order == VM_NFREEORDER)
1328 		return (false);
1329 	KASSERT(m_set->order < VM_NFREEORDER,
1330 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
1331 	    m_set, m_set->order));
1332 
1333 	/*
1334 	 * Next, remove "m_set" from the free lists.  Finally, extract
1335 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
1336 	 * is larger than a page, shrink "m_set" by returning the half
1337 	 * of "m_set" that does not contain "m" to the free lists.
1338 	 */
1339 	fl = (*seg->free_queues)[m_set->pool];
1340 	order = m_set->order;
1341 	vm_freelist_rem(fl, m_set, order);
1342 	while (order > 0) {
1343 		order--;
1344 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1345 		if (m->phys_addr < pa_half)
1346 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1347 		else {
1348 			m_tmp = m_set;
1349 			m_set = &seg->first_page[atop(pa_half - seg->start)];
1350 		}
1351 		vm_freelist_add(fl, m_tmp, order, 0);
1352 	}
1353 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1354 	return (true);
1355 }
1356 
1357 /*
1358  * Find a run of contiguous physical pages from the specified page list.
1359  */
1360 static vm_page_t
1361 vm_phys_find_freelist_contig(struct vm_freelist *fl, int oind, u_long npages,
1362     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1363 {
1364 	struct vm_phys_seg *seg;
1365 	vm_paddr_t frag, lbound, pa, page_size, pa_end, pa_pre, size;
1366 	vm_page_t m, m_listed, m_ret;
1367 	int order;
1368 
1369 	KASSERT(npages > 0, ("npages is 0"));
1370 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1371 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1372 	/* Search for a run satisfying the specified conditions. */
1373 	page_size = PAGE_SIZE;
1374 	size = npages << PAGE_SHIFT;
1375 	frag = (npages & ~(~0UL << oind)) << PAGE_SHIFT;
1376 	TAILQ_FOREACH(m_listed, &fl[oind].pl, listq) {
1377 		/*
1378 		 * Determine if the address range starting at pa is
1379 		 * too low.
1380 		 */
1381 		pa = VM_PAGE_TO_PHYS(m_listed);
1382 		if (pa < low)
1383 			continue;
1384 
1385 		/*
1386 		 * If this is not the first free oind-block in this range, bail
1387 		 * out. We have seen the first free block already, or will see
1388 		 * it before failing to find an appropriate range.
1389 		 */
1390 		seg = &vm_phys_segs[m_listed->segind];
1391 		lbound = low > seg->start ? low : seg->start;
1392 		pa_pre = pa - (page_size << oind);
1393 		m = &seg->first_page[atop(pa_pre - seg->start)];
1394 		if (pa != 0 && pa_pre >= lbound && m->order == oind)
1395 			continue;
1396 
1397 		if (!vm_addr_align_ok(pa, alignment))
1398 			/* Advance to satisfy alignment condition. */
1399 			pa = roundup2(pa, alignment);
1400 		else if (frag != 0 && lbound + frag <= pa) {
1401 			/*
1402 			 * Back up to the first aligned free block in this
1403 			 * range, without moving below lbound.
1404 			 */
1405 			pa_end = pa;
1406 			for (order = oind - 1; order >= 0; order--) {
1407 				pa_pre = pa_end - (page_size << order);
1408 				if (!vm_addr_align_ok(pa_pre, alignment))
1409 					break;
1410 				m = &seg->first_page[atop(pa_pre - seg->start)];
1411 				if (pa_pre >= lbound && m->order == order)
1412 					pa_end = pa_pre;
1413 			}
1414 			/*
1415 			 * If the extra small blocks are enough to complete the
1416 			 * fragment, use them.  Otherwise, look to allocate the
1417 			 * fragment at the other end.
1418 			 */
1419 			if (pa_end + frag <= pa)
1420 				pa = pa_end;
1421 		}
1422 
1423 		/* Advance as necessary to satisfy boundary conditions. */
1424 		if (!vm_addr_bound_ok(pa, size, boundary))
1425 			pa = roundup2(pa + 1, boundary);
1426 		pa_end = pa + size;
1427 
1428 		/*
1429 		 * Determine if the address range is valid (without overflow in
1430 		 * pa_end calculation), and fits within the segment.
1431 		 */
1432 		if (pa_end < pa || seg->end < pa_end)
1433 			continue;
1434 
1435 		m_ret = &seg->first_page[atop(pa - seg->start)];
1436 
1437 		/*
1438 		 * Determine whether there are enough free oind-blocks here to
1439 		 * satisfy the allocation request.
1440 		 */
1441 		pa = VM_PAGE_TO_PHYS(m_listed);
1442 		do {
1443 			pa += page_size << oind;
1444 			if (pa >= pa_end)
1445 				return (m_ret);
1446 			m = &seg->first_page[atop(pa - seg->start)];
1447 		} while (oind == m->order);
1448 
1449 		/*
1450 		 * Determine if an additional series of free blocks of
1451 		 * diminishing size can help to satisfy the allocation request.
1452 		 */
1453 		while (m->order < oind &&
1454 		    pa + 2 * (page_size << m->order) > pa_end) {
1455 			pa += page_size << m->order;
1456 			if (pa >= pa_end)
1457 				return (m_ret);
1458 			m = &seg->first_page[atop(pa - seg->start)];
1459 		}
1460 	}
1461 	return (NULL);
1462 }
1463 
1464 /*
1465  * Find a run of contiguous physical pages from the specified free list
1466  * table.
1467  */
1468 static vm_page_t
1469 vm_phys_find_queues_contig(
1470     struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX],
1471     u_long npages, vm_paddr_t low, vm_paddr_t high,
1472     u_long alignment, vm_paddr_t boundary)
1473 {
1474 	struct vm_freelist *fl;
1475 	vm_page_t m_ret;
1476 	vm_paddr_t pa, pa_end, size;
1477 	int oind, order, pind;
1478 
1479 	KASSERT(npages > 0, ("npages is 0"));
1480 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1481 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1482 	/* Compute the queue that is the best fit for npages. */
1483 	order = flsl(npages - 1);
1484 	/* Search for a large enough free block. */
1485 	size = npages << PAGE_SHIFT;
1486 	for (oind = order; oind < VM_NFREEORDER; oind++) {
1487 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1488 			fl = (*queues)[pind];
1489 			TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1490 				/*
1491 				 * Determine if the address range starting at pa
1492 				 * is within the given range, satisfies the
1493 				 * given alignment, and does not cross the given
1494 				 * boundary.
1495 				 */
1496 				pa = VM_PAGE_TO_PHYS(m_ret);
1497 				pa_end = pa + size;
1498 				if (low <= pa && pa_end <= high &&
1499 				    vm_addr_ok(pa, size, alignment, boundary))
1500 					return (m_ret);
1501 			}
1502 		}
1503 	}
1504 	if (order < VM_NFREEORDER)
1505 		return (NULL);
1506 	/* Search for a long-enough sequence of small blocks. */
1507 	oind = VM_NFREEORDER - 1;
1508 	for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1509 		fl = (*queues)[pind];
1510 		m_ret = vm_phys_find_freelist_contig(fl, oind, npages,
1511 		    low, high, alignment, boundary);
1512 		if (m_ret != NULL)
1513 			return (m_ret);
1514 	}
1515 	return (NULL);
1516 }
1517 
1518 /*
1519  * Allocate a contiguous set of physical pages of the given size
1520  * "npages" from the free lists.  All of the physical pages must be at
1521  * or above the given physical address "low" and below the given
1522  * physical address "high".  The given value "alignment" determines the
1523  * alignment of the first physical page in the set.  If the given value
1524  * "boundary" is non-zero, then the set of physical pages cannot cross
1525  * any physical address boundary that is a multiple of that value.  Both
1526  * "alignment" and "boundary" must be a power of two.
1527  */
1528 vm_page_t
1529 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1530     u_long alignment, vm_paddr_t boundary)
1531 {
1532 	vm_paddr_t pa_end, pa_start;
1533 	struct vm_freelist *fl;
1534 	vm_page_t m, m_run;
1535 	struct vm_phys_seg *seg;
1536 	struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX];
1537 	int oind, segind;
1538 
1539 	KASSERT(npages > 0, ("npages is 0"));
1540 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1541 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1542 	vm_domain_free_assert_locked(VM_DOMAIN(domain));
1543 	if (low >= high)
1544 		return (NULL);
1545 	queues = NULL;
1546 	m_run = NULL;
1547 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1548 		seg = &vm_phys_segs[segind];
1549 		if (seg->start >= high || seg->domain != domain)
1550 			continue;
1551 		if (low >= seg->end)
1552 			break;
1553 		if (low <= seg->start)
1554 			pa_start = seg->start;
1555 		else
1556 			pa_start = low;
1557 		if (high < seg->end)
1558 			pa_end = high;
1559 		else
1560 			pa_end = seg->end;
1561 		if (pa_end - pa_start < ptoa(npages))
1562 			continue;
1563 		/*
1564 		 * If a previous segment led to a search using
1565 		 * the same free lists as would this segment, then
1566 		 * we've actually already searched within this
1567 		 * too.  So skip it.
1568 		 */
1569 		if (seg->free_queues == queues)
1570 			continue;
1571 		queues = seg->free_queues;
1572 		m_run = vm_phys_find_queues_contig(queues, npages,
1573 		    low, high, alignment, boundary);
1574 		if (m_run != NULL)
1575 			break;
1576 	}
1577 	if (m_run == NULL)
1578 		return (NULL);
1579 
1580 	/* Allocate pages from the page-range found. */
1581 	for (m = m_run; m < &m_run[npages]; m = &m[1 << oind]) {
1582 		fl = (*queues)[m->pool];
1583 		oind = m->order;
1584 		vm_freelist_rem(fl, m, oind);
1585 		if (m->pool != VM_FREEPOOL_DEFAULT)
1586 			vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1587 	}
1588 	/* Return excess pages to the free lists. */
1589 	fl = (*queues)[VM_FREEPOOL_DEFAULT];
1590 	vm_phys_enq_range(&m_run[npages], m - &m_run[npages], fl, 0);
1591 	return (m_run);
1592 }
1593 
1594 /*
1595  * Return the index of the first unused slot which may be the terminating
1596  * entry.
1597  */
1598 static int
1599 vm_phys_avail_count(void)
1600 {
1601 	int i;
1602 
1603 	for (i = 0; phys_avail[i + 1]; i += 2)
1604 		continue;
1605 	if (i > PHYS_AVAIL_ENTRIES)
1606 		panic("Improperly terminated phys_avail %d entries", i);
1607 
1608 	return (i);
1609 }
1610 
1611 /*
1612  * Assert that a phys_avail entry is valid.
1613  */
1614 static void
1615 vm_phys_avail_check(int i)
1616 {
1617 	if (phys_avail[i] & PAGE_MASK)
1618 		panic("Unaligned phys_avail[%d]: %#jx", i,
1619 		    (intmax_t)phys_avail[i]);
1620 	if (phys_avail[i+1] & PAGE_MASK)
1621 		panic("Unaligned phys_avail[%d + 1]: %#jx", i,
1622 		    (intmax_t)phys_avail[i]);
1623 	if (phys_avail[i + 1] < phys_avail[i])
1624 		panic("phys_avail[%d] start %#jx < end %#jx", i,
1625 		    (intmax_t)phys_avail[i], (intmax_t)phys_avail[i+1]);
1626 }
1627 
1628 /*
1629  * Return the index of an overlapping phys_avail entry or -1.
1630  */
1631 #ifdef NUMA
1632 static int
1633 vm_phys_avail_find(vm_paddr_t pa)
1634 {
1635 	int i;
1636 
1637 	for (i = 0; phys_avail[i + 1]; i += 2)
1638 		if (phys_avail[i] <= pa && phys_avail[i + 1] > pa)
1639 			return (i);
1640 	return (-1);
1641 }
1642 #endif
1643 
1644 /*
1645  * Return the index of the largest entry.
1646  */
1647 int
1648 vm_phys_avail_largest(void)
1649 {
1650 	vm_paddr_t sz, largesz;
1651 	int largest;
1652 	int i;
1653 
1654 	largest = 0;
1655 	largesz = 0;
1656 	for (i = 0; phys_avail[i + 1]; i += 2) {
1657 		sz = vm_phys_avail_size(i);
1658 		if (sz > largesz) {
1659 			largesz = sz;
1660 			largest = i;
1661 		}
1662 	}
1663 
1664 	return (largest);
1665 }
1666 
1667 vm_paddr_t
1668 vm_phys_avail_size(int i)
1669 {
1670 
1671 	return (phys_avail[i + 1] - phys_avail[i]);
1672 }
1673 
1674 /*
1675  * Split an entry at the address 'pa'.  Return zero on success or errno.
1676  */
1677 static int
1678 vm_phys_avail_split(vm_paddr_t pa, int i)
1679 {
1680 	int cnt;
1681 
1682 	vm_phys_avail_check(i);
1683 	if (pa <= phys_avail[i] || pa >= phys_avail[i + 1])
1684 		panic("vm_phys_avail_split: invalid address");
1685 	cnt = vm_phys_avail_count();
1686 	if (cnt >= PHYS_AVAIL_ENTRIES)
1687 		return (ENOSPC);
1688 	memmove(&phys_avail[i + 2], &phys_avail[i],
1689 	    (cnt - i) * sizeof(phys_avail[0]));
1690 	phys_avail[i + 1] = pa;
1691 	phys_avail[i + 2] = pa;
1692 	vm_phys_avail_check(i);
1693 	vm_phys_avail_check(i+2);
1694 
1695 	return (0);
1696 }
1697 
1698 /*
1699  * Check if a given physical address can be included as part of a crash dump.
1700  */
1701 bool
1702 vm_phys_is_dumpable(vm_paddr_t pa)
1703 {
1704 	vm_page_t m;
1705 	int i;
1706 
1707 	if ((m = vm_phys_paddr_to_vm_page(pa)) != NULL)
1708 		return ((m->flags & PG_NODUMP) == 0);
1709 
1710 	for (i = 0; dump_avail[i] != 0 || dump_avail[i + 1] != 0; i += 2) {
1711 		if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
1712 			return (true);
1713 	}
1714 	return (false);
1715 }
1716 
1717 void
1718 vm_phys_early_add_seg(vm_paddr_t start, vm_paddr_t end)
1719 {
1720 	struct vm_phys_seg *seg;
1721 
1722 	if (vm_phys_early_nsegs == -1)
1723 		panic("%s: called after initialization", __func__);
1724 	if (vm_phys_early_nsegs == nitems(vm_phys_early_segs))
1725 		panic("%s: ran out of early segments", __func__);
1726 
1727 	seg = &vm_phys_early_segs[vm_phys_early_nsegs++];
1728 	seg->start = start;
1729 	seg->end = end;
1730 }
1731 
1732 /*
1733  * This routine allocates NUMA node specific memory before the page
1734  * allocator is bootstrapped.
1735  */
1736 vm_paddr_t
1737 vm_phys_early_alloc(int domain, size_t alloc_size)
1738 {
1739 #ifdef NUMA
1740 	int mem_index;
1741 #endif
1742 	int i, biggestone;
1743 	vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align;
1744 
1745 	KASSERT(domain == -1 || (domain >= 0 && domain < vm_ndomains),
1746 	    ("%s: invalid domain index %d", __func__, domain));
1747 
1748 	/*
1749 	 * Search the mem_affinity array for the biggest address
1750 	 * range in the desired domain.  This is used to constrain
1751 	 * the phys_avail selection below.
1752 	 */
1753 	biggestsize = 0;
1754 	mem_start = 0;
1755 	mem_end = -1;
1756 #ifdef NUMA
1757 	mem_index = 0;
1758 	if (mem_affinity != NULL) {
1759 		for (i = 0;; i++) {
1760 			size = mem_affinity[i].end - mem_affinity[i].start;
1761 			if (size == 0)
1762 				break;
1763 			if (domain != -1 && mem_affinity[i].domain != domain)
1764 				continue;
1765 			if (size > biggestsize) {
1766 				mem_index = i;
1767 				biggestsize = size;
1768 			}
1769 		}
1770 		mem_start = mem_affinity[mem_index].start;
1771 		mem_end = mem_affinity[mem_index].end;
1772 	}
1773 #endif
1774 
1775 	/*
1776 	 * Now find biggest physical segment in within the desired
1777 	 * numa domain.
1778 	 */
1779 	biggestsize = 0;
1780 	biggestone = 0;
1781 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1782 		/* skip regions that are out of range */
1783 		if (phys_avail[i+1] - alloc_size < mem_start ||
1784 		    phys_avail[i+1] > mem_end)
1785 			continue;
1786 		size = vm_phys_avail_size(i);
1787 		if (size > biggestsize) {
1788 			biggestone = i;
1789 			biggestsize = size;
1790 		}
1791 	}
1792 	alloc_size = round_page(alloc_size);
1793 
1794 	/*
1795 	 * Grab single pages from the front to reduce fragmentation.
1796 	 */
1797 	if (alloc_size == PAGE_SIZE) {
1798 		pa = phys_avail[biggestone];
1799 		phys_avail[biggestone] += PAGE_SIZE;
1800 		vm_phys_avail_check(biggestone);
1801 		return (pa);
1802 	}
1803 
1804 	/*
1805 	 * Naturally align large allocations.
1806 	 */
1807 	align = phys_avail[biggestone + 1] & (alloc_size - 1);
1808 	if (alloc_size + align > biggestsize)
1809 		panic("cannot find a large enough size\n");
1810 	if (align != 0 &&
1811 	    vm_phys_avail_split(phys_avail[biggestone + 1] - align,
1812 	    biggestone) != 0)
1813 		/* Wasting memory. */
1814 		phys_avail[biggestone + 1] -= align;
1815 
1816 	phys_avail[biggestone + 1] -= alloc_size;
1817 	vm_phys_avail_check(biggestone);
1818 	pa = phys_avail[biggestone + 1];
1819 	return (pa);
1820 }
1821 
1822 void
1823 vm_phys_early_startup(void)
1824 {
1825 	struct vm_phys_seg *seg;
1826 	int i;
1827 
1828 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1829 		phys_avail[i] = round_page(phys_avail[i]);
1830 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
1831 	}
1832 
1833 	for (i = 0; i < vm_phys_early_nsegs; i++) {
1834 		seg = &vm_phys_early_segs[i];
1835 		vm_phys_add_seg(seg->start, seg->end);
1836 	}
1837 	vm_phys_early_nsegs = -1;
1838 
1839 #ifdef NUMA
1840 	/* Force phys_avail to be split by domain. */
1841 	if (mem_affinity != NULL) {
1842 		int idx;
1843 
1844 		for (i = 0; mem_affinity[i].end != 0; i++) {
1845 			idx = vm_phys_avail_find(mem_affinity[i].start);
1846 			if (idx != -1 &&
1847 			    phys_avail[idx] != mem_affinity[i].start)
1848 				vm_phys_avail_split(mem_affinity[i].start, idx);
1849 			idx = vm_phys_avail_find(mem_affinity[i].end);
1850 			if (idx != -1 &&
1851 			    phys_avail[idx] != mem_affinity[i].end)
1852 				vm_phys_avail_split(mem_affinity[i].end, idx);
1853 		}
1854 	}
1855 #endif
1856 }
1857 
1858 #ifdef DDB
1859 /*
1860  * Show the number of physical pages in each of the free lists.
1861  */
1862 DB_SHOW_COMMAND_FLAGS(freepages, db_show_freepages, DB_CMD_MEMSAFE)
1863 {
1864 	struct vm_freelist *fl;
1865 	int flind, oind, pind, dom;
1866 
1867 	for (dom = 0; dom < vm_ndomains; dom++) {
1868 		db_printf("DOMAIN: %d\n", dom);
1869 		for (flind = 0; flind < vm_nfreelists; flind++) {
1870 			db_printf("FREE LIST %d:\n"
1871 			    "\n  ORDER (SIZE)  |  NUMBER"
1872 			    "\n              ", flind);
1873 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1874 				db_printf("  |  POOL %d", pind);
1875 			db_printf("\n--            ");
1876 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1877 				db_printf("-- --      ");
1878 			db_printf("--\n");
1879 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1880 				db_printf("  %2.2d (%6.6dK)", oind,
1881 				    1 << (PAGE_SHIFT - 10 + oind));
1882 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1883 				fl = vm_phys_free_queues[dom][flind][pind];
1884 					db_printf("  |  %6.6d", fl[oind].lcnt);
1885 				}
1886 				db_printf("\n");
1887 			}
1888 			db_printf("\n");
1889 		}
1890 		db_printf("\n");
1891 	}
1892 }
1893 #endif
1894