1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_ddb.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/lock.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 #include <sys/mutex.h> 43 #include <sys/queue.h> 44 #include <sys/sbuf.h> 45 #include <sys/sysctl.h> 46 #include <sys/vmmeter.h> 47 #include <sys/vnode.h> 48 49 #include <ddb/ddb.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_param.h> 53 #include <vm/vm_kern.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_page.h> 56 #include <vm/vm_phys.h> 57 #include <vm/vm_reserv.h> 58 59 /* 60 * VM_FREELIST_DEFAULT is split into VM_NDOMAIN lists, one for each 61 * domain. These extra lists are stored at the end of the regular 62 * free lists starting with VM_NFREELIST. 63 */ 64 #define VM_RAW_NFREELIST (VM_NFREELIST + VM_NDOMAIN - 1) 65 66 struct vm_freelist { 67 struct pglist pl; 68 int lcnt; 69 }; 70 71 struct vm_phys_seg { 72 vm_paddr_t start; 73 vm_paddr_t end; 74 vm_page_t first_page; 75 int domain; 76 struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER]; 77 }; 78 79 struct mem_affinity *mem_affinity; 80 81 static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX]; 82 83 static int vm_phys_nsegs; 84 85 static struct vm_freelist 86 vm_phys_free_queues[VM_RAW_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER]; 87 static struct vm_freelist 88 (*vm_phys_lookup_lists[VM_NDOMAIN][VM_RAW_NFREELIST])[VM_NFREEPOOL][VM_NFREEORDER]; 89 90 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1; 91 92 static int cnt_prezero; 93 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD, 94 &cnt_prezero, 0, "The number of physical pages prezeroed at idle time"); 95 96 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS); 97 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD, 98 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info"); 99 100 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS); 101 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD, 102 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info"); 103 104 #if VM_NDOMAIN > 1 105 static int sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS); 106 SYSCTL_OID(_vm, OID_AUTO, phys_lookup_lists, CTLTYPE_STRING | CTLFLAG_RD, 107 NULL, 0, sysctl_vm_phys_lookup_lists, "A", "Phys Lookup Lists"); 108 #endif 109 110 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, 111 int domain); 112 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind); 113 static int vm_phys_paddr_to_segind(vm_paddr_t pa); 114 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, 115 int order); 116 117 /* 118 * Outputs the state of the physical memory allocator, specifically, 119 * the amount of physical memory in each free list. 120 */ 121 static int 122 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS) 123 { 124 struct sbuf sbuf; 125 struct vm_freelist *fl; 126 int error, flind, oind, pind; 127 128 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 129 for (flind = 0; flind < vm_nfreelists; flind++) { 130 sbuf_printf(&sbuf, "\nFREE LIST %d:\n" 131 "\n ORDER (SIZE) | NUMBER" 132 "\n ", flind); 133 for (pind = 0; pind < VM_NFREEPOOL; pind++) 134 sbuf_printf(&sbuf, " | POOL %d", pind); 135 sbuf_printf(&sbuf, "\n-- "); 136 for (pind = 0; pind < VM_NFREEPOOL; pind++) 137 sbuf_printf(&sbuf, "-- -- "); 138 sbuf_printf(&sbuf, "--\n"); 139 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 140 sbuf_printf(&sbuf, " %2d (%6dK)", oind, 141 1 << (PAGE_SHIFT - 10 + oind)); 142 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 143 fl = vm_phys_free_queues[flind][pind]; 144 sbuf_printf(&sbuf, " | %6d", fl[oind].lcnt); 145 } 146 sbuf_printf(&sbuf, "\n"); 147 } 148 } 149 error = sbuf_finish(&sbuf); 150 sbuf_delete(&sbuf); 151 return (error); 152 } 153 154 /* 155 * Outputs the set of physical memory segments. 156 */ 157 static int 158 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS) 159 { 160 struct sbuf sbuf; 161 struct vm_phys_seg *seg; 162 int error, segind; 163 164 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 165 for (segind = 0; segind < vm_phys_nsegs; segind++) { 166 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind); 167 seg = &vm_phys_segs[segind]; 168 sbuf_printf(&sbuf, "start: %#jx\n", 169 (uintmax_t)seg->start); 170 sbuf_printf(&sbuf, "end: %#jx\n", 171 (uintmax_t)seg->end); 172 sbuf_printf(&sbuf, "domain: %d\n", seg->domain); 173 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues); 174 } 175 error = sbuf_finish(&sbuf); 176 sbuf_delete(&sbuf); 177 return (error); 178 } 179 180 #if VM_NDOMAIN > 1 181 /* 182 * Outputs the set of free list lookup lists. 183 */ 184 static int 185 sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS) 186 { 187 struct sbuf sbuf; 188 int domain, error, flind, ndomains; 189 190 ndomains = vm_nfreelists - VM_NFREELIST + 1; 191 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 192 for (domain = 0; domain < ndomains; domain++) { 193 sbuf_printf(&sbuf, "\nDOMAIN %d:\n\n", domain); 194 for (flind = 0; flind < vm_nfreelists; flind++) 195 sbuf_printf(&sbuf, " [%d]:\t%p\n", flind, 196 vm_phys_lookup_lists[domain][flind]); 197 } 198 error = sbuf_finish(&sbuf); 199 sbuf_delete(&sbuf); 200 return (error); 201 } 202 #endif 203 204 /* 205 * Create a physical memory segment. 206 */ 207 static void 208 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain) 209 { 210 struct vm_phys_seg *seg; 211 #ifdef VM_PHYSSEG_SPARSE 212 long pages; 213 int segind; 214 215 pages = 0; 216 for (segind = 0; segind < vm_phys_nsegs; segind++) { 217 seg = &vm_phys_segs[segind]; 218 pages += atop(seg->end - seg->start); 219 } 220 #endif 221 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX, 222 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX")); 223 seg = &vm_phys_segs[vm_phys_nsegs++]; 224 seg->start = start; 225 seg->end = end; 226 seg->domain = domain; 227 #ifdef VM_PHYSSEG_SPARSE 228 seg->first_page = &vm_page_array[pages]; 229 #else 230 seg->first_page = PHYS_TO_VM_PAGE(start); 231 #endif 232 #if VM_NDOMAIN > 1 233 if (flind == VM_FREELIST_DEFAULT && domain != 0) { 234 flind = VM_NFREELIST + (domain - 1); 235 if (flind >= vm_nfreelists) 236 vm_nfreelists = flind + 1; 237 } 238 #endif 239 seg->free_queues = &vm_phys_free_queues[flind]; 240 } 241 242 static void 243 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind) 244 { 245 int i; 246 247 if (mem_affinity == NULL) { 248 _vm_phys_create_seg(start, end, flind, 0); 249 return; 250 } 251 252 for (i = 0;; i++) { 253 if (mem_affinity[i].end == 0) 254 panic("Reached end of affinity info"); 255 if (mem_affinity[i].end <= start) 256 continue; 257 if (mem_affinity[i].start > start) 258 panic("No affinity info for start %jx", 259 (uintmax_t)start); 260 if (mem_affinity[i].end >= end) { 261 _vm_phys_create_seg(start, end, flind, 262 mem_affinity[i].domain); 263 break; 264 } 265 _vm_phys_create_seg(start, mem_affinity[i].end, flind, 266 mem_affinity[i].domain); 267 start = mem_affinity[i].end; 268 } 269 } 270 271 /* 272 * Initialize the physical memory allocator. 273 */ 274 void 275 vm_phys_init(void) 276 { 277 struct vm_freelist *fl; 278 int flind, i, oind, pind; 279 #if VM_NDOMAIN > 1 280 int ndomains, j; 281 #endif 282 283 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 284 #ifdef VM_FREELIST_ISADMA 285 if (phys_avail[i] < 16777216) { 286 if (phys_avail[i + 1] > 16777216) { 287 vm_phys_create_seg(phys_avail[i], 16777216, 288 VM_FREELIST_ISADMA); 289 vm_phys_create_seg(16777216, phys_avail[i + 1], 290 VM_FREELIST_DEFAULT); 291 } else { 292 vm_phys_create_seg(phys_avail[i], 293 phys_avail[i + 1], VM_FREELIST_ISADMA); 294 } 295 if (VM_FREELIST_ISADMA >= vm_nfreelists) 296 vm_nfreelists = VM_FREELIST_ISADMA + 1; 297 } else 298 #endif 299 #ifdef VM_FREELIST_HIGHMEM 300 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) { 301 if (phys_avail[i] < VM_HIGHMEM_ADDRESS) { 302 vm_phys_create_seg(phys_avail[i], 303 VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT); 304 vm_phys_create_seg(VM_HIGHMEM_ADDRESS, 305 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 306 } else { 307 vm_phys_create_seg(phys_avail[i], 308 phys_avail[i + 1], VM_FREELIST_HIGHMEM); 309 } 310 if (VM_FREELIST_HIGHMEM >= vm_nfreelists) 311 vm_nfreelists = VM_FREELIST_HIGHMEM + 1; 312 } else 313 #endif 314 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1], 315 VM_FREELIST_DEFAULT); 316 } 317 for (flind = 0; flind < vm_nfreelists; flind++) { 318 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 319 fl = vm_phys_free_queues[flind][pind]; 320 for (oind = 0; oind < VM_NFREEORDER; oind++) 321 TAILQ_INIT(&fl[oind].pl); 322 } 323 } 324 #if VM_NDOMAIN > 1 325 /* 326 * Build a free list lookup list for each domain. All of the 327 * memory domain lists are inserted at the VM_FREELIST_DEFAULT 328 * index in a round-robin order starting with the current 329 * domain. 330 */ 331 ndomains = vm_nfreelists - VM_NFREELIST + 1; 332 for (flind = 0; flind < VM_FREELIST_DEFAULT; flind++) 333 for (i = 0; i < ndomains; i++) 334 vm_phys_lookup_lists[i][flind] = 335 &vm_phys_free_queues[flind]; 336 for (i = 0; i < ndomains; i++) 337 for (j = 0; j < ndomains; j++) { 338 flind = (i + j) % ndomains; 339 if (flind == 0) 340 flind = VM_FREELIST_DEFAULT; 341 else 342 flind += VM_NFREELIST - 1; 343 vm_phys_lookup_lists[i][VM_FREELIST_DEFAULT + j] = 344 &vm_phys_free_queues[flind]; 345 } 346 for (flind = VM_FREELIST_DEFAULT + 1; flind < VM_NFREELIST; 347 flind++) 348 for (i = 0; i < ndomains; i++) 349 vm_phys_lookup_lists[i][flind + ndomains - 1] = 350 &vm_phys_free_queues[flind]; 351 #else 352 for (flind = 0; flind < vm_nfreelists; flind++) 353 vm_phys_lookup_lists[0][flind] = &vm_phys_free_queues[flind]; 354 #endif 355 } 356 357 /* 358 * Split a contiguous, power of two-sized set of physical pages. 359 */ 360 static __inline void 361 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order) 362 { 363 vm_page_t m_buddy; 364 365 while (oind > order) { 366 oind--; 367 m_buddy = &m[1 << oind]; 368 KASSERT(m_buddy->order == VM_NFREEORDER, 369 ("vm_phys_split_pages: page %p has unexpected order %d", 370 m_buddy, m_buddy->order)); 371 m_buddy->order = oind; 372 TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq); 373 fl[oind].lcnt++; 374 } 375 } 376 377 /* 378 * Initialize a physical page and add it to the free lists. 379 */ 380 void 381 vm_phys_add_page(vm_paddr_t pa) 382 { 383 vm_page_t m; 384 385 cnt.v_page_count++; 386 m = vm_phys_paddr_to_vm_page(pa); 387 m->phys_addr = pa; 388 m->queue = PQ_NONE; 389 m->segind = vm_phys_paddr_to_segind(pa); 390 m->flags = PG_FREE; 391 KASSERT(m->order == VM_NFREEORDER, 392 ("vm_phys_add_page: page %p has unexpected order %d", 393 m, m->order)); 394 m->pool = VM_FREEPOOL_DEFAULT; 395 pmap_page_init(m); 396 mtx_lock(&vm_page_queue_free_mtx); 397 cnt.v_free_count++; 398 vm_phys_free_pages(m, 0); 399 mtx_unlock(&vm_page_queue_free_mtx); 400 } 401 402 /* 403 * Allocate a contiguous, power of two-sized set of physical pages 404 * from the free lists. 405 * 406 * The free page queues must be locked. 407 */ 408 vm_page_t 409 vm_phys_alloc_pages(int pool, int order) 410 { 411 vm_page_t m; 412 int flind; 413 414 for (flind = 0; flind < vm_nfreelists; flind++) { 415 m = vm_phys_alloc_freelist_pages(flind, pool, order); 416 if (m != NULL) 417 return (m); 418 } 419 return (NULL); 420 } 421 422 /* 423 * Find and dequeue a free page on the given free list, with the 424 * specified pool and order 425 */ 426 vm_page_t 427 vm_phys_alloc_freelist_pages(int flind, int pool, int order) 428 { 429 struct vm_freelist *fl; 430 struct vm_freelist *alt; 431 int domain, oind, pind; 432 vm_page_t m; 433 434 KASSERT(flind < VM_NFREELIST, 435 ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind)); 436 KASSERT(pool < VM_NFREEPOOL, 437 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool)); 438 KASSERT(order < VM_NFREEORDER, 439 ("vm_phys_alloc_freelist_pages: order %d is out of range", order)); 440 441 #if VM_NDOMAIN > 1 442 domain = PCPU_GET(domain); 443 #else 444 domain = 0; 445 #endif 446 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 447 fl = (*vm_phys_lookup_lists[domain][flind])[pool]; 448 for (oind = order; oind < VM_NFREEORDER; oind++) { 449 m = TAILQ_FIRST(&fl[oind].pl); 450 if (m != NULL) { 451 TAILQ_REMOVE(&fl[oind].pl, m, pageq); 452 fl[oind].lcnt--; 453 m->order = VM_NFREEORDER; 454 vm_phys_split_pages(m, oind, fl, order); 455 return (m); 456 } 457 } 458 459 /* 460 * The given pool was empty. Find the largest 461 * contiguous, power-of-two-sized set of pages in any 462 * pool. Transfer these pages to the given pool, and 463 * use them to satisfy the allocation. 464 */ 465 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) { 466 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 467 alt = (*vm_phys_lookup_lists[domain][flind])[pind]; 468 m = TAILQ_FIRST(&alt[oind].pl); 469 if (m != NULL) { 470 TAILQ_REMOVE(&alt[oind].pl, m, pageq); 471 alt[oind].lcnt--; 472 m->order = VM_NFREEORDER; 473 vm_phys_set_pool(pool, m, oind); 474 vm_phys_split_pages(m, oind, fl, order); 475 return (m); 476 } 477 } 478 } 479 return (NULL); 480 } 481 482 /* 483 * Allocate physical memory from phys_avail[]. 484 */ 485 vm_paddr_t 486 vm_phys_bootstrap_alloc(vm_size_t size, unsigned long alignment) 487 { 488 vm_paddr_t pa; 489 int i; 490 491 size = round_page(size); 492 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 493 if (phys_avail[i + 1] - phys_avail[i] < size) 494 continue; 495 pa = phys_avail[i]; 496 phys_avail[i] += size; 497 return (pa); 498 } 499 panic("vm_phys_bootstrap_alloc"); 500 } 501 502 /* 503 * Find the vm_page corresponding to the given physical address. 504 */ 505 vm_page_t 506 vm_phys_paddr_to_vm_page(vm_paddr_t pa) 507 { 508 struct vm_phys_seg *seg; 509 int segind; 510 511 for (segind = 0; segind < vm_phys_nsegs; segind++) { 512 seg = &vm_phys_segs[segind]; 513 if (pa >= seg->start && pa < seg->end) 514 return (&seg->first_page[atop(pa - seg->start)]); 515 } 516 return (NULL); 517 } 518 519 /* 520 * Find the segment containing the given physical address. 521 */ 522 static int 523 vm_phys_paddr_to_segind(vm_paddr_t pa) 524 { 525 struct vm_phys_seg *seg; 526 int segind; 527 528 for (segind = 0; segind < vm_phys_nsegs; segind++) { 529 seg = &vm_phys_segs[segind]; 530 if (pa >= seg->start && pa < seg->end) 531 return (segind); 532 } 533 panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" , 534 (uintmax_t)pa); 535 } 536 537 /* 538 * Free a contiguous, power of two-sized set of physical pages. 539 * 540 * The free page queues must be locked. 541 */ 542 void 543 vm_phys_free_pages(vm_page_t m, int order) 544 { 545 struct vm_freelist *fl; 546 struct vm_phys_seg *seg; 547 vm_paddr_t pa, pa_buddy; 548 vm_page_t m_buddy; 549 550 KASSERT(m->order == VM_NFREEORDER, 551 ("vm_phys_free_pages: page %p has unexpected order %d", 552 m, m->order)); 553 KASSERT(m->pool < VM_NFREEPOOL, 554 ("vm_phys_free_pages: page %p has unexpected pool %d", 555 m, m->pool)); 556 KASSERT(order < VM_NFREEORDER, 557 ("vm_phys_free_pages: order %d is out of range", order)); 558 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 559 pa = VM_PAGE_TO_PHYS(m); 560 seg = &vm_phys_segs[m->segind]; 561 while (order < VM_NFREEORDER - 1) { 562 pa_buddy = pa ^ (1 << (PAGE_SHIFT + order)); 563 if (pa_buddy < seg->start || 564 pa_buddy >= seg->end) 565 break; 566 m_buddy = &seg->first_page[atop(pa_buddy - seg->start)]; 567 if (m_buddy->order != order) 568 break; 569 fl = (*seg->free_queues)[m_buddy->pool]; 570 TAILQ_REMOVE(&fl[m_buddy->order].pl, m_buddy, pageq); 571 fl[m_buddy->order].lcnt--; 572 m_buddy->order = VM_NFREEORDER; 573 if (m_buddy->pool != m->pool) 574 vm_phys_set_pool(m->pool, m_buddy, order); 575 order++; 576 pa &= ~((1 << (PAGE_SHIFT + order)) - 1); 577 m = &seg->first_page[atop(pa - seg->start)]; 578 } 579 m->order = order; 580 fl = (*seg->free_queues)[m->pool]; 581 TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq); 582 fl[order].lcnt++; 583 } 584 585 /* 586 * Set the pool for a contiguous, power of two-sized set of physical pages. 587 */ 588 void 589 vm_phys_set_pool(int pool, vm_page_t m, int order) 590 { 591 vm_page_t m_tmp; 592 593 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++) 594 m_tmp->pool = pool; 595 } 596 597 /* 598 * Search for the given physical page "m" in the free lists. If the search 599 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return 600 * FALSE, indicating that "m" is not in the free lists. 601 * 602 * The free page queues must be locked. 603 */ 604 boolean_t 605 vm_phys_unfree_page(vm_page_t m) 606 { 607 struct vm_freelist *fl; 608 struct vm_phys_seg *seg; 609 vm_paddr_t pa, pa_half; 610 vm_page_t m_set, m_tmp; 611 int order; 612 613 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 614 615 /* 616 * First, find the contiguous, power of two-sized set of free 617 * physical pages containing the given physical page "m" and 618 * assign it to "m_set". 619 */ 620 seg = &vm_phys_segs[m->segind]; 621 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER && 622 order < VM_NFREEORDER - 1; ) { 623 order++; 624 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order)); 625 if (pa >= seg->start) 626 m_set = &seg->first_page[atop(pa - seg->start)]; 627 else 628 return (FALSE); 629 } 630 if (m_set->order < order) 631 return (FALSE); 632 if (m_set->order == VM_NFREEORDER) 633 return (FALSE); 634 KASSERT(m_set->order < VM_NFREEORDER, 635 ("vm_phys_unfree_page: page %p has unexpected order %d", 636 m_set, m_set->order)); 637 638 /* 639 * Next, remove "m_set" from the free lists. Finally, extract 640 * "m" from "m_set" using an iterative algorithm: While "m_set" 641 * is larger than a page, shrink "m_set" by returning the half 642 * of "m_set" that does not contain "m" to the free lists. 643 */ 644 fl = (*seg->free_queues)[m_set->pool]; 645 order = m_set->order; 646 TAILQ_REMOVE(&fl[order].pl, m_set, pageq); 647 fl[order].lcnt--; 648 m_set->order = VM_NFREEORDER; 649 while (order > 0) { 650 order--; 651 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order)); 652 if (m->phys_addr < pa_half) 653 m_tmp = &seg->first_page[atop(pa_half - seg->start)]; 654 else { 655 m_tmp = m_set; 656 m_set = &seg->first_page[atop(pa_half - seg->start)]; 657 } 658 m_tmp->order = order; 659 TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq); 660 fl[order].lcnt++; 661 } 662 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency")); 663 return (TRUE); 664 } 665 666 /* 667 * Try to zero one physical page. Used by an idle priority thread. 668 */ 669 boolean_t 670 vm_phys_zero_pages_idle(void) 671 { 672 static struct vm_freelist *fl = vm_phys_free_queues[0][0]; 673 static int flind, oind, pind; 674 vm_page_t m, m_tmp; 675 676 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 677 for (;;) { 678 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) { 679 for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) { 680 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) { 681 vm_phys_unfree_page(m_tmp); 682 cnt.v_free_count--; 683 mtx_unlock(&vm_page_queue_free_mtx); 684 pmap_zero_page_idle(m_tmp); 685 m_tmp->flags |= PG_ZERO; 686 mtx_lock(&vm_page_queue_free_mtx); 687 cnt.v_free_count++; 688 vm_phys_free_pages(m_tmp, 0); 689 vm_page_zero_count++; 690 cnt_prezero++; 691 return (TRUE); 692 } 693 } 694 } 695 oind++; 696 if (oind == VM_NFREEORDER) { 697 oind = 0; 698 pind++; 699 if (pind == VM_NFREEPOOL) { 700 pind = 0; 701 flind++; 702 if (flind == vm_nfreelists) 703 flind = 0; 704 } 705 fl = vm_phys_free_queues[flind][pind]; 706 } 707 } 708 } 709 710 /* 711 * Allocate a contiguous set of physical pages of the given size 712 * "npages" from the free lists. All of the physical pages must be at 713 * or above the given physical address "low" and below the given 714 * physical address "high". The given value "alignment" determines the 715 * alignment of the first physical page in the set. If the given value 716 * "boundary" is non-zero, then the set of physical pages cannot cross 717 * any physical address boundary that is a multiple of that value. Both 718 * "alignment" and "boundary" must be a power of two. 719 */ 720 vm_page_t 721 vm_phys_alloc_contig(unsigned long npages, vm_paddr_t low, vm_paddr_t high, 722 unsigned long alignment, unsigned long boundary) 723 { 724 struct vm_freelist *fl; 725 struct vm_phys_seg *seg; 726 struct vnode *vp; 727 vm_paddr_t pa, pa_last, size; 728 vm_page_t deferred_vdrop_list, m, m_ret; 729 int domain, flind, i, oind, order, pind; 730 731 #if VM_NDOMAIN > 1 732 domain = PCPU_GET(domain); 733 #else 734 domain = 0; 735 #endif 736 size = npages << PAGE_SHIFT; 737 KASSERT(size != 0, 738 ("vm_phys_alloc_contig: size must not be 0")); 739 KASSERT((alignment & (alignment - 1)) == 0, 740 ("vm_phys_alloc_contig: alignment must be a power of 2")); 741 KASSERT((boundary & (boundary - 1)) == 0, 742 ("vm_phys_alloc_contig: boundary must be a power of 2")); 743 deferred_vdrop_list = NULL; 744 /* Compute the queue that is the best fit for npages. */ 745 for (order = 0; (1 << order) < npages; order++); 746 mtx_lock(&vm_page_queue_free_mtx); 747 #if VM_NRESERVLEVEL > 0 748 retry: 749 #endif 750 for (flind = 0; flind < vm_nfreelists; flind++) { 751 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) { 752 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 753 fl = (*vm_phys_lookup_lists[domain][flind]) 754 [pind]; 755 TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) { 756 /* 757 * A free list may contain physical pages 758 * from one or more segments. 759 */ 760 seg = &vm_phys_segs[m_ret->segind]; 761 if (seg->start > high || 762 low >= seg->end) 763 continue; 764 765 /* 766 * Is the size of this allocation request 767 * larger than the largest block size? 768 */ 769 if (order >= VM_NFREEORDER) { 770 /* 771 * Determine if a sufficient number 772 * of subsequent blocks to satisfy 773 * the allocation request are free. 774 */ 775 pa = VM_PAGE_TO_PHYS(m_ret); 776 pa_last = pa + size; 777 for (;;) { 778 pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1); 779 if (pa >= pa_last) 780 break; 781 if (pa < seg->start || 782 pa >= seg->end) 783 break; 784 m = &seg->first_page[atop(pa - seg->start)]; 785 if (m->order != VM_NFREEORDER - 1) 786 break; 787 } 788 /* If not, continue to the next block. */ 789 if (pa < pa_last) 790 continue; 791 } 792 793 /* 794 * Determine if the blocks are within the given range, 795 * satisfy the given alignment, and do not cross the 796 * given boundary. 797 */ 798 pa = VM_PAGE_TO_PHYS(m_ret); 799 if (pa >= low && 800 pa + size <= high && 801 (pa & (alignment - 1)) == 0 && 802 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0) 803 goto done; 804 } 805 } 806 } 807 } 808 #if VM_NRESERVLEVEL > 0 809 if (vm_reserv_reclaim_contig(size, low, high, alignment, boundary)) 810 goto retry; 811 #endif 812 mtx_unlock(&vm_page_queue_free_mtx); 813 return (NULL); 814 done: 815 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) { 816 fl = (*seg->free_queues)[m->pool]; 817 TAILQ_REMOVE(&fl[m->order].pl, m, pageq); 818 fl[m->order].lcnt--; 819 m->order = VM_NFREEORDER; 820 } 821 if (m_ret->pool != VM_FREEPOOL_DEFAULT) 822 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind); 823 fl = (*seg->free_queues)[m_ret->pool]; 824 vm_phys_split_pages(m_ret, oind, fl, order); 825 for (i = 0; i < npages; i++) { 826 m = &m_ret[i]; 827 vp = vm_page_alloc_init(m); 828 if (vp != NULL) { 829 /* 830 * Enqueue the vnode for deferred vdrop(). 831 * 832 * Unmanaged pages don't use "pageq", so it 833 * can be safely abused to construct a short- 834 * lived queue of vnodes. 835 */ 836 m->pageq.tqe_prev = (void *)vp; 837 m->pageq.tqe_next = deferred_vdrop_list; 838 deferred_vdrop_list = m; 839 } 840 } 841 for (; i < roundup2(npages, 1 << imin(oind, order)); i++) { 842 m = &m_ret[i]; 843 KASSERT(m->order == VM_NFREEORDER, 844 ("vm_phys_alloc_contig: page %p has unexpected order %d", 845 m, m->order)); 846 vm_phys_free_pages(m, 0); 847 } 848 mtx_unlock(&vm_page_queue_free_mtx); 849 while (deferred_vdrop_list != NULL) { 850 vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev); 851 deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next; 852 } 853 return (m_ret); 854 } 855 856 #ifdef DDB 857 /* 858 * Show the number of physical pages in each of the free lists. 859 */ 860 DB_SHOW_COMMAND(freepages, db_show_freepages) 861 { 862 struct vm_freelist *fl; 863 int flind, oind, pind; 864 865 for (flind = 0; flind < vm_nfreelists; flind++) { 866 db_printf("FREE LIST %d:\n" 867 "\n ORDER (SIZE) | NUMBER" 868 "\n ", flind); 869 for (pind = 0; pind < VM_NFREEPOOL; pind++) 870 db_printf(" | POOL %d", pind); 871 db_printf("\n-- "); 872 for (pind = 0; pind < VM_NFREEPOOL; pind++) 873 db_printf("-- -- "); 874 db_printf("--\n"); 875 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) { 876 db_printf(" %2.2d (%6.6dK)", oind, 877 1 << (PAGE_SHIFT - 10 + oind)); 878 for (pind = 0; pind < VM_NFREEPOOL; pind++) { 879 fl = vm_phys_free_queues[flind][pind]; 880 db_printf(" | %6.6d", fl[oind].lcnt); 881 } 882 db_printf("\n"); 883 } 884 db_printf("\n"); 885 } 886 } 887 #endif 888