xref: /freebsd/sys/vm/vm_pageout.c (revision fcb560670601b2a4d87bb31d7531c8dcc37ee71b)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_vm.h"
79 #include "opt_kdtrace.h"
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/lock.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/mount.h>
90 #include <sys/racct.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sched.h>
93 #include <sys/sdt.h>
94 #include <sys/signalvar.h>
95 #include <sys/smp.h>
96 #include <sys/vnode.h>
97 #include <sys/vmmeter.h>
98 #include <sys/rwlock.h>
99 #include <sys/sx.h>
100 #include <sys/sysctl.h>
101 
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_page.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_phys.h>
110 #include <vm/swap_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/uma.h>
113 
114 /*
115  * System initialization
116  */
117 
118 /* the kernel process "vm_pageout"*/
119 static void vm_pageout(void);
120 static void vm_pageout_init(void);
121 static int vm_pageout_clean(vm_page_t);
122 static void vm_pageout_scan(struct vm_domain *vmd, int pass);
123 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass);
124 
125 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
126     NULL);
127 
128 struct proc *pageproc;
129 
130 static struct kproc_desc page_kp = {
131 	"pagedaemon",
132 	vm_pageout,
133 	&pageproc
134 };
135 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
136     &page_kp);
137 
138 SDT_PROVIDER_DEFINE(vm);
139 SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache);
140 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
141 
142 #if !defined(NO_SWAPPING)
143 /* the kernel process "vm_daemon"*/
144 static void vm_daemon(void);
145 static struct	proc *vmproc;
146 
147 static struct kproc_desc vm_kp = {
148 	"vmdaemon",
149 	vm_daemon,
150 	&vmproc
151 };
152 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
153 #endif
154 
155 
156 int vm_pages_needed;		/* Event on which pageout daemon sleeps */
157 int vm_pageout_deficit;		/* Estimated number of pages deficit */
158 int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
159 int vm_pageout_wakeup_thresh;
160 
161 #if !defined(NO_SWAPPING)
162 static int vm_pageout_req_swapout;	/* XXX */
163 static int vm_daemon_needed;
164 static struct mtx vm_daemon_mtx;
165 /* Allow for use by vm_pageout before vm_daemon is initialized. */
166 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
167 #endif
168 static int vm_max_launder = 32;
169 static int vm_pageout_update_period;
170 static int defer_swap_pageouts;
171 static int disable_swap_pageouts;
172 static int lowmem_period = 10;
173 static int lowmem_ticks;
174 
175 #if defined(NO_SWAPPING)
176 static int vm_swap_enabled = 0;
177 static int vm_swap_idle_enabled = 0;
178 #else
179 static int vm_swap_enabled = 1;
180 static int vm_swap_idle_enabled = 0;
181 #endif
182 
183 static int vm_panic_on_oom = 0;
184 
185 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
186 	CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
187 	"panic on out of memory instead of killing the largest process");
188 
189 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
190 	CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
191 	"free page threshold for waking up the pageout daemon");
192 
193 SYSCTL_INT(_vm, OID_AUTO, max_launder,
194 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
195 
196 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
197 	CTLFLAG_RW, &vm_pageout_update_period, 0,
198 	"Maximum active LRU update period");
199 
200 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
201 	"Low memory callback period");
202 
203 #if defined(NO_SWAPPING)
204 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
205 	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
206 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
207 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
208 #else
209 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
210 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
211 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
212 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
213 #endif
214 
215 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
216 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
217 
218 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
219 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
220 
221 static int pageout_lock_miss;
222 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
223 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
224 
225 #define VM_PAGEOUT_PAGE_COUNT 16
226 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
227 
228 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
229 SYSCTL_INT(_vm, OID_AUTO, max_wired,
230 	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
231 
232 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
233 static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
234     vm_paddr_t);
235 #if !defined(NO_SWAPPING)
236 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
237 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
238 static void vm_req_vmdaemon(int req);
239 #endif
240 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
241 
242 /*
243  * Initialize a dummy page for marking the caller's place in the specified
244  * paging queue.  In principle, this function only needs to set the flag
245  * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
246  * to one as safety precautions.
247  */
248 static void
249 vm_pageout_init_marker(vm_page_t marker, u_short queue)
250 {
251 
252 	bzero(marker, sizeof(*marker));
253 	marker->flags = PG_MARKER;
254 	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
255 	marker->queue = queue;
256 	marker->hold_count = 1;
257 }
258 
259 /*
260  * vm_pageout_fallback_object_lock:
261  *
262  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
263  * known to have failed and page queue must be either PQ_ACTIVE or
264  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
265  * while locking the vm object.  Use marker page to detect page queue
266  * changes and maintain notion of next page on page queue.  Return
267  * TRUE if no changes were detected, FALSE otherwise.  vm object is
268  * locked on return.
269  *
270  * This function depends on both the lock portion of struct vm_object
271  * and normal struct vm_page being type stable.
272  */
273 static boolean_t
274 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
275 {
276 	struct vm_page marker;
277 	struct vm_pagequeue *pq;
278 	boolean_t unchanged;
279 	u_short queue;
280 	vm_object_t object;
281 
282 	queue = m->queue;
283 	vm_pageout_init_marker(&marker, queue);
284 	pq = vm_page_pagequeue(m);
285 	object = m->object;
286 
287 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
288 	vm_pagequeue_unlock(pq);
289 	vm_page_unlock(m);
290 	VM_OBJECT_WLOCK(object);
291 	vm_page_lock(m);
292 	vm_pagequeue_lock(pq);
293 
294 	/* Page queue might have changed. */
295 	*next = TAILQ_NEXT(&marker, plinks.q);
296 	unchanged = (m->queue == queue &&
297 		     m->object == object &&
298 		     &marker == TAILQ_NEXT(m, plinks.q));
299 	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
300 	return (unchanged);
301 }
302 
303 /*
304  * Lock the page while holding the page queue lock.  Use marker page
305  * to detect page queue changes and maintain notion of next page on
306  * page queue.  Return TRUE if no changes were detected, FALSE
307  * otherwise.  The page is locked on return. The page queue lock might
308  * be dropped and reacquired.
309  *
310  * This function depends on normal struct vm_page being type stable.
311  */
312 static boolean_t
313 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
314 {
315 	struct vm_page marker;
316 	struct vm_pagequeue *pq;
317 	boolean_t unchanged;
318 	u_short queue;
319 
320 	vm_page_lock_assert(m, MA_NOTOWNED);
321 	if (vm_page_trylock(m))
322 		return (TRUE);
323 
324 	queue = m->queue;
325 	vm_pageout_init_marker(&marker, queue);
326 	pq = vm_page_pagequeue(m);
327 
328 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
329 	vm_pagequeue_unlock(pq);
330 	vm_page_lock(m);
331 	vm_pagequeue_lock(pq);
332 
333 	/* Page queue might have changed. */
334 	*next = TAILQ_NEXT(&marker, plinks.q);
335 	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, plinks.q));
336 	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
337 	return (unchanged);
338 }
339 
340 /*
341  * vm_pageout_clean:
342  *
343  * Clean the page and remove it from the laundry.
344  *
345  * We set the busy bit to cause potential page faults on this page to
346  * block.  Note the careful timing, however, the busy bit isn't set till
347  * late and we cannot do anything that will mess with the page.
348  */
349 static int
350 vm_pageout_clean(vm_page_t m)
351 {
352 	vm_object_t object;
353 	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
354 	int pageout_count;
355 	int ib, is, page_base;
356 	vm_pindex_t pindex = m->pindex;
357 
358 	vm_page_lock_assert(m, MA_OWNED);
359 	object = m->object;
360 	VM_OBJECT_ASSERT_WLOCKED(object);
361 
362 	/*
363 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
364 	 * with the new swapper, but we could have serious problems paging
365 	 * out other object types if there is insufficient memory.
366 	 *
367 	 * Unfortunately, checking free memory here is far too late, so the
368 	 * check has been moved up a procedural level.
369 	 */
370 
371 	/*
372 	 * Can't clean the page if it's busy or held.
373 	 */
374 	vm_page_assert_unbusied(m);
375 	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
376 	vm_page_unlock(m);
377 
378 	mc[vm_pageout_page_count] = pb = ps = m;
379 	pageout_count = 1;
380 	page_base = vm_pageout_page_count;
381 	ib = 1;
382 	is = 1;
383 
384 	/*
385 	 * Scan object for clusterable pages.
386 	 *
387 	 * We can cluster ONLY if: ->> the page is NOT
388 	 * clean, wired, busy, held, or mapped into a
389 	 * buffer, and one of the following:
390 	 * 1) The page is inactive, or a seldom used
391 	 *    active page.
392 	 * -or-
393 	 * 2) we force the issue.
394 	 *
395 	 * During heavy mmap/modification loads the pageout
396 	 * daemon can really fragment the underlying file
397 	 * due to flushing pages out of order and not trying
398 	 * align the clusters (which leave sporatic out-of-order
399 	 * holes).  To solve this problem we do the reverse scan
400 	 * first and attempt to align our cluster, then do a
401 	 * forward scan if room remains.
402 	 */
403 more:
404 	while (ib && pageout_count < vm_pageout_page_count) {
405 		vm_page_t p;
406 
407 		if (ib > pindex) {
408 			ib = 0;
409 			break;
410 		}
411 
412 		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
413 			ib = 0;
414 			break;
415 		}
416 		vm_page_lock(p);
417 		vm_page_test_dirty(p);
418 		if (p->dirty == 0 ||
419 		    p->queue != PQ_INACTIVE ||
420 		    p->hold_count != 0) {	/* may be undergoing I/O */
421 			vm_page_unlock(p);
422 			ib = 0;
423 			break;
424 		}
425 		vm_page_unlock(p);
426 		mc[--page_base] = pb = p;
427 		++pageout_count;
428 		++ib;
429 		/*
430 		 * alignment boundry, stop here and switch directions.  Do
431 		 * not clear ib.
432 		 */
433 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
434 			break;
435 	}
436 
437 	while (pageout_count < vm_pageout_page_count &&
438 	    pindex + is < object->size) {
439 		vm_page_t p;
440 
441 		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
442 			break;
443 		vm_page_lock(p);
444 		vm_page_test_dirty(p);
445 		if (p->dirty == 0 ||
446 		    p->queue != PQ_INACTIVE ||
447 		    p->hold_count != 0) {	/* may be undergoing I/O */
448 			vm_page_unlock(p);
449 			break;
450 		}
451 		vm_page_unlock(p);
452 		mc[page_base + pageout_count] = ps = p;
453 		++pageout_count;
454 		++is;
455 	}
456 
457 	/*
458 	 * If we exhausted our forward scan, continue with the reverse scan
459 	 * when possible, even past a page boundry.  This catches boundry
460 	 * conditions.
461 	 */
462 	if (ib && pageout_count < vm_pageout_page_count)
463 		goto more;
464 
465 	/*
466 	 * we allow reads during pageouts...
467 	 */
468 	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
469 	    NULL));
470 }
471 
472 /*
473  * vm_pageout_flush() - launder the given pages
474  *
475  *	The given pages are laundered.  Note that we setup for the start of
476  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
477  *	reference count all in here rather then in the parent.  If we want
478  *	the parent to do more sophisticated things we may have to change
479  *	the ordering.
480  *
481  *	Returned runlen is the count of pages between mreq and first
482  *	page after mreq with status VM_PAGER_AGAIN.
483  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
484  *	for any page in runlen set.
485  */
486 int
487 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
488     boolean_t *eio)
489 {
490 	vm_object_t object = mc[0]->object;
491 	int pageout_status[count];
492 	int numpagedout = 0;
493 	int i, runlen;
494 
495 	VM_OBJECT_ASSERT_WLOCKED(object);
496 
497 	/*
498 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
499 	 * mark the pages read-only.
500 	 *
501 	 * We do not have to fixup the clean/dirty bits here... we can
502 	 * allow the pager to do it after the I/O completes.
503 	 *
504 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
505 	 * edge case with file fragments.
506 	 */
507 	for (i = 0; i < count; i++) {
508 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
509 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
510 			mc[i], i, count));
511 		vm_page_sbusy(mc[i]);
512 		pmap_remove_write(mc[i]);
513 	}
514 	vm_object_pip_add(object, count);
515 
516 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
517 
518 	runlen = count - mreq;
519 	if (eio != NULL)
520 		*eio = FALSE;
521 	for (i = 0; i < count; i++) {
522 		vm_page_t mt = mc[i];
523 
524 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
525 		    !pmap_page_is_write_mapped(mt),
526 		    ("vm_pageout_flush: page %p is not write protected", mt));
527 		switch (pageout_status[i]) {
528 		case VM_PAGER_OK:
529 		case VM_PAGER_PEND:
530 			numpagedout++;
531 			break;
532 		case VM_PAGER_BAD:
533 			/*
534 			 * Page outside of range of object. Right now we
535 			 * essentially lose the changes by pretending it
536 			 * worked.
537 			 */
538 			vm_page_undirty(mt);
539 			break;
540 		case VM_PAGER_ERROR:
541 		case VM_PAGER_FAIL:
542 			/*
543 			 * If page couldn't be paged out, then reactivate the
544 			 * page so it doesn't clog the inactive list.  (We
545 			 * will try paging out it again later).
546 			 */
547 			vm_page_lock(mt);
548 			vm_page_activate(mt);
549 			vm_page_unlock(mt);
550 			if (eio != NULL && i >= mreq && i - mreq < runlen)
551 				*eio = TRUE;
552 			break;
553 		case VM_PAGER_AGAIN:
554 			if (i >= mreq && i - mreq < runlen)
555 				runlen = i - mreq;
556 			break;
557 		}
558 
559 		/*
560 		 * If the operation is still going, leave the page busy to
561 		 * block all other accesses. Also, leave the paging in
562 		 * progress indicator set so that we don't attempt an object
563 		 * collapse.
564 		 */
565 		if (pageout_status[i] != VM_PAGER_PEND) {
566 			vm_object_pip_wakeup(object);
567 			vm_page_sunbusy(mt);
568 			if (vm_page_count_severe()) {
569 				vm_page_lock(mt);
570 				vm_page_try_to_cache(mt);
571 				vm_page_unlock(mt);
572 			}
573 		}
574 	}
575 	if (prunlen != NULL)
576 		*prunlen = runlen;
577 	return (numpagedout);
578 }
579 
580 static boolean_t
581 vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
582     vm_paddr_t high)
583 {
584 	struct mount *mp;
585 	struct vnode *vp;
586 	vm_object_t object;
587 	vm_paddr_t pa;
588 	vm_page_t m, m_tmp, next;
589 	int lockmode;
590 
591 	vm_pagequeue_lock(pq);
592 	TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
593 		if ((m->flags & PG_MARKER) != 0)
594 			continue;
595 		pa = VM_PAGE_TO_PHYS(m);
596 		if (pa < low || pa + PAGE_SIZE > high)
597 			continue;
598 		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
599 			vm_page_unlock(m);
600 			continue;
601 		}
602 		object = m->object;
603 		if ((!VM_OBJECT_TRYWLOCK(object) &&
604 		    (!vm_pageout_fallback_object_lock(m, &next) ||
605 		    m->hold_count != 0)) || vm_page_busied(m)) {
606 			vm_page_unlock(m);
607 			VM_OBJECT_WUNLOCK(object);
608 			continue;
609 		}
610 		vm_page_test_dirty(m);
611 		if (m->dirty == 0 && object->ref_count != 0)
612 			pmap_remove_all(m);
613 		if (m->dirty != 0) {
614 			vm_page_unlock(m);
615 			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
616 				VM_OBJECT_WUNLOCK(object);
617 				continue;
618 			}
619 			if (object->type == OBJT_VNODE) {
620 				vm_pagequeue_unlock(pq);
621 				vp = object->handle;
622 				vm_object_reference_locked(object);
623 				VM_OBJECT_WUNLOCK(object);
624 				(void)vn_start_write(vp, &mp, V_WAIT);
625 				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
626 				    LK_SHARED : LK_EXCLUSIVE;
627 				vn_lock(vp, lockmode | LK_RETRY);
628 				VM_OBJECT_WLOCK(object);
629 				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
630 				VM_OBJECT_WUNLOCK(object);
631 				VOP_UNLOCK(vp, 0);
632 				vm_object_deallocate(object);
633 				vn_finished_write(mp);
634 				return (TRUE);
635 			} else if (object->type == OBJT_SWAP ||
636 			    object->type == OBJT_DEFAULT) {
637 				vm_pagequeue_unlock(pq);
638 				m_tmp = m;
639 				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
640 				    0, NULL, NULL);
641 				VM_OBJECT_WUNLOCK(object);
642 				return (TRUE);
643 			}
644 		} else {
645 			/*
646 			 * Dequeue here to prevent lock recursion in
647 			 * vm_page_cache().
648 			 */
649 			vm_page_dequeue_locked(m);
650 			vm_page_cache(m);
651 			vm_page_unlock(m);
652 		}
653 		VM_OBJECT_WUNLOCK(object);
654 	}
655 	vm_pagequeue_unlock(pq);
656 	return (FALSE);
657 }
658 
659 /*
660  * Increase the number of cached pages.  The specified value, "tries",
661  * determines which categories of pages are cached:
662  *
663  *  0: All clean, inactive pages within the specified physical address range
664  *     are cached.  Will not sleep.
665  *  1: The vm_lowmem handlers are called.  All inactive pages within
666  *     the specified physical address range are cached.  May sleep.
667  *  2: The vm_lowmem handlers are called.  All inactive and active pages
668  *     within the specified physical address range are cached.  May sleep.
669  */
670 void
671 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
672 {
673 	int actl, actmax, inactl, inactmax, dom, initial_dom;
674 	static int start_dom = 0;
675 
676 	if (tries > 0) {
677 		/*
678 		 * Decrease registered cache sizes.  The vm_lowmem handlers
679 		 * may acquire locks and/or sleep, so they can only be invoked
680 		 * when "tries" is greater than zero.
681 		 */
682 		SDT_PROBE0(vm, , , vm__lowmem_cache);
683 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
684 
685 		/*
686 		 * We do this explicitly after the caches have been drained
687 		 * above.
688 		 */
689 		uma_reclaim();
690 	}
691 
692 	/*
693 	 * Make the next scan start on the next domain.
694 	 */
695 	initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
696 
697 	inactl = 0;
698 	inactmax = vm_cnt.v_inactive_count;
699 	actl = 0;
700 	actmax = tries < 2 ? 0 : vm_cnt.v_active_count;
701 	dom = initial_dom;
702 
703 	/*
704 	 * Scan domains in round-robin order, first inactive queues,
705 	 * then active.  Since domain usually owns large physically
706 	 * contiguous chunk of memory, it makes sense to completely
707 	 * exhaust one domain before switching to next, while growing
708 	 * the pool of contiguous physical pages.
709 	 *
710 	 * Do not even start launder a domain which cannot contain
711 	 * the specified address range, as indicated by segments
712 	 * constituting the domain.
713 	 */
714 again:
715 	if (inactl < inactmax) {
716 		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
717 		    low, high) &&
718 		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
719 		    tries, low, high)) {
720 			inactl++;
721 			goto again;
722 		}
723 		if (++dom == vm_ndomains)
724 			dom = 0;
725 		if (dom != initial_dom)
726 			goto again;
727 	}
728 	if (actl < actmax) {
729 		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
730 		    low, high) &&
731 		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
732 		      tries, low, high)) {
733 			actl++;
734 			goto again;
735 		}
736 		if (++dom == vm_ndomains)
737 			dom = 0;
738 		if (dom != initial_dom)
739 			goto again;
740 	}
741 }
742 
743 #if !defined(NO_SWAPPING)
744 /*
745  *	vm_pageout_object_deactivate_pages
746  *
747  *	Deactivate enough pages to satisfy the inactive target
748  *	requirements.
749  *
750  *	The object and map must be locked.
751  */
752 static void
753 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
754     long desired)
755 {
756 	vm_object_t backing_object, object;
757 	vm_page_t p;
758 	int act_delta, remove_mode;
759 
760 	VM_OBJECT_ASSERT_LOCKED(first_object);
761 	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
762 		return;
763 	for (object = first_object;; object = backing_object) {
764 		if (pmap_resident_count(pmap) <= desired)
765 			goto unlock_return;
766 		VM_OBJECT_ASSERT_LOCKED(object);
767 		if ((object->flags & OBJ_UNMANAGED) != 0 ||
768 		    object->paging_in_progress != 0)
769 			goto unlock_return;
770 
771 		remove_mode = 0;
772 		if (object->shadow_count > 1)
773 			remove_mode = 1;
774 		/*
775 		 * Scan the object's entire memory queue.
776 		 */
777 		TAILQ_FOREACH(p, &object->memq, listq) {
778 			if (pmap_resident_count(pmap) <= desired)
779 				goto unlock_return;
780 			if (vm_page_busied(p))
781 				continue;
782 			PCPU_INC(cnt.v_pdpages);
783 			vm_page_lock(p);
784 			if (p->wire_count != 0 || p->hold_count != 0 ||
785 			    !pmap_page_exists_quick(pmap, p)) {
786 				vm_page_unlock(p);
787 				continue;
788 			}
789 			act_delta = pmap_ts_referenced(p);
790 			if ((p->aflags & PGA_REFERENCED) != 0) {
791 				if (act_delta == 0)
792 					act_delta = 1;
793 				vm_page_aflag_clear(p, PGA_REFERENCED);
794 			}
795 			if (p->queue != PQ_ACTIVE && act_delta != 0) {
796 				vm_page_activate(p);
797 				p->act_count += act_delta;
798 			} else if (p->queue == PQ_ACTIVE) {
799 				if (act_delta == 0) {
800 					p->act_count -= min(p->act_count,
801 					    ACT_DECLINE);
802 					if (!remove_mode && p->act_count == 0) {
803 						pmap_remove_all(p);
804 						vm_page_deactivate(p);
805 					} else
806 						vm_page_requeue(p);
807 				} else {
808 					vm_page_activate(p);
809 					if (p->act_count < ACT_MAX -
810 					    ACT_ADVANCE)
811 						p->act_count += ACT_ADVANCE;
812 					vm_page_requeue(p);
813 				}
814 			} else if (p->queue == PQ_INACTIVE)
815 				pmap_remove_all(p);
816 			vm_page_unlock(p);
817 		}
818 		if ((backing_object = object->backing_object) == NULL)
819 			goto unlock_return;
820 		VM_OBJECT_RLOCK(backing_object);
821 		if (object != first_object)
822 			VM_OBJECT_RUNLOCK(object);
823 	}
824 unlock_return:
825 	if (object != first_object)
826 		VM_OBJECT_RUNLOCK(object);
827 }
828 
829 /*
830  * deactivate some number of pages in a map, try to do it fairly, but
831  * that is really hard to do.
832  */
833 static void
834 vm_pageout_map_deactivate_pages(map, desired)
835 	vm_map_t map;
836 	long desired;
837 {
838 	vm_map_entry_t tmpe;
839 	vm_object_t obj, bigobj;
840 	int nothingwired;
841 
842 	if (!vm_map_trylock(map))
843 		return;
844 
845 	bigobj = NULL;
846 	nothingwired = TRUE;
847 
848 	/*
849 	 * first, search out the biggest object, and try to free pages from
850 	 * that.
851 	 */
852 	tmpe = map->header.next;
853 	while (tmpe != &map->header) {
854 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
855 			obj = tmpe->object.vm_object;
856 			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
857 				if (obj->shadow_count <= 1 &&
858 				    (bigobj == NULL ||
859 				     bigobj->resident_page_count < obj->resident_page_count)) {
860 					if (bigobj != NULL)
861 						VM_OBJECT_RUNLOCK(bigobj);
862 					bigobj = obj;
863 				} else
864 					VM_OBJECT_RUNLOCK(obj);
865 			}
866 		}
867 		if (tmpe->wired_count > 0)
868 			nothingwired = FALSE;
869 		tmpe = tmpe->next;
870 	}
871 
872 	if (bigobj != NULL) {
873 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
874 		VM_OBJECT_RUNLOCK(bigobj);
875 	}
876 	/*
877 	 * Next, hunt around for other pages to deactivate.  We actually
878 	 * do this search sort of wrong -- .text first is not the best idea.
879 	 */
880 	tmpe = map->header.next;
881 	while (tmpe != &map->header) {
882 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
883 			break;
884 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
885 			obj = tmpe->object.vm_object;
886 			if (obj != NULL) {
887 				VM_OBJECT_RLOCK(obj);
888 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
889 				VM_OBJECT_RUNLOCK(obj);
890 			}
891 		}
892 		tmpe = tmpe->next;
893 	}
894 
895 	/*
896 	 * Remove all mappings if a process is swapped out, this will free page
897 	 * table pages.
898 	 */
899 	if (desired == 0 && nothingwired) {
900 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
901 		    vm_map_max(map));
902 	}
903 
904 	vm_map_unlock(map);
905 }
906 #endif		/* !defined(NO_SWAPPING) */
907 
908 /*
909  *	vm_pageout_scan does the dirty work for the pageout daemon.
910  *
911  *	pass 0 - Update active LRU/deactivate pages
912  *	pass 1 - Move inactive to cache or free
913  *	pass 2 - Launder dirty pages
914  */
915 static void
916 vm_pageout_scan(struct vm_domain *vmd, int pass)
917 {
918 	vm_page_t m, next;
919 	struct vm_pagequeue *pq;
920 	vm_object_t object;
921 	int act_delta, addl_page_shortage, deficit, maxscan, page_shortage;
922 	int vnodes_skipped = 0;
923 	int maxlaunder;
924 	int lockmode;
925 	boolean_t queues_locked;
926 
927 	/*
928 	 * If we need to reclaim memory ask kernel caches to return
929 	 * some.  We rate limit to avoid thrashing.
930 	 */
931 	if (vmd == &vm_dom[0] && pass > 0 &&
932 	    (ticks - lowmem_ticks) / hz >= lowmem_period) {
933 		/*
934 		 * Decrease registered cache sizes.
935 		 */
936 		SDT_PROBE0(vm, , , vm__lowmem_scan);
937 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
938 		/*
939 		 * We do this explicitly after the caches have been
940 		 * drained above.
941 		 */
942 		uma_reclaim();
943 		lowmem_ticks = ticks;
944 	}
945 
946 	/*
947 	 * The addl_page_shortage is the number of temporarily
948 	 * stuck pages in the inactive queue.  In other words, the
949 	 * number of pages from the inactive count that should be
950 	 * discounted in setting the target for the active queue scan.
951 	 */
952 	addl_page_shortage = 0;
953 
954 	/*
955 	 * Calculate the number of pages we want to either free or move
956 	 * to the cache.
957 	 */
958 	if (pass > 0) {
959 		deficit = atomic_readandclear_int(&vm_pageout_deficit);
960 		page_shortage = vm_paging_target() + deficit;
961 	} else
962 		page_shortage = deficit = 0;
963 
964 	/*
965 	 * maxlaunder limits the number of dirty pages we flush per scan.
966 	 * For most systems a smaller value (16 or 32) is more robust under
967 	 * extreme memory and disk pressure because any unnecessary writes
968 	 * to disk can result in extreme performance degredation.  However,
969 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
970 	 * used) will die horribly with limited laundering.  If the pageout
971 	 * daemon cannot clean enough pages in the first pass, we let it go
972 	 * all out in succeeding passes.
973 	 */
974 	if ((maxlaunder = vm_max_launder) <= 1)
975 		maxlaunder = 1;
976 	if (pass > 1)
977 		maxlaunder = 10000;
978 
979 	/*
980 	 * Start scanning the inactive queue for pages we can move to the
981 	 * cache or free.  The scan will stop when the target is reached or
982 	 * we have scanned the entire inactive queue.  Note that m->act_count
983 	 * is not used to form decisions for the inactive queue, only for the
984 	 * active queue.
985 	 */
986 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
987 	maxscan = pq->pq_cnt;
988 	vm_pagequeue_lock(pq);
989 	queues_locked = TRUE;
990 	for (m = TAILQ_FIRST(&pq->pq_pl);
991 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
992 	     m = next) {
993 		vm_pagequeue_assert_locked(pq);
994 		KASSERT(queues_locked, ("unlocked queues"));
995 		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
996 
997 		PCPU_INC(cnt.v_pdpages);
998 		next = TAILQ_NEXT(m, plinks.q);
999 
1000 		/*
1001 		 * skip marker pages
1002 		 */
1003 		if (m->flags & PG_MARKER)
1004 			continue;
1005 
1006 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1007 		    ("Fictitious page %p cannot be in inactive queue", m));
1008 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1009 		    ("Unmanaged page %p cannot be in inactive queue", m));
1010 
1011 		/*
1012 		 * The page or object lock acquisitions fail if the
1013 		 * page was removed from the queue or moved to a
1014 		 * different position within the queue.  In either
1015 		 * case, addl_page_shortage should not be incremented.
1016 		 */
1017 		if (!vm_pageout_page_lock(m, &next)) {
1018 			vm_page_unlock(m);
1019 			continue;
1020 		}
1021 		object = m->object;
1022 		if (!VM_OBJECT_TRYWLOCK(object) &&
1023 		    !vm_pageout_fallback_object_lock(m, &next)) {
1024 			vm_page_unlock(m);
1025 			VM_OBJECT_WUNLOCK(object);
1026 			continue;
1027 		}
1028 
1029 		/*
1030 		 * Don't mess with busy pages, keep them at at the
1031 		 * front of the queue, most likely they are being
1032 		 * paged out.  Increment addl_page_shortage for busy
1033 		 * pages, because they may leave the inactive queue
1034 		 * shortly after page scan is finished.
1035 		 */
1036 		if (vm_page_busied(m)) {
1037 			vm_page_unlock(m);
1038 			VM_OBJECT_WUNLOCK(object);
1039 			addl_page_shortage++;
1040 			continue;
1041 		}
1042 
1043 		/*
1044 		 * We unlock the inactive page queue, invalidating the
1045 		 * 'next' pointer.  Use our marker to remember our
1046 		 * place.
1047 		 */
1048 		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1049 		vm_pagequeue_unlock(pq);
1050 		queues_locked = FALSE;
1051 
1052 		/*
1053 		 * We bump the activation count if the page has been
1054 		 * referenced while in the inactive queue.  This makes
1055 		 * it less likely that the page will be added back to the
1056 		 * inactive queue prematurely again.  Here we check the
1057 		 * page tables (or emulated bits, if any), given the upper
1058 		 * level VM system not knowing anything about existing
1059 		 * references.
1060 		 */
1061 		if ((m->aflags & PGA_REFERENCED) != 0) {
1062 			vm_page_aflag_clear(m, PGA_REFERENCED);
1063 			act_delta = 1;
1064 		} else
1065 			act_delta = 0;
1066 		if (object->ref_count != 0) {
1067 			act_delta += pmap_ts_referenced(m);
1068 		} else {
1069 			KASSERT(!pmap_page_is_mapped(m),
1070 			    ("vm_pageout_scan: page %p is mapped", m));
1071 		}
1072 
1073 		/*
1074 		 * If the upper level VM system knows about any page
1075 		 * references, we reactivate the page or requeue it.
1076 		 */
1077 		if (act_delta != 0) {
1078 			if (object->ref_count != 0) {
1079 				vm_page_activate(m);
1080 				m->act_count += act_delta + ACT_ADVANCE;
1081 			} else {
1082 				vm_pagequeue_lock(pq);
1083 				queues_locked = TRUE;
1084 				vm_page_requeue_locked(m);
1085 			}
1086 			VM_OBJECT_WUNLOCK(object);
1087 			vm_page_unlock(m);
1088 			goto relock_queues;
1089 		}
1090 
1091 		if (m->hold_count != 0) {
1092 			vm_page_unlock(m);
1093 			VM_OBJECT_WUNLOCK(object);
1094 
1095 			/*
1096 			 * Held pages are essentially stuck in the
1097 			 * queue.  So, they ought to be discounted
1098 			 * from the inactive count.  See the
1099 			 * calculation of the page_shortage for the
1100 			 * loop over the active queue below.
1101 			 */
1102 			addl_page_shortage++;
1103 			goto relock_queues;
1104 		}
1105 
1106 		/*
1107 		 * If the page appears to be clean at the machine-independent
1108 		 * layer, then remove all of its mappings from the pmap in
1109 		 * anticipation of placing it onto the cache queue.  If,
1110 		 * however, any of the page's mappings allow write access,
1111 		 * then the page may still be modified until the last of those
1112 		 * mappings are removed.
1113 		 */
1114 		vm_page_test_dirty(m);
1115 		if (m->dirty == 0 && object->ref_count != 0)
1116 			pmap_remove_all(m);
1117 
1118 		if (m->valid == 0) {
1119 			/*
1120 			 * Invalid pages can be easily freed
1121 			 */
1122 			vm_page_free(m);
1123 			PCPU_INC(cnt.v_dfree);
1124 			--page_shortage;
1125 		} else if (m->dirty == 0) {
1126 			/*
1127 			 * Clean pages can be placed onto the cache queue.
1128 			 * This effectively frees them.
1129 			 */
1130 			vm_page_cache(m);
1131 			--page_shortage;
1132 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1133 			/*
1134 			 * Dirty pages need to be paged out, but flushing
1135 			 * a page is extremely expensive versus freeing
1136 			 * a clean page.  Rather then artificially limiting
1137 			 * the number of pages we can flush, we instead give
1138 			 * dirty pages extra priority on the inactive queue
1139 			 * by forcing them to be cycled through the queue
1140 			 * twice before being flushed, after which the
1141 			 * (now clean) page will cycle through once more
1142 			 * before being freed.  This significantly extends
1143 			 * the thrash point for a heavily loaded machine.
1144 			 */
1145 			m->flags |= PG_WINATCFLS;
1146 			vm_pagequeue_lock(pq);
1147 			queues_locked = TRUE;
1148 			vm_page_requeue_locked(m);
1149 		} else if (maxlaunder > 0) {
1150 			/*
1151 			 * We always want to try to flush some dirty pages if
1152 			 * we encounter them, to keep the system stable.
1153 			 * Normally this number is small, but under extreme
1154 			 * pressure where there are insufficient clean pages
1155 			 * on the inactive queue, we may have to go all out.
1156 			 */
1157 			int swap_pageouts_ok;
1158 			struct vnode *vp = NULL;
1159 			struct mount *mp = NULL;
1160 
1161 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1162 				swap_pageouts_ok = 1;
1163 			} else {
1164 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1165 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1166 				vm_page_count_min());
1167 
1168 			}
1169 
1170 			/*
1171 			 * We don't bother paging objects that are "dead".
1172 			 * Those objects are in a "rundown" state.
1173 			 */
1174 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1175 				vm_pagequeue_lock(pq);
1176 				vm_page_unlock(m);
1177 				VM_OBJECT_WUNLOCK(object);
1178 				queues_locked = TRUE;
1179 				vm_page_requeue_locked(m);
1180 				goto relock_queues;
1181 			}
1182 
1183 			/*
1184 			 * The object is already known NOT to be dead.   It
1185 			 * is possible for the vget() to block the whole
1186 			 * pageout daemon, but the new low-memory handling
1187 			 * code should prevent it.
1188 			 *
1189 			 * The previous code skipped locked vnodes and, worse,
1190 			 * reordered pages in the queue.  This results in
1191 			 * completely non-deterministic operation and, on a
1192 			 * busy system, can lead to extremely non-optimal
1193 			 * pageouts.  For example, it can cause clean pages
1194 			 * to be freed and dirty pages to be moved to the end
1195 			 * of the queue.  Since dirty pages are also moved to
1196 			 * the end of the queue once-cleaned, this gives
1197 			 * way too large a weighting to deferring the freeing
1198 			 * of dirty pages.
1199 			 *
1200 			 * We can't wait forever for the vnode lock, we might
1201 			 * deadlock due to a vn_read() getting stuck in
1202 			 * vm_wait while holding this vnode.  We skip the
1203 			 * vnode if we can't get it in a reasonable amount
1204 			 * of time.
1205 			 */
1206 			if (object->type == OBJT_VNODE) {
1207 				vm_page_unlock(m);
1208 				vp = object->handle;
1209 				if (vp->v_type == VREG &&
1210 				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1211 					mp = NULL;
1212 					++pageout_lock_miss;
1213 					if (object->flags & OBJ_MIGHTBEDIRTY)
1214 						vnodes_skipped++;
1215 					goto unlock_and_continue;
1216 				}
1217 				KASSERT(mp != NULL,
1218 				    ("vp %p with NULL v_mount", vp));
1219 				vm_object_reference_locked(object);
1220 				VM_OBJECT_WUNLOCK(object);
1221 				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
1222 				    LK_SHARED : LK_EXCLUSIVE;
1223 				if (vget(vp, lockmode | LK_TIMELOCK,
1224 				    curthread)) {
1225 					VM_OBJECT_WLOCK(object);
1226 					++pageout_lock_miss;
1227 					if (object->flags & OBJ_MIGHTBEDIRTY)
1228 						vnodes_skipped++;
1229 					vp = NULL;
1230 					goto unlock_and_continue;
1231 				}
1232 				VM_OBJECT_WLOCK(object);
1233 				vm_page_lock(m);
1234 				vm_pagequeue_lock(pq);
1235 				queues_locked = TRUE;
1236 				/*
1237 				 * The page might have been moved to another
1238 				 * queue during potential blocking in vget()
1239 				 * above.  The page might have been freed and
1240 				 * reused for another vnode.
1241 				 */
1242 				if (m->queue != PQ_INACTIVE ||
1243 				    m->object != object ||
1244 				    TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
1245 					vm_page_unlock(m);
1246 					if (object->flags & OBJ_MIGHTBEDIRTY)
1247 						vnodes_skipped++;
1248 					goto unlock_and_continue;
1249 				}
1250 
1251 				/*
1252 				 * The page may have been busied during the
1253 				 * blocking in vget().  We don't move the
1254 				 * page back onto the end of the queue so that
1255 				 * statistics are more correct if we don't.
1256 				 */
1257 				if (vm_page_busied(m)) {
1258 					vm_page_unlock(m);
1259 					addl_page_shortage++;
1260 					goto unlock_and_continue;
1261 				}
1262 
1263 				/*
1264 				 * If the page has become held it might
1265 				 * be undergoing I/O, so skip it
1266 				 */
1267 				if (m->hold_count != 0) {
1268 					vm_page_unlock(m);
1269 					addl_page_shortage++;
1270 					if (object->flags & OBJ_MIGHTBEDIRTY)
1271 						vnodes_skipped++;
1272 					goto unlock_and_continue;
1273 				}
1274 				vm_pagequeue_unlock(pq);
1275 				queues_locked = FALSE;
1276 			}
1277 
1278 			/*
1279 			 * If a page is dirty, then it is either being washed
1280 			 * (but not yet cleaned) or it is still in the
1281 			 * laundry.  If it is still in the laundry, then we
1282 			 * start the cleaning operation.
1283 			 *
1284 			 * decrement page_shortage on success to account for
1285 			 * the (future) cleaned page.  Otherwise we could wind
1286 			 * up laundering or cleaning too many pages.
1287 			 */
1288 			if (vm_pageout_clean(m) != 0) {
1289 				--page_shortage;
1290 				--maxlaunder;
1291 			}
1292 unlock_and_continue:
1293 			vm_page_lock_assert(m, MA_NOTOWNED);
1294 			VM_OBJECT_WUNLOCK(object);
1295 			if (mp != NULL) {
1296 				if (queues_locked) {
1297 					vm_pagequeue_unlock(pq);
1298 					queues_locked = FALSE;
1299 				}
1300 				if (vp != NULL)
1301 					vput(vp);
1302 				vm_object_deallocate(object);
1303 				vn_finished_write(mp);
1304 			}
1305 			vm_page_lock_assert(m, MA_NOTOWNED);
1306 			goto relock_queues;
1307 		}
1308 		vm_page_unlock(m);
1309 		VM_OBJECT_WUNLOCK(object);
1310 relock_queues:
1311 		if (!queues_locked) {
1312 			vm_pagequeue_lock(pq);
1313 			queues_locked = TRUE;
1314 		}
1315 		next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1316 		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1317 	}
1318 	vm_pagequeue_unlock(pq);
1319 
1320 #if !defined(NO_SWAPPING)
1321 	/*
1322 	 * Wakeup the swapout daemon if we didn't cache or free the targeted
1323 	 * number of pages.
1324 	 */
1325 	if (vm_swap_enabled && page_shortage > 0)
1326 		vm_req_vmdaemon(VM_SWAP_NORMAL);
1327 #endif
1328 
1329 	/*
1330 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
1331 	 * and we didn't cache or free enough pages.
1332 	 */
1333 	if (vnodes_skipped > 0 && page_shortage > vm_cnt.v_free_target -
1334 	    vm_cnt.v_free_min)
1335 		(void)speedup_syncer();
1336 
1337 	/*
1338 	 * Compute the number of pages we want to try to move from the
1339 	 * active queue to the inactive queue.
1340 	 */
1341 	page_shortage = vm_cnt.v_inactive_target - vm_cnt.v_inactive_count +
1342 	    vm_paging_target() + deficit + addl_page_shortage;
1343 
1344 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1345 	vm_pagequeue_lock(pq);
1346 	maxscan = pq->pq_cnt;
1347 
1348 	/*
1349 	 * If we're just idle polling attempt to visit every
1350 	 * active page within 'update_period' seconds.
1351 	 */
1352 	if (pass == 0 && vm_pageout_update_period != 0) {
1353 		maxscan /= vm_pageout_update_period;
1354 		page_shortage = maxscan;
1355 	}
1356 
1357 	/*
1358 	 * Scan the active queue for things we can deactivate. We nominally
1359 	 * track the per-page activity counter and use it to locate
1360 	 * deactivation candidates.
1361 	 */
1362 	m = TAILQ_FIRST(&pq->pq_pl);
1363 	while (m != NULL && maxscan-- > 0 && page_shortage > 0) {
1364 
1365 		KASSERT(m->queue == PQ_ACTIVE,
1366 		    ("vm_pageout_scan: page %p isn't active", m));
1367 
1368 		next = TAILQ_NEXT(m, plinks.q);
1369 		if ((m->flags & PG_MARKER) != 0) {
1370 			m = next;
1371 			continue;
1372 		}
1373 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1374 		    ("Fictitious page %p cannot be in active queue", m));
1375 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1376 		    ("Unmanaged page %p cannot be in active queue", m));
1377 		if (!vm_pageout_page_lock(m, &next)) {
1378 			vm_page_unlock(m);
1379 			m = next;
1380 			continue;
1381 		}
1382 
1383 		/*
1384 		 * The count for pagedaemon pages is done after checking the
1385 		 * page for eligibility...
1386 		 */
1387 		PCPU_INC(cnt.v_pdpages);
1388 
1389 		/*
1390 		 * Check to see "how much" the page has been used.
1391 		 */
1392 		if ((m->aflags & PGA_REFERENCED) != 0) {
1393 			vm_page_aflag_clear(m, PGA_REFERENCED);
1394 			act_delta = 1;
1395 		} else
1396 			act_delta = 0;
1397 
1398 		/*
1399 		 * Unlocked object ref count check.  Two races are possible.
1400 		 * 1) The ref was transitioning to zero and we saw non-zero,
1401 		 *    the pmap bits will be checked unnecessarily.
1402 		 * 2) The ref was transitioning to one and we saw zero.
1403 		 *    The page lock prevents a new reference to this page so
1404 		 *    we need not check the reference bits.
1405 		 */
1406 		if (m->object->ref_count != 0)
1407 			act_delta += pmap_ts_referenced(m);
1408 
1409 		/*
1410 		 * Advance or decay the act_count based on recent usage.
1411 		 */
1412 		if (act_delta != 0) {
1413 			m->act_count += ACT_ADVANCE + act_delta;
1414 			if (m->act_count > ACT_MAX)
1415 				m->act_count = ACT_MAX;
1416 		} else
1417 			m->act_count -= min(m->act_count, ACT_DECLINE);
1418 
1419 		/*
1420 		 * Move this page to the tail of the active or inactive
1421 		 * queue depending on usage.
1422 		 */
1423 		if (m->act_count == 0) {
1424 			/* Dequeue to avoid later lock recursion. */
1425 			vm_page_dequeue_locked(m);
1426 			vm_page_deactivate(m);
1427 			page_shortage--;
1428 		} else
1429 			vm_page_requeue_locked(m);
1430 		vm_page_unlock(m);
1431 		m = next;
1432 	}
1433 	vm_pagequeue_unlock(pq);
1434 #if !defined(NO_SWAPPING)
1435 	/*
1436 	 * Idle process swapout -- run once per second.
1437 	 */
1438 	if (vm_swap_idle_enabled) {
1439 		static long lsec;
1440 		if (time_second != lsec) {
1441 			vm_req_vmdaemon(VM_SWAP_IDLE);
1442 			lsec = time_second;
1443 		}
1444 	}
1445 #endif
1446 
1447 	/*
1448 	 * If we are critically low on one of RAM or swap and low on
1449 	 * the other, kill the largest process.  However, we avoid
1450 	 * doing this on the first pass in order to give ourselves a
1451 	 * chance to flush out dirty vnode-backed pages and to allow
1452 	 * active pages to be moved to the inactive queue and reclaimed.
1453 	 */
1454 	vm_pageout_mightbe_oom(vmd, pass);
1455 }
1456 
1457 static int vm_pageout_oom_vote;
1458 
1459 /*
1460  * The pagedaemon threads randlomly select one to perform the
1461  * OOM.  Trying to kill processes before all pagedaemons
1462  * failed to reach free target is premature.
1463  */
1464 static void
1465 vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass)
1466 {
1467 	int old_vote;
1468 
1469 	if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) ||
1470 	    (swap_pager_full && vm_paging_target() > 0))) {
1471 		if (vmd->vmd_oom) {
1472 			vmd->vmd_oom = FALSE;
1473 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1474 		}
1475 		return;
1476 	}
1477 
1478 	if (vmd->vmd_oom)
1479 		return;
1480 
1481 	vmd->vmd_oom = TRUE;
1482 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1483 	if (old_vote != vm_ndomains - 1)
1484 		return;
1485 
1486 	/*
1487 	 * The current pagedaemon thread is the last in the quorum to
1488 	 * start OOM.  Initiate the selection and signaling of the
1489 	 * victim.
1490 	 */
1491 	vm_pageout_oom(VM_OOM_MEM);
1492 
1493 	/*
1494 	 * After one round of OOM terror, recall our vote.  On the
1495 	 * next pass, current pagedaemon would vote again if the low
1496 	 * memory condition is still there, due to vmd_oom being
1497 	 * false.
1498 	 */
1499 	vmd->vmd_oom = FALSE;
1500 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1501 }
1502 
1503 void
1504 vm_pageout_oom(int shortage)
1505 {
1506 	struct proc *p, *bigproc;
1507 	vm_offset_t size, bigsize;
1508 	struct thread *td;
1509 	struct vmspace *vm;
1510 
1511 	/*
1512 	 * We keep the process bigproc locked once we find it to keep anyone
1513 	 * from messing with it; however, there is a possibility of
1514 	 * deadlock if process B is bigproc and one of it's child processes
1515 	 * attempts to propagate a signal to B while we are waiting for A's
1516 	 * lock while walking this list.  To avoid this, we don't block on
1517 	 * the process lock but just skip a process if it is already locked.
1518 	 */
1519 	bigproc = NULL;
1520 	bigsize = 0;
1521 	sx_slock(&allproc_lock);
1522 	FOREACH_PROC_IN_SYSTEM(p) {
1523 		int breakout;
1524 
1525 		PROC_LOCK(p);
1526 
1527 		/*
1528 		 * If this is a system, protected or killed process, skip it.
1529 		 */
1530 		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1531 		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1532 		    p->p_pid == 1 || P_KILLED(p) ||
1533 		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1534 			PROC_UNLOCK(p);
1535 			continue;
1536 		}
1537 		/*
1538 		 * If the process is in a non-running type state,
1539 		 * don't touch it.  Check all the threads individually.
1540 		 */
1541 		breakout = 0;
1542 		FOREACH_THREAD_IN_PROC(p, td) {
1543 			thread_lock(td);
1544 			if (!TD_ON_RUNQ(td) &&
1545 			    !TD_IS_RUNNING(td) &&
1546 			    !TD_IS_SLEEPING(td) &&
1547 			    !TD_IS_SUSPENDED(td)) {
1548 				thread_unlock(td);
1549 				breakout = 1;
1550 				break;
1551 			}
1552 			thread_unlock(td);
1553 		}
1554 		if (breakout) {
1555 			PROC_UNLOCK(p);
1556 			continue;
1557 		}
1558 		/*
1559 		 * get the process size
1560 		 */
1561 		vm = vmspace_acquire_ref(p);
1562 		if (vm == NULL) {
1563 			PROC_UNLOCK(p);
1564 			continue;
1565 		}
1566 		_PHOLD(p);
1567 		if (!vm_map_trylock_read(&vm->vm_map)) {
1568 			_PRELE(p);
1569 			PROC_UNLOCK(p);
1570 			vmspace_free(vm);
1571 			continue;
1572 		}
1573 		PROC_UNLOCK(p);
1574 		size = vmspace_swap_count(vm);
1575 		vm_map_unlock_read(&vm->vm_map);
1576 		if (shortage == VM_OOM_MEM)
1577 			size += vmspace_resident_count(vm);
1578 		vmspace_free(vm);
1579 		/*
1580 		 * if the this process is bigger than the biggest one
1581 		 * remember it.
1582 		 */
1583 		if (size > bigsize) {
1584 			if (bigproc != NULL)
1585 				PRELE(bigproc);
1586 			bigproc = p;
1587 			bigsize = size;
1588 		} else {
1589 			PRELE(p);
1590 		}
1591 	}
1592 	sx_sunlock(&allproc_lock);
1593 	if (bigproc != NULL) {
1594 		if (vm_panic_on_oom != 0)
1595 			panic("out of swap space");
1596 		PROC_LOCK(bigproc);
1597 		killproc(bigproc, "out of swap space");
1598 		sched_nice(bigproc, PRIO_MIN);
1599 		_PRELE(bigproc);
1600 		PROC_UNLOCK(bigproc);
1601 		wakeup(&vm_cnt.v_free_count);
1602 	}
1603 }
1604 
1605 static void
1606 vm_pageout_worker(void *arg)
1607 {
1608 	struct vm_domain *domain;
1609 	int domidx;
1610 
1611 	domidx = (uintptr_t)arg;
1612 	domain = &vm_dom[domidx];
1613 
1614 	/*
1615 	 * XXXKIB It could be useful to bind pageout daemon threads to
1616 	 * the cores belonging to the domain, from which vm_page_array
1617 	 * is allocated.
1618 	 */
1619 
1620 	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1621 	vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1622 
1623 	/*
1624 	 * The pageout daemon worker is never done, so loop forever.
1625 	 */
1626 	while (TRUE) {
1627 		/*
1628 		 * If we have enough free memory, wakeup waiters.  Do
1629 		 * not clear vm_pages_needed until we reach our target,
1630 		 * otherwise we may be woken up over and over again and
1631 		 * waste a lot of cpu.
1632 		 */
1633 		mtx_lock(&vm_page_queue_free_mtx);
1634 		if (vm_pages_needed && !vm_page_count_min()) {
1635 			if (!vm_paging_needed())
1636 				vm_pages_needed = 0;
1637 			wakeup(&vm_cnt.v_free_count);
1638 		}
1639 		if (vm_pages_needed) {
1640 			/*
1641 			 * Still not done, take a second pass without waiting
1642 			 * (unlimited dirty cleaning), otherwise sleep a bit
1643 			 * and try again.
1644 			 */
1645 			if (domain->vmd_pass > 1)
1646 				msleep(&vm_pages_needed,
1647 				    &vm_page_queue_free_mtx, PVM, "psleep",
1648 				    hz / 2);
1649 		} else {
1650 			/*
1651 			 * Good enough, sleep until required to refresh
1652 			 * stats.
1653 			 */
1654 			domain->vmd_pass = 0;
1655 			msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1656 			    PVM, "psleep", hz);
1657 
1658 		}
1659 		if (vm_pages_needed) {
1660 			vm_cnt.v_pdwakeups++;
1661 			domain->vmd_pass++;
1662 		}
1663 		mtx_unlock(&vm_page_queue_free_mtx);
1664 		vm_pageout_scan(domain, domain->vmd_pass);
1665 	}
1666 }
1667 
1668 /*
1669  *	vm_pageout_init initialises basic pageout daemon settings.
1670  */
1671 static void
1672 vm_pageout_init(void)
1673 {
1674 	/*
1675 	 * Initialize some paging parameters.
1676 	 */
1677 	vm_cnt.v_interrupt_free_min = 2;
1678 	if (vm_cnt.v_page_count < 2000)
1679 		vm_pageout_page_count = 8;
1680 
1681 	/*
1682 	 * v_free_reserved needs to include enough for the largest
1683 	 * swap pager structures plus enough for any pv_entry structs
1684 	 * when paging.
1685 	 */
1686 	if (vm_cnt.v_page_count > 1024)
1687 		vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200;
1688 	else
1689 		vm_cnt.v_free_min = 4;
1690 	vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1691 	    vm_cnt.v_interrupt_free_min;
1692 	vm_cnt.v_free_reserved = vm_pageout_page_count +
1693 	    vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768);
1694 	vm_cnt.v_free_severe = vm_cnt.v_free_min / 2;
1695 	vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved;
1696 	vm_cnt.v_free_min += vm_cnt.v_free_reserved;
1697 	vm_cnt.v_free_severe += vm_cnt.v_free_reserved;
1698 	vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2;
1699 	if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3)
1700 		vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3;
1701 
1702 	/*
1703 	 * Set the default wakeup threshold to be 10% above the minimum
1704 	 * page limit.  This keeps the steady state out of shortfall.
1705 	 */
1706 	vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11;
1707 
1708 	/*
1709 	 * Set interval in seconds for active scan.  We want to visit each
1710 	 * page at least once every ten minutes.  This is to prevent worst
1711 	 * case paging behaviors with stale active LRU.
1712 	 */
1713 	if (vm_pageout_update_period == 0)
1714 		vm_pageout_update_period = 600;
1715 
1716 	/* XXX does not really belong here */
1717 	if (vm_page_max_wired == 0)
1718 		vm_page_max_wired = vm_cnt.v_free_count / 3;
1719 }
1720 
1721 /*
1722  *     vm_pageout is the high level pageout daemon.
1723  */
1724 static void
1725 vm_pageout(void)
1726 {
1727 #if MAXMEMDOM > 1
1728 	int error, i;
1729 #endif
1730 
1731 	swap_pager_swap_init();
1732 #if MAXMEMDOM > 1
1733 	for (i = 1; i < vm_ndomains; i++) {
1734 		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1735 		    curproc, NULL, 0, 0, "dom%d", i);
1736 		if (error != 0) {
1737 			panic("starting pageout for domain %d, error %d\n",
1738 			    i, error);
1739 		}
1740 	}
1741 #endif
1742 	vm_pageout_worker((void *)(uintptr_t)0);
1743 }
1744 
1745 /*
1746  * Unless the free page queue lock is held by the caller, this function
1747  * should be regarded as advisory.  Specifically, the caller should
1748  * not msleep() on &vm_cnt.v_free_count following this function unless
1749  * the free page queue lock is held until the msleep() is performed.
1750  */
1751 void
1752 pagedaemon_wakeup(void)
1753 {
1754 
1755 	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1756 		vm_pages_needed = 1;
1757 		wakeup(&vm_pages_needed);
1758 	}
1759 }
1760 
1761 #if !defined(NO_SWAPPING)
1762 static void
1763 vm_req_vmdaemon(int req)
1764 {
1765 	static int lastrun = 0;
1766 
1767 	mtx_lock(&vm_daemon_mtx);
1768 	vm_pageout_req_swapout |= req;
1769 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1770 		wakeup(&vm_daemon_needed);
1771 		lastrun = ticks;
1772 	}
1773 	mtx_unlock(&vm_daemon_mtx);
1774 }
1775 
1776 static void
1777 vm_daemon(void)
1778 {
1779 	struct rlimit rsslim;
1780 	struct proc *p;
1781 	struct thread *td;
1782 	struct vmspace *vm;
1783 	int breakout, swapout_flags, tryagain, attempts;
1784 #ifdef RACCT
1785 	uint64_t rsize, ravailable;
1786 #endif
1787 
1788 	while (TRUE) {
1789 		mtx_lock(&vm_daemon_mtx);
1790 #ifdef RACCT
1791 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1792 #else
1793 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1794 #endif
1795 		swapout_flags = vm_pageout_req_swapout;
1796 		vm_pageout_req_swapout = 0;
1797 		mtx_unlock(&vm_daemon_mtx);
1798 		if (swapout_flags)
1799 			swapout_procs(swapout_flags);
1800 
1801 		/*
1802 		 * scan the processes for exceeding their rlimits or if
1803 		 * process is swapped out -- deactivate pages
1804 		 */
1805 		tryagain = 0;
1806 		attempts = 0;
1807 again:
1808 		attempts++;
1809 		sx_slock(&allproc_lock);
1810 		FOREACH_PROC_IN_SYSTEM(p) {
1811 			vm_pindex_t limit, size;
1812 
1813 			/*
1814 			 * if this is a system process or if we have already
1815 			 * looked at this process, skip it.
1816 			 */
1817 			PROC_LOCK(p);
1818 			if (p->p_state != PRS_NORMAL ||
1819 			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1820 				PROC_UNLOCK(p);
1821 				continue;
1822 			}
1823 			/*
1824 			 * if the process is in a non-running type state,
1825 			 * don't touch it.
1826 			 */
1827 			breakout = 0;
1828 			FOREACH_THREAD_IN_PROC(p, td) {
1829 				thread_lock(td);
1830 				if (!TD_ON_RUNQ(td) &&
1831 				    !TD_IS_RUNNING(td) &&
1832 				    !TD_IS_SLEEPING(td) &&
1833 				    !TD_IS_SUSPENDED(td)) {
1834 					thread_unlock(td);
1835 					breakout = 1;
1836 					break;
1837 				}
1838 				thread_unlock(td);
1839 			}
1840 			if (breakout) {
1841 				PROC_UNLOCK(p);
1842 				continue;
1843 			}
1844 			/*
1845 			 * get a limit
1846 			 */
1847 			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1848 			limit = OFF_TO_IDX(
1849 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1850 
1851 			/*
1852 			 * let processes that are swapped out really be
1853 			 * swapped out set the limit to nothing (will force a
1854 			 * swap-out.)
1855 			 */
1856 			if ((p->p_flag & P_INMEM) == 0)
1857 				limit = 0;	/* XXX */
1858 			vm = vmspace_acquire_ref(p);
1859 			PROC_UNLOCK(p);
1860 			if (vm == NULL)
1861 				continue;
1862 
1863 			size = vmspace_resident_count(vm);
1864 			if (size >= limit) {
1865 				vm_pageout_map_deactivate_pages(
1866 				    &vm->vm_map, limit);
1867 			}
1868 #ifdef RACCT
1869 			rsize = IDX_TO_OFF(size);
1870 			PROC_LOCK(p);
1871 			racct_set(p, RACCT_RSS, rsize);
1872 			ravailable = racct_get_available(p, RACCT_RSS);
1873 			PROC_UNLOCK(p);
1874 			if (rsize > ravailable) {
1875 				/*
1876 				 * Don't be overly aggressive; this might be
1877 				 * an innocent process, and the limit could've
1878 				 * been exceeded by some memory hog.  Don't
1879 				 * try to deactivate more than 1/4th of process'
1880 				 * resident set size.
1881 				 */
1882 				if (attempts <= 8) {
1883 					if (ravailable < rsize - (rsize / 4))
1884 						ravailable = rsize - (rsize / 4);
1885 				}
1886 				vm_pageout_map_deactivate_pages(
1887 				    &vm->vm_map, OFF_TO_IDX(ravailable));
1888 				/* Update RSS usage after paging out. */
1889 				size = vmspace_resident_count(vm);
1890 				rsize = IDX_TO_OFF(size);
1891 				PROC_LOCK(p);
1892 				racct_set(p, RACCT_RSS, rsize);
1893 				PROC_UNLOCK(p);
1894 				if (rsize > ravailable)
1895 					tryagain = 1;
1896 			}
1897 #endif
1898 			vmspace_free(vm);
1899 		}
1900 		sx_sunlock(&allproc_lock);
1901 		if (tryagain != 0 && attempts <= 10)
1902 			goto again;
1903 	}
1904 }
1905 #endif			/* !defined(NO_SWAPPING) */
1906