xref: /freebsd/sys/vm/vm_pageout.c (revision fbf96e52bbd90bbbb9c9e2ae6fbc101fa6ebd080)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 /*
70  *	The proverbial page-out daemon.
71  */
72 
73 #include <sys/cdefs.h>
74 __FBSDID("$FreeBSD$");
75 
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/eventhandler.h>
81 #include <sys/lock.h>
82 #include <sys/mutex.h>
83 #include <sys/proc.h>
84 #include <sys/kthread.h>
85 #include <sys/ktr.h>
86 #include <sys/resourcevar.h>
87 #include <sys/sched.h>
88 #include <sys/signalvar.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91 #include <sys/sx.h>
92 #include <sys/sysctl.h>
93 
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_pager.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_extern.h>
103 #include <vm/uma.h>
104 
105 #include <machine/mutex.h>
106 
107 /*
108  * System initialization
109  */
110 
111 /* the kernel process "vm_pageout"*/
112 static void vm_pageout(void);
113 static int vm_pageout_clean(vm_page_t);
114 static void vm_pageout_pmap_collect(void);
115 static void vm_pageout_scan(int pass);
116 
117 struct proc *pageproc;
118 
119 static struct kproc_desc page_kp = {
120 	"pagedaemon",
121 	vm_pageout,
122 	&pageproc
123 };
124 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
125 
126 #if !defined(NO_SWAPPING)
127 /* the kernel process "vm_daemon"*/
128 static void vm_daemon(void);
129 static struct	proc *vmproc;
130 
131 static struct kproc_desc vm_kp = {
132 	"vmdaemon",
133 	vm_daemon,
134 	&vmproc
135 };
136 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
137 #endif
138 
139 
140 int vm_pages_needed;		/* Event on which pageout daemon sleeps */
141 int vm_pageout_deficit;		/* Estimated number of pages deficit */
142 int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
143 
144 #if !defined(NO_SWAPPING)
145 static int vm_pageout_req_swapout;	/* XXX */
146 static int vm_daemon_needed;
147 #endif
148 static int vm_max_launder = 32;
149 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
150 static int vm_pageout_full_stats_interval = 0;
151 static int vm_pageout_algorithm=0;
152 static int defer_swap_pageouts=0;
153 static int disable_swap_pageouts=0;
154 
155 #if defined(NO_SWAPPING)
156 static int vm_swap_enabled=0;
157 static int vm_swap_idle_enabled=0;
158 #else
159 static int vm_swap_enabled=1;
160 static int vm_swap_idle_enabled=0;
161 #endif
162 
163 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
164 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
165 
166 SYSCTL_INT(_vm, OID_AUTO, max_launder,
167 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
168 
169 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
170 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
171 
172 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
173 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
174 
175 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
176 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
177 
178 #if defined(NO_SWAPPING)
179 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
181 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
183 #else
184 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
186 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188 #endif
189 
190 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
191 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
192 
193 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
194 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
195 
196 static int pageout_lock_miss;
197 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
198 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
199 
200 #define VM_PAGEOUT_PAGE_COUNT 16
201 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
202 
203 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
204 
205 #if !defined(NO_SWAPPING)
206 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
207 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
208 static void vm_req_vmdaemon(void);
209 #endif
210 static void vm_pageout_page_stats(void);
211 
212 /*
213  * vm_pageout_clean:
214  *
215  * Clean the page and remove it from the laundry.
216  *
217  * We set the busy bit to cause potential page faults on this page to
218  * block.  Note the careful timing, however, the busy bit isn't set till
219  * late and we cannot do anything that will mess with the page.
220  */
221 static int
222 vm_pageout_clean(m)
223 	vm_page_t m;
224 {
225 	vm_object_t object;
226 	vm_page_t mc[2*vm_pageout_page_count];
227 	int pageout_count;
228 	int ib, is, page_base;
229 	vm_pindex_t pindex = m->pindex;
230 
231 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
232 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
233 
234 	/*
235 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
236 	 * with the new swapper, but we could have serious problems paging
237 	 * out other object types if there is insufficient memory.
238 	 *
239 	 * Unfortunately, checking free memory here is far too late, so the
240 	 * check has been moved up a procedural level.
241 	 */
242 
243 	/*
244 	 * Don't mess with the page if it's busy, held, or special
245 	 */
246 	if ((m->hold_count != 0) ||
247 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
248 		return 0;
249 	}
250 
251 	mc[vm_pageout_page_count] = m;
252 	pageout_count = 1;
253 	page_base = vm_pageout_page_count;
254 	ib = 1;
255 	is = 1;
256 
257 	/*
258 	 * Scan object for clusterable pages.
259 	 *
260 	 * We can cluster ONLY if: ->> the page is NOT
261 	 * clean, wired, busy, held, or mapped into a
262 	 * buffer, and one of the following:
263 	 * 1) The page is inactive, or a seldom used
264 	 *    active page.
265 	 * -or-
266 	 * 2) we force the issue.
267 	 *
268 	 * During heavy mmap/modification loads the pageout
269 	 * daemon can really fragment the underlying file
270 	 * due to flushing pages out of order and not trying
271 	 * align the clusters (which leave sporatic out-of-order
272 	 * holes).  To solve this problem we do the reverse scan
273 	 * first and attempt to align our cluster, then do a
274 	 * forward scan if room remains.
275 	 */
276 	object = m->object;
277 more:
278 	while (ib && pageout_count < vm_pageout_page_count) {
279 		vm_page_t p;
280 
281 		if (ib > pindex) {
282 			ib = 0;
283 			break;
284 		}
285 
286 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
287 			ib = 0;
288 			break;
289 		}
290 		if (((p->queue - p->pc) == PQ_CACHE) ||
291 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
292 			ib = 0;
293 			break;
294 		}
295 		vm_page_test_dirty(p);
296 		if ((p->dirty & p->valid) == 0 ||
297 		    p->queue != PQ_INACTIVE ||
298 		    p->wire_count != 0 ||	/* may be held by buf cache */
299 		    p->hold_count != 0) {	/* may be undergoing I/O */
300 			ib = 0;
301 			break;
302 		}
303 		mc[--page_base] = p;
304 		++pageout_count;
305 		++ib;
306 		/*
307 		 * alignment boundry, stop here and switch directions.  Do
308 		 * not clear ib.
309 		 */
310 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
311 			break;
312 	}
313 
314 	while (pageout_count < vm_pageout_page_count &&
315 	    pindex + is < object->size) {
316 		vm_page_t p;
317 
318 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
319 			break;
320 		if (((p->queue - p->pc) == PQ_CACHE) ||
321 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
322 			break;
323 		}
324 		vm_page_test_dirty(p);
325 		if ((p->dirty & p->valid) == 0 ||
326 		    p->queue != PQ_INACTIVE ||
327 		    p->wire_count != 0 ||	/* may be held by buf cache */
328 		    p->hold_count != 0) {	/* may be undergoing I/O */
329 			break;
330 		}
331 		mc[page_base + pageout_count] = p;
332 		++pageout_count;
333 		++is;
334 	}
335 
336 	/*
337 	 * If we exhausted our forward scan, continue with the reverse scan
338 	 * when possible, even past a page boundry.  This catches boundry
339 	 * conditions.
340 	 */
341 	if (ib && pageout_count < vm_pageout_page_count)
342 		goto more;
343 
344 	/*
345 	 * we allow reads during pageouts...
346 	 */
347 	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
348 }
349 
350 /*
351  * vm_pageout_flush() - launder the given pages
352  *
353  *	The given pages are laundered.  Note that we setup for the start of
354  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
355  *	reference count all in here rather then in the parent.  If we want
356  *	the parent to do more sophisticated things we may have to change
357  *	the ordering.
358  */
359 int
360 vm_pageout_flush(vm_page_t *mc, int count, int flags)
361 {
362 	vm_object_t object = mc[0]->object;
363 	int pageout_status[count];
364 	int numpagedout = 0;
365 	int i;
366 
367 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
368 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
369 	/*
370 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
371 	 * mark the pages read-only.
372 	 *
373 	 * We do not have to fixup the clean/dirty bits here... we can
374 	 * allow the pager to do it after the I/O completes.
375 	 *
376 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
377 	 * edge case with file fragments.
378 	 */
379 	for (i = 0; i < count; i++) {
380 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
381 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
382 			mc[i], i, count));
383 		vm_page_io_start(mc[i]);
384 		pmap_page_protect(mc[i], VM_PROT_READ);
385 	}
386 	vm_page_unlock_queues();
387 	vm_object_pip_add(object, count);
388 
389 	vm_pager_put_pages(object, mc, count,
390 	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
391 	    pageout_status);
392 
393 	vm_page_lock_queues();
394 	for (i = 0; i < count; i++) {
395 		vm_page_t mt = mc[i];
396 
397 		KASSERT((mt->flags & PG_WRITEABLE) == 0,
398 		    ("vm_pageout_flush: page %p is not write protected", mt));
399 		switch (pageout_status[i]) {
400 		case VM_PAGER_OK:
401 		case VM_PAGER_PEND:
402 			numpagedout++;
403 			break;
404 		case VM_PAGER_BAD:
405 			/*
406 			 * Page outside of range of object. Right now we
407 			 * essentially lose the changes by pretending it
408 			 * worked.
409 			 */
410 			pmap_clear_modify(mt);
411 			vm_page_undirty(mt);
412 			break;
413 		case VM_PAGER_ERROR:
414 		case VM_PAGER_FAIL:
415 			/*
416 			 * If page couldn't be paged out, then reactivate the
417 			 * page so it doesn't clog the inactive list.  (We
418 			 * will try paging out it again later).
419 			 */
420 			vm_page_activate(mt);
421 			break;
422 		case VM_PAGER_AGAIN:
423 			break;
424 		}
425 
426 		/*
427 		 * If the operation is still going, leave the page busy to
428 		 * block all other accesses. Also, leave the paging in
429 		 * progress indicator set so that we don't attempt an object
430 		 * collapse.
431 		 */
432 		if (pageout_status[i] != VM_PAGER_PEND) {
433 			vm_object_pip_wakeup(object);
434 			vm_page_io_finish(mt);
435 			if (vm_page_count_severe())
436 				vm_page_try_to_cache(mt);
437 		}
438 	}
439 	return numpagedout;
440 }
441 
442 #if !defined(NO_SWAPPING)
443 /*
444  *	vm_pageout_object_deactivate_pages
445  *
446  *	deactivate enough pages to satisfy the inactive target
447  *	requirements or if vm_page_proc_limit is set, then
448  *	deactivate all of the pages in the object and its
449  *	backing_objects.
450  *
451  *	The object and map must be locked.
452  */
453 static void
454 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
455 	pmap_t pmap;
456 	vm_object_t first_object;
457 	long desired;
458 {
459 	vm_object_t backing_object, object;
460 	vm_page_t p, next;
461 	int actcount, rcount, remove_mode;
462 
463 	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
464 	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
465 		return;
466 	for (object = first_object;; object = backing_object) {
467 		if (pmap_resident_count(pmap) <= desired)
468 			goto unlock_return;
469 		if (object->paging_in_progress)
470 			goto unlock_return;
471 
472 		remove_mode = 0;
473 		if (object->shadow_count > 1)
474 			remove_mode = 1;
475 		/*
476 		 * scan the objects entire memory queue
477 		 */
478 		rcount = object->resident_page_count;
479 		p = TAILQ_FIRST(&object->memq);
480 		vm_page_lock_queues();
481 		while (p && (rcount-- > 0)) {
482 			if (pmap_resident_count(pmap) <= desired) {
483 				vm_page_unlock_queues();
484 				goto unlock_return;
485 			}
486 			next = TAILQ_NEXT(p, listq);
487 			cnt.v_pdpages++;
488 			if (p->wire_count != 0 ||
489 			    p->hold_count != 0 ||
490 			    p->busy != 0 ||
491 			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
492 			    !pmap_page_exists_quick(pmap, p)) {
493 				p = next;
494 				continue;
495 			}
496 			actcount = pmap_ts_referenced(p);
497 			if (actcount) {
498 				vm_page_flag_set(p, PG_REFERENCED);
499 			} else if (p->flags & PG_REFERENCED) {
500 				actcount = 1;
501 			}
502 			if ((p->queue != PQ_ACTIVE) &&
503 				(p->flags & PG_REFERENCED)) {
504 				vm_page_activate(p);
505 				p->act_count += actcount;
506 				vm_page_flag_clear(p, PG_REFERENCED);
507 			} else if (p->queue == PQ_ACTIVE) {
508 				if ((p->flags & PG_REFERENCED) == 0) {
509 					p->act_count -= min(p->act_count, ACT_DECLINE);
510 					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
511 						pmap_remove_all(p);
512 						vm_page_deactivate(p);
513 					} else {
514 						vm_pageq_requeue(p);
515 					}
516 				} else {
517 					vm_page_activate(p);
518 					vm_page_flag_clear(p, PG_REFERENCED);
519 					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
520 						p->act_count += ACT_ADVANCE;
521 					vm_pageq_requeue(p);
522 				}
523 			} else if (p->queue == PQ_INACTIVE) {
524 				pmap_remove_all(p);
525 			}
526 			p = next;
527 		}
528 		vm_page_unlock_queues();
529 		if ((backing_object = object->backing_object) == NULL)
530 			goto unlock_return;
531 		VM_OBJECT_LOCK(backing_object);
532 		if (object != first_object)
533 			VM_OBJECT_UNLOCK(object);
534 	}
535 unlock_return:
536 	if (object != first_object)
537 		VM_OBJECT_UNLOCK(object);
538 }
539 
540 /*
541  * deactivate some number of pages in a map, try to do it fairly, but
542  * that is really hard to do.
543  */
544 static void
545 vm_pageout_map_deactivate_pages(map, desired)
546 	vm_map_t map;
547 	long desired;
548 {
549 	vm_map_entry_t tmpe;
550 	vm_object_t obj, bigobj;
551 	int nothingwired;
552 
553 	if (!vm_map_trylock(map))
554 		return;
555 
556 	bigobj = NULL;
557 	nothingwired = TRUE;
558 
559 	/*
560 	 * first, search out the biggest object, and try to free pages from
561 	 * that.
562 	 */
563 	tmpe = map->header.next;
564 	while (tmpe != &map->header) {
565 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
566 			obj = tmpe->object.vm_object;
567 			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
568 				if (obj->shadow_count <= 1 &&
569 				    (bigobj == NULL ||
570 				     bigobj->resident_page_count < obj->resident_page_count)) {
571 					if (bigobj != NULL)
572 						VM_OBJECT_UNLOCK(bigobj);
573 					bigobj = obj;
574 				} else
575 					VM_OBJECT_UNLOCK(obj);
576 			}
577 		}
578 		if (tmpe->wired_count > 0)
579 			nothingwired = FALSE;
580 		tmpe = tmpe->next;
581 	}
582 
583 	if (bigobj != NULL) {
584 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
585 		VM_OBJECT_UNLOCK(bigobj);
586 	}
587 	/*
588 	 * Next, hunt around for other pages to deactivate.  We actually
589 	 * do this search sort of wrong -- .text first is not the best idea.
590 	 */
591 	tmpe = map->header.next;
592 	while (tmpe != &map->header) {
593 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
594 			break;
595 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
596 			obj = tmpe->object.vm_object;
597 			if (obj != NULL) {
598 				VM_OBJECT_LOCK(obj);
599 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
600 				VM_OBJECT_UNLOCK(obj);
601 			}
602 		}
603 		tmpe = tmpe->next;
604 	}
605 
606 	/*
607 	 * Remove all mappings if a process is swapped out, this will free page
608 	 * table pages.
609 	 */
610 	if (desired == 0 && nothingwired) {
611 		GIANT_REQUIRED;
612 		vm_page_lock_queues();
613 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
614 		    vm_map_max(map));
615 		vm_page_unlock_queues();
616 	}
617 	vm_map_unlock(map);
618 }
619 #endif		/* !defined(NO_SWAPPING) */
620 
621 /*
622  * This routine is very drastic, but can save the system
623  * in a pinch.
624  */
625 static void
626 vm_pageout_pmap_collect(void)
627 {
628 	int i;
629 	vm_page_t m;
630 	static int warningdone;
631 
632 	if (pmap_pagedaemon_waken == 0)
633 		return;
634 	if (warningdone < 5) {
635 		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
636 		warningdone++;
637 	}
638 	vm_page_lock_queues();
639 	for (i = 0; i < vm_page_array_size; i++) {
640 		m = &vm_page_array[i];
641 		if (m->wire_count || m->hold_count || m->busy ||
642 		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
643 			continue;
644 		pmap_remove_all(m);
645 	}
646 	vm_page_unlock_queues();
647 	pmap_pagedaemon_waken = 0;
648 }
649 
650 /*
651  *	vm_pageout_scan does the dirty work for the pageout daemon.
652  */
653 static void
654 vm_pageout_scan(int pass)
655 {
656 	vm_page_t m, next;
657 	struct vm_page marker;
658 	int page_shortage, maxscan, pcount;
659 	int addl_page_shortage, addl_page_shortage_init;
660 	struct proc *p, *bigproc;
661 	struct thread *td;
662 	vm_offset_t size, bigsize;
663 	vm_object_t object;
664 	int actcount;
665 	int vnodes_skipped = 0;
666 	int maxlaunder;
667 
668 	mtx_lock(&Giant);
669 	/*
670 	 * Decrease registered cache sizes.
671 	 */
672 	EVENTHANDLER_INVOKE(vm_lowmem, 0);
673 	/*
674 	 * We do this explicitly after the caches have been drained above.
675 	 */
676 	uma_reclaim();
677 	/*
678 	 * Do whatever cleanup that the pmap code can.
679 	 */
680 	vm_pageout_pmap_collect();
681 
682 	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
683 
684 	/*
685 	 * Calculate the number of pages we want to either free or move
686 	 * to the cache.
687 	 */
688 	page_shortage = vm_paging_target() + addl_page_shortage_init;
689 
690 	/*
691 	 * Initialize our marker
692 	 */
693 	bzero(&marker, sizeof(marker));
694 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
695 	marker.queue = PQ_INACTIVE;
696 	marker.wire_count = 1;
697 
698 	/*
699 	 * Start scanning the inactive queue for pages we can move to the
700 	 * cache or free.  The scan will stop when the target is reached or
701 	 * we have scanned the entire inactive queue.  Note that m->act_count
702 	 * is not used to form decisions for the inactive queue, only for the
703 	 * active queue.
704 	 *
705 	 * maxlaunder limits the number of dirty pages we flush per scan.
706 	 * For most systems a smaller value (16 or 32) is more robust under
707 	 * extreme memory and disk pressure because any unnecessary writes
708 	 * to disk can result in extreme performance degredation.  However,
709 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
710 	 * used) will die horribly with limited laundering.  If the pageout
711 	 * daemon cannot clean enough pages in the first pass, we let it go
712 	 * all out in succeeding passes.
713 	 */
714 	if ((maxlaunder = vm_max_launder) <= 1)
715 		maxlaunder = 1;
716 	if (pass)
717 		maxlaunder = 10000;
718 	vm_page_lock_queues();
719 rescan0:
720 	addl_page_shortage = addl_page_shortage_init;
721 	maxscan = cnt.v_inactive_count;
722 
723 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
724 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
725 	     m = next) {
726 
727 		cnt.v_pdpages++;
728 
729 		if (m->queue != PQ_INACTIVE) {
730 			goto rescan0;
731 		}
732 
733 		next = TAILQ_NEXT(m, pageq);
734 
735 		/*
736 		 * skip marker pages
737 		 */
738 		if (m->flags & PG_MARKER)
739 			continue;
740 
741 		/*
742 		 * A held page may be undergoing I/O, so skip it.
743 		 */
744 		if (m->hold_count) {
745 			vm_pageq_requeue(m);
746 			addl_page_shortage++;
747 			continue;
748 		}
749 		/*
750 		 * Don't mess with busy pages, keep in the front of the
751 		 * queue, most likely are being paged out.
752 		 */
753 		if (m->busy || (m->flags & PG_BUSY)) {
754 			addl_page_shortage++;
755 			continue;
756 		}
757 
758 		/*
759 		 * If the object is not being used, we ignore previous
760 		 * references.
761 		 */
762 		if (m->object->ref_count == 0) {
763 			vm_page_flag_clear(m, PG_REFERENCED);
764 			pmap_clear_reference(m);
765 
766 		/*
767 		 * Otherwise, if the page has been referenced while in the
768 		 * inactive queue, we bump the "activation count" upwards,
769 		 * making it less likely that the page will be added back to
770 		 * the inactive queue prematurely again.  Here we check the
771 		 * page tables (or emulated bits, if any), given the upper
772 		 * level VM system not knowing anything about existing
773 		 * references.
774 		 */
775 		} else if (((m->flags & PG_REFERENCED) == 0) &&
776 			(actcount = pmap_ts_referenced(m))) {
777 			vm_page_activate(m);
778 			m->act_count += (actcount + ACT_ADVANCE);
779 			continue;
780 		}
781 
782 		/*
783 		 * If the upper level VM system knows about any page
784 		 * references, we activate the page.  We also set the
785 		 * "activation count" higher than normal so that we will less
786 		 * likely place pages back onto the inactive queue again.
787 		 */
788 		if ((m->flags & PG_REFERENCED) != 0) {
789 			vm_page_flag_clear(m, PG_REFERENCED);
790 			actcount = pmap_ts_referenced(m);
791 			vm_page_activate(m);
792 			m->act_count += (actcount + ACT_ADVANCE + 1);
793 			continue;
794 		}
795 
796 		/*
797 		 * If the upper level VM system doesn't know anything about
798 		 * the page being dirty, we have to check for it again.  As
799 		 * far as the VM code knows, any partially dirty pages are
800 		 * fully dirty.
801 		 */
802 		if (m->dirty == 0 && !pmap_is_modified(m)) {
803 			/*
804 			 * Avoid a race condition: Unless write access is
805 			 * removed from the page, another processor could
806 			 * modify it before all access is removed by the call
807 			 * to vm_page_cache() below.  If vm_page_cache() finds
808 			 * that the page has been modified when it removes all
809 			 * access, it panics because it cannot cache dirty
810 			 * pages.  In principle, we could eliminate just write
811 			 * access here rather than all access.  In the expected
812 			 * case, when there are no last instant modifications
813 			 * to the page, removing all access will be cheaper
814 			 * overall.
815 			 */
816 			if ((m->flags & PG_WRITEABLE) != 0)
817 				pmap_remove_all(m);
818 		} else {
819 			vm_page_dirty(m);
820 		}
821 
822 		object = m->object;
823 		if (!VM_OBJECT_TRYLOCK(object))
824 			continue;
825 		if (m->valid == 0) {
826 			/*
827 			 * Invalid pages can be easily freed
828 			 */
829 			vm_page_busy(m);
830 			pmap_remove_all(m);
831 			vm_page_free(m);
832 			cnt.v_dfree++;
833 			--page_shortage;
834 		} else if (m->dirty == 0) {
835 			/*
836 			 * Clean pages can be placed onto the cache queue.
837 			 * This effectively frees them.
838 			 */
839 			vm_page_cache(m);
840 			--page_shortage;
841 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
842 			/*
843 			 * Dirty pages need to be paged out, but flushing
844 			 * a page is extremely expensive verses freeing
845 			 * a clean page.  Rather then artificially limiting
846 			 * the number of pages we can flush, we instead give
847 			 * dirty pages extra priority on the inactive queue
848 			 * by forcing them to be cycled through the queue
849 			 * twice before being flushed, after which the
850 			 * (now clean) page will cycle through once more
851 			 * before being freed.  This significantly extends
852 			 * the thrash point for a heavily loaded machine.
853 			 */
854 			vm_page_flag_set(m, PG_WINATCFLS);
855 			vm_pageq_requeue(m);
856 		} else if (maxlaunder > 0) {
857 			/*
858 			 * We always want to try to flush some dirty pages if
859 			 * we encounter them, to keep the system stable.
860 			 * Normally this number is small, but under extreme
861 			 * pressure where there are insufficient clean pages
862 			 * on the inactive queue, we may have to go all out.
863 			 */
864 			int swap_pageouts_ok;
865 			struct vnode *vp = NULL;
866 			struct mount *mp;
867 
868 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
869 				swap_pageouts_ok = 1;
870 			} else {
871 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
872 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
873 				vm_page_count_min());
874 
875 			}
876 
877 			/*
878 			 * We don't bother paging objects that are "dead".
879 			 * Those objects are in a "rundown" state.
880 			 */
881 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
882 				VM_OBJECT_UNLOCK(object);
883 				vm_pageq_requeue(m);
884 				continue;
885 			}
886 
887 			/*
888 			 * The object is already known NOT to be dead.   It
889 			 * is possible for the vget() to block the whole
890 			 * pageout daemon, but the new low-memory handling
891 			 * code should prevent it.
892 			 *
893 			 * The previous code skipped locked vnodes and, worse,
894 			 * reordered pages in the queue.  This results in
895 			 * completely non-deterministic operation and, on a
896 			 * busy system, can lead to extremely non-optimal
897 			 * pageouts.  For example, it can cause clean pages
898 			 * to be freed and dirty pages to be moved to the end
899 			 * of the queue.  Since dirty pages are also moved to
900 			 * the end of the queue once-cleaned, this gives
901 			 * way too large a weighting to defering the freeing
902 			 * of dirty pages.
903 			 *
904 			 * We can't wait forever for the vnode lock, we might
905 			 * deadlock due to a vn_read() getting stuck in
906 			 * vm_wait while holding this vnode.  We skip the
907 			 * vnode if we can't get it in a reasonable amount
908 			 * of time.
909 			 */
910 			if (object->type == OBJT_VNODE) {
911 				vp = object->handle;
912 				mp = NULL;
913 				if (vp->v_type == VREG)
914 					vn_start_write(vp, &mp, V_NOWAIT);
915 				vm_page_unlock_queues();
916 				VI_LOCK(vp);
917 				VM_OBJECT_UNLOCK(object);
918 				if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
919 				    LK_TIMELOCK, curthread)) {
920 					VM_OBJECT_LOCK(object);
921 					vm_page_lock_queues();
922 					++pageout_lock_miss;
923 					vn_finished_write(mp);
924 					if (object->flags & OBJ_MIGHTBEDIRTY)
925 						vnodes_skipped++;
926 					VM_OBJECT_UNLOCK(object);
927 					continue;
928 				}
929 				VM_OBJECT_LOCK(object);
930 				vm_page_lock_queues();
931 				/*
932 				 * The page might have been moved to another
933 				 * queue during potential blocking in vget()
934 				 * above.  The page might have been freed and
935 				 * reused for another vnode.  The object might
936 				 * have been reused for another vnode.
937 				 */
938 				if (m->queue != PQ_INACTIVE ||
939 				    m->object != object ||
940 				    object->handle != vp) {
941 					if (object->flags & OBJ_MIGHTBEDIRTY)
942 						vnodes_skipped++;
943 					goto unlock_and_continue;
944 				}
945 
946 				/*
947 				 * The page may have been busied during the
948 				 * blocking in vput();  We don't move the
949 				 * page back onto the end of the queue so that
950 				 * statistics are more correct if we don't.
951 				 */
952 				if (m->busy || (m->flags & PG_BUSY)) {
953 					goto unlock_and_continue;
954 				}
955 
956 				/*
957 				 * If the page has become held it might
958 				 * be undergoing I/O, so skip it
959 				 */
960 				if (m->hold_count) {
961 					vm_pageq_requeue(m);
962 					if (object->flags & OBJ_MIGHTBEDIRTY)
963 						vnodes_skipped++;
964 					goto unlock_and_continue;
965 				}
966 			}
967 
968 			/*
969 			 * If a page is dirty, then it is either being washed
970 			 * (but not yet cleaned) or it is still in the
971 			 * laundry.  If it is still in the laundry, then we
972 			 * start the cleaning operation.
973 			 *
974 			 * This operation may cluster, invalidating the 'next'
975 			 * pointer.  To prevent an inordinate number of
976 			 * restarts we use our marker to remember our place.
977 			 *
978 			 * decrement page_shortage on success to account for
979 			 * the (future) cleaned page.  Otherwise we could wind
980 			 * up laundering or cleaning too many pages.
981 			 */
982 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
983 			if (vm_pageout_clean(m) != 0) {
984 				--page_shortage;
985 				--maxlaunder;
986 			}
987 			next = TAILQ_NEXT(&marker, pageq);
988 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
989 unlock_and_continue:
990 			VM_OBJECT_UNLOCK(object);
991 			if (vp) {
992 				vm_page_unlock_queues();
993 				vput(vp);
994 				vn_finished_write(mp);
995 				vm_page_lock_queues();
996 			}
997 			continue;
998 		}
999 		VM_OBJECT_UNLOCK(object);
1000 	}
1001 
1002 	/*
1003 	 * Compute the number of pages we want to try to move from the
1004 	 * active queue to the inactive queue.
1005 	 */
1006 	page_shortage = vm_paging_target() +
1007 		cnt.v_inactive_target - cnt.v_inactive_count;
1008 	page_shortage += addl_page_shortage;
1009 
1010 	/*
1011 	 * Scan the active queue for things we can deactivate. We nominally
1012 	 * track the per-page activity counter and use it to locate
1013 	 * deactivation candidates.
1014 	 */
1015 	pcount = cnt.v_active_count;
1016 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1017 
1018 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1019 
1020 		KASSERT(m->queue == PQ_ACTIVE,
1021 		    ("vm_pageout_scan: page %p isn't active", m));
1022 
1023 		next = TAILQ_NEXT(m, pageq);
1024 		/*
1025 		 * Don't deactivate pages that are busy.
1026 		 */
1027 		if ((m->busy != 0) ||
1028 		    (m->flags & PG_BUSY) ||
1029 		    (m->hold_count != 0)) {
1030 			vm_pageq_requeue(m);
1031 			m = next;
1032 			continue;
1033 		}
1034 
1035 		/*
1036 		 * The count for pagedaemon pages is done after checking the
1037 		 * page for eligibility...
1038 		 */
1039 		cnt.v_pdpages++;
1040 
1041 		/*
1042 		 * Check to see "how much" the page has been used.
1043 		 */
1044 		actcount = 0;
1045 		if (m->object->ref_count != 0) {
1046 			if (m->flags & PG_REFERENCED) {
1047 				actcount += 1;
1048 			}
1049 			actcount += pmap_ts_referenced(m);
1050 			if (actcount) {
1051 				m->act_count += ACT_ADVANCE + actcount;
1052 				if (m->act_count > ACT_MAX)
1053 					m->act_count = ACT_MAX;
1054 			}
1055 		}
1056 
1057 		/*
1058 		 * Since we have "tested" this bit, we need to clear it now.
1059 		 */
1060 		vm_page_flag_clear(m, PG_REFERENCED);
1061 
1062 		/*
1063 		 * Only if an object is currently being used, do we use the
1064 		 * page activation count stats.
1065 		 */
1066 		if (actcount && (m->object->ref_count != 0)) {
1067 			vm_pageq_requeue(m);
1068 		} else {
1069 			m->act_count -= min(m->act_count, ACT_DECLINE);
1070 			if (vm_pageout_algorithm ||
1071 			    m->object->ref_count == 0 ||
1072 			    m->act_count == 0) {
1073 				page_shortage--;
1074 				if (m->object->ref_count == 0) {
1075 					pmap_remove_all(m);
1076 					if (m->dirty == 0)
1077 						vm_page_cache(m);
1078 					else
1079 						vm_page_deactivate(m);
1080 				} else {
1081 					vm_page_deactivate(m);
1082 				}
1083 			} else {
1084 				vm_pageq_requeue(m);
1085 			}
1086 		}
1087 		m = next;
1088 	}
1089 
1090 	/*
1091 	 * We try to maintain some *really* free pages, this allows interrupt
1092 	 * code to be guaranteed space.  Since both cache and free queues
1093 	 * are considered basically 'free', moving pages from cache to free
1094 	 * does not effect other calculations.
1095 	 */
1096 	while (cnt.v_free_count < cnt.v_free_reserved) {
1097 		static int cache_rover = 0;
1098 
1099 		if ((m = vm_page_select_cache(cache_rover)) == NULL)
1100 			break;
1101 		cache_rover = (m->pc + PQ_PRIME2) & PQ_L2_MASK;
1102 		object = m->object;
1103 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1104 		vm_page_busy(m);
1105 		vm_page_free(m);
1106 		VM_OBJECT_UNLOCK(object);
1107 		cnt.v_dfree++;
1108 	}
1109 	vm_page_unlock_queues();
1110 #if !defined(NO_SWAPPING)
1111 	/*
1112 	 * Idle process swapout -- run once per second.
1113 	 */
1114 	if (vm_swap_idle_enabled) {
1115 		static long lsec;
1116 		if (time_second != lsec) {
1117 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1118 			vm_req_vmdaemon();
1119 			lsec = time_second;
1120 		}
1121 	}
1122 #endif
1123 
1124 	/*
1125 	 * If we didn't get enough free pages, and we have skipped a vnode
1126 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1127 	 * if we did not get enough free pages.
1128 	 */
1129 	if (vm_paging_target() > 0) {
1130 		if (vnodes_skipped && vm_page_count_min())
1131 			(void) speedup_syncer();
1132 #if !defined(NO_SWAPPING)
1133 		if (vm_swap_enabled && vm_page_count_target()) {
1134 			vm_req_vmdaemon();
1135 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1136 		}
1137 #endif
1138 	}
1139 
1140 	/*
1141 	 * If we are critically low on one of RAM or swap and low on
1142 	 * the other, kill the largest process.  However, we avoid
1143 	 * doing this on the first pass in order to give ourselves a
1144 	 * chance to flush out dirty vnode-backed pages and to allow
1145 	 * active pages to be moved to the inactive queue and reclaimed.
1146 	 *
1147 	 * We keep the process bigproc locked once we find it to keep anyone
1148 	 * from messing with it; however, there is a possibility of
1149 	 * deadlock if process B is bigproc and one of it's child processes
1150 	 * attempts to propagate a signal to B while we are waiting for A's
1151 	 * lock while walking this list.  To avoid this, we don't block on
1152 	 * the process lock but just skip a process if it is already locked.
1153 	 */
1154 	if (pass != 0 &&
1155 	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1156 	     (swap_pager_full && vm_paging_target() > 0))) {
1157 		bigproc = NULL;
1158 		bigsize = 0;
1159 		sx_slock(&allproc_lock);
1160 		FOREACH_PROC_IN_SYSTEM(p) {
1161 			int breakout;
1162 
1163 			if (PROC_TRYLOCK(p) == 0)
1164 				continue;
1165 			/*
1166 			 * If this is a system or protected process, skip it.
1167 			 */
1168 			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1169 			    (p->p_flag & P_PROTECTED) ||
1170 			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1171 				PROC_UNLOCK(p);
1172 				continue;
1173 			}
1174 			/*
1175 			 * If the process is in a non-running type state,
1176 			 * don't touch it.  Check all the threads individually.
1177 			 */
1178 			mtx_lock_spin(&sched_lock);
1179 			breakout = 0;
1180 			FOREACH_THREAD_IN_PROC(p, td) {
1181 				if (!TD_ON_RUNQ(td) &&
1182 				    !TD_IS_RUNNING(td) &&
1183 				    !TD_IS_SLEEPING(td)) {
1184 					breakout = 1;
1185 					break;
1186 				}
1187 			}
1188 			if (breakout) {
1189 				mtx_unlock_spin(&sched_lock);
1190 				PROC_UNLOCK(p);
1191 				continue;
1192 			}
1193 			mtx_unlock_spin(&sched_lock);
1194 			/*
1195 			 * get the process size
1196 			 */
1197 			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1198 				PROC_UNLOCK(p);
1199 				continue;
1200 			}
1201 			size = vmspace_swap_count(p->p_vmspace);
1202 			vm_map_unlock_read(&p->p_vmspace->vm_map);
1203 			size += vmspace_resident_count(p->p_vmspace);
1204 			/*
1205 			 * if the this process is bigger than the biggest one
1206 			 * remember it.
1207 			 */
1208 			if (size > bigsize) {
1209 				if (bigproc != NULL)
1210 					PROC_UNLOCK(bigproc);
1211 				bigproc = p;
1212 				bigsize = size;
1213 			} else
1214 				PROC_UNLOCK(p);
1215 		}
1216 		sx_sunlock(&allproc_lock);
1217 		if (bigproc != NULL) {
1218 			killproc(bigproc, "out of swap space");
1219 			mtx_lock_spin(&sched_lock);
1220 			sched_nice(bigproc, PRIO_MIN);
1221 			mtx_unlock_spin(&sched_lock);
1222 			PROC_UNLOCK(bigproc);
1223 			wakeup(&cnt.v_free_count);
1224 		}
1225 	}
1226 	mtx_unlock(&Giant);
1227 }
1228 
1229 /*
1230  * This routine tries to maintain the pseudo LRU active queue,
1231  * so that during long periods of time where there is no paging,
1232  * that some statistic accumulation still occurs.  This code
1233  * helps the situation where paging just starts to occur.
1234  */
1235 static void
1236 vm_pageout_page_stats()
1237 {
1238 	vm_page_t m,next;
1239 	int pcount,tpcount;		/* Number of pages to check */
1240 	static int fullintervalcount = 0;
1241 	int page_shortage;
1242 
1243 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1244 	page_shortage =
1245 	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1246 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1247 
1248 	if (page_shortage <= 0)
1249 		return;
1250 
1251 	pcount = cnt.v_active_count;
1252 	fullintervalcount += vm_pageout_stats_interval;
1253 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1254 		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1255 		if (pcount > tpcount)
1256 			pcount = tpcount;
1257 	} else {
1258 		fullintervalcount = 0;
1259 	}
1260 
1261 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1262 	while ((m != NULL) && (pcount-- > 0)) {
1263 		int actcount;
1264 
1265 		KASSERT(m->queue == PQ_ACTIVE,
1266 		    ("vm_pageout_page_stats: page %p isn't active", m));
1267 
1268 		next = TAILQ_NEXT(m, pageq);
1269 		/*
1270 		 * Don't deactivate pages that are busy.
1271 		 */
1272 		if ((m->busy != 0) ||
1273 		    (m->flags & PG_BUSY) ||
1274 		    (m->hold_count != 0)) {
1275 			vm_pageq_requeue(m);
1276 			m = next;
1277 			continue;
1278 		}
1279 
1280 		actcount = 0;
1281 		if (m->flags & PG_REFERENCED) {
1282 			vm_page_flag_clear(m, PG_REFERENCED);
1283 			actcount += 1;
1284 		}
1285 
1286 		actcount += pmap_ts_referenced(m);
1287 		if (actcount) {
1288 			m->act_count += ACT_ADVANCE + actcount;
1289 			if (m->act_count > ACT_MAX)
1290 				m->act_count = ACT_MAX;
1291 			vm_pageq_requeue(m);
1292 		} else {
1293 			if (m->act_count == 0) {
1294 				/*
1295 				 * We turn off page access, so that we have
1296 				 * more accurate RSS stats.  We don't do this
1297 				 * in the normal page deactivation when the
1298 				 * system is loaded VM wise, because the
1299 				 * cost of the large number of page protect
1300 				 * operations would be higher than the value
1301 				 * of doing the operation.
1302 				 */
1303 				pmap_remove_all(m);
1304 				vm_page_deactivate(m);
1305 			} else {
1306 				m->act_count -= min(m->act_count, ACT_DECLINE);
1307 				vm_pageq_requeue(m);
1308 			}
1309 		}
1310 
1311 		m = next;
1312 	}
1313 }
1314 
1315 /*
1316  *	vm_pageout is the high level pageout daemon.
1317  */
1318 static void
1319 vm_pageout()
1320 {
1321 	int error, pass;
1322 
1323 	/*
1324 	 * Initialize some paging parameters.
1325 	 */
1326 	cnt.v_interrupt_free_min = 2;
1327 	if (cnt.v_page_count < 2000)
1328 		vm_pageout_page_count = 8;
1329 
1330 	/*
1331 	 * v_free_reserved needs to include enough for the largest
1332 	 * swap pager structures plus enough for any pv_entry structs
1333 	 * when paging.
1334 	 */
1335 	if (cnt.v_page_count > 1024)
1336 		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1337 	else
1338 		cnt.v_free_min = 4;
1339 	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1340 	    cnt.v_interrupt_free_min;
1341 	cnt.v_free_reserved = vm_pageout_page_count +
1342 	    cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_L2_SIZE;
1343 	cnt.v_free_severe = cnt.v_free_min / 2;
1344 	cnt.v_free_min += cnt.v_free_reserved;
1345 	cnt.v_free_severe += cnt.v_free_reserved;
1346 
1347 	/*
1348 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1349 	 * that these are more a measure of the VM cache queue hysteresis
1350 	 * then the VM free queue.  Specifically, v_free_target is the
1351 	 * high water mark (free+cache pages).
1352 	 *
1353 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1354 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1355 	 * be big enough to handle memory needs while the pageout daemon
1356 	 * is signalled and run to free more pages.
1357 	 */
1358 	if (cnt.v_free_count > 6144)
1359 		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1360 	else
1361 		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1362 
1363 	if (cnt.v_free_count > 2048) {
1364 		cnt.v_cache_min = cnt.v_free_target;
1365 		cnt.v_cache_max = 2 * cnt.v_cache_min;
1366 		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1367 	} else {
1368 		cnt.v_cache_min = 0;
1369 		cnt.v_cache_max = 0;
1370 		cnt.v_inactive_target = cnt.v_free_count / 4;
1371 	}
1372 	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1373 		cnt.v_inactive_target = cnt.v_free_count / 3;
1374 
1375 	/* XXX does not really belong here */
1376 	if (vm_page_max_wired == 0)
1377 		vm_page_max_wired = cnt.v_free_count / 3;
1378 
1379 	if (vm_pageout_stats_max == 0)
1380 		vm_pageout_stats_max = cnt.v_free_target;
1381 
1382 	/*
1383 	 * Set interval in seconds for stats scan.
1384 	 */
1385 	if (vm_pageout_stats_interval == 0)
1386 		vm_pageout_stats_interval = 5;
1387 	if (vm_pageout_full_stats_interval == 0)
1388 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1389 
1390 	swap_pager_swap_init();
1391 	pass = 0;
1392 	/*
1393 	 * The pageout daemon is never done, so loop forever.
1394 	 */
1395 	while (TRUE) {
1396 		vm_page_lock_queues();
1397 		/*
1398 		 * If we have enough free memory, wakeup waiters.  Do
1399 		 * not clear vm_pages_needed until we reach our target,
1400 		 * otherwise we may be woken up over and over again and
1401 		 * waste a lot of cpu.
1402 		 */
1403 		if (vm_pages_needed && !vm_page_count_min()) {
1404 			if (!vm_paging_needed())
1405 				vm_pages_needed = 0;
1406 			wakeup(&cnt.v_free_count);
1407 		}
1408 		if (vm_pages_needed) {
1409 			/*
1410 			 * Still not done, take a second pass without waiting
1411 			 * (unlimited dirty cleaning), otherwise sleep a bit
1412 			 * and try again.
1413 			 */
1414 			++pass;
1415 			if (pass > 1)
1416 				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1417 				       "psleep", hz/2);
1418 		} else {
1419 			/*
1420 			 * Good enough, sleep & handle stats.  Prime the pass
1421 			 * for the next run.
1422 			 */
1423 			if (pass > 1)
1424 				pass = 1;
1425 			else
1426 				pass = 0;
1427 			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1428 				    "psleep", vm_pageout_stats_interval * hz);
1429 			if (error && !vm_pages_needed) {
1430 				pass = 0;
1431 				vm_pageout_page_stats();
1432 				vm_page_unlock_queues();
1433 				continue;
1434 			}
1435 		}
1436 		if (vm_pages_needed)
1437 			cnt.v_pdwakeups++;
1438 		vm_page_unlock_queues();
1439 		vm_pageout_scan(pass);
1440 	}
1441 }
1442 
1443 /*
1444  * Unless the page queue lock is held by the caller, this function
1445  * should be regarded as advisory.  Specifically, the caller should
1446  * not msleep() on &cnt.v_free_count following this function unless
1447  * the page queue lock is held until the msleep() is performed.
1448  */
1449 void
1450 pagedaemon_wakeup()
1451 {
1452 
1453 	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1454 		vm_pages_needed = 1;
1455 		wakeup(&vm_pages_needed);
1456 	}
1457 }
1458 
1459 #if !defined(NO_SWAPPING)
1460 static void
1461 vm_req_vmdaemon()
1462 {
1463 	static int lastrun = 0;
1464 
1465 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1466 		wakeup(&vm_daemon_needed);
1467 		lastrun = ticks;
1468 	}
1469 }
1470 
1471 static void
1472 vm_daemon()
1473 {
1474 	struct rlimit rsslim;
1475 	struct proc *p;
1476 	struct thread *td;
1477 	int breakout;
1478 
1479 	mtx_lock(&Giant);
1480 	while (TRUE) {
1481 		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1482 		if (vm_pageout_req_swapout) {
1483 			swapout_procs(vm_pageout_req_swapout);
1484 			vm_pageout_req_swapout = 0;
1485 		}
1486 		/*
1487 		 * scan the processes for exceeding their rlimits or if
1488 		 * process is swapped out -- deactivate pages
1489 		 */
1490 		sx_slock(&allproc_lock);
1491 		LIST_FOREACH(p, &allproc, p_list) {
1492 			vm_pindex_t limit, size;
1493 
1494 			/*
1495 			 * if this is a system process or if we have already
1496 			 * looked at this process, skip it.
1497 			 */
1498 			PROC_LOCK(p);
1499 			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1500 				PROC_UNLOCK(p);
1501 				continue;
1502 			}
1503 			/*
1504 			 * if the process is in a non-running type state,
1505 			 * don't touch it.
1506 			 */
1507 			mtx_lock_spin(&sched_lock);
1508 			breakout = 0;
1509 			FOREACH_THREAD_IN_PROC(p, td) {
1510 				if (!TD_ON_RUNQ(td) &&
1511 				    !TD_IS_RUNNING(td) &&
1512 				    !TD_IS_SLEEPING(td)) {
1513 					breakout = 1;
1514 					break;
1515 				}
1516 			}
1517 			mtx_unlock_spin(&sched_lock);
1518 			if (breakout) {
1519 				PROC_UNLOCK(p);
1520 				continue;
1521 			}
1522 			/*
1523 			 * get a limit
1524 			 */
1525 			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1526 			limit = OFF_TO_IDX(
1527 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1528 
1529 			/*
1530 			 * let processes that are swapped out really be
1531 			 * swapped out set the limit to nothing (will force a
1532 			 * swap-out.)
1533 			 */
1534 			if ((p->p_sflag & PS_INMEM) == 0)
1535 				limit = 0;	/* XXX */
1536 			PROC_UNLOCK(p);
1537 
1538 			size = vmspace_resident_count(p->p_vmspace);
1539 			if (limit >= 0 && size >= limit) {
1540 				vm_pageout_map_deactivate_pages(
1541 				    &p->p_vmspace->vm_map, limit);
1542 			}
1543 		}
1544 		sx_sunlock(&allproc_lock);
1545 	}
1546 }
1547 #endif			/* !defined(NO_SWAPPING) */
1548