1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Physical memory system implementation 34 * 35 * Any external functions defined by this module are only to be used by the 36 * virtual memory system. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ddb.h" 43 #include "opt_vm.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/lock.h> 48 #include <sys/kernel.h> 49 #include <sys/malloc.h> 50 #include <sys/mutex.h> 51 #if MAXMEMDOM > 1 52 #include <sys/proc.h> 53 #endif 54 #include <sys/queue.h> 55 #include <sys/rwlock.h> 56 #include <sys/sbuf.h> 57 #include <sys/sysctl.h> 58 #include <sys/tree.h> 59 #include <sys/vmmeter.h> 60 #include <sys/seq.h> 61 62 #include <ddb/ddb.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_param.h> 66 #include <vm/vm_kern.h> 67 #include <vm/vm_object.h> 68 #include <vm/vm_page.h> 69 #include <vm/vm_phys.h> 70 71 #include <vm/vm_domain.h> 72 73 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX, 74 "Too many physsegs."); 75 76 struct mem_affinity *mem_affinity; 77 int *mem_locality; 78 79 int vm_ndomains = 1; 80 81 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX]; 82 int vm_phys_nsegs; 83 84 struct vm_phys_fictitious_seg; 85 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *, 86 struct vm_phys_fictitious_seg *); 87 88 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree = 89 RB_INITIALIZER(_vm_phys_fictitious_tree); 90 91 struct vm_phys_fictitious_seg { 92 RB_ENTRY(vm_phys_fictitious_seg) node; 93 /* Memory region data */ 94 vm_paddr_t start; 95 vm_paddr_t end; 96 vm_page_t first_page; 97 }; 98 99 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node, 100 vm_phys_fictitious_cmp); 101 102 static struct rwlock vm_phys_fictitious_reg_lock; 103 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages"); 104 105 static struct vm_freelist 106 vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER]; 107 108 static int vm_nfreelists; 109 110 /* 111 * Provides the mapping from VM_FREELIST_* to free list indices (flind). 112 */ 113 static int vm_freelist_to_flind[VM_NFREELIST]; 114 115 CTASSERT(VM_FREELIST_DEFAULT == 0); 116 117 #ifdef VM_FREELIST_ISADMA 118 #define VM_ISADMA_BOUNDARY 16777216 119 #endif 120 #ifdef VM_FREELIST_DMA32 121 #define VM_DMA32_BOUNDARY ((vm_paddr_t)1 << 32) 122 #endif 123 124 /* 125 * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about 126 * the ordering of the free list boundaries. 127 */ 128 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY) 129 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY); 130 #endif 131 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY) 132 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY); 133 #endif 134 135 static int cnt_prezero; 136 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD, 137 &cnt_prezero, 0, "The number of physical pages prezeroed at idle time"); 138 139 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS); 140 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD, 141 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info"); 142 143 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS); 144 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD, 145 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info"); 146 147 #if MAXMEMDOM > 1 148 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS); 149 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD, 150 NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info"); 151 #endif 152 153 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD, 154 &vm_ndomains, 0, "Number of physical memory domains available."); 155 156 /* 157 * Default to first-touch + round-robin. 158 */ 159 static struct mtx vm_default_policy_mtx; 160 MTX_SYSINIT(vm_default_policy, &vm_default_policy_mtx, "default policy mutex", 161 MTX_DEF); 162 #if MAXMEMDOM > 1 163 static struct vm_domain_policy vm_default_policy = 164 VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0); 165 #else 166 /* Use round-robin so the domain policy code will only try once per allocation */ 167 static struct vm_domain_policy vm_default_policy = 168 VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_ROUND_ROBIN, 0); 169 #endif 170 171 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool, 172 int order); 173 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, 174 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 175 vm_paddr_t boundary); 176 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain); 177 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end); 178 static int vm_phys_paddr_to_segind(vm_paddr_t pa); 179 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, 180 int order); 181 182 static int 183 sysctl_vm_default_policy(SYSCTL_HANDLER_ARGS) 184 { 185 char policy_name[32]; 186 int error; 187 188 mtx_lock(&vm_default_policy_mtx); 189 190 /* Map policy to output string */ 191 switch (vm_default_policy.p.policy) { 192 case VM_POLICY_FIRST_TOUCH: 193 strcpy(policy_name, "first-touch"); 194 break; 195 case VM_POLICY_FIRST_TOUCH_ROUND_ROBIN: 196 strcpy(policy_name, "first-touch-rr"); 197 break; 198 case VM_POLICY_ROUND_ROBIN: 199 default: 200 strcpy(policy_name, "rr"); 201 break; 202 } 203 mtx_unlock(&vm_default_policy_mtx); 204 205 error = sysctl_handle_string(oidp, &policy_name[0], 206 sizeof(policy_name), req); 207 if (error != 0 || req->newptr == NULL) 208 return (error); 209 210 mtx_lock(&vm_default_policy_mtx); 211 /* Set: match on the subset of policies that make sense as a default */ 212 if (strcmp("first-touch-rr", policy_name) == 0) { 213 vm_domain_policy_set(&vm_default_policy, 214 VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0); 215 } else if (strcmp("first-touch", policy_name) == 0) { 216 vm_domain_policy_set(&vm_default_policy, 217 VM_POLICY_FIRST_TOUCH, 0); 218 } else if (strcmp("rr", policy_name) == 0) { 219 vm_domain_policy_set(&vm_default_policy, 220 VM_POLICY_ROUND_ROBIN, 0); 221 } else { 222 error = EINVAL; 223 goto finish; 224 } 225 226 error = 0; 227 finish: 228 mtx_unlock(&vm_default_policy_mtx); 229 return (error); 230 } 231 232 SYSCTL_PROC(_vm, OID_AUTO, default_policy, CTLTYPE_STRING | CTLFLAG_RW, 233 0, 0, sysctl_vm_default_policy, "A", 234 "Default policy (rr, first-touch, first-touch-rr"); 235 236 /* 237 * Red-black tree helpers for vm fictitious range management. 238 */ 239 static inline int 240 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p, 241 struct vm_phys_fictitious_seg *range) 242 { 243 244 KASSERT(range->start != 0 && range->end != 0, 245 ("Invalid range passed on search for vm_fictitious page")); 246 if (p->start >= range->end) 247 return (1); 248 if (p->start < range->start) 249 return (-1); 250 251 return (0); 252 } 253 254 static int 255 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1, 256 struct vm_phys_fictitious_seg *p2) 257 { 258 259 /* Check if this is a search for a page */ 260 if (p1->end == 0) 261 return (vm_phys_fictitious_in_range(p1, p2)); 262 263 KASSERT(p2->end != 0, 264 ("Invalid range passed as second parameter to vm fictitious comparison")); 265 266 /* Searching to add a new range */ 267 if (p1->end <= p2->start) 268 return (-1); 269 if (p1->start >= p2->end) 270 return (1); 271 272 panic("Trying to add overlapping vm fictitious ranges:\n" 273 "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start, 274 (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end); 275 } 276 277 static __inline int 278 vm_rr_selectdomain(void) 279 { 280 #if MAXMEMDOM > 1 281 struct thread *td; 282 283 td = curthread; 284 285 td->td_dom_rr_idx++; 286 td->td_dom_rr_idx %= vm_ndomains; 287 return (td->td_dom_rr_idx); 288 #else 289 return (0); 290 #endif 291 } 292 293 /* 294 * Initialise a VM domain iterator. 295 * 296 * Check the thread policy, then the proc policy, 297 * then default to the system policy. 298 * 299 * Later on the various layers will have this logic 300 * plumbed into them and the phys code will be explicitly 301 * handed a VM domain policy to use. 302 */ 303 static void 304 vm_policy_iterator_init(struct vm_domain_iterator *vi) 305 { 306 #if MAXMEMDOM > 1 307 struct vm_domain_policy lcl; 308 #endif 309 310 vm_domain_iterator_init(vi); 311 312 #if MAXMEMDOM > 1 313 /* Copy out the thread policy */ 314 vm_domain_policy_localcopy(&lcl, &curthread->td_vm_dom_policy); 315 if (lcl.p.policy != VM_POLICY_NONE) { 316 /* Thread policy is present; use it */ 317 vm_domain_iterator_set_policy(vi, &lcl); 318 return; 319 } 320 321 vm_domain_policy_localcopy(&lcl, 322 &curthread->td_proc->p_vm_dom_policy); 323 if (lcl.p.policy != VM_POLICY_NONE) { 324 /* Process policy is present; use it */ 325 vm_domain_iterator_set_policy(vi, &lcl); 326 return; 327 } 328 #endif 329 /* Use system default policy */ 330 vm_domain_iterator_set_policy(vi, &vm_default_policy); 331 } 332 333 static void 334 vm_policy_iterator_finish(struct vm_domain_iterator *vi) 335 { 336 337 vm_domain_iterator_cleanup(vi); 338 } 339 340 boolean_t 341 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high) 342 { 343 struct vm_phys_seg *s; 344 int idx; 345 346 while ((idx = ffsl(mask)) != 0) { 347 idx--; /* ffsl counts from 1 */ 348 mask &= ~(1UL << idx); 349 s = &vm_phys_segs[idx]; 350 if (low < s->end && high > s->start) 351 return (TRUE); 352 } 353 return (FALSE); 354 } 355 356 /* 357 * Outputs the state of the physical memory allocator, specifically, 358 * the amount of physical memory in each free list. 359 */ 360 static int 361 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS) 362 { 363 struct sbuf sbuf; 364 struct vm_freelist *fl; 365 int dom, error, flind, oind, pind; 366 367 error = sysctl_wire_old_buffer(req, 0); 368 if (error != 0) 369 return (error); 370 sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req); 371 for (dom = 0; dom < vm_ndomains; dom++) { 372 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom); 373 for (flind = 0; flind < vm_nfreelists; flind++) { 374 sbuf_printf(&sbuf, "\nFREE LIST %d:\n" 375 "\n ORDER (SIZE) | NUMBER" 376 "\n ", flind); 377 for (pind = 0; pind < VM_NFREEPOOL; pind++) 378 sbuf_printf(&sbuf, " | POOL %d", pind); 379 sbuf_printf(&sbuf, "\n-- "); 380 for (pind = 0; pind < VM_NFREEPOOL; pind++) 381 sbuf_printf(&sbuf, "-- -- "); 382 sbuf_printf(&sbuf, "--\n"); 383 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 384 sbuf_printf(&sbuf, " %2d (%6dK)", oind, 385 1 << (PAGE_SHIFT - 10 + oind)); 386 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 387 fl = vm_phys_free_queues[dom][flind][pind]; 388 sbuf_printf(&sbuf, " | %6d", 389 fl[oind].lcnt); 390 } 391 sbuf_printf(&sbuf, "\n"); 392 } 393 } 394 } 395 error = sbuf_finish(&sbuf); 396 sbuf_delete(&sbuf); 397 return (error); 398 } 399 400 /* 401 * Outputs the set of physical memory segments. 402 */ 403 static int 404 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS) 405 { 406 struct sbuf sbuf; 407 struct vm_phys_seg *seg; 408 int error, segind; 409 410 error = sysctl_wire_old_buffer(req, 0); 411 if (error != 0) 412 return (error); 413 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 414 for (segind = 0; segind < vm_phys_nsegs; segind++) { 415 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind); 416 seg = &vm_phys_segs[segind]; 417 sbuf_printf(&sbuf, "start: %#jx\n", 418 (uintmax_t)seg->start); 419 sbuf_printf(&sbuf, "end: %#jx\n", 420 (uintmax_t)seg->end); 421 sbuf_printf(&sbuf, "domain: %d\n", seg->domain); 422 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues); 423 } 424 error = sbuf_finish(&sbuf); 425 sbuf_delete(&sbuf); 426 return (error); 427 } 428 429 /* 430 * Return affinity, or -1 if there's no affinity information. 431 */ 432 int 433 vm_phys_mem_affinity(int f, int t) 434 { 435 436 #if MAXMEMDOM > 1 437 if (mem_locality == NULL) 438 return (-1); 439 if (f >= vm_ndomains || t >= vm_ndomains) 440 return (-1); 441 return (mem_locality[f * vm_ndomains + t]); 442 #else 443 return (-1); 444 #endif 445 } 446 447 #if MAXMEMDOM > 1 448 /* 449 * Outputs the VM locality table. 450 */ 451 static int 452 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS) 453 { 454 struct sbuf sbuf; 455 int error, i, j; 456 457 error = sysctl_wire_old_buffer(req, 0); 458 if (error != 0) 459 return (error); 460 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 461 462 sbuf_printf(&sbuf, "\n"); 463 464 for (i = 0; i < vm_ndomains; i++) { 465 sbuf_printf(&sbuf, "%d: ", i); 466 for (j = 0; j < vm_ndomains; j++) { 467 sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j)); 468 } 469 sbuf_printf(&sbuf, "\n"); 470 } 471 error = sbuf_finish(&sbuf); 472 sbuf_delete(&sbuf); 473 return (error); 474 } 475 #endif 476 477 static void 478 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail) 479 { 480 481 m->order = order; 482 if (tail) 483 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q); 484 else 485 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q); 486 fl[order].lcnt++; 487 } 488 489 static void 490 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order) 491 { 492 493 TAILQ_REMOVE(&fl[order].pl, m, plinks.q); 494 fl[order].lcnt--; 495 m->order = VM_NFREEORDER; 496 } 497 498 /* 499 * Create a physical memory segment. 500 */ 501 static void 502 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain) 503 { 504 struct vm_phys_seg *seg; 505 506 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX, 507 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX")); 508 KASSERT(domain < vm_ndomains, 509 ("vm_phys_create_seg: invalid domain provided")); 510 seg = &vm_phys_segs[vm_phys_nsegs++]; 511 while (seg > vm_phys_segs && (seg - 1)->start >= end) { 512 *seg = *(seg - 1); 513 seg--; 514 } 515 seg->start = start; 516 seg->end = end; 517 seg->domain = domain; 518 } 519 520 static void 521 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end) 522 { 523 int i; 524 525 if (mem_affinity == NULL) { 526 _vm_phys_create_seg(start, end, 0); 527 return; 528 } 529 530 for (i = 0;; i++) { 531 if (mem_affinity[i].end == 0) 532 panic("Reached end of affinity info"); 533 if (mem_affinity[i].end <= start) 534 continue; 535 if (mem_affinity[i].start > start) 536 panic("No affinity info for start %jx", 537 (uintmax_t)start); 538 if (mem_affinity[i].end >= end) { 539 _vm_phys_create_seg(start, end, 540 mem_affinity[i].domain); 541 break; 542 } 543 _vm_phys_create_seg(start, mem_affinity[i].end, 544 mem_affinity[i].domain); 545 start = mem_affinity[i].end; 546 } 547 } 548 549 /* 550 * Add a physical memory segment. 551 */ 552 void 553 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end) 554 { 555 vm_paddr_t paddr; 556 557 KASSERT((start & PAGE_MASK) == 0, 558 ("vm_phys_define_seg: start is not page aligned")); 559 KASSERT((end & PAGE_MASK) == 0, 560 ("vm_phys_define_seg: end is not page aligned")); 561 562 /* 563 * Split the physical memory segment if it spans two or more free 564 * list boundaries. 565 */ 566 paddr = start; 567 #ifdef VM_FREELIST_ISADMA 568 if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) { 569 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY); 570 paddr = VM_ISADMA_BOUNDARY; 571 } 572 #endif 573 #ifdef VM_FREELIST_LOWMEM 574 if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) { 575 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY); 576 paddr = VM_LOWMEM_BOUNDARY; 577 } 578 #endif 579 #ifdef VM_FREELIST_DMA32 580 if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) { 581 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY); 582 paddr = VM_DMA32_BOUNDARY; 583 } 584 #endif 585 vm_phys_create_seg(paddr, end); 586 } 587 588 /* 589 * Initialize the physical memory allocator. 590 * 591 * Requires that vm_page_array is initialized! 592 */ 593 void 594 vm_phys_init(void) 595 { 596 struct vm_freelist *fl; 597 struct vm_phys_seg *seg; 598 u_long npages; 599 int dom, flind, freelist, oind, pind, segind; 600 601 /* 602 * Compute the number of free lists, and generate the mapping from the 603 * manifest constants VM_FREELIST_* to the free list indices. 604 * 605 * Initially, the entries of vm_freelist_to_flind[] are set to either 606 * 0 or 1 to indicate which free lists should be created. 607 */ 608 npages = 0; 609 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) { 610 seg = &vm_phys_segs[segind]; 611 #ifdef VM_FREELIST_ISADMA 612 if (seg->end <= VM_ISADMA_BOUNDARY) 613 vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1; 614 else 615 #endif 616 #ifdef VM_FREELIST_LOWMEM 617 if (seg->end <= VM_LOWMEM_BOUNDARY) 618 vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1; 619 else 620 #endif 621 #ifdef VM_FREELIST_DMA32 622 if ( 623 #ifdef VM_DMA32_NPAGES_THRESHOLD 624 /* 625 * Create the DMA32 free list only if the amount of 626 * physical memory above physical address 4G exceeds the 627 * given threshold. 628 */ 629 npages > VM_DMA32_NPAGES_THRESHOLD && 630 #endif 631 seg->end <= VM_DMA32_BOUNDARY) 632 vm_freelist_to_flind[VM_FREELIST_DMA32] = 1; 633 else 634 #endif 635 { 636 npages += atop(seg->end - seg->start); 637 vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1; 638 } 639 } 640 /* Change each entry into a running total of the free lists. */ 641 for (freelist = 1; freelist < VM_NFREELIST; freelist++) { 642 vm_freelist_to_flind[freelist] += 643 vm_freelist_to_flind[freelist - 1]; 644 } 645 vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1]; 646 KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists")); 647 /* Change each entry into a free list index. */ 648 for (freelist = 0; freelist < VM_NFREELIST; freelist++) 649 vm_freelist_to_flind[freelist]--; 650 651 /* 652 * Initialize the first_page and free_queues fields of each physical 653 * memory segment. 654 */ 655 #ifdef VM_PHYSSEG_SPARSE 656 npages = 0; 657 #endif 658 for (segind = 0; segind < vm_phys_nsegs; segind++) { 659 seg = &vm_phys_segs[segind]; 660 #ifdef VM_PHYSSEG_SPARSE 661 seg->first_page = &vm_page_array[npages]; 662 npages += atop(seg->end - seg->start); 663 #else 664 seg->first_page = PHYS_TO_VM_PAGE(seg->start); 665 #endif 666 #ifdef VM_FREELIST_ISADMA 667 if (seg->end <= VM_ISADMA_BOUNDARY) { 668 flind = vm_freelist_to_flind[VM_FREELIST_ISADMA]; 669 KASSERT(flind >= 0, 670 ("vm_phys_init: ISADMA flind < 0")); 671 } else 672 #endif 673 #ifdef VM_FREELIST_LOWMEM 674 if (seg->end <= VM_LOWMEM_BOUNDARY) { 675 flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM]; 676 KASSERT(flind >= 0, 677 ("vm_phys_init: LOWMEM flind < 0")); 678 } else 679 #endif 680 #ifdef VM_FREELIST_DMA32 681 if (seg->end <= VM_DMA32_BOUNDARY) { 682 flind = vm_freelist_to_flind[VM_FREELIST_DMA32]; 683 KASSERT(flind >= 0, 684 ("vm_phys_init: DMA32 flind < 0")); 685 } else 686 #endif 687 { 688 flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT]; 689 KASSERT(flind >= 0, 690 ("vm_phys_init: DEFAULT flind < 0")); 691 } 692 seg->free_queues = &vm_phys_free_queues[seg->domain][flind]; 693 } 694 695 /* 696 * Initialize the free queues. 697 */ 698 for (dom = 0; dom < vm_ndomains; dom++) { 699 for (flind = 0; flind < vm_nfreelists; flind++) { 700 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 701 fl = vm_phys_free_queues[dom][flind][pind]; 702 for (oind = 0; oind < VM_NFREEORDER; oind++) 703 TAILQ_INIT(&fl[oind].pl); 704 } 705 } 706 } 707 708 rw_init(&vm_phys_fictitious_reg_lock, "vmfctr"); 709 } 710 711 /* 712 * Split a contiguous, power of two-sized set of physical pages. 713 */ 714 static __inline void 715 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order) 716 { 717 vm_page_t m_buddy; 718 719 while (oind > order) { 720 oind--; 721 m_buddy = &m[1 << oind]; 722 KASSERT(m_buddy->order == VM_NFREEORDER, 723 ("vm_phys_split_pages: page %p has unexpected order %d", 724 m_buddy, m_buddy->order)); 725 vm_freelist_add(fl, m_buddy, oind, 0); 726 } 727 } 728 729 /* 730 * Initialize a physical page and add it to the free lists. 731 */ 732 void 733 vm_phys_add_page(vm_paddr_t pa) 734 { 735 vm_page_t m; 736 struct vm_domain *vmd; 737 738 vm_cnt.v_page_count++; 739 m = vm_phys_paddr_to_vm_page(pa); 740 m->phys_addr = pa; 741 m->queue = PQ_NONE; 742 m->segind = vm_phys_paddr_to_segind(pa); 743 vmd = vm_phys_domain(m); 744 vmd->vmd_page_count++; 745 vmd->vmd_segs |= 1UL << m->segind; 746 KASSERT(m->order == VM_NFREEORDER, 747 ("vm_phys_add_page: page %p has unexpected order %d", 748 m, m->order)); 749 m->pool = VM_FREEPOOL_DEFAULT; 750 pmap_page_init(m); 751 mtx_lock(&vm_page_queue_free_mtx); 752 vm_phys_freecnt_adj(m, 1); 753 vm_phys_free_pages(m, 0); 754 mtx_unlock(&vm_page_queue_free_mtx); 755 } 756 757 /* 758 * Allocate a contiguous, power of two-sized set of physical pages 759 * from the free lists. 760 * 761 * The free page queues must be locked. 762 */ 763 vm_page_t 764 vm_phys_alloc_pages(int pool, int order) 765 { 766 vm_page_t m; 767 int domain, flind; 768 struct vm_domain_iterator vi; 769 770 KASSERT(pool < VM_NFREEPOOL, 771 ("vm_phys_alloc_pages: pool %d is out of range", pool)); 772 KASSERT(order < VM_NFREEORDER, 773 ("vm_phys_alloc_pages: order %d is out of range", order)); 774 775 vm_policy_iterator_init(&vi); 776 777 while ((vm_domain_iterator_run(&vi, &domain)) == 0) { 778 for (flind = 0; flind < vm_nfreelists; flind++) { 779 m = vm_phys_alloc_domain_pages(domain, flind, pool, 780 order); 781 if (m != NULL) 782 return (m); 783 } 784 } 785 786 vm_policy_iterator_finish(&vi); 787 return (NULL); 788 } 789 790 /* 791 * Allocate a contiguous, power of two-sized set of physical pages from the 792 * specified free list. The free list must be specified using one of the 793 * manifest constants VM_FREELIST_*. 794 * 795 * The free page queues must be locked. 796 */ 797 vm_page_t 798 vm_phys_alloc_freelist_pages(int freelist, int pool, int order) 799 { 800 vm_page_t m; 801 struct vm_domain_iterator vi; 802 int domain; 803 804 KASSERT(freelist < VM_NFREELIST, 805 ("vm_phys_alloc_freelist_pages: freelist %d is out of range", 806 freelist)); 807 KASSERT(pool < VM_NFREEPOOL, 808 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool)); 809 KASSERT(order < VM_NFREEORDER, 810 ("vm_phys_alloc_freelist_pages: order %d is out of range", order)); 811 812 vm_policy_iterator_init(&vi); 813 814 while ((vm_domain_iterator_run(&vi, &domain)) == 0) { 815 m = vm_phys_alloc_domain_pages(domain, 816 vm_freelist_to_flind[freelist], pool, order); 817 if (m != NULL) 818 return (m); 819 } 820 821 vm_policy_iterator_finish(&vi); 822 return (NULL); 823 } 824 825 static vm_page_t 826 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order) 827 { 828 struct vm_freelist *fl; 829 struct vm_freelist *alt; 830 int oind, pind; 831 vm_page_t m; 832 833 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 834 fl = &vm_phys_free_queues[domain][flind][pool][0]; 835 for (oind = order; oind < VM_NFREEORDER; oind++) { 836 m = TAILQ_FIRST(&fl[oind].pl); 837 if (m != NULL) { 838 vm_freelist_rem(fl, m, oind); 839 vm_phys_split_pages(m, oind, fl, order); 840 return (m); 841 } 842 } 843 844 /* 845 * The given pool was empty. Find the largest 846 * contiguous, power-of-two-sized set of pages in any 847 * pool. Transfer these pages to the given pool, and 848 * use them to satisfy the allocation. 849 */ 850 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) { 851 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 852 alt = &vm_phys_free_queues[domain][flind][pind][0]; 853 m = TAILQ_FIRST(&alt[oind].pl); 854 if (m != NULL) { 855 vm_freelist_rem(alt, m, oind); 856 vm_phys_set_pool(pool, m, oind); 857 vm_phys_split_pages(m, oind, fl, order); 858 return (m); 859 } 860 } 861 } 862 return (NULL); 863 } 864 865 /* 866 * Find the vm_page corresponding to the given physical address. 867 */ 868 vm_page_t 869 vm_phys_paddr_to_vm_page(vm_paddr_t pa) 870 { 871 struct vm_phys_seg *seg; 872 int segind; 873 874 for (segind = 0; segind < vm_phys_nsegs; segind++) { 875 seg = &vm_phys_segs[segind]; 876 if (pa >= seg->start && pa < seg->end) 877 return (&seg->first_page[atop(pa - seg->start)]); 878 } 879 return (NULL); 880 } 881 882 vm_page_t 883 vm_phys_fictitious_to_vm_page(vm_paddr_t pa) 884 { 885 struct vm_phys_fictitious_seg tmp, *seg; 886 vm_page_t m; 887 888 m = NULL; 889 tmp.start = pa; 890 tmp.end = 0; 891 892 rw_rlock(&vm_phys_fictitious_reg_lock); 893 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp); 894 rw_runlock(&vm_phys_fictitious_reg_lock); 895 if (seg == NULL) 896 return (NULL); 897 898 m = &seg->first_page[atop(pa - seg->start)]; 899 KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m)); 900 901 return (m); 902 } 903 904 static inline void 905 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start, 906 long page_count, vm_memattr_t memattr) 907 { 908 long i; 909 910 for (i = 0; i < page_count; i++) { 911 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr); 912 range[i].oflags &= ~VPO_UNMANAGED; 913 range[i].busy_lock = VPB_UNBUSIED; 914 } 915 } 916 917 int 918 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end, 919 vm_memattr_t memattr) 920 { 921 struct vm_phys_fictitious_seg *seg; 922 vm_page_t fp; 923 long page_count; 924 #ifdef VM_PHYSSEG_DENSE 925 long pi, pe; 926 long dpage_count; 927 #endif 928 929 KASSERT(start < end, 930 ("Start of segment isn't less than end (start: %jx end: %jx)", 931 (uintmax_t)start, (uintmax_t)end)); 932 933 page_count = (end - start) / PAGE_SIZE; 934 935 #ifdef VM_PHYSSEG_DENSE 936 pi = atop(start); 937 pe = atop(end); 938 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 939 fp = &vm_page_array[pi - first_page]; 940 if ((pe - first_page) > vm_page_array_size) { 941 /* 942 * We have a segment that starts inside 943 * of vm_page_array, but ends outside of it. 944 * 945 * Use vm_page_array pages for those that are 946 * inside of the vm_page_array range, and 947 * allocate the remaining ones. 948 */ 949 dpage_count = vm_page_array_size - (pi - first_page); 950 vm_phys_fictitious_init_range(fp, start, dpage_count, 951 memattr); 952 page_count -= dpage_count; 953 start += ptoa(dpage_count); 954 goto alloc; 955 } 956 /* 957 * We can allocate the full range from vm_page_array, 958 * so there's no need to register the range in the tree. 959 */ 960 vm_phys_fictitious_init_range(fp, start, page_count, memattr); 961 return (0); 962 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) { 963 /* 964 * We have a segment that ends inside of vm_page_array, 965 * but starts outside of it. 966 */ 967 fp = &vm_page_array[0]; 968 dpage_count = pe - first_page; 969 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count, 970 memattr); 971 end -= ptoa(dpage_count); 972 page_count -= dpage_count; 973 goto alloc; 974 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) { 975 /* 976 * Trying to register a fictitious range that expands before 977 * and after vm_page_array. 978 */ 979 return (EINVAL); 980 } else { 981 alloc: 982 #endif 983 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES, 984 M_WAITOK | M_ZERO); 985 #ifdef VM_PHYSSEG_DENSE 986 } 987 #endif 988 vm_phys_fictitious_init_range(fp, start, page_count, memattr); 989 990 seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO); 991 seg->start = start; 992 seg->end = end; 993 seg->first_page = fp; 994 995 rw_wlock(&vm_phys_fictitious_reg_lock); 996 RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg); 997 rw_wunlock(&vm_phys_fictitious_reg_lock); 998 999 return (0); 1000 } 1001 1002 void 1003 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end) 1004 { 1005 struct vm_phys_fictitious_seg *seg, tmp; 1006 #ifdef VM_PHYSSEG_DENSE 1007 long pi, pe; 1008 #endif 1009 1010 KASSERT(start < end, 1011 ("Start of segment isn't less than end (start: %jx end: %jx)", 1012 (uintmax_t)start, (uintmax_t)end)); 1013 1014 #ifdef VM_PHYSSEG_DENSE 1015 pi = atop(start); 1016 pe = atop(end); 1017 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1018 if ((pe - first_page) <= vm_page_array_size) { 1019 /* 1020 * This segment was allocated using vm_page_array 1021 * only, there's nothing to do since those pages 1022 * were never added to the tree. 1023 */ 1024 return; 1025 } 1026 /* 1027 * We have a segment that starts inside 1028 * of vm_page_array, but ends outside of it. 1029 * 1030 * Calculate how many pages were added to the 1031 * tree and free them. 1032 */ 1033 start = ptoa(first_page + vm_page_array_size); 1034 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) { 1035 /* 1036 * We have a segment that ends inside of vm_page_array, 1037 * but starts outside of it. 1038 */ 1039 end = ptoa(first_page); 1040 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) { 1041 /* Since it's not possible to register such a range, panic. */ 1042 panic( 1043 "Unregistering not registered fictitious range [%#jx:%#jx]", 1044 (uintmax_t)start, (uintmax_t)end); 1045 } 1046 #endif 1047 tmp.start = start; 1048 tmp.end = 0; 1049 1050 rw_wlock(&vm_phys_fictitious_reg_lock); 1051 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp); 1052 if (seg->start != start || seg->end != end) { 1053 rw_wunlock(&vm_phys_fictitious_reg_lock); 1054 panic( 1055 "Unregistering not registered fictitious range [%#jx:%#jx]", 1056 (uintmax_t)start, (uintmax_t)end); 1057 } 1058 RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg); 1059 rw_wunlock(&vm_phys_fictitious_reg_lock); 1060 free(seg->first_page, M_FICT_PAGES); 1061 free(seg, M_FICT_PAGES); 1062 } 1063 1064 /* 1065 * Find the segment containing the given physical address. 1066 */ 1067 static int 1068 vm_phys_paddr_to_segind(vm_paddr_t pa) 1069 { 1070 struct vm_phys_seg *seg; 1071 int segind; 1072 1073 for (segind = 0; segind < vm_phys_nsegs; segind++) { 1074 seg = &vm_phys_segs[segind]; 1075 if (pa >= seg->start && pa < seg->end) 1076 return (segind); 1077 } 1078 panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" , 1079 (uintmax_t)pa); 1080 } 1081 1082 /* 1083 * Free a contiguous, power of two-sized set of physical pages. 1084 * 1085 * The free page queues must be locked. 1086 */ 1087 void 1088 vm_phys_free_pages(vm_page_t m, int order) 1089 { 1090 struct vm_freelist *fl; 1091 struct vm_phys_seg *seg; 1092 vm_paddr_t pa; 1093 vm_page_t m_buddy; 1094 1095 KASSERT(m->order == VM_NFREEORDER, 1096 ("vm_phys_free_pages: page %p has unexpected order %d", 1097 m, m->order)); 1098 KASSERT(m->pool < VM_NFREEPOOL, 1099 ("vm_phys_free_pages: page %p has unexpected pool %d", 1100 m, m->pool)); 1101 KASSERT(order < VM_NFREEORDER, 1102 ("vm_phys_free_pages: order %d is out of range", order)); 1103 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1104 seg = &vm_phys_segs[m->segind]; 1105 if (order < VM_NFREEORDER - 1) { 1106 pa = VM_PAGE_TO_PHYS(m); 1107 do { 1108 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order)); 1109 if (pa < seg->start || pa >= seg->end) 1110 break; 1111 m_buddy = &seg->first_page[atop(pa - seg->start)]; 1112 if (m_buddy->order != order) 1113 break; 1114 fl = (*seg->free_queues)[m_buddy->pool]; 1115 vm_freelist_rem(fl, m_buddy, order); 1116 if (m_buddy->pool != m->pool) 1117 vm_phys_set_pool(m->pool, m_buddy, order); 1118 order++; 1119 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1); 1120 m = &seg->first_page[atop(pa - seg->start)]; 1121 } while (order < VM_NFREEORDER - 1); 1122 } 1123 fl = (*seg->free_queues)[m->pool]; 1124 vm_freelist_add(fl, m, order, 1); 1125 } 1126 1127 /* 1128 * Free a contiguous, arbitrarily sized set of physical pages. 1129 * 1130 * The free page queues must be locked. 1131 */ 1132 void 1133 vm_phys_free_contig(vm_page_t m, u_long npages) 1134 { 1135 u_int n; 1136 int order; 1137 1138 /* 1139 * Avoid unnecessary coalescing by freeing the pages in the largest 1140 * possible power-of-two-sized subsets. 1141 */ 1142 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1143 for (;; npages -= n) { 1144 /* 1145 * Unsigned "min" is used here so that "order" is assigned 1146 * "VM_NFREEORDER - 1" when "m"'s physical address is zero 1147 * or the low-order bits of its physical address are zero 1148 * because the size of a physical address exceeds the size of 1149 * a long. 1150 */ 1151 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1, 1152 VM_NFREEORDER - 1); 1153 n = 1 << order; 1154 if (npages < n) 1155 break; 1156 vm_phys_free_pages(m, order); 1157 m += n; 1158 } 1159 /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */ 1160 for (; npages > 0; npages -= n) { 1161 order = flsl(npages) - 1; 1162 n = 1 << order; 1163 vm_phys_free_pages(m, order); 1164 m += n; 1165 } 1166 } 1167 1168 /* 1169 * Scan physical memory between the specified addresses "low" and "high" for a 1170 * run of contiguous physical pages that satisfy the specified conditions, and 1171 * return the lowest page in the run. The specified "alignment" determines 1172 * the alignment of the lowest physical page in the run. If the specified 1173 * "boundary" is non-zero, then the run of physical pages cannot span a 1174 * physical address that is a multiple of "boundary". 1175 * 1176 * "npages" must be greater than zero. Both "alignment" and "boundary" must 1177 * be a power of two. 1178 */ 1179 vm_page_t 1180 vm_phys_scan_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 1181 u_long alignment, vm_paddr_t boundary, int options) 1182 { 1183 vm_paddr_t pa_end; 1184 vm_page_t m_end, m_run, m_start; 1185 struct vm_phys_seg *seg; 1186 int segind; 1187 1188 KASSERT(npages > 0, ("npages is 0")); 1189 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 1190 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 1191 if (low >= high) 1192 return (NULL); 1193 for (segind = 0; segind < vm_phys_nsegs; segind++) { 1194 seg = &vm_phys_segs[segind]; 1195 if (seg->start >= high) 1196 break; 1197 if (low >= seg->end) 1198 continue; 1199 if (low <= seg->start) 1200 m_start = seg->first_page; 1201 else 1202 m_start = &seg->first_page[atop(low - seg->start)]; 1203 if (high < seg->end) 1204 pa_end = high; 1205 else 1206 pa_end = seg->end; 1207 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages)) 1208 continue; 1209 m_end = &seg->first_page[atop(pa_end - seg->start)]; 1210 m_run = vm_page_scan_contig(npages, m_start, m_end, 1211 alignment, boundary, options); 1212 if (m_run != NULL) 1213 return (m_run); 1214 } 1215 return (NULL); 1216 } 1217 1218 /* 1219 * Set the pool for a contiguous, power of two-sized set of physical pages. 1220 */ 1221 void 1222 vm_phys_set_pool(int pool, vm_page_t m, int order) 1223 { 1224 vm_page_t m_tmp; 1225 1226 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++) 1227 m_tmp->pool = pool; 1228 } 1229 1230 /* 1231 * Search for the given physical page "m" in the free lists. If the search 1232 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return 1233 * FALSE, indicating that "m" is not in the free lists. 1234 * 1235 * The free page queues must be locked. 1236 */ 1237 boolean_t 1238 vm_phys_unfree_page(vm_page_t m) 1239 { 1240 struct vm_freelist *fl; 1241 struct vm_phys_seg *seg; 1242 vm_paddr_t pa, pa_half; 1243 vm_page_t m_set, m_tmp; 1244 int order; 1245 1246 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1247 1248 /* 1249 * First, find the contiguous, power of two-sized set of free 1250 * physical pages containing the given physical page "m" and 1251 * assign it to "m_set". 1252 */ 1253 seg = &vm_phys_segs[m->segind]; 1254 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER && 1255 order < VM_NFREEORDER - 1; ) { 1256 order++; 1257 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order)); 1258 if (pa >= seg->start) 1259 m_set = &seg->first_page[atop(pa - seg->start)]; 1260 else 1261 return (FALSE); 1262 } 1263 if (m_set->order < order) 1264 return (FALSE); 1265 if (m_set->order == VM_NFREEORDER) 1266 return (FALSE); 1267 KASSERT(m_set->order < VM_NFREEORDER, 1268 ("vm_phys_unfree_page: page %p has unexpected order %d", 1269 m_set, m_set->order)); 1270 1271 /* 1272 * Next, remove "m_set" from the free lists. Finally, extract 1273 * "m" from "m_set" using an iterative algorithm: While "m_set" 1274 * is larger than a page, shrink "m_set" by returning the half 1275 * of "m_set" that does not contain "m" to the free lists. 1276 */ 1277 fl = (*seg->free_queues)[m_set->pool]; 1278 order = m_set->order; 1279 vm_freelist_rem(fl, m_set, order); 1280 while (order > 0) { 1281 order--; 1282 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order)); 1283 if (m->phys_addr < pa_half) 1284 m_tmp = &seg->first_page[atop(pa_half - seg->start)]; 1285 else { 1286 m_tmp = m_set; 1287 m_set = &seg->first_page[atop(pa_half - seg->start)]; 1288 } 1289 vm_freelist_add(fl, m_tmp, order, 0); 1290 } 1291 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency")); 1292 return (TRUE); 1293 } 1294 1295 /* 1296 * Try to zero one physical page. Used by an idle priority thread. 1297 */ 1298 boolean_t 1299 vm_phys_zero_pages_idle(void) 1300 { 1301 static struct vm_freelist *fl; 1302 static int flind, oind, pind; 1303 vm_page_t m, m_tmp; 1304 int domain; 1305 1306 domain = vm_rr_selectdomain(); 1307 fl = vm_phys_free_queues[domain][0][0]; 1308 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1309 for (;;) { 1310 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) { 1311 for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) { 1312 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) { 1313 vm_phys_unfree_page(m_tmp); 1314 vm_phys_freecnt_adj(m, -1); 1315 mtx_unlock(&vm_page_queue_free_mtx); 1316 pmap_zero_page_idle(m_tmp); 1317 m_tmp->flags |= PG_ZERO; 1318 mtx_lock(&vm_page_queue_free_mtx); 1319 vm_phys_freecnt_adj(m, 1); 1320 vm_phys_free_pages(m_tmp, 0); 1321 vm_page_zero_count++; 1322 cnt_prezero++; 1323 return (TRUE); 1324 } 1325 } 1326 } 1327 oind++; 1328 if (oind == VM_NFREEORDER) { 1329 oind = 0; 1330 pind++; 1331 if (pind == VM_NFREEPOOL) { 1332 pind = 0; 1333 flind++; 1334 if (flind == vm_nfreelists) 1335 flind = 0; 1336 } 1337 fl = vm_phys_free_queues[domain][flind][pind]; 1338 } 1339 } 1340 } 1341 1342 /* 1343 * Allocate a contiguous set of physical pages of the given size 1344 * "npages" from the free lists. All of the physical pages must be at 1345 * or above the given physical address "low" and below the given 1346 * physical address "high". The given value "alignment" determines the 1347 * alignment of the first physical page in the set. If the given value 1348 * "boundary" is non-zero, then the set of physical pages cannot cross 1349 * any physical address boundary that is a multiple of that value. Both 1350 * "alignment" and "boundary" must be a power of two. 1351 */ 1352 vm_page_t 1353 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 1354 u_long alignment, vm_paddr_t boundary) 1355 { 1356 vm_paddr_t pa_end, pa_start; 1357 vm_page_t m_run; 1358 struct vm_domain_iterator vi; 1359 struct vm_phys_seg *seg; 1360 int domain, segind; 1361 1362 KASSERT(npages > 0, ("npages is 0")); 1363 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 1364 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 1365 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1366 if (low >= high) 1367 return (NULL); 1368 vm_policy_iterator_init(&vi); 1369 restartdom: 1370 if (vm_domain_iterator_run(&vi, &domain) != 0) { 1371 vm_policy_iterator_finish(&vi); 1372 return (NULL); 1373 } 1374 m_run = NULL; 1375 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) { 1376 seg = &vm_phys_segs[segind]; 1377 if (seg->start >= high || seg->domain != domain) 1378 continue; 1379 if (low >= seg->end) 1380 break; 1381 if (low <= seg->start) 1382 pa_start = seg->start; 1383 else 1384 pa_start = low; 1385 if (high < seg->end) 1386 pa_end = high; 1387 else 1388 pa_end = seg->end; 1389 if (pa_end - pa_start < ptoa(npages)) 1390 continue; 1391 m_run = vm_phys_alloc_seg_contig(seg, npages, low, high, 1392 alignment, boundary); 1393 if (m_run != NULL) 1394 break; 1395 } 1396 if (m_run == NULL && !vm_domain_iterator_isdone(&vi)) 1397 goto restartdom; 1398 vm_policy_iterator_finish(&vi); 1399 return (m_run); 1400 } 1401 1402 /* 1403 * Allocate a run of contiguous physical pages from the free list for the 1404 * specified segment. 1405 */ 1406 static vm_page_t 1407 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages, 1408 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 1409 { 1410 struct vm_freelist *fl; 1411 vm_paddr_t pa, pa_end, size; 1412 vm_page_t m, m_ret; 1413 u_long npages_end; 1414 int oind, order, pind; 1415 1416 KASSERT(npages > 0, ("npages is 0")); 1417 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 1418 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 1419 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1420 /* Compute the queue that is the best fit for npages. */ 1421 for (order = 0; (1 << order) < npages; order++); 1422 /* Search for a run satisfying the specified conditions. */ 1423 size = npages << PAGE_SHIFT; 1424 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; 1425 oind++) { 1426 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 1427 fl = (*seg->free_queues)[pind]; 1428 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) { 1429 /* 1430 * Is the size of this allocation request 1431 * larger than the largest block size? 1432 */ 1433 if (order >= VM_NFREEORDER) { 1434 /* 1435 * Determine if a sufficient number of 1436 * subsequent blocks to satisfy the 1437 * allocation request are free. 1438 */ 1439 pa = VM_PAGE_TO_PHYS(m_ret); 1440 pa_end = pa + size; 1441 for (;;) { 1442 pa += 1 << (PAGE_SHIFT + 1443 VM_NFREEORDER - 1); 1444 if (pa >= pa_end || 1445 pa < seg->start || 1446 pa >= seg->end) 1447 break; 1448 m = &seg->first_page[atop(pa - 1449 seg->start)]; 1450 if (m->order != VM_NFREEORDER - 1451 1) 1452 break; 1453 } 1454 /* If not, go to the next block. */ 1455 if (pa < pa_end) 1456 continue; 1457 } 1458 1459 /* 1460 * Determine if the blocks are within the 1461 * given range, satisfy the given alignment, 1462 * and do not cross the given boundary. 1463 */ 1464 pa = VM_PAGE_TO_PHYS(m_ret); 1465 pa_end = pa + size; 1466 if (pa >= low && pa_end <= high && (pa & 1467 (alignment - 1)) == 0 && ((pa ^ (pa_end - 1468 1)) & ~(boundary - 1)) == 0) 1469 goto done; 1470 } 1471 } 1472 } 1473 return (NULL); 1474 done: 1475 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) { 1476 fl = (*seg->free_queues)[m->pool]; 1477 vm_freelist_rem(fl, m, m->order); 1478 } 1479 if (m_ret->pool != VM_FREEPOOL_DEFAULT) 1480 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind); 1481 fl = (*seg->free_queues)[m_ret->pool]; 1482 vm_phys_split_pages(m_ret, oind, fl, order); 1483 /* Return excess pages to the free lists. */ 1484 npages_end = roundup2(npages, 1 << imin(oind, order)); 1485 if (npages < npages_end) 1486 vm_phys_free_contig(&m_ret[npages], npages_end - npages); 1487 return (m_ret); 1488 } 1489 1490 #ifdef DDB 1491 /* 1492 * Show the number of physical pages in each of the free lists. 1493 */ 1494 DB_SHOW_COMMAND(freepages, db_show_freepages) 1495 { 1496 struct vm_freelist *fl; 1497 int flind, oind, pind, dom; 1498 1499 for (dom = 0; dom < vm_ndomains; dom++) { 1500 db_printf("DOMAIN: %d\n", dom); 1501 for (flind = 0; flind < vm_nfreelists; flind++) { 1502 db_printf("FREE LIST %d:\n" 1503 "\n ORDER (SIZE) | NUMBER" 1504 "\n ", flind); 1505 for (pind = 0; pind < VM_NFREEPOOL; pind++) 1506 db_printf(" | POOL %d", pind); 1507 db_printf("\n-- "); 1508 for (pind = 0; pind < VM_NFREEPOOL; pind++) 1509 db_printf("-- -- "); 1510 db_printf("--\n"); 1511 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 1512 db_printf(" %2.2d (%6.6dK)", oind, 1513 1 << (PAGE_SHIFT - 10 + oind)); 1514 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 1515 fl = vm_phys_free_queues[dom][flind][pind]; 1516 db_printf(" | %6.6d", fl[oind].lcnt); 1517 } 1518 db_printf("\n"); 1519 } 1520 db_printf("\n"); 1521 } 1522 db_printf("\n"); 1523 } 1524 } 1525 #endif 1526