xref: /freebsd/sys/vm/vm_phys.c (revision 23f6875a43f7ce365f2d52cf857da010c47fb03b)
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *	Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/queue.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sysctl.h>
56 #include <sys/tree.h>
57 #include <sys/vmmeter.h>
58 #include <sys/seq.h>
59 
60 #include <ddb/ddb.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_phys.h>
68 
69 #include <vm/vm_domain.h>
70 
71 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
72     "Too many physsegs.");
73 
74 #ifdef VM_NUMA_ALLOC
75 struct mem_affinity *mem_affinity;
76 int *mem_locality;
77 #endif
78 
79 int vm_ndomains = 1;
80 
81 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
82 int vm_phys_nsegs;
83 
84 struct vm_phys_fictitious_seg;
85 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
86     struct vm_phys_fictitious_seg *);
87 
88 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
89     RB_INITIALIZER(_vm_phys_fictitious_tree);
90 
91 struct vm_phys_fictitious_seg {
92 	RB_ENTRY(vm_phys_fictitious_seg) node;
93 	/* Memory region data */
94 	vm_paddr_t	start;
95 	vm_paddr_t	end;
96 	vm_page_t	first_page;
97 };
98 
99 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
100     vm_phys_fictitious_cmp);
101 
102 static struct rwlock vm_phys_fictitious_reg_lock;
103 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
104 
105 static struct vm_freelist
106     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
107 
108 static int vm_nfreelists;
109 
110 /*
111  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
112  */
113 static int vm_freelist_to_flind[VM_NFREELIST];
114 
115 CTASSERT(VM_FREELIST_DEFAULT == 0);
116 
117 #ifdef VM_FREELIST_ISADMA
118 #define	VM_ISADMA_BOUNDARY	16777216
119 #endif
120 #ifdef VM_FREELIST_DMA32
121 #define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
122 #endif
123 
124 /*
125  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
126  * the ordering of the free list boundaries.
127  */
128 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
129 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
130 #endif
131 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
132 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
133 #endif
134 
135 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
136 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
137     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
138 
139 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
140 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
141     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
142 
143 #ifdef VM_NUMA_ALLOC
144 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
145 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
146     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
147 #endif
148 
149 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
150     &vm_ndomains, 0, "Number of physical memory domains available.");
151 
152 /*
153  * Default to first-touch + round-robin.
154  */
155 static struct mtx vm_default_policy_mtx;
156 MTX_SYSINIT(vm_default_policy, &vm_default_policy_mtx, "default policy mutex",
157     MTX_DEF);
158 #ifdef VM_NUMA_ALLOC
159 static struct vm_domain_policy vm_default_policy =
160     VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
161 #else
162 /* Use round-robin so the domain policy code will only try once per allocation */
163 static struct vm_domain_policy vm_default_policy =
164     VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_ROUND_ROBIN, 0);
165 #endif
166 
167 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
168     int order);
169 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
170     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
171     vm_paddr_t boundary);
172 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
173 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
174 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
175 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
176     int order);
177 
178 static int
179 sysctl_vm_default_policy(SYSCTL_HANDLER_ARGS)
180 {
181 	char policy_name[32];
182 	int error;
183 
184 	mtx_lock(&vm_default_policy_mtx);
185 
186 	/* Map policy to output string */
187 	switch (vm_default_policy.p.policy) {
188 	case VM_POLICY_FIRST_TOUCH:
189 		strcpy(policy_name, "first-touch");
190 		break;
191 	case VM_POLICY_FIRST_TOUCH_ROUND_ROBIN:
192 		strcpy(policy_name, "first-touch-rr");
193 		break;
194 	case VM_POLICY_ROUND_ROBIN:
195 	default:
196 		strcpy(policy_name, "rr");
197 		break;
198 	}
199 	mtx_unlock(&vm_default_policy_mtx);
200 
201 	error = sysctl_handle_string(oidp, &policy_name[0],
202 	    sizeof(policy_name), req);
203 	if (error != 0 || req->newptr == NULL)
204 		return (error);
205 
206 	mtx_lock(&vm_default_policy_mtx);
207 	/* Set: match on the subset of policies that make sense as a default */
208 	if (strcmp("first-touch-rr", policy_name) == 0) {
209 		vm_domain_policy_set(&vm_default_policy,
210 		    VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
211 	} else if (strcmp("first-touch", policy_name) == 0) {
212 		vm_domain_policy_set(&vm_default_policy,
213 		    VM_POLICY_FIRST_TOUCH, 0);
214 	} else if (strcmp("rr", policy_name) == 0) {
215 		vm_domain_policy_set(&vm_default_policy,
216 		    VM_POLICY_ROUND_ROBIN, 0);
217 	} else {
218 		error = EINVAL;
219 		goto finish;
220 	}
221 
222 	error = 0;
223 finish:
224 	mtx_unlock(&vm_default_policy_mtx);
225 	return (error);
226 }
227 
228 SYSCTL_PROC(_vm, OID_AUTO, default_policy, CTLTYPE_STRING | CTLFLAG_RW,
229     0, 0, sysctl_vm_default_policy, "A",
230     "Default policy (rr, first-touch, first-touch-rr");
231 
232 /*
233  * Red-black tree helpers for vm fictitious range management.
234  */
235 static inline int
236 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
237     struct vm_phys_fictitious_seg *range)
238 {
239 
240 	KASSERT(range->start != 0 && range->end != 0,
241 	    ("Invalid range passed on search for vm_fictitious page"));
242 	if (p->start >= range->end)
243 		return (1);
244 	if (p->start < range->start)
245 		return (-1);
246 
247 	return (0);
248 }
249 
250 static int
251 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
252     struct vm_phys_fictitious_seg *p2)
253 {
254 
255 	/* Check if this is a search for a page */
256 	if (p1->end == 0)
257 		return (vm_phys_fictitious_in_range(p1, p2));
258 
259 	KASSERT(p2->end != 0,
260     ("Invalid range passed as second parameter to vm fictitious comparison"));
261 
262 	/* Searching to add a new range */
263 	if (p1->end <= p2->start)
264 		return (-1);
265 	if (p1->start >= p2->end)
266 		return (1);
267 
268 	panic("Trying to add overlapping vm fictitious ranges:\n"
269 	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
270 	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
271 }
272 
273 static __inline int
274 vm_rr_selectdomain(void)
275 {
276 #ifdef VM_NUMA_ALLOC
277 	struct thread *td;
278 
279 	td = curthread;
280 
281 	td->td_dom_rr_idx++;
282 	td->td_dom_rr_idx %= vm_ndomains;
283 	return (td->td_dom_rr_idx);
284 #else
285 	return (0);
286 #endif
287 }
288 
289 /*
290  * Initialise a VM domain iterator.
291  *
292  * Check the thread policy, then the proc policy,
293  * then default to the system policy.
294  *
295  * Later on the various layers will have this logic
296  * plumbed into them and the phys code will be explicitly
297  * handed a VM domain policy to use.
298  */
299 static void
300 vm_policy_iterator_init(struct vm_domain_iterator *vi)
301 {
302 #ifdef VM_NUMA_ALLOC
303 	struct vm_domain_policy lcl;
304 #endif
305 
306 	vm_domain_iterator_init(vi);
307 
308 #ifdef VM_NUMA_ALLOC
309 	/* Copy out the thread policy */
310 	vm_domain_policy_localcopy(&lcl, &curthread->td_vm_dom_policy);
311 	if (lcl.p.policy != VM_POLICY_NONE) {
312 		/* Thread policy is present; use it */
313 		vm_domain_iterator_set_policy(vi, &lcl);
314 		return;
315 	}
316 
317 	vm_domain_policy_localcopy(&lcl,
318 	    &curthread->td_proc->p_vm_dom_policy);
319 	if (lcl.p.policy != VM_POLICY_NONE) {
320 		/* Process policy is present; use it */
321 		vm_domain_iterator_set_policy(vi, &lcl);
322 		return;
323 	}
324 #endif
325 	/* Use system default policy */
326 	vm_domain_iterator_set_policy(vi, &vm_default_policy);
327 }
328 
329 static void
330 vm_policy_iterator_finish(struct vm_domain_iterator *vi)
331 {
332 
333 	vm_domain_iterator_cleanup(vi);
334 }
335 
336 boolean_t
337 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
338 {
339 	struct vm_phys_seg *s;
340 	int idx;
341 
342 	while ((idx = ffsl(mask)) != 0) {
343 		idx--;	/* ffsl counts from 1 */
344 		mask &= ~(1UL << idx);
345 		s = &vm_phys_segs[idx];
346 		if (low < s->end && high > s->start)
347 			return (TRUE);
348 	}
349 	return (FALSE);
350 }
351 
352 /*
353  * Outputs the state of the physical memory allocator, specifically,
354  * the amount of physical memory in each free list.
355  */
356 static int
357 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
358 {
359 	struct sbuf sbuf;
360 	struct vm_freelist *fl;
361 	int dom, error, flind, oind, pind;
362 
363 	error = sysctl_wire_old_buffer(req, 0);
364 	if (error != 0)
365 		return (error);
366 	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
367 	for (dom = 0; dom < vm_ndomains; dom++) {
368 		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
369 		for (flind = 0; flind < vm_nfreelists; flind++) {
370 			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
371 			    "\n  ORDER (SIZE)  |  NUMBER"
372 			    "\n              ", flind);
373 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
374 				sbuf_printf(&sbuf, "  |  POOL %d", pind);
375 			sbuf_printf(&sbuf, "\n--            ");
376 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
377 				sbuf_printf(&sbuf, "-- --      ");
378 			sbuf_printf(&sbuf, "--\n");
379 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
380 				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
381 				    1 << (PAGE_SHIFT - 10 + oind));
382 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
383 				fl = vm_phys_free_queues[dom][flind][pind];
384 					sbuf_printf(&sbuf, "  |  %6d",
385 					    fl[oind].lcnt);
386 				}
387 				sbuf_printf(&sbuf, "\n");
388 			}
389 		}
390 	}
391 	error = sbuf_finish(&sbuf);
392 	sbuf_delete(&sbuf);
393 	return (error);
394 }
395 
396 /*
397  * Outputs the set of physical memory segments.
398  */
399 static int
400 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
401 {
402 	struct sbuf sbuf;
403 	struct vm_phys_seg *seg;
404 	int error, segind;
405 
406 	error = sysctl_wire_old_buffer(req, 0);
407 	if (error != 0)
408 		return (error);
409 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
410 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
411 		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
412 		seg = &vm_phys_segs[segind];
413 		sbuf_printf(&sbuf, "start:     %#jx\n",
414 		    (uintmax_t)seg->start);
415 		sbuf_printf(&sbuf, "end:       %#jx\n",
416 		    (uintmax_t)seg->end);
417 		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
418 		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
419 	}
420 	error = sbuf_finish(&sbuf);
421 	sbuf_delete(&sbuf);
422 	return (error);
423 }
424 
425 /*
426  * Return affinity, or -1 if there's no affinity information.
427  */
428 int
429 vm_phys_mem_affinity(int f, int t)
430 {
431 
432 #ifdef VM_NUMA_ALLOC
433 	if (mem_locality == NULL)
434 		return (-1);
435 	if (f >= vm_ndomains || t >= vm_ndomains)
436 		return (-1);
437 	return (mem_locality[f * vm_ndomains + t]);
438 #else
439 	return (-1);
440 #endif
441 }
442 
443 #ifdef VM_NUMA_ALLOC
444 /*
445  * Outputs the VM locality table.
446  */
447 static int
448 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
449 {
450 	struct sbuf sbuf;
451 	int error, i, j;
452 
453 	error = sysctl_wire_old_buffer(req, 0);
454 	if (error != 0)
455 		return (error);
456 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
457 
458 	sbuf_printf(&sbuf, "\n");
459 
460 	for (i = 0; i < vm_ndomains; i++) {
461 		sbuf_printf(&sbuf, "%d: ", i);
462 		for (j = 0; j < vm_ndomains; j++) {
463 			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
464 		}
465 		sbuf_printf(&sbuf, "\n");
466 	}
467 	error = sbuf_finish(&sbuf);
468 	sbuf_delete(&sbuf);
469 	return (error);
470 }
471 #endif
472 
473 static void
474 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
475 {
476 
477 	m->order = order;
478 	if (tail)
479 		TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
480 	else
481 		TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
482 	fl[order].lcnt++;
483 }
484 
485 static void
486 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
487 {
488 
489 	TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
490 	fl[order].lcnt--;
491 	m->order = VM_NFREEORDER;
492 }
493 
494 /*
495  * Create a physical memory segment.
496  */
497 static void
498 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
499 {
500 	struct vm_phys_seg *seg;
501 
502 	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
503 	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
504 	KASSERT(domain < vm_ndomains,
505 	    ("vm_phys_create_seg: invalid domain provided"));
506 	seg = &vm_phys_segs[vm_phys_nsegs++];
507 	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
508 		*seg = *(seg - 1);
509 		seg--;
510 	}
511 	seg->start = start;
512 	seg->end = end;
513 	seg->domain = domain;
514 }
515 
516 static void
517 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
518 {
519 #ifdef VM_NUMA_ALLOC
520 	int i;
521 
522 	if (mem_affinity == NULL) {
523 		_vm_phys_create_seg(start, end, 0);
524 		return;
525 	}
526 
527 	for (i = 0;; i++) {
528 		if (mem_affinity[i].end == 0)
529 			panic("Reached end of affinity info");
530 		if (mem_affinity[i].end <= start)
531 			continue;
532 		if (mem_affinity[i].start > start)
533 			panic("No affinity info for start %jx",
534 			    (uintmax_t)start);
535 		if (mem_affinity[i].end >= end) {
536 			_vm_phys_create_seg(start, end,
537 			    mem_affinity[i].domain);
538 			break;
539 		}
540 		_vm_phys_create_seg(start, mem_affinity[i].end,
541 		    mem_affinity[i].domain);
542 		start = mem_affinity[i].end;
543 	}
544 #else
545 	_vm_phys_create_seg(start, end, 0);
546 #endif
547 }
548 
549 /*
550  * Add a physical memory segment.
551  */
552 void
553 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
554 {
555 	vm_paddr_t paddr;
556 
557 	KASSERT((start & PAGE_MASK) == 0,
558 	    ("vm_phys_define_seg: start is not page aligned"));
559 	KASSERT((end & PAGE_MASK) == 0,
560 	    ("vm_phys_define_seg: end is not page aligned"));
561 
562 	/*
563 	 * Split the physical memory segment if it spans two or more free
564 	 * list boundaries.
565 	 */
566 	paddr = start;
567 #ifdef	VM_FREELIST_ISADMA
568 	if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
569 		vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
570 		paddr = VM_ISADMA_BOUNDARY;
571 	}
572 #endif
573 #ifdef	VM_FREELIST_LOWMEM
574 	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
575 		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
576 		paddr = VM_LOWMEM_BOUNDARY;
577 	}
578 #endif
579 #ifdef	VM_FREELIST_DMA32
580 	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
581 		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
582 		paddr = VM_DMA32_BOUNDARY;
583 	}
584 #endif
585 	vm_phys_create_seg(paddr, end);
586 }
587 
588 /*
589  * Initialize the physical memory allocator.
590  *
591  * Requires that vm_page_array is initialized!
592  */
593 void
594 vm_phys_init(void)
595 {
596 	struct vm_freelist *fl;
597 	struct vm_phys_seg *seg;
598 	u_long npages;
599 	int dom, flind, freelist, oind, pind, segind;
600 
601 	/*
602 	 * Compute the number of free lists, and generate the mapping from the
603 	 * manifest constants VM_FREELIST_* to the free list indices.
604 	 *
605 	 * Initially, the entries of vm_freelist_to_flind[] are set to either
606 	 * 0 or 1 to indicate which free lists should be created.
607 	 */
608 	npages = 0;
609 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
610 		seg = &vm_phys_segs[segind];
611 #ifdef	VM_FREELIST_ISADMA
612 		if (seg->end <= VM_ISADMA_BOUNDARY)
613 			vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
614 		else
615 #endif
616 #ifdef	VM_FREELIST_LOWMEM
617 		if (seg->end <= VM_LOWMEM_BOUNDARY)
618 			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
619 		else
620 #endif
621 #ifdef	VM_FREELIST_DMA32
622 		if (
623 #ifdef	VM_DMA32_NPAGES_THRESHOLD
624 		    /*
625 		     * Create the DMA32 free list only if the amount of
626 		     * physical memory above physical address 4G exceeds the
627 		     * given threshold.
628 		     */
629 		    npages > VM_DMA32_NPAGES_THRESHOLD &&
630 #endif
631 		    seg->end <= VM_DMA32_BOUNDARY)
632 			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
633 		else
634 #endif
635 		{
636 			npages += atop(seg->end - seg->start);
637 			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
638 		}
639 	}
640 	/* Change each entry into a running total of the free lists. */
641 	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
642 		vm_freelist_to_flind[freelist] +=
643 		    vm_freelist_to_flind[freelist - 1];
644 	}
645 	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
646 	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
647 	/* Change each entry into a free list index. */
648 	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
649 		vm_freelist_to_flind[freelist]--;
650 
651 	/*
652 	 * Initialize the first_page and free_queues fields of each physical
653 	 * memory segment.
654 	 */
655 #ifdef VM_PHYSSEG_SPARSE
656 	npages = 0;
657 #endif
658 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
659 		seg = &vm_phys_segs[segind];
660 #ifdef VM_PHYSSEG_SPARSE
661 		seg->first_page = &vm_page_array[npages];
662 		npages += atop(seg->end - seg->start);
663 #else
664 		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
665 #endif
666 #ifdef	VM_FREELIST_ISADMA
667 		if (seg->end <= VM_ISADMA_BOUNDARY) {
668 			flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
669 			KASSERT(flind >= 0,
670 			    ("vm_phys_init: ISADMA flind < 0"));
671 		} else
672 #endif
673 #ifdef	VM_FREELIST_LOWMEM
674 		if (seg->end <= VM_LOWMEM_BOUNDARY) {
675 			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
676 			KASSERT(flind >= 0,
677 			    ("vm_phys_init: LOWMEM flind < 0"));
678 		} else
679 #endif
680 #ifdef	VM_FREELIST_DMA32
681 		if (seg->end <= VM_DMA32_BOUNDARY) {
682 			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
683 			KASSERT(flind >= 0,
684 			    ("vm_phys_init: DMA32 flind < 0"));
685 		} else
686 #endif
687 		{
688 			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
689 			KASSERT(flind >= 0,
690 			    ("vm_phys_init: DEFAULT flind < 0"));
691 		}
692 		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
693 	}
694 
695 	/*
696 	 * Initialize the free queues.
697 	 */
698 	for (dom = 0; dom < vm_ndomains; dom++) {
699 		for (flind = 0; flind < vm_nfreelists; flind++) {
700 			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
701 				fl = vm_phys_free_queues[dom][flind][pind];
702 				for (oind = 0; oind < VM_NFREEORDER; oind++)
703 					TAILQ_INIT(&fl[oind].pl);
704 			}
705 		}
706 	}
707 
708 	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
709 }
710 
711 /*
712  * Split a contiguous, power of two-sized set of physical pages.
713  */
714 static __inline void
715 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
716 {
717 	vm_page_t m_buddy;
718 
719 	while (oind > order) {
720 		oind--;
721 		m_buddy = &m[1 << oind];
722 		KASSERT(m_buddy->order == VM_NFREEORDER,
723 		    ("vm_phys_split_pages: page %p has unexpected order %d",
724 		    m_buddy, m_buddy->order));
725 		vm_freelist_add(fl, m_buddy, oind, 0);
726         }
727 }
728 
729 /*
730  * Initialize a physical page and add it to the free lists.
731  */
732 void
733 vm_phys_add_page(vm_paddr_t pa)
734 {
735 	vm_page_t m;
736 	struct vm_domain *vmd;
737 
738 	vm_cnt.v_page_count++;
739 	m = vm_phys_paddr_to_vm_page(pa);
740 	m->busy_lock = VPB_UNBUSIED;
741 	m->phys_addr = pa;
742 	m->queue = PQ_NONE;
743 	m->segind = vm_phys_paddr_to_segind(pa);
744 	vmd = vm_phys_domain(m);
745 	vmd->vmd_page_count++;
746 	vmd->vmd_segs |= 1UL << m->segind;
747 	KASSERT(m->order == VM_NFREEORDER,
748 	    ("vm_phys_add_page: page %p has unexpected order %d",
749 	    m, m->order));
750 	m->pool = VM_FREEPOOL_DEFAULT;
751 	pmap_page_init(m);
752 	mtx_lock(&vm_page_queue_free_mtx);
753 	vm_phys_freecnt_adj(m, 1);
754 	vm_phys_free_pages(m, 0);
755 	mtx_unlock(&vm_page_queue_free_mtx);
756 }
757 
758 /*
759  * Allocate a contiguous, power of two-sized set of physical pages
760  * from the free lists.
761  *
762  * The free page queues must be locked.
763  */
764 vm_page_t
765 vm_phys_alloc_pages(int pool, int order)
766 {
767 	vm_page_t m;
768 	int domain, flind;
769 	struct vm_domain_iterator vi;
770 
771 	KASSERT(pool < VM_NFREEPOOL,
772 	    ("vm_phys_alloc_pages: pool %d is out of range", pool));
773 	KASSERT(order < VM_NFREEORDER,
774 	    ("vm_phys_alloc_pages: order %d is out of range", order));
775 
776 	vm_policy_iterator_init(&vi);
777 
778 	while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
779 		for (flind = 0; flind < vm_nfreelists; flind++) {
780 			m = vm_phys_alloc_domain_pages(domain, flind, pool,
781 			    order);
782 			if (m != NULL)
783 				return (m);
784 		}
785 	}
786 
787 	vm_policy_iterator_finish(&vi);
788 	return (NULL);
789 }
790 
791 /*
792  * Allocate a contiguous, power of two-sized set of physical pages from the
793  * specified free list.  The free list must be specified using one of the
794  * manifest constants VM_FREELIST_*.
795  *
796  * The free page queues must be locked.
797  */
798 vm_page_t
799 vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
800 {
801 	vm_page_t m;
802 	struct vm_domain_iterator vi;
803 	int domain;
804 
805 	KASSERT(freelist < VM_NFREELIST,
806 	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
807 	    freelist));
808 	KASSERT(pool < VM_NFREEPOOL,
809 	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
810 	KASSERT(order < VM_NFREEORDER,
811 	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
812 
813 	vm_policy_iterator_init(&vi);
814 
815 	while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
816 		m = vm_phys_alloc_domain_pages(domain,
817 		    vm_freelist_to_flind[freelist], pool, order);
818 		if (m != NULL)
819 			return (m);
820 	}
821 
822 	vm_policy_iterator_finish(&vi);
823 	return (NULL);
824 }
825 
826 static vm_page_t
827 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
828 {
829 	struct vm_freelist *fl;
830 	struct vm_freelist *alt;
831 	int oind, pind;
832 	vm_page_t m;
833 
834 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
835 	fl = &vm_phys_free_queues[domain][flind][pool][0];
836 	for (oind = order; oind < VM_NFREEORDER; oind++) {
837 		m = TAILQ_FIRST(&fl[oind].pl);
838 		if (m != NULL) {
839 			vm_freelist_rem(fl, m, oind);
840 			vm_phys_split_pages(m, oind, fl, order);
841 			return (m);
842 		}
843 	}
844 
845 	/*
846 	 * The given pool was empty.  Find the largest
847 	 * contiguous, power-of-two-sized set of pages in any
848 	 * pool.  Transfer these pages to the given pool, and
849 	 * use them to satisfy the allocation.
850 	 */
851 	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
852 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
853 			alt = &vm_phys_free_queues[domain][flind][pind][0];
854 			m = TAILQ_FIRST(&alt[oind].pl);
855 			if (m != NULL) {
856 				vm_freelist_rem(alt, m, oind);
857 				vm_phys_set_pool(pool, m, oind);
858 				vm_phys_split_pages(m, oind, fl, order);
859 				return (m);
860 			}
861 		}
862 	}
863 	return (NULL);
864 }
865 
866 /*
867  * Find the vm_page corresponding to the given physical address.
868  */
869 vm_page_t
870 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
871 {
872 	struct vm_phys_seg *seg;
873 	int segind;
874 
875 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
876 		seg = &vm_phys_segs[segind];
877 		if (pa >= seg->start && pa < seg->end)
878 			return (&seg->first_page[atop(pa - seg->start)]);
879 	}
880 	return (NULL);
881 }
882 
883 vm_page_t
884 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
885 {
886 	struct vm_phys_fictitious_seg tmp, *seg;
887 	vm_page_t m;
888 
889 	m = NULL;
890 	tmp.start = pa;
891 	tmp.end = 0;
892 
893 	rw_rlock(&vm_phys_fictitious_reg_lock);
894 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
895 	rw_runlock(&vm_phys_fictitious_reg_lock);
896 	if (seg == NULL)
897 		return (NULL);
898 
899 	m = &seg->first_page[atop(pa - seg->start)];
900 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
901 
902 	return (m);
903 }
904 
905 static inline void
906 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
907     long page_count, vm_memattr_t memattr)
908 {
909 	long i;
910 
911 	for (i = 0; i < page_count; i++) {
912 		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
913 		range[i].oflags &= ~VPO_UNMANAGED;
914 		range[i].busy_lock = VPB_UNBUSIED;
915 	}
916 }
917 
918 int
919 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
920     vm_memattr_t memattr)
921 {
922 	struct vm_phys_fictitious_seg *seg;
923 	vm_page_t fp;
924 	long page_count;
925 #ifdef VM_PHYSSEG_DENSE
926 	long pi, pe;
927 	long dpage_count;
928 #endif
929 
930 	KASSERT(start < end,
931 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
932 	    (uintmax_t)start, (uintmax_t)end));
933 
934 	page_count = (end - start) / PAGE_SIZE;
935 
936 #ifdef VM_PHYSSEG_DENSE
937 	pi = atop(start);
938 	pe = atop(end);
939 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
940 		fp = &vm_page_array[pi - first_page];
941 		if ((pe - first_page) > vm_page_array_size) {
942 			/*
943 			 * We have a segment that starts inside
944 			 * of vm_page_array, but ends outside of it.
945 			 *
946 			 * Use vm_page_array pages for those that are
947 			 * inside of the vm_page_array range, and
948 			 * allocate the remaining ones.
949 			 */
950 			dpage_count = vm_page_array_size - (pi - first_page);
951 			vm_phys_fictitious_init_range(fp, start, dpage_count,
952 			    memattr);
953 			page_count -= dpage_count;
954 			start += ptoa(dpage_count);
955 			goto alloc;
956 		}
957 		/*
958 		 * We can allocate the full range from vm_page_array,
959 		 * so there's no need to register the range in the tree.
960 		 */
961 		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
962 		return (0);
963 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
964 		/*
965 		 * We have a segment that ends inside of vm_page_array,
966 		 * but starts outside of it.
967 		 */
968 		fp = &vm_page_array[0];
969 		dpage_count = pe - first_page;
970 		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
971 		    memattr);
972 		end -= ptoa(dpage_count);
973 		page_count -= dpage_count;
974 		goto alloc;
975 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
976 		/*
977 		 * Trying to register a fictitious range that expands before
978 		 * and after vm_page_array.
979 		 */
980 		return (EINVAL);
981 	} else {
982 alloc:
983 #endif
984 		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
985 		    M_WAITOK | M_ZERO);
986 #ifdef VM_PHYSSEG_DENSE
987 	}
988 #endif
989 	vm_phys_fictitious_init_range(fp, start, page_count, memattr);
990 
991 	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
992 	seg->start = start;
993 	seg->end = end;
994 	seg->first_page = fp;
995 
996 	rw_wlock(&vm_phys_fictitious_reg_lock);
997 	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
998 	rw_wunlock(&vm_phys_fictitious_reg_lock);
999 
1000 	return (0);
1001 }
1002 
1003 void
1004 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1005 {
1006 	struct vm_phys_fictitious_seg *seg, tmp;
1007 #ifdef VM_PHYSSEG_DENSE
1008 	long pi, pe;
1009 #endif
1010 
1011 	KASSERT(start < end,
1012 	    ("Start of segment isn't less than end (start: %jx end: %jx)",
1013 	    (uintmax_t)start, (uintmax_t)end));
1014 
1015 #ifdef VM_PHYSSEG_DENSE
1016 	pi = atop(start);
1017 	pe = atop(end);
1018 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1019 		if ((pe - first_page) <= vm_page_array_size) {
1020 			/*
1021 			 * This segment was allocated using vm_page_array
1022 			 * only, there's nothing to do since those pages
1023 			 * were never added to the tree.
1024 			 */
1025 			return;
1026 		}
1027 		/*
1028 		 * We have a segment that starts inside
1029 		 * of vm_page_array, but ends outside of it.
1030 		 *
1031 		 * Calculate how many pages were added to the
1032 		 * tree and free them.
1033 		 */
1034 		start = ptoa(first_page + vm_page_array_size);
1035 	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1036 		/*
1037 		 * We have a segment that ends inside of vm_page_array,
1038 		 * but starts outside of it.
1039 		 */
1040 		end = ptoa(first_page);
1041 	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1042 		/* Since it's not possible to register such a range, panic. */
1043 		panic(
1044 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1045 		    (uintmax_t)start, (uintmax_t)end);
1046 	}
1047 #endif
1048 	tmp.start = start;
1049 	tmp.end = 0;
1050 
1051 	rw_wlock(&vm_phys_fictitious_reg_lock);
1052 	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1053 	if (seg->start != start || seg->end != end) {
1054 		rw_wunlock(&vm_phys_fictitious_reg_lock);
1055 		panic(
1056 		    "Unregistering not registered fictitious range [%#jx:%#jx]",
1057 		    (uintmax_t)start, (uintmax_t)end);
1058 	}
1059 	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1060 	rw_wunlock(&vm_phys_fictitious_reg_lock);
1061 	free(seg->first_page, M_FICT_PAGES);
1062 	free(seg, M_FICT_PAGES);
1063 }
1064 
1065 /*
1066  * Find the segment containing the given physical address.
1067  */
1068 static int
1069 vm_phys_paddr_to_segind(vm_paddr_t pa)
1070 {
1071 	struct vm_phys_seg *seg;
1072 	int segind;
1073 
1074 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1075 		seg = &vm_phys_segs[segind];
1076 		if (pa >= seg->start && pa < seg->end)
1077 			return (segind);
1078 	}
1079 	panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
1080 	    (uintmax_t)pa);
1081 }
1082 
1083 /*
1084  * Free a contiguous, power of two-sized set of physical pages.
1085  *
1086  * The free page queues must be locked.
1087  */
1088 void
1089 vm_phys_free_pages(vm_page_t m, int order)
1090 {
1091 	struct vm_freelist *fl;
1092 	struct vm_phys_seg *seg;
1093 	vm_paddr_t pa;
1094 	vm_page_t m_buddy;
1095 
1096 	KASSERT(m->order == VM_NFREEORDER,
1097 	    ("vm_phys_free_pages: page %p has unexpected order %d",
1098 	    m, m->order));
1099 	KASSERT(m->pool < VM_NFREEPOOL,
1100 	    ("vm_phys_free_pages: page %p has unexpected pool %d",
1101 	    m, m->pool));
1102 	KASSERT(order < VM_NFREEORDER,
1103 	    ("vm_phys_free_pages: order %d is out of range", order));
1104 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1105 	seg = &vm_phys_segs[m->segind];
1106 	if (order < VM_NFREEORDER - 1) {
1107 		pa = VM_PAGE_TO_PHYS(m);
1108 		do {
1109 			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1110 			if (pa < seg->start || pa >= seg->end)
1111 				break;
1112 			m_buddy = &seg->first_page[atop(pa - seg->start)];
1113 			if (m_buddy->order != order)
1114 				break;
1115 			fl = (*seg->free_queues)[m_buddy->pool];
1116 			vm_freelist_rem(fl, m_buddy, order);
1117 			if (m_buddy->pool != m->pool)
1118 				vm_phys_set_pool(m->pool, m_buddy, order);
1119 			order++;
1120 			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1121 			m = &seg->first_page[atop(pa - seg->start)];
1122 		} while (order < VM_NFREEORDER - 1);
1123 	}
1124 	fl = (*seg->free_queues)[m->pool];
1125 	vm_freelist_add(fl, m, order, 1);
1126 }
1127 
1128 /*
1129  * Free a contiguous, arbitrarily sized set of physical pages.
1130  *
1131  * The free page queues must be locked.
1132  */
1133 void
1134 vm_phys_free_contig(vm_page_t m, u_long npages)
1135 {
1136 	u_int n;
1137 	int order;
1138 
1139 	/*
1140 	 * Avoid unnecessary coalescing by freeing the pages in the largest
1141 	 * possible power-of-two-sized subsets.
1142 	 */
1143 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1144 	for (;; npages -= n) {
1145 		/*
1146 		 * Unsigned "min" is used here so that "order" is assigned
1147 		 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1148 		 * or the low-order bits of its physical address are zero
1149 		 * because the size of a physical address exceeds the size of
1150 		 * a long.
1151 		 */
1152 		order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1153 		    VM_NFREEORDER - 1);
1154 		n = 1 << order;
1155 		if (npages < n)
1156 			break;
1157 		vm_phys_free_pages(m, order);
1158 		m += n;
1159 	}
1160 	/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
1161 	for (; npages > 0; npages -= n) {
1162 		order = flsl(npages) - 1;
1163 		n = 1 << order;
1164 		vm_phys_free_pages(m, order);
1165 		m += n;
1166 	}
1167 }
1168 
1169 /*
1170  * Scan physical memory between the specified addresses "low" and "high" for a
1171  * run of contiguous physical pages that satisfy the specified conditions, and
1172  * return the lowest page in the run.  The specified "alignment" determines
1173  * the alignment of the lowest physical page in the run.  If the specified
1174  * "boundary" is non-zero, then the run of physical pages cannot span a
1175  * physical address that is a multiple of "boundary".
1176  *
1177  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
1178  * be a power of two.
1179  */
1180 vm_page_t
1181 vm_phys_scan_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1182     u_long alignment, vm_paddr_t boundary, int options)
1183 {
1184 	vm_paddr_t pa_end;
1185 	vm_page_t m_end, m_run, m_start;
1186 	struct vm_phys_seg *seg;
1187 	int segind;
1188 
1189 	KASSERT(npages > 0, ("npages is 0"));
1190 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1191 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1192 	if (low >= high)
1193 		return (NULL);
1194 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1195 		seg = &vm_phys_segs[segind];
1196 		if (seg->start >= high)
1197 			break;
1198 		if (low >= seg->end)
1199 			continue;
1200 		if (low <= seg->start)
1201 			m_start = seg->first_page;
1202 		else
1203 			m_start = &seg->first_page[atop(low - seg->start)];
1204 		if (high < seg->end)
1205 			pa_end = high;
1206 		else
1207 			pa_end = seg->end;
1208 		if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1209 			continue;
1210 		m_end = &seg->first_page[atop(pa_end - seg->start)];
1211 		m_run = vm_page_scan_contig(npages, m_start, m_end,
1212 		    alignment, boundary, options);
1213 		if (m_run != NULL)
1214 			return (m_run);
1215 	}
1216 	return (NULL);
1217 }
1218 
1219 /*
1220  * Set the pool for a contiguous, power of two-sized set of physical pages.
1221  */
1222 void
1223 vm_phys_set_pool(int pool, vm_page_t m, int order)
1224 {
1225 	vm_page_t m_tmp;
1226 
1227 	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1228 		m_tmp->pool = pool;
1229 }
1230 
1231 /*
1232  * Search for the given physical page "m" in the free lists.  If the search
1233  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1234  * FALSE, indicating that "m" is not in the free lists.
1235  *
1236  * The free page queues must be locked.
1237  */
1238 boolean_t
1239 vm_phys_unfree_page(vm_page_t m)
1240 {
1241 	struct vm_freelist *fl;
1242 	struct vm_phys_seg *seg;
1243 	vm_paddr_t pa, pa_half;
1244 	vm_page_t m_set, m_tmp;
1245 	int order;
1246 
1247 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1248 
1249 	/*
1250 	 * First, find the contiguous, power of two-sized set of free
1251 	 * physical pages containing the given physical page "m" and
1252 	 * assign it to "m_set".
1253 	 */
1254 	seg = &vm_phys_segs[m->segind];
1255 	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1256 	    order < VM_NFREEORDER - 1; ) {
1257 		order++;
1258 		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1259 		if (pa >= seg->start)
1260 			m_set = &seg->first_page[atop(pa - seg->start)];
1261 		else
1262 			return (FALSE);
1263 	}
1264 	if (m_set->order < order)
1265 		return (FALSE);
1266 	if (m_set->order == VM_NFREEORDER)
1267 		return (FALSE);
1268 	KASSERT(m_set->order < VM_NFREEORDER,
1269 	    ("vm_phys_unfree_page: page %p has unexpected order %d",
1270 	    m_set, m_set->order));
1271 
1272 	/*
1273 	 * Next, remove "m_set" from the free lists.  Finally, extract
1274 	 * "m" from "m_set" using an iterative algorithm: While "m_set"
1275 	 * is larger than a page, shrink "m_set" by returning the half
1276 	 * of "m_set" that does not contain "m" to the free lists.
1277 	 */
1278 	fl = (*seg->free_queues)[m_set->pool];
1279 	order = m_set->order;
1280 	vm_freelist_rem(fl, m_set, order);
1281 	while (order > 0) {
1282 		order--;
1283 		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1284 		if (m->phys_addr < pa_half)
1285 			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1286 		else {
1287 			m_tmp = m_set;
1288 			m_set = &seg->first_page[atop(pa_half - seg->start)];
1289 		}
1290 		vm_freelist_add(fl, m_tmp, order, 0);
1291 	}
1292 	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1293 	return (TRUE);
1294 }
1295 
1296 /*
1297  * Allocate a contiguous set of physical pages of the given size
1298  * "npages" from the free lists.  All of the physical pages must be at
1299  * or above the given physical address "low" and below the given
1300  * physical address "high".  The given value "alignment" determines the
1301  * alignment of the first physical page in the set.  If the given value
1302  * "boundary" is non-zero, then the set of physical pages cannot cross
1303  * any physical address boundary that is a multiple of that value.  Both
1304  * "alignment" and "boundary" must be a power of two.
1305  */
1306 vm_page_t
1307 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1308     u_long alignment, vm_paddr_t boundary)
1309 {
1310 	vm_paddr_t pa_end, pa_start;
1311 	vm_page_t m_run;
1312 	struct vm_domain_iterator vi;
1313 	struct vm_phys_seg *seg;
1314 	int domain, segind;
1315 
1316 	KASSERT(npages > 0, ("npages is 0"));
1317 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1318 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1319 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1320 	if (low >= high)
1321 		return (NULL);
1322 	vm_policy_iterator_init(&vi);
1323 restartdom:
1324 	if (vm_domain_iterator_run(&vi, &domain) != 0) {
1325 		vm_policy_iterator_finish(&vi);
1326 		return (NULL);
1327 	}
1328 	m_run = NULL;
1329 	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1330 		seg = &vm_phys_segs[segind];
1331 		if (seg->start >= high || seg->domain != domain)
1332 			continue;
1333 		if (low >= seg->end)
1334 			break;
1335 		if (low <= seg->start)
1336 			pa_start = seg->start;
1337 		else
1338 			pa_start = low;
1339 		if (high < seg->end)
1340 			pa_end = high;
1341 		else
1342 			pa_end = seg->end;
1343 		if (pa_end - pa_start < ptoa(npages))
1344 			continue;
1345 		m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1346 		    alignment, boundary);
1347 		if (m_run != NULL)
1348 			break;
1349 	}
1350 	if (m_run == NULL && !vm_domain_iterator_isdone(&vi))
1351 		goto restartdom;
1352 	vm_policy_iterator_finish(&vi);
1353 	return (m_run);
1354 }
1355 
1356 /*
1357  * Allocate a run of contiguous physical pages from the free list for the
1358  * specified segment.
1359  */
1360 static vm_page_t
1361 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1362     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1363 {
1364 	struct vm_freelist *fl;
1365 	vm_paddr_t pa, pa_end, size;
1366 	vm_page_t m, m_ret;
1367 	u_long npages_end;
1368 	int oind, order, pind;
1369 
1370 	KASSERT(npages > 0, ("npages is 0"));
1371 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1372 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1373 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1374 	/* Compute the queue that is the best fit for npages. */
1375 	for (order = 0; (1 << order) < npages; order++);
1376 	/* Search for a run satisfying the specified conditions. */
1377 	size = npages << PAGE_SHIFT;
1378 	for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1379 	    oind++) {
1380 		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1381 			fl = (*seg->free_queues)[pind];
1382 			TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1383 				/*
1384 				 * Is the size of this allocation request
1385 				 * larger than the largest block size?
1386 				 */
1387 				if (order >= VM_NFREEORDER) {
1388 					/*
1389 					 * Determine if a sufficient number of
1390 					 * subsequent blocks to satisfy the
1391 					 * allocation request are free.
1392 					 */
1393 					pa = VM_PAGE_TO_PHYS(m_ret);
1394 					pa_end = pa + size;
1395 					for (;;) {
1396 						pa += 1 << (PAGE_SHIFT +
1397 						    VM_NFREEORDER - 1);
1398 						if (pa >= pa_end ||
1399 						    pa < seg->start ||
1400 						    pa >= seg->end)
1401 							break;
1402 						m = &seg->first_page[atop(pa -
1403 						    seg->start)];
1404 						if (m->order != VM_NFREEORDER -
1405 						    1)
1406 							break;
1407 					}
1408 					/* If not, go to the next block. */
1409 					if (pa < pa_end)
1410 						continue;
1411 				}
1412 
1413 				/*
1414 				 * Determine if the blocks are within the
1415 				 * given range, satisfy the given alignment,
1416 				 * and do not cross the given boundary.
1417 				 */
1418 				pa = VM_PAGE_TO_PHYS(m_ret);
1419 				pa_end = pa + size;
1420 				if (pa >= low && pa_end <= high &&
1421 				    (pa & (alignment - 1)) == 0 &&
1422 				    rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1423 					goto done;
1424 			}
1425 		}
1426 	}
1427 	return (NULL);
1428 done:
1429 	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1430 		fl = (*seg->free_queues)[m->pool];
1431 		vm_freelist_rem(fl, m, m->order);
1432 	}
1433 	if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1434 		vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1435 	fl = (*seg->free_queues)[m_ret->pool];
1436 	vm_phys_split_pages(m_ret, oind, fl, order);
1437 	/* Return excess pages to the free lists. */
1438 	npages_end = roundup2(npages, 1 << imin(oind, order));
1439 	if (npages < npages_end)
1440 		vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1441 	return (m_ret);
1442 }
1443 
1444 #ifdef DDB
1445 /*
1446  * Show the number of physical pages in each of the free lists.
1447  */
1448 DB_SHOW_COMMAND(freepages, db_show_freepages)
1449 {
1450 	struct vm_freelist *fl;
1451 	int flind, oind, pind, dom;
1452 
1453 	for (dom = 0; dom < vm_ndomains; dom++) {
1454 		db_printf("DOMAIN: %d\n", dom);
1455 		for (flind = 0; flind < vm_nfreelists; flind++) {
1456 			db_printf("FREE LIST %d:\n"
1457 			    "\n  ORDER (SIZE)  |  NUMBER"
1458 			    "\n              ", flind);
1459 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1460 				db_printf("  |  POOL %d", pind);
1461 			db_printf("\n--            ");
1462 			for (pind = 0; pind < VM_NFREEPOOL; pind++)
1463 				db_printf("-- --      ");
1464 			db_printf("--\n");
1465 			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1466 				db_printf("  %2.2d (%6.6dK)", oind,
1467 				    1 << (PAGE_SHIFT - 10 + oind));
1468 				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1469 				fl = vm_phys_free_queues[dom][flind][pind];
1470 					db_printf("  |  %6.6d", fl[oind].lcnt);
1471 				}
1472 				db_printf("\n");
1473 			}
1474 			db_printf("\n");
1475 		}
1476 		db_printf("\n");
1477 	}
1478 }
1479 #endif
1480