xref: /freebsd/sys/vm/vm_pageout.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 #include "opt_vm.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/blockcount.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/sdt.h>
93 #include <sys/signalvar.h>
94 #include <sys/smp.h>
95 #include <sys/time.h>
96 #include <sys/vnode.h>
97 #include <sys/vmmeter.h>
98 #include <sys/rwlock.h>
99 #include <sys/sx.h>
100 #include <sys/sysctl.h>
101 
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_page.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_phys.h>
110 #include <vm/vm_pagequeue.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114 
115 /*
116  * System initialization
117  */
118 
119 /* the kernel process "vm_pageout"*/
120 static void vm_pageout(void);
121 static void vm_pageout_init(void);
122 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
123 static int vm_pageout_cluster(vm_page_t m);
124 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
125     int starting_page_shortage);
126 
127 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
128     NULL);
129 
130 struct proc *pageproc;
131 
132 static struct kproc_desc page_kp = {
133 	"pagedaemon",
134 	vm_pageout,
135 	&pageproc
136 };
137 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
138     &page_kp);
139 
140 SDT_PROVIDER_DEFINE(vm);
141 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
142 
143 /* Pagedaemon activity rates, in subdivisions of one second. */
144 #define	VM_LAUNDER_RATE		10
145 #define	VM_INACT_SCAN_RATE	10
146 
147 static int swapdev_enabled;
148 int vm_pageout_page_count = 32;
149 
150 static int vm_panic_on_oom = 0;
151 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
152     CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
153     "Panic on the given number of out-of-memory errors instead of "
154     "killing the largest process");
155 
156 static int vm_pageout_update_period;
157 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
158     CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
159     "Maximum active LRU update period");
160 
161 static int pageout_cpus_per_thread = 16;
162 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
163     &pageout_cpus_per_thread, 0,
164     "Number of CPUs per pagedaemon worker thread");
165 
166 static int lowmem_period = 10;
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168     "Low memory callback period");
169 
170 static int disable_swap_pageouts;
171 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
172     CTLFLAG_RWTUN, &disable_swap_pageouts, 0,
173     "Disallow swapout of dirty pages");
174 
175 static int pageout_lock_miss;
176 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
177     CTLFLAG_RD, &pageout_lock_miss, 0,
178     "vget() lock misses during pageout");
179 
180 static int vm_pageout_oom_seq = 12;
181 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
182     CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
183     "back-to-back calls to oom detector to start OOM");
184 
185 static int act_scan_laundry_weight = 3;
186 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
187     &act_scan_laundry_weight, 0,
188     "weight given to clean vs. dirty pages in active queue scans");
189 
190 static u_int vm_background_launder_rate = 4096;
191 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
192     &vm_background_launder_rate, 0,
193     "background laundering rate, in kilobytes per second");
194 
195 static u_int vm_background_launder_max = 20 * 1024;
196 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
197     &vm_background_launder_max, 0,
198     "background laundering cap, in kilobytes");
199 
200 u_long vm_page_max_user_wired;
201 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
202     &vm_page_max_user_wired, 0,
203     "system-wide limit to user-wired page count");
204 
205 static u_int isqrt(u_int num);
206 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
207     bool in_shortfall);
208 static void vm_pageout_laundry_worker(void *arg);
209 
210 struct scan_state {
211 	struct vm_batchqueue bq;
212 	struct vm_pagequeue *pq;
213 	vm_page_t	marker;
214 	int		maxscan;
215 	int		scanned;
216 };
217 
218 static void
219 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
220     vm_page_t marker, vm_page_t after, int maxscan)
221 {
222 
223 	vm_pagequeue_assert_locked(pq);
224 	KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
225 	    ("marker %p already enqueued", marker));
226 
227 	if (after == NULL)
228 		TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
229 	else
230 		TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
231 	vm_page_aflag_set(marker, PGA_ENQUEUED);
232 
233 	vm_batchqueue_init(&ss->bq);
234 	ss->pq = pq;
235 	ss->marker = marker;
236 	ss->maxscan = maxscan;
237 	ss->scanned = 0;
238 	vm_pagequeue_unlock(pq);
239 }
240 
241 static void
242 vm_pageout_end_scan(struct scan_state *ss)
243 {
244 	struct vm_pagequeue *pq;
245 
246 	pq = ss->pq;
247 	vm_pagequeue_assert_locked(pq);
248 	KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
249 	    ("marker %p not enqueued", ss->marker));
250 
251 	TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
252 	vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
253 	pq->pq_pdpages += ss->scanned;
254 }
255 
256 /*
257  * Add a small number of queued pages to a batch queue for later processing
258  * without the corresponding queue lock held.  The caller must have enqueued a
259  * marker page at the desired start point for the scan.  Pages will be
260  * physically dequeued if the caller so requests.  Otherwise, the returned
261  * batch may contain marker pages, and it is up to the caller to handle them.
262  *
263  * When processing the batch queue, vm_pageout_defer() must be used to
264  * determine whether the page has been logically dequeued since the batch was
265  * collected.
266  */
267 static __always_inline void
268 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
269 {
270 	struct vm_pagequeue *pq;
271 	vm_page_t m, marker, n;
272 
273 	marker = ss->marker;
274 	pq = ss->pq;
275 
276 	KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
277 	    ("marker %p not enqueued", ss->marker));
278 
279 	vm_pagequeue_lock(pq);
280 	for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
281 	    ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
282 	    m = n, ss->scanned++) {
283 		n = TAILQ_NEXT(m, plinks.q);
284 		if ((m->flags & PG_MARKER) == 0) {
285 			KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
286 			    ("page %p not enqueued", m));
287 			KASSERT((m->flags & PG_FICTITIOUS) == 0,
288 			    ("Fictitious page %p cannot be in page queue", m));
289 			KASSERT((m->oflags & VPO_UNMANAGED) == 0,
290 			    ("Unmanaged page %p cannot be in page queue", m));
291 		} else if (dequeue)
292 			continue;
293 
294 		(void)vm_batchqueue_insert(&ss->bq, m);
295 		if (dequeue) {
296 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
297 			vm_page_aflag_clear(m, PGA_ENQUEUED);
298 		}
299 	}
300 	TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
301 	if (__predict_true(m != NULL))
302 		TAILQ_INSERT_BEFORE(m, marker, plinks.q);
303 	else
304 		TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
305 	if (dequeue)
306 		vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
307 	vm_pagequeue_unlock(pq);
308 }
309 
310 /*
311  * Return the next page to be scanned, or NULL if the scan is complete.
312  */
313 static __always_inline vm_page_t
314 vm_pageout_next(struct scan_state *ss, const bool dequeue)
315 {
316 
317 	if (ss->bq.bq_cnt == 0)
318 		vm_pageout_collect_batch(ss, dequeue);
319 	return (vm_batchqueue_pop(&ss->bq));
320 }
321 
322 /*
323  * Determine whether processing of a page should be deferred and ensure that any
324  * outstanding queue operations are processed.
325  */
326 static __always_inline bool
327 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
328 {
329 	vm_page_astate_t as;
330 
331 	as = vm_page_astate_load(m);
332 	if (__predict_false(as.queue != queue ||
333 	    ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
334 		return (true);
335 	if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
336 		vm_page_pqbatch_submit(m, queue);
337 		return (true);
338 	}
339 	return (false);
340 }
341 
342 /*
343  * We can cluster only if the page is not clean, busy, or held, and the page is
344  * in the laundry queue.
345  */
346 static bool
347 vm_pageout_flushable(vm_page_t m)
348 {
349 	if (vm_page_tryxbusy(m) == 0)
350 		return (false);
351 	if (!vm_page_wired(m)) {
352 		vm_page_test_dirty(m);
353 		if (m->dirty != 0 && vm_page_in_laundry(m) &&
354 		    vm_page_try_remove_write(m))
355 			return (true);
356 	}
357 	vm_page_xunbusy(m);
358 	return (false);
359 }
360 
361 /*
362  * Scan for pages at adjacent offsets within the given page's object that are
363  * eligible for laundering, form a cluster of these pages and the given page,
364  * and launder that cluster.
365  */
366 static int
367 vm_pageout_cluster(vm_page_t m)
368 {
369 	vm_page_t mc[2 * vm_pageout_page_count - 1];
370 	int alignment, num_ends, page_base, pageout_count;
371 
372 	VM_OBJECT_ASSERT_WLOCKED(m->object);
373 
374 	vm_page_assert_xbusied(m);
375 
376 	alignment = m->pindex % vm_pageout_page_count;
377 	num_ends = 0;
378 	page_base = nitems(mc) / 2;
379 	pageout_count = 1;
380 	mc[page_base] = m;
381 
382 	/*
383 	 * During heavy mmap/modification loads the pageout
384 	 * daemon can really fragment the underlying file
385 	 * due to flushing pages out of order and not trying to
386 	 * align the clusters (which leaves sporadic out-of-order
387 	 * holes).  To solve this problem we do the reverse scan
388 	 * first and attempt to align our cluster, then do a
389 	 * forward scan if room remains.
390 	 */
391 more:
392 	m = mc[page_base];
393 	while (pageout_count < vm_pageout_page_count) {
394 		/*
395 		 * If we are at an alignment boundary, and haven't reached the
396 		 * last flushable page forward, stop here, and switch
397 		 * directions.
398 		 */
399 		if (alignment == pageout_count - 1 && num_ends == 0)
400 			break;
401 
402 		m = vm_page_prev(m);
403 		if (m == NULL || !vm_pageout_flushable(m)) {
404 			num_ends++;
405 			break;
406 		}
407 		mc[--page_base] = m;
408 		++pageout_count;
409 	}
410 	m = mc[page_base + pageout_count - 1];
411 	while (num_ends != 2 && pageout_count < vm_pageout_page_count) {
412 		m = vm_page_next(m);
413 		if (m == NULL || !vm_pageout_flushable(m)) {
414 			if (num_ends++ == 0)
415 				/* Resume the reverse scan. */
416 				goto more;
417 			break;
418 		}
419 		mc[page_base + pageout_count] = m;
420 		++pageout_count;
421 	}
422 
423 	return (vm_pageout_flush(&mc[page_base], pageout_count,
424 	    VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
425 }
426 
427 /*
428  * vm_pageout_flush() - launder the given pages
429  *
430  *	The given pages are laundered.  Note that we setup for the start of
431  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
432  *	reference count all in here rather then in the parent.  If we want
433  *	the parent to do more sophisticated things we may have to change
434  *	the ordering.
435  *
436  *	Returned runlen is the count of pages between mreq and first
437  *	page after mreq with status VM_PAGER_AGAIN.
438  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
439  *	for any page in runlen set.
440  */
441 int
442 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
443     boolean_t *eio)
444 {
445 	vm_object_t object = mc[0]->object;
446 	int pageout_status[count];
447 	int numpagedout = 0;
448 	int i, runlen;
449 
450 	VM_OBJECT_ASSERT_WLOCKED(object);
451 
452 	/*
453 	 * Initiate I/O.  Mark the pages shared busy and verify that they're
454 	 * valid and read-only.
455 	 *
456 	 * We do not have to fixup the clean/dirty bits here... we can
457 	 * allow the pager to do it after the I/O completes.
458 	 *
459 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
460 	 * edge case with file fragments.
461 	 */
462 	for (i = 0; i < count; i++) {
463 		KASSERT(vm_page_all_valid(mc[i]),
464 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
465 			mc[i], i, count));
466 		KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
467 		    ("vm_pageout_flush: writeable page %p", mc[i]));
468 		vm_page_busy_downgrade(mc[i]);
469 	}
470 	vm_object_pip_add(object, count);
471 
472 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
473 
474 	runlen = count - mreq;
475 	if (eio != NULL)
476 		*eio = FALSE;
477 	for (i = 0; i < count; i++) {
478 		vm_page_t mt = mc[i];
479 
480 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
481 		    !pmap_page_is_write_mapped(mt),
482 		    ("vm_pageout_flush: page %p is not write protected", mt));
483 		switch (pageout_status[i]) {
484 		case VM_PAGER_OK:
485 			/*
486 			 * The page may have moved since laundering started, in
487 			 * which case it should be left alone.
488 			 */
489 			if (vm_page_in_laundry(mt))
490 				vm_page_deactivate_noreuse(mt);
491 			/* FALLTHROUGH */
492 		case VM_PAGER_PEND:
493 			numpagedout++;
494 			break;
495 		case VM_PAGER_BAD:
496 			/*
497 			 * The page is outside the object's range.  We pretend
498 			 * that the page out worked and clean the page, so the
499 			 * changes will be lost if the page is reclaimed by
500 			 * the page daemon.
501 			 */
502 			vm_page_undirty(mt);
503 			if (vm_page_in_laundry(mt))
504 				vm_page_deactivate_noreuse(mt);
505 			break;
506 		case VM_PAGER_ERROR:
507 		case VM_PAGER_FAIL:
508 			/*
509 			 * If the page couldn't be paged out to swap because the
510 			 * pager wasn't able to find space, place the page in
511 			 * the PQ_UNSWAPPABLE holding queue.  This is an
512 			 * optimization that prevents the page daemon from
513 			 * wasting CPU cycles on pages that cannot be reclaimed
514 			 * because no swap device is configured.
515 			 *
516 			 * Otherwise, reactivate the page so that it doesn't
517 			 * clog the laundry and inactive queues.  (We will try
518 			 * paging it out again later.)
519 			 */
520 			if ((object->flags & OBJ_SWAP) != 0 &&
521 			    pageout_status[i] == VM_PAGER_FAIL) {
522 				vm_page_unswappable(mt);
523 				numpagedout++;
524 			} else
525 				vm_page_activate(mt);
526 			if (eio != NULL && i >= mreq && i - mreq < runlen)
527 				*eio = TRUE;
528 			break;
529 		case VM_PAGER_AGAIN:
530 			if (i >= mreq && i - mreq < runlen)
531 				runlen = i - mreq;
532 			break;
533 		}
534 
535 		/*
536 		 * If the operation is still going, leave the page busy to
537 		 * block all other accesses. Also, leave the paging in
538 		 * progress indicator set so that we don't attempt an object
539 		 * collapse.
540 		 */
541 		if (pageout_status[i] != VM_PAGER_PEND) {
542 			vm_object_pip_wakeup(object);
543 			vm_page_sunbusy(mt);
544 		}
545 	}
546 	if (prunlen != NULL)
547 		*prunlen = runlen;
548 	return (numpagedout);
549 }
550 
551 static void
552 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
553 {
554 
555 	atomic_store_rel_int(&swapdev_enabled, 1);
556 }
557 
558 static void
559 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
560 {
561 
562 	if (swap_pager_nswapdev() == 1)
563 		atomic_store_rel_int(&swapdev_enabled, 0);
564 }
565 
566 /*
567  * Attempt to acquire all of the necessary locks to launder a page and
568  * then call through the clustering layer to PUTPAGES.  Wait a short
569  * time for a vnode lock.
570  *
571  * Requires the page and object lock on entry, releases both before return.
572  * Returns 0 on success and an errno otherwise.
573  */
574 static int
575 vm_pageout_clean(vm_page_t m, int *numpagedout)
576 {
577 	struct vnode *vp;
578 	struct mount *mp;
579 	vm_object_t object;
580 	vm_pindex_t pindex;
581 	int error;
582 
583 	object = m->object;
584 	VM_OBJECT_ASSERT_WLOCKED(object);
585 	error = 0;
586 	vp = NULL;
587 	mp = NULL;
588 
589 	/*
590 	 * The object is already known NOT to be dead.   It
591 	 * is possible for the vget() to block the whole
592 	 * pageout daemon, but the new low-memory handling
593 	 * code should prevent it.
594 	 *
595 	 * We can't wait forever for the vnode lock, we might
596 	 * deadlock due to a vn_read() getting stuck in
597 	 * vm_wait while holding this vnode.  We skip the
598 	 * vnode if we can't get it in a reasonable amount
599 	 * of time.
600 	 */
601 	if (object->type == OBJT_VNODE) {
602 		vm_page_xunbusy(m);
603 		vp = object->handle;
604 		if (vp->v_type == VREG &&
605 		    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
606 			mp = NULL;
607 			error = EDEADLK;
608 			goto unlock_all;
609 		}
610 		KASSERT(mp != NULL,
611 		    ("vp %p with NULL v_mount", vp));
612 		vm_object_reference_locked(object);
613 		pindex = m->pindex;
614 		VM_OBJECT_WUNLOCK(object);
615 		if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) {
616 			vp = NULL;
617 			error = EDEADLK;
618 			goto unlock_mp;
619 		}
620 		VM_OBJECT_WLOCK(object);
621 
622 		/*
623 		 * Ensure that the object and vnode were not disassociated
624 		 * while locks were dropped.
625 		 */
626 		if (vp->v_object != object) {
627 			error = ENOENT;
628 			goto unlock_all;
629 		}
630 
631 		/*
632 		 * While the object was unlocked, the page may have been:
633 		 * (1) moved to a different queue,
634 		 * (2) reallocated to a different object,
635 		 * (3) reallocated to a different offset, or
636 		 * (4) cleaned.
637 		 */
638 		if (!vm_page_in_laundry(m) || m->object != object ||
639 		    m->pindex != pindex || m->dirty == 0) {
640 			error = ENXIO;
641 			goto unlock_all;
642 		}
643 
644 		/*
645 		 * The page may have been busied while the object lock was
646 		 * released.
647 		 */
648 		if (vm_page_tryxbusy(m) == 0) {
649 			error = EBUSY;
650 			goto unlock_all;
651 		}
652 	}
653 
654 	/*
655 	 * Remove all writeable mappings, failing if the page is wired.
656 	 */
657 	if (!vm_page_try_remove_write(m)) {
658 		vm_page_xunbusy(m);
659 		error = EBUSY;
660 		goto unlock_all;
661 	}
662 
663 	/*
664 	 * If a page is dirty, then it is either being washed
665 	 * (but not yet cleaned) or it is still in the
666 	 * laundry.  If it is still in the laundry, then we
667 	 * start the cleaning operation.
668 	 */
669 	if ((*numpagedout = vm_pageout_cluster(m)) == 0)
670 		error = EIO;
671 
672 unlock_all:
673 	VM_OBJECT_WUNLOCK(object);
674 
675 unlock_mp:
676 	if (mp != NULL) {
677 		if (vp != NULL)
678 			vput(vp);
679 		vm_object_deallocate(object);
680 		vn_finished_write(mp);
681 	}
682 
683 	return (error);
684 }
685 
686 /*
687  * Attempt to launder the specified number of pages.
688  *
689  * Returns the number of pages successfully laundered.
690  */
691 static int
692 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
693 {
694 	struct scan_state ss;
695 	struct vm_pagequeue *pq;
696 	vm_object_t object;
697 	vm_page_t m, marker;
698 	vm_page_astate_t new, old;
699 	int act_delta, error, numpagedout, queue, refs, starting_target;
700 	int vnodes_skipped;
701 	bool pageout_ok;
702 
703 	object = NULL;
704 	starting_target = launder;
705 	vnodes_skipped = 0;
706 
707 	/*
708 	 * Scan the laundry queues for pages eligible to be laundered.  We stop
709 	 * once the target number of dirty pages have been laundered, or once
710 	 * we've reached the end of the queue.  A single iteration of this loop
711 	 * may cause more than one page to be laundered because of clustering.
712 	 *
713 	 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
714 	 * swap devices are configured.
715 	 */
716 	if (atomic_load_acq_int(&swapdev_enabled))
717 		queue = PQ_UNSWAPPABLE;
718 	else
719 		queue = PQ_LAUNDRY;
720 
721 scan:
722 	marker = &vmd->vmd_markers[queue];
723 	pq = &vmd->vmd_pagequeues[queue];
724 	vm_pagequeue_lock(pq);
725 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
726 	while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
727 		if (__predict_false((m->flags & PG_MARKER) != 0))
728 			continue;
729 
730 		/*
731 		 * Don't touch a page that was removed from the queue after the
732 		 * page queue lock was released.  Otherwise, ensure that any
733 		 * pending queue operations, such as dequeues for wired pages,
734 		 * are handled.
735 		 */
736 		if (vm_pageout_defer(m, queue, true))
737 			continue;
738 
739 		/*
740 		 * Lock the page's object.
741 		 */
742 		if (object == NULL || object != m->object) {
743 			if (object != NULL)
744 				VM_OBJECT_WUNLOCK(object);
745 			object = atomic_load_ptr(&m->object);
746 			if (__predict_false(object == NULL))
747 				/* The page is being freed by another thread. */
748 				continue;
749 
750 			/* Depends on type-stability. */
751 			VM_OBJECT_WLOCK(object);
752 			if (__predict_false(m->object != object)) {
753 				VM_OBJECT_WUNLOCK(object);
754 				object = NULL;
755 				continue;
756 			}
757 		}
758 
759 		if (vm_page_tryxbusy(m) == 0)
760 			continue;
761 
762 		/*
763 		 * Check for wirings now that we hold the object lock and have
764 		 * exclusively busied the page.  If the page is mapped, it may
765 		 * still be wired by pmap lookups.  The call to
766 		 * vm_page_try_remove_all() below atomically checks for such
767 		 * wirings and removes mappings.  If the page is unmapped, the
768 		 * wire count is guaranteed not to increase after this check.
769 		 */
770 		if (__predict_false(vm_page_wired(m)))
771 			goto skip_page;
772 
773 		/*
774 		 * Invalid pages can be easily freed.  They cannot be
775 		 * mapped; vm_page_free() asserts this.
776 		 */
777 		if (vm_page_none_valid(m))
778 			goto free_page;
779 
780 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
781 
782 		for (old = vm_page_astate_load(m);;) {
783 			/*
784 			 * Check to see if the page has been removed from the
785 			 * queue since the first such check.  Leave it alone if
786 			 * so, discarding any references collected by
787 			 * pmap_ts_referenced().
788 			 */
789 			if (__predict_false(_vm_page_queue(old) == PQ_NONE))
790 				goto skip_page;
791 
792 			new = old;
793 			act_delta = refs;
794 			if ((old.flags & PGA_REFERENCED) != 0) {
795 				new.flags &= ~PGA_REFERENCED;
796 				act_delta++;
797 			}
798 			if (act_delta == 0) {
799 				;
800 			} else if (object->ref_count != 0) {
801 				/*
802 				 * Increase the activation count if the page was
803 				 * referenced while in the laundry queue.  This
804 				 * makes it less likely that the page will be
805 				 * returned prematurely to the laundry queue.
806 				 */
807 				new.act_count += ACT_ADVANCE +
808 				    act_delta;
809 				if (new.act_count > ACT_MAX)
810 					new.act_count = ACT_MAX;
811 
812 				new.flags &= ~PGA_QUEUE_OP_MASK;
813 				new.flags |= PGA_REQUEUE;
814 				new.queue = PQ_ACTIVE;
815 				if (!vm_page_pqstate_commit(m, &old, new))
816 					continue;
817 
818 				/*
819 				 * If this was a background laundering, count
820 				 * activated pages towards our target.  The
821 				 * purpose of background laundering is to ensure
822 				 * that pages are eventually cycled through the
823 				 * laundry queue, and an activation is a valid
824 				 * way out.
825 				 */
826 				if (!in_shortfall)
827 					launder--;
828 				VM_CNT_INC(v_reactivated);
829 				goto skip_page;
830 			} else if ((object->flags & OBJ_DEAD) == 0) {
831 				new.flags |= PGA_REQUEUE;
832 				if (!vm_page_pqstate_commit(m, &old, new))
833 					continue;
834 				goto skip_page;
835 			}
836 			break;
837 		}
838 
839 		/*
840 		 * If the page appears to be clean at the machine-independent
841 		 * layer, then remove all of its mappings from the pmap in
842 		 * anticipation of freeing it.  If, however, any of the page's
843 		 * mappings allow write access, then the page may still be
844 		 * modified until the last of those mappings are removed.
845 		 */
846 		if (object->ref_count != 0) {
847 			vm_page_test_dirty(m);
848 			if (m->dirty == 0 && !vm_page_try_remove_all(m))
849 				goto skip_page;
850 		}
851 
852 		/*
853 		 * Clean pages are freed, and dirty pages are paged out unless
854 		 * they belong to a dead object.  Requeueing dirty pages from
855 		 * dead objects is pointless, as they are being paged out and
856 		 * freed by the thread that destroyed the object.
857 		 */
858 		if (m->dirty == 0) {
859 free_page:
860 			/*
861 			 * Now we are guaranteed that no other threads are
862 			 * manipulating the page, check for a last-second
863 			 * reference.
864 			 */
865 			if (vm_pageout_defer(m, queue, true))
866 				goto skip_page;
867 			vm_page_free(m);
868 			VM_CNT_INC(v_dfree);
869 		} else if ((object->flags & OBJ_DEAD) == 0) {
870 			if ((object->flags & OBJ_SWAP) != 0)
871 				pageout_ok = disable_swap_pageouts == 0;
872 			else
873 				pageout_ok = true;
874 			if (!pageout_ok) {
875 				vm_page_launder(m);
876 				goto skip_page;
877 			}
878 
879 			/*
880 			 * Form a cluster with adjacent, dirty pages from the
881 			 * same object, and page out that entire cluster.
882 			 *
883 			 * The adjacent, dirty pages must also be in the
884 			 * laundry.  However, their mappings are not checked
885 			 * for new references.  Consequently, a recently
886 			 * referenced page may be paged out.  However, that
887 			 * page will not be prematurely reclaimed.  After page
888 			 * out, the page will be placed in the inactive queue,
889 			 * where any new references will be detected and the
890 			 * page reactivated.
891 			 */
892 			error = vm_pageout_clean(m, &numpagedout);
893 			if (error == 0) {
894 				launder -= numpagedout;
895 				ss.scanned += numpagedout;
896 			} else if (error == EDEADLK) {
897 				pageout_lock_miss++;
898 				vnodes_skipped++;
899 			}
900 			object = NULL;
901 		} else {
902 skip_page:
903 			vm_page_xunbusy(m);
904 		}
905 	}
906 	if (object != NULL) {
907 		VM_OBJECT_WUNLOCK(object);
908 		object = NULL;
909 	}
910 	vm_pagequeue_lock(pq);
911 	vm_pageout_end_scan(&ss);
912 	vm_pagequeue_unlock(pq);
913 
914 	if (launder > 0 && queue == PQ_UNSWAPPABLE) {
915 		queue = PQ_LAUNDRY;
916 		goto scan;
917 	}
918 
919 	/*
920 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
921 	 * and we didn't launder enough pages.
922 	 */
923 	if (vnodes_skipped > 0 && launder > 0)
924 		(void)speedup_syncer();
925 
926 	return (starting_target - launder);
927 }
928 
929 /*
930  * Compute the integer square root.
931  */
932 static u_int
933 isqrt(u_int num)
934 {
935 	u_int bit, root, tmp;
936 
937 	bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
938 	root = 0;
939 	while (bit != 0) {
940 		tmp = root + bit;
941 		root >>= 1;
942 		if (num >= tmp) {
943 			num -= tmp;
944 			root += bit;
945 		}
946 		bit >>= 2;
947 	}
948 	return (root);
949 }
950 
951 /*
952  * Perform the work of the laundry thread: periodically wake up and determine
953  * whether any pages need to be laundered.  If so, determine the number of pages
954  * that need to be laundered, and launder them.
955  */
956 static void
957 vm_pageout_laundry_worker(void *arg)
958 {
959 	struct vm_domain *vmd;
960 	struct vm_pagequeue *pq;
961 	uint64_t nclean, ndirty, nfreed;
962 	int domain, last_target, launder, shortfall, shortfall_cycle, target;
963 	bool in_shortfall;
964 
965 	domain = (uintptr_t)arg;
966 	vmd = VM_DOMAIN(domain);
967 	pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
968 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
969 
970 	shortfall = 0;
971 	in_shortfall = false;
972 	shortfall_cycle = 0;
973 	last_target = target = 0;
974 	nfreed = 0;
975 
976 	/*
977 	 * Calls to these handlers are serialized by the swap syscall lock.
978 	 */
979 	(void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
980 	    EVENTHANDLER_PRI_ANY);
981 	(void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
982 	    EVENTHANDLER_PRI_ANY);
983 
984 	/*
985 	 * The pageout laundry worker is never done, so loop forever.
986 	 */
987 	for (;;) {
988 		KASSERT(target >= 0, ("negative target %d", target));
989 		KASSERT(shortfall_cycle >= 0,
990 		    ("negative cycle %d", shortfall_cycle));
991 		launder = 0;
992 
993 		/*
994 		 * First determine whether we need to launder pages to meet a
995 		 * shortage of free pages.
996 		 */
997 		if (shortfall > 0) {
998 			in_shortfall = true;
999 			shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1000 			target = shortfall;
1001 		} else if (!in_shortfall)
1002 			goto trybackground;
1003 		else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1004 			/*
1005 			 * We recently entered shortfall and began laundering
1006 			 * pages.  If we have completed that laundering run
1007 			 * (and we are no longer in shortfall) or we have met
1008 			 * our laundry target through other activity, then we
1009 			 * can stop laundering pages.
1010 			 */
1011 			in_shortfall = false;
1012 			target = 0;
1013 			goto trybackground;
1014 		}
1015 		launder = target / shortfall_cycle--;
1016 		goto dolaundry;
1017 
1018 		/*
1019 		 * There's no immediate need to launder any pages; see if we
1020 		 * meet the conditions to perform background laundering:
1021 		 *
1022 		 * 1. The ratio of dirty to clean inactive pages exceeds the
1023 		 *    background laundering threshold, or
1024 		 * 2. we haven't yet reached the target of the current
1025 		 *    background laundering run.
1026 		 *
1027 		 * The background laundering threshold is not a constant.
1028 		 * Instead, it is a slowly growing function of the number of
1029 		 * clean pages freed by the page daemon since the last
1030 		 * background laundering.  Thus, as the ratio of dirty to
1031 		 * clean inactive pages grows, the amount of memory pressure
1032 		 * required to trigger laundering decreases.  We ensure
1033 		 * that the threshold is non-zero after an inactive queue
1034 		 * scan, even if that scan failed to free a single clean page.
1035 		 */
1036 trybackground:
1037 		nclean = vmd->vmd_free_count +
1038 		    vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1039 		ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1040 		if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1041 		    vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1042 			target = vmd->vmd_background_launder_target;
1043 		}
1044 
1045 		/*
1046 		 * We have a non-zero background laundering target.  If we've
1047 		 * laundered up to our maximum without observing a page daemon
1048 		 * request, just stop.  This is a safety belt that ensures we
1049 		 * don't launder an excessive amount if memory pressure is low
1050 		 * and the ratio of dirty to clean pages is large.  Otherwise,
1051 		 * proceed at the background laundering rate.
1052 		 */
1053 		if (target > 0) {
1054 			if (nfreed > 0) {
1055 				nfreed = 0;
1056 				last_target = target;
1057 			} else if (last_target - target >=
1058 			    vm_background_launder_max * PAGE_SIZE / 1024) {
1059 				target = 0;
1060 			}
1061 			launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1062 			launder /= VM_LAUNDER_RATE;
1063 			if (launder > target)
1064 				launder = target;
1065 		}
1066 
1067 dolaundry:
1068 		if (launder > 0) {
1069 			/*
1070 			 * Because of I/O clustering, the number of laundered
1071 			 * pages could exceed "target" by the maximum size of
1072 			 * a cluster minus one.
1073 			 */
1074 			target -= min(vm_pageout_launder(vmd, launder,
1075 			    in_shortfall), target);
1076 			pause("laundp", hz / VM_LAUNDER_RATE);
1077 		}
1078 
1079 		/*
1080 		 * If we're not currently laundering pages and the page daemon
1081 		 * hasn't posted a new request, sleep until the page daemon
1082 		 * kicks us.
1083 		 */
1084 		vm_pagequeue_lock(pq);
1085 		if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1086 			(void)mtx_sleep(&vmd->vmd_laundry_request,
1087 			    vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1088 
1089 		/*
1090 		 * If the pagedaemon has indicated that it's in shortfall, start
1091 		 * a shortfall laundering unless we're already in the middle of
1092 		 * one.  This may preempt a background laundering.
1093 		 */
1094 		if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1095 		    (!in_shortfall || shortfall_cycle == 0)) {
1096 			shortfall = vm_laundry_target(vmd) +
1097 			    vmd->vmd_pageout_deficit;
1098 			target = 0;
1099 		} else
1100 			shortfall = 0;
1101 
1102 		if (target == 0)
1103 			vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1104 		nfreed += vmd->vmd_clean_pages_freed;
1105 		vmd->vmd_clean_pages_freed = 0;
1106 		vm_pagequeue_unlock(pq);
1107 	}
1108 }
1109 
1110 /*
1111  * Compute the number of pages we want to try to move from the
1112  * active queue to either the inactive or laundry queue.
1113  *
1114  * When scanning active pages during a shortage, we make clean pages
1115  * count more heavily towards the page shortage than dirty pages.
1116  * This is because dirty pages must be laundered before they can be
1117  * reused and thus have less utility when attempting to quickly
1118  * alleviate a free page shortage.  However, this weighting also
1119  * causes the scan to deactivate dirty pages more aggressively,
1120  * improving the effectiveness of clustering.
1121  */
1122 static int
1123 vm_pageout_active_target(struct vm_domain *vmd)
1124 {
1125 	int shortage;
1126 
1127 	shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1128 	    (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1129 	    vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1130 	shortage *= act_scan_laundry_weight;
1131 	return (shortage);
1132 }
1133 
1134 /*
1135  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1136  * small portion of the queue in order to maintain quasi-LRU.
1137  */
1138 static void
1139 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1140 {
1141 	struct scan_state ss;
1142 	vm_object_t object;
1143 	vm_page_t m, marker;
1144 	struct vm_pagequeue *pq;
1145 	vm_page_astate_t old, new;
1146 	long min_scan;
1147 	int act_delta, max_scan, ps_delta, refs, scan_tick;
1148 	uint8_t nqueue;
1149 
1150 	marker = &vmd->vmd_markers[PQ_ACTIVE];
1151 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1152 	vm_pagequeue_lock(pq);
1153 
1154 	/*
1155 	 * If we're just idle polling attempt to visit every
1156 	 * active page within 'update_period' seconds.
1157 	 */
1158 	scan_tick = ticks;
1159 	if (vm_pageout_update_period != 0) {
1160 		min_scan = pq->pq_cnt;
1161 		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1162 		min_scan /= hz * vm_pageout_update_period;
1163 	} else
1164 		min_scan = 0;
1165 	if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1166 		vmd->vmd_last_active_scan = scan_tick;
1167 
1168 	/*
1169 	 * Scan the active queue for pages that can be deactivated.  Update
1170 	 * the per-page activity counter and use it to identify deactivation
1171 	 * candidates.  Held pages may be deactivated.
1172 	 *
1173 	 * To avoid requeuing each page that remains in the active queue, we
1174 	 * implement the CLOCK algorithm.  To keep the implementation of the
1175 	 * enqueue operation consistent for all page queues, we use two hands,
1176 	 * represented by marker pages. Scans begin at the first hand, which
1177 	 * precedes the second hand in the queue.  When the two hands meet,
1178 	 * they are moved back to the head and tail of the queue, respectively,
1179 	 * and scanning resumes.
1180 	 */
1181 	max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1182 act_scan:
1183 	vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1184 	while ((m = vm_pageout_next(&ss, false)) != NULL) {
1185 		if (__predict_false(m == &vmd->vmd_clock[1])) {
1186 			vm_pagequeue_lock(pq);
1187 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1188 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1189 			TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1190 			    plinks.q);
1191 			TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1192 			    plinks.q);
1193 			max_scan -= ss.scanned;
1194 			vm_pageout_end_scan(&ss);
1195 			goto act_scan;
1196 		}
1197 		if (__predict_false((m->flags & PG_MARKER) != 0))
1198 			continue;
1199 
1200 		/*
1201 		 * Don't touch a page that was removed from the queue after the
1202 		 * page queue lock was released.  Otherwise, ensure that any
1203 		 * pending queue operations, such as dequeues for wired pages,
1204 		 * are handled.
1205 		 */
1206 		if (vm_pageout_defer(m, PQ_ACTIVE, true))
1207 			continue;
1208 
1209 		/*
1210 		 * A page's object pointer may be set to NULL before
1211 		 * the object lock is acquired.
1212 		 */
1213 		object = atomic_load_ptr(&m->object);
1214 		if (__predict_false(object == NULL))
1215 			/*
1216 			 * The page has been removed from its object.
1217 			 */
1218 			continue;
1219 
1220 		/* Deferred free of swap space. */
1221 		if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1222 		    VM_OBJECT_TRYWLOCK(object)) {
1223 			if (m->object == object)
1224 				vm_pager_page_unswapped(m);
1225 			VM_OBJECT_WUNLOCK(object);
1226 		}
1227 
1228 		/*
1229 		 * Check to see "how much" the page has been used.
1230 		 *
1231 		 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1232 		 * that a reference from a concurrently destroyed mapping is
1233 		 * observed here and now.
1234 		 *
1235 		 * Perform an unsynchronized object ref count check.  While
1236 		 * the page lock ensures that the page is not reallocated to
1237 		 * another object, in particular, one with unmanaged mappings
1238 		 * that cannot support pmap_ts_referenced(), two races are,
1239 		 * nonetheless, possible:
1240 		 * 1) The count was transitioning to zero, but we saw a non-
1241 		 *    zero value.  pmap_ts_referenced() will return zero
1242 		 *    because the page is not mapped.
1243 		 * 2) The count was transitioning to one, but we saw zero.
1244 		 *    This race delays the detection of a new reference.  At
1245 		 *    worst, we will deactivate and reactivate the page.
1246 		 */
1247 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1248 
1249 		old = vm_page_astate_load(m);
1250 		do {
1251 			/*
1252 			 * Check to see if the page has been removed from the
1253 			 * queue since the first such check.  Leave it alone if
1254 			 * so, discarding any references collected by
1255 			 * pmap_ts_referenced().
1256 			 */
1257 			if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
1258 				ps_delta = 0;
1259 				break;
1260 			}
1261 
1262 			/*
1263 			 * Advance or decay the act_count based on recent usage.
1264 			 */
1265 			new = old;
1266 			act_delta = refs;
1267 			if ((old.flags & PGA_REFERENCED) != 0) {
1268 				new.flags &= ~PGA_REFERENCED;
1269 				act_delta++;
1270 			}
1271 			if (act_delta != 0) {
1272 				new.act_count += ACT_ADVANCE + act_delta;
1273 				if (new.act_count > ACT_MAX)
1274 					new.act_count = ACT_MAX;
1275 			} else {
1276 				new.act_count -= min(new.act_count,
1277 				    ACT_DECLINE);
1278 			}
1279 
1280 			if (new.act_count > 0) {
1281 				/*
1282 				 * Adjust the activation count and keep the page
1283 				 * in the active queue.  The count might be left
1284 				 * unchanged if it is saturated.  The page may
1285 				 * have been moved to a different queue since we
1286 				 * started the scan, in which case we move it
1287 				 * back.
1288 				 */
1289 				ps_delta = 0;
1290 				if (old.queue != PQ_ACTIVE) {
1291 					new.flags &= ~PGA_QUEUE_OP_MASK;
1292 					new.flags |= PGA_REQUEUE;
1293 					new.queue = PQ_ACTIVE;
1294 				}
1295 			} else {
1296 				/*
1297 				 * When not short for inactive pages, let dirty
1298 				 * pages go through the inactive queue before
1299 				 * moving to the laundry queue.  This gives them
1300 				 * some extra time to be reactivated,
1301 				 * potentially avoiding an expensive pageout.
1302 				 * However, during a page shortage, the inactive
1303 				 * queue is necessarily small, and so dirty
1304 				 * pages would only spend a trivial amount of
1305 				 * time in the inactive queue.  Therefore, we
1306 				 * might as well place them directly in the
1307 				 * laundry queue to reduce queuing overhead.
1308 				 *
1309 				 * Calling vm_page_test_dirty() here would
1310 				 * require acquisition of the object's write
1311 				 * lock.  However, during a page shortage,
1312 				 * directing dirty pages into the laundry queue
1313 				 * is only an optimization and not a
1314 				 * requirement.  Therefore, we simply rely on
1315 				 * the opportunistic updates to the page's dirty
1316 				 * field by the pmap.
1317 				 */
1318 				if (page_shortage <= 0) {
1319 					nqueue = PQ_INACTIVE;
1320 					ps_delta = 0;
1321 				} else if (m->dirty == 0) {
1322 					nqueue = PQ_INACTIVE;
1323 					ps_delta = act_scan_laundry_weight;
1324 				} else {
1325 					nqueue = PQ_LAUNDRY;
1326 					ps_delta = 1;
1327 				}
1328 
1329 				new.flags &= ~PGA_QUEUE_OP_MASK;
1330 				new.flags |= PGA_REQUEUE;
1331 				new.queue = nqueue;
1332 			}
1333 		} while (!vm_page_pqstate_commit(m, &old, new));
1334 
1335 		page_shortage -= ps_delta;
1336 	}
1337 	vm_pagequeue_lock(pq);
1338 	TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1339 	TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1340 	vm_pageout_end_scan(&ss);
1341 	vm_pagequeue_unlock(pq);
1342 }
1343 
1344 static int
1345 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1346     vm_page_t m)
1347 {
1348 	vm_page_astate_t as;
1349 
1350 	vm_pagequeue_assert_locked(pq);
1351 
1352 	as = vm_page_astate_load(m);
1353 	if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1354 		return (0);
1355 	vm_page_aflag_set(m, PGA_ENQUEUED);
1356 	TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1357 	return (1);
1358 }
1359 
1360 /*
1361  * Re-add stuck pages to the inactive queue.  We will examine them again
1362  * during the next scan.  If the queue state of a page has changed since
1363  * it was physically removed from the page queue in
1364  * vm_pageout_collect_batch(), don't do anything with that page.
1365  */
1366 static void
1367 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1368     vm_page_t m)
1369 {
1370 	struct vm_pagequeue *pq;
1371 	vm_page_t marker;
1372 	int delta;
1373 
1374 	delta = 0;
1375 	marker = ss->marker;
1376 	pq = ss->pq;
1377 
1378 	if (m != NULL) {
1379 		if (vm_batchqueue_insert(bq, m) != 0)
1380 			return;
1381 		vm_pagequeue_lock(pq);
1382 		delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1383 	} else
1384 		vm_pagequeue_lock(pq);
1385 	while ((m = vm_batchqueue_pop(bq)) != NULL)
1386 		delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1387 	vm_pagequeue_cnt_add(pq, delta);
1388 	vm_pagequeue_unlock(pq);
1389 	vm_batchqueue_init(bq);
1390 }
1391 
1392 static void
1393 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
1394 {
1395 	struct timeval start, end;
1396 	struct scan_state ss;
1397 	struct vm_batchqueue rq;
1398 	struct vm_page marker_page;
1399 	vm_page_t m, marker;
1400 	struct vm_pagequeue *pq;
1401 	vm_object_t object;
1402 	vm_page_astate_t old, new;
1403 	int act_delta, addl_page_shortage, starting_page_shortage, refs;
1404 
1405 	object = NULL;
1406 	vm_batchqueue_init(&rq);
1407 	getmicrouptime(&start);
1408 
1409 	/*
1410 	 * The addl_page_shortage is an estimate of the number of temporarily
1411 	 * stuck pages in the inactive queue.  In other words, the
1412 	 * number of pages from the inactive count that should be
1413 	 * discounted in setting the target for the active queue scan.
1414 	 */
1415 	addl_page_shortage = 0;
1416 
1417 	/*
1418 	 * Start scanning the inactive queue for pages that we can free.  The
1419 	 * scan will stop when we reach the target or we have scanned the
1420 	 * entire queue.  (Note that m->a.act_count is not used to make
1421 	 * decisions for the inactive queue, only for the active queue.)
1422 	 */
1423 	starting_page_shortage = page_shortage;
1424 	marker = &marker_page;
1425 	vm_page_init_marker(marker, PQ_INACTIVE, 0);
1426 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1427 	vm_pagequeue_lock(pq);
1428 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1429 	while (page_shortage > 0) {
1430 		/*
1431 		 * If we need to refill the scan batch queue, release any
1432 		 * optimistically held object lock.  This gives someone else a
1433 		 * chance to grab the lock, and also avoids holding it while we
1434 		 * do unrelated work.
1435 		 */
1436 		if (object != NULL && vm_batchqueue_empty(&ss.bq)) {
1437 			VM_OBJECT_WUNLOCK(object);
1438 			object = NULL;
1439 		}
1440 
1441 		m = vm_pageout_next(&ss, true);
1442 		if (m == NULL)
1443 			break;
1444 		KASSERT((m->flags & PG_MARKER) == 0,
1445 		    ("marker page %p was dequeued", m));
1446 
1447 		/*
1448 		 * Don't touch a page that was removed from the queue after the
1449 		 * page queue lock was released.  Otherwise, ensure that any
1450 		 * pending queue operations, such as dequeues for wired pages,
1451 		 * are handled.
1452 		 */
1453 		if (vm_pageout_defer(m, PQ_INACTIVE, false))
1454 			continue;
1455 
1456 		/*
1457 		 * Lock the page's object.
1458 		 */
1459 		if (object == NULL || object != m->object) {
1460 			if (object != NULL)
1461 				VM_OBJECT_WUNLOCK(object);
1462 			object = atomic_load_ptr(&m->object);
1463 			if (__predict_false(object == NULL))
1464 				/* The page is being freed by another thread. */
1465 				continue;
1466 
1467 			/* Depends on type-stability. */
1468 			VM_OBJECT_WLOCK(object);
1469 			if (__predict_false(m->object != object)) {
1470 				VM_OBJECT_WUNLOCK(object);
1471 				object = NULL;
1472 				goto reinsert;
1473 			}
1474 		}
1475 
1476 		if (vm_page_tryxbusy(m) == 0) {
1477 			/*
1478 			 * Don't mess with busy pages.  Leave them at
1479 			 * the front of the queue.  Most likely, they
1480 			 * are being paged out and will leave the
1481 			 * queue shortly after the scan finishes.  So,
1482 			 * they ought to be discounted from the
1483 			 * inactive count.
1484 			 */
1485 			addl_page_shortage++;
1486 			goto reinsert;
1487 		}
1488 
1489 		/* Deferred free of swap space. */
1490 		if ((m->a.flags & PGA_SWAP_FREE) != 0)
1491 			vm_pager_page_unswapped(m);
1492 
1493 		/*
1494 		 * Check for wirings now that we hold the object lock and have
1495 		 * exclusively busied the page.  If the page is mapped, it may
1496 		 * still be wired by pmap lookups.  The call to
1497 		 * vm_page_try_remove_all() below atomically checks for such
1498 		 * wirings and removes mappings.  If the page is unmapped, the
1499 		 * wire count is guaranteed not to increase after this check.
1500 		 */
1501 		if (__predict_false(vm_page_wired(m)))
1502 			goto skip_page;
1503 
1504 		/*
1505 		 * Invalid pages can be easily freed. They cannot be
1506 		 * mapped, vm_page_free() asserts this.
1507 		 */
1508 		if (vm_page_none_valid(m))
1509 			goto free_page;
1510 
1511 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1512 
1513 		for (old = vm_page_astate_load(m);;) {
1514 			/*
1515 			 * Check to see if the page has been removed from the
1516 			 * queue since the first such check.  Leave it alone if
1517 			 * so, discarding any references collected by
1518 			 * pmap_ts_referenced().
1519 			 */
1520 			if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1521 				goto skip_page;
1522 
1523 			new = old;
1524 			act_delta = refs;
1525 			if ((old.flags & PGA_REFERENCED) != 0) {
1526 				new.flags &= ~PGA_REFERENCED;
1527 				act_delta++;
1528 			}
1529 			if (act_delta == 0) {
1530 				;
1531 			} else if (object->ref_count != 0) {
1532 				/*
1533 				 * Increase the activation count if the
1534 				 * page was referenced while in the
1535 				 * inactive queue.  This makes it less
1536 				 * likely that the page will be returned
1537 				 * prematurely to the inactive queue.
1538 				 */
1539 				new.act_count += ACT_ADVANCE +
1540 				    act_delta;
1541 				if (new.act_count > ACT_MAX)
1542 					new.act_count = ACT_MAX;
1543 
1544 				new.flags &= ~PGA_QUEUE_OP_MASK;
1545 				new.flags |= PGA_REQUEUE;
1546 				new.queue = PQ_ACTIVE;
1547 				if (!vm_page_pqstate_commit(m, &old, new))
1548 					continue;
1549 
1550 				VM_CNT_INC(v_reactivated);
1551 				goto skip_page;
1552 			} else if ((object->flags & OBJ_DEAD) == 0) {
1553 				new.queue = PQ_INACTIVE;
1554 				new.flags |= PGA_REQUEUE;
1555 				if (!vm_page_pqstate_commit(m, &old, new))
1556 					continue;
1557 				goto skip_page;
1558 			}
1559 			break;
1560 		}
1561 
1562 		/*
1563 		 * If the page appears to be clean at the machine-independent
1564 		 * layer, then remove all of its mappings from the pmap in
1565 		 * anticipation of freeing it.  If, however, any of the page's
1566 		 * mappings allow write access, then the page may still be
1567 		 * modified until the last of those mappings are removed.
1568 		 */
1569 		if (object->ref_count != 0) {
1570 			vm_page_test_dirty(m);
1571 			if (m->dirty == 0 && !vm_page_try_remove_all(m))
1572 				goto skip_page;
1573 		}
1574 
1575 		/*
1576 		 * Clean pages can be freed, but dirty pages must be sent back
1577 		 * to the laundry, unless they belong to a dead object.
1578 		 * Requeueing dirty pages from dead objects is pointless, as
1579 		 * they are being paged out and freed by the thread that
1580 		 * destroyed the object.
1581 		 */
1582 		if (m->dirty == 0) {
1583 free_page:
1584 			/*
1585 			 * Now we are guaranteed that no other threads are
1586 			 * manipulating the page, check for a last-second
1587 			 * reference that would save it from doom.
1588 			 */
1589 			if (vm_pageout_defer(m, PQ_INACTIVE, false))
1590 				goto skip_page;
1591 
1592 			/*
1593 			 * Because we dequeued the page and have already checked
1594 			 * for pending dequeue and enqueue requests, we can
1595 			 * safely disassociate the page from the inactive queue
1596 			 * without holding the queue lock.
1597 			 */
1598 			m->a.queue = PQ_NONE;
1599 			vm_page_free(m);
1600 			page_shortage--;
1601 			continue;
1602 		}
1603 		if ((object->flags & OBJ_DEAD) == 0)
1604 			vm_page_launder(m);
1605 skip_page:
1606 		vm_page_xunbusy(m);
1607 		continue;
1608 reinsert:
1609 		vm_pageout_reinsert_inactive(&ss, &rq, m);
1610 	}
1611 	if (object != NULL)
1612 		VM_OBJECT_WUNLOCK(object);
1613 	vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1614 	vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1615 	vm_pagequeue_lock(pq);
1616 	vm_pageout_end_scan(&ss);
1617 	vm_pagequeue_unlock(pq);
1618 
1619 	/*
1620 	 * Record the remaining shortage and the progress and rate it was made.
1621 	 */
1622 	atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
1623 	getmicrouptime(&end);
1624 	timevalsub(&end, &start);
1625 	atomic_add_int(&vmd->vmd_inactive_us,
1626 	    end.tv_sec * 1000000 + end.tv_usec);
1627 	atomic_add_int(&vmd->vmd_inactive_freed,
1628 	    starting_page_shortage - page_shortage);
1629 }
1630 
1631 /*
1632  * Dispatch a number of inactive threads according to load and collect the
1633  * results to present a coherent view of paging activity on this domain.
1634  */
1635 static int
1636 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
1637 {
1638 	u_int freed, pps, slop, threads, us;
1639 
1640 	vmd->vmd_inactive_shortage = shortage;
1641 	slop = 0;
1642 
1643 	/*
1644 	 * If we have more work than we can do in a quarter of our interval, we
1645 	 * fire off multiple threads to process it.
1646 	 */
1647 	if ((threads = vmd->vmd_inactive_threads) > 1 &&
1648 	    vmd->vmd_helper_threads_enabled &&
1649 	    vmd->vmd_inactive_pps != 0 &&
1650 	    shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
1651 		vmd->vmd_inactive_shortage /= threads;
1652 		slop = shortage % threads;
1653 		vm_domain_pageout_lock(vmd);
1654 		blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
1655 		blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
1656 		wakeup(&vmd->vmd_inactive_shortage);
1657 		vm_domain_pageout_unlock(vmd);
1658 	}
1659 
1660 	/* Run the local thread scan. */
1661 	vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);
1662 
1663 	/*
1664 	 * Block until helper threads report results and then accumulate
1665 	 * totals.
1666 	 */
1667 	blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
1668 	freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
1669 	VM_CNT_ADD(v_dfree, freed);
1670 
1671 	/*
1672 	 * Calculate the per-thread paging rate with an exponential decay of
1673 	 * prior results.  Careful to avoid integer rounding errors with large
1674 	 * us values.
1675 	 */
1676 	us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
1677 	if (us > 1000000)
1678 		/* Keep rounding to tenths */
1679 		pps = (freed * 10) / ((us * 10) / 1000000);
1680 	else
1681 		pps = (1000000 / us) * freed;
1682 	vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
1683 
1684 	return (shortage - freed);
1685 }
1686 
1687 /*
1688  * Attempt to reclaim the requested number of pages from the inactive queue.
1689  * Returns true if the shortage was addressed.
1690  */
1691 static int
1692 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
1693 {
1694 	struct vm_pagequeue *pq;
1695 	u_int addl_page_shortage, deficit, page_shortage;
1696 	u_int starting_page_shortage;
1697 
1698 	/*
1699 	 * vmd_pageout_deficit counts the number of pages requested in
1700 	 * allocations that failed because of a free page shortage.  We assume
1701 	 * that the allocations will be reattempted and thus include the deficit
1702 	 * in our scan target.
1703 	 */
1704 	deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1705 	starting_page_shortage = shortage + deficit;
1706 
1707 	/*
1708 	 * Run the inactive scan on as many threads as is necessary.
1709 	 */
1710 	page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
1711 	addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
1712 
1713 	/*
1714 	 * Wake up the laundry thread so that it can perform any needed
1715 	 * laundering.  If we didn't meet our target, we're in shortfall and
1716 	 * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1717 	 * swap devices are configured, the laundry thread has no work to do, so
1718 	 * don't bother waking it up.
1719 	 *
1720 	 * The laundry thread uses the number of inactive queue scans elapsed
1721 	 * since the last laundering to determine whether to launder again, so
1722 	 * keep count.
1723 	 */
1724 	if (starting_page_shortage > 0) {
1725 		pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1726 		vm_pagequeue_lock(pq);
1727 		if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1728 		    (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1729 			if (page_shortage > 0) {
1730 				vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1731 				VM_CNT_INC(v_pdshortfalls);
1732 			} else if (vmd->vmd_laundry_request !=
1733 			    VM_LAUNDRY_SHORTFALL)
1734 				vmd->vmd_laundry_request =
1735 				    VM_LAUNDRY_BACKGROUND;
1736 			wakeup(&vmd->vmd_laundry_request);
1737 		}
1738 		vmd->vmd_clean_pages_freed +=
1739 		    starting_page_shortage - page_shortage;
1740 		vm_pagequeue_unlock(pq);
1741 	}
1742 
1743 	/*
1744 	 * If the inactive queue scan fails repeatedly to meet its
1745 	 * target, kill the largest process.
1746 	 */
1747 	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1748 
1749 	/*
1750 	 * See the description of addl_page_shortage above.
1751 	 */
1752 	*addl_shortage = addl_page_shortage + deficit;
1753 
1754 	return (page_shortage <= 0);
1755 }
1756 
1757 static int vm_pageout_oom_vote;
1758 
1759 /*
1760  * The pagedaemon threads randlomly select one to perform the
1761  * OOM.  Trying to kill processes before all pagedaemons
1762  * failed to reach free target is premature.
1763  */
1764 static void
1765 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1766     int starting_page_shortage)
1767 {
1768 	int old_vote;
1769 
1770 	if (starting_page_shortage <= 0 || starting_page_shortage !=
1771 	    page_shortage)
1772 		vmd->vmd_oom_seq = 0;
1773 	else
1774 		vmd->vmd_oom_seq++;
1775 	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1776 		if (vmd->vmd_oom) {
1777 			vmd->vmd_oom = false;
1778 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1779 		}
1780 		return;
1781 	}
1782 
1783 	/*
1784 	 * Do not follow the call sequence until OOM condition is
1785 	 * cleared.
1786 	 */
1787 	vmd->vmd_oom_seq = 0;
1788 
1789 	if (vmd->vmd_oom)
1790 		return;
1791 
1792 	vmd->vmd_oom = true;
1793 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1794 	if (old_vote != vm_ndomains - 1)
1795 		return;
1796 
1797 	/*
1798 	 * The current pagedaemon thread is the last in the quorum to
1799 	 * start OOM.  Initiate the selection and signaling of the
1800 	 * victim.
1801 	 */
1802 	vm_pageout_oom(VM_OOM_MEM);
1803 
1804 	/*
1805 	 * After one round of OOM terror, recall our vote.  On the
1806 	 * next pass, current pagedaemon would vote again if the low
1807 	 * memory condition is still there, due to vmd_oom being
1808 	 * false.
1809 	 */
1810 	vmd->vmd_oom = false;
1811 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1812 }
1813 
1814 /*
1815  * The OOM killer is the page daemon's action of last resort when
1816  * memory allocation requests have been stalled for a prolonged period
1817  * of time because it cannot reclaim memory.  This function computes
1818  * the approximate number of physical pages that could be reclaimed if
1819  * the specified address space is destroyed.
1820  *
1821  * Private, anonymous memory owned by the address space is the
1822  * principal resource that we expect to recover after an OOM kill.
1823  * Since the physical pages mapped by the address space's COW entries
1824  * are typically shared pages, they are unlikely to be released and so
1825  * they are not counted.
1826  *
1827  * To get to the point where the page daemon runs the OOM killer, its
1828  * efforts to write-back vnode-backed pages may have stalled.  This
1829  * could be caused by a memory allocation deadlock in the write path
1830  * that might be resolved by an OOM kill.  Therefore, physical pages
1831  * belonging to vnode-backed objects are counted, because they might
1832  * be freed without being written out first if the address space holds
1833  * the last reference to an unlinked vnode.
1834  *
1835  * Similarly, physical pages belonging to OBJT_PHYS objects are
1836  * counted because the address space might hold the last reference to
1837  * the object.
1838  */
1839 static long
1840 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1841 {
1842 	vm_map_t map;
1843 	vm_map_entry_t entry;
1844 	vm_object_t obj;
1845 	long res;
1846 
1847 	map = &vmspace->vm_map;
1848 	KASSERT(!vm_map_is_system(map), ("system map"));
1849 	sx_assert(&map->lock, SA_LOCKED);
1850 	res = 0;
1851 	VM_MAP_ENTRY_FOREACH(entry, map) {
1852 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1853 			continue;
1854 		obj = entry->object.vm_object;
1855 		if (obj == NULL)
1856 			continue;
1857 		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1858 		    obj->ref_count != 1)
1859 			continue;
1860 		if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE ||
1861 		    (obj->flags & OBJ_SWAP) != 0)
1862 			res += obj->resident_page_count;
1863 	}
1864 	return (res);
1865 }
1866 
1867 static int vm_oom_ratelim_last;
1868 static int vm_oom_pf_secs = 10;
1869 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1870     "");
1871 static struct mtx vm_oom_ratelim_mtx;
1872 
1873 void
1874 vm_pageout_oom(int shortage)
1875 {
1876 	const char *reason;
1877 	struct proc *p, *bigproc;
1878 	vm_offset_t size, bigsize;
1879 	struct thread *td;
1880 	struct vmspace *vm;
1881 	int now;
1882 	bool breakout;
1883 
1884 	/*
1885 	 * For OOM requests originating from vm_fault(), there is a high
1886 	 * chance that a single large process faults simultaneously in
1887 	 * several threads.  Also, on an active system running many
1888 	 * processes of middle-size, like buildworld, all of them
1889 	 * could fault almost simultaneously as well.
1890 	 *
1891 	 * To avoid killing too many processes, rate-limit OOMs
1892 	 * initiated by vm_fault() time-outs on the waits for free
1893 	 * pages.
1894 	 */
1895 	mtx_lock(&vm_oom_ratelim_mtx);
1896 	now = ticks;
1897 	if (shortage == VM_OOM_MEM_PF &&
1898 	    (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1899 		mtx_unlock(&vm_oom_ratelim_mtx);
1900 		return;
1901 	}
1902 	vm_oom_ratelim_last = now;
1903 	mtx_unlock(&vm_oom_ratelim_mtx);
1904 
1905 	/*
1906 	 * We keep the process bigproc locked once we find it to keep anyone
1907 	 * from messing with it; however, there is a possibility of
1908 	 * deadlock if process B is bigproc and one of its child processes
1909 	 * attempts to propagate a signal to B while we are waiting for A's
1910 	 * lock while walking this list.  To avoid this, we don't block on
1911 	 * the process lock but just skip a process if it is already locked.
1912 	 */
1913 	bigproc = NULL;
1914 	bigsize = 0;
1915 	sx_slock(&allproc_lock);
1916 	FOREACH_PROC_IN_SYSTEM(p) {
1917 		PROC_LOCK(p);
1918 
1919 		/*
1920 		 * If this is a system, protected or killed process, skip it.
1921 		 */
1922 		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1923 		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1924 		    p->p_pid == 1 || P_KILLED(p) ||
1925 		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1926 			PROC_UNLOCK(p);
1927 			continue;
1928 		}
1929 		/*
1930 		 * If the process is in a non-running type state,
1931 		 * don't touch it.  Check all the threads individually.
1932 		 */
1933 		breakout = false;
1934 		FOREACH_THREAD_IN_PROC(p, td) {
1935 			thread_lock(td);
1936 			if (!TD_ON_RUNQ(td) &&
1937 			    !TD_IS_RUNNING(td) &&
1938 			    !TD_IS_SLEEPING(td) &&
1939 			    !TD_IS_SUSPENDED(td)) {
1940 				thread_unlock(td);
1941 				breakout = true;
1942 				break;
1943 			}
1944 			thread_unlock(td);
1945 		}
1946 		if (breakout) {
1947 			PROC_UNLOCK(p);
1948 			continue;
1949 		}
1950 		/*
1951 		 * get the process size
1952 		 */
1953 		vm = vmspace_acquire_ref(p);
1954 		if (vm == NULL) {
1955 			PROC_UNLOCK(p);
1956 			continue;
1957 		}
1958 		_PHOLD(p);
1959 		PROC_UNLOCK(p);
1960 		sx_sunlock(&allproc_lock);
1961 		if (!vm_map_trylock_read(&vm->vm_map)) {
1962 			vmspace_free(vm);
1963 			sx_slock(&allproc_lock);
1964 			PRELE(p);
1965 			continue;
1966 		}
1967 		size = vmspace_swap_count(vm);
1968 		if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1969 			size += vm_pageout_oom_pagecount(vm);
1970 		vm_map_unlock_read(&vm->vm_map);
1971 		vmspace_free(vm);
1972 		sx_slock(&allproc_lock);
1973 
1974 		/*
1975 		 * If this process is bigger than the biggest one,
1976 		 * remember it.
1977 		 */
1978 		if (size > bigsize) {
1979 			if (bigproc != NULL)
1980 				PRELE(bigproc);
1981 			bigproc = p;
1982 			bigsize = size;
1983 		} else {
1984 			PRELE(p);
1985 		}
1986 	}
1987 	sx_sunlock(&allproc_lock);
1988 
1989 	if (bigproc != NULL) {
1990 		switch (shortage) {
1991 		case VM_OOM_MEM:
1992 			reason = "failed to reclaim memory";
1993 			break;
1994 		case VM_OOM_MEM_PF:
1995 			reason = "a thread waited too long to allocate a page";
1996 			break;
1997 		case VM_OOM_SWAPZ:
1998 			reason = "out of swap space";
1999 			break;
2000 		default:
2001 			panic("unknown OOM reason %d", shortage);
2002 		}
2003 		if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
2004 			panic("%s", reason);
2005 		PROC_LOCK(bigproc);
2006 		killproc(bigproc, reason);
2007 		sched_nice(bigproc, PRIO_MIN);
2008 		_PRELE(bigproc);
2009 		PROC_UNLOCK(bigproc);
2010 	}
2011 }
2012 
2013 /*
2014  * Signal a free page shortage to subsystems that have registered an event
2015  * handler.  Reclaim memory from UMA in the event of a severe shortage.
2016  * Return true if the free page count should be re-evaluated.
2017  */
2018 static bool
2019 vm_pageout_lowmem(void)
2020 {
2021 	static int lowmem_ticks = 0;
2022 	int last;
2023 	bool ret;
2024 
2025 	ret = false;
2026 
2027 	last = atomic_load_int(&lowmem_ticks);
2028 	while ((u_int)(ticks - last) / hz >= lowmem_period) {
2029 		if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2030 			continue;
2031 
2032 		/*
2033 		 * Decrease registered cache sizes.
2034 		 */
2035 		SDT_PROBE0(vm, , , vm__lowmem_scan);
2036 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2037 
2038 		/*
2039 		 * We do this explicitly after the caches have been
2040 		 * drained above.
2041 		 */
2042 		uma_reclaim(UMA_RECLAIM_TRIM);
2043 		ret = true;
2044 		break;
2045 	}
2046 
2047 	/*
2048 	 * Kick off an asynchronous reclaim of cached memory if one of the
2049 	 * page daemons is failing to keep up with demand.  Use the "severe"
2050 	 * threshold instead of "min" to ensure that we do not blow away the
2051 	 * caches if a subset of the NUMA domains are depleted by kernel memory
2052 	 * allocations; the domainset iterators automatically skip domains
2053 	 * below the "min" threshold on the first pass.
2054 	 *
2055 	 * UMA reclaim worker has its own rate-limiting mechanism, so don't
2056 	 * worry about kicking it too often.
2057 	 */
2058 	if (vm_page_count_severe())
2059 		uma_reclaim_wakeup();
2060 
2061 	return (ret);
2062 }
2063 
2064 static void
2065 vm_pageout_worker(void *arg)
2066 {
2067 	struct vm_domain *vmd;
2068 	u_int ofree;
2069 	int addl_shortage, domain, shortage;
2070 	bool target_met;
2071 
2072 	domain = (uintptr_t)arg;
2073 	vmd = VM_DOMAIN(domain);
2074 	shortage = 0;
2075 	target_met = true;
2076 
2077 	/*
2078 	 * XXXKIB It could be useful to bind pageout daemon threads to
2079 	 * the cores belonging to the domain, from which vm_page_array
2080 	 * is allocated.
2081 	 */
2082 
2083 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2084 	vmd->vmd_last_active_scan = ticks;
2085 
2086 	/*
2087 	 * The pageout daemon worker is never done, so loop forever.
2088 	 */
2089 	while (TRUE) {
2090 		vm_domain_pageout_lock(vmd);
2091 
2092 		/*
2093 		 * We need to clear wanted before we check the limits.  This
2094 		 * prevents races with wakers who will check wanted after they
2095 		 * reach the limit.
2096 		 */
2097 		atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2098 
2099 		/*
2100 		 * Might the page daemon need to run again?
2101 		 */
2102 		if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2103 			/*
2104 			 * Yes.  If the scan failed to produce enough free
2105 			 * pages, sleep uninterruptibly for some time in the
2106 			 * hope that the laundry thread will clean some pages.
2107 			 */
2108 			vm_domain_pageout_unlock(vmd);
2109 			if (!target_met)
2110 				pause("pwait", hz / VM_INACT_SCAN_RATE);
2111 		} else {
2112 			/*
2113 			 * No, sleep until the next wakeup or until pages
2114 			 * need to have their reference stats updated.
2115 			 */
2116 			if (mtx_sleep(&vmd->vmd_pageout_wanted,
2117 			    vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2118 			    "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2119 				VM_CNT_INC(v_pdwakeups);
2120 		}
2121 
2122 		/* Prevent spurious wakeups by ensuring that wanted is set. */
2123 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2124 
2125 		/*
2126 		 * Use the controller to calculate how many pages to free in
2127 		 * this interval, and scan the inactive queue.  If the lowmem
2128 		 * handlers appear to have freed up some pages, subtract the
2129 		 * difference from the inactive queue scan target.
2130 		 */
2131 		shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2132 		if (shortage > 0) {
2133 			ofree = vmd->vmd_free_count;
2134 			if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2135 				shortage -= min(vmd->vmd_free_count - ofree,
2136 				    (u_int)shortage);
2137 			target_met = vm_pageout_inactive(vmd, shortage,
2138 			    &addl_shortage);
2139 		} else
2140 			addl_shortage = 0;
2141 
2142 		/*
2143 		 * Scan the active queue.  A positive value for shortage
2144 		 * indicates that we must aggressively deactivate pages to avoid
2145 		 * a shortfall.
2146 		 */
2147 		shortage = vm_pageout_active_target(vmd) + addl_shortage;
2148 		vm_pageout_scan_active(vmd, shortage);
2149 	}
2150 }
2151 
2152 /*
2153  * vm_pageout_helper runs additional pageout daemons in times of high paging
2154  * activity.
2155  */
2156 static void
2157 vm_pageout_helper(void *arg)
2158 {
2159 	struct vm_domain *vmd;
2160 	int domain;
2161 
2162 	domain = (uintptr_t)arg;
2163 	vmd = VM_DOMAIN(domain);
2164 
2165 	vm_domain_pageout_lock(vmd);
2166 	for (;;) {
2167 		msleep(&vmd->vmd_inactive_shortage,
2168 		    vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
2169 		blockcount_release(&vmd->vmd_inactive_starting, 1);
2170 
2171 		vm_domain_pageout_unlock(vmd);
2172 		vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
2173 		vm_domain_pageout_lock(vmd);
2174 
2175 		/*
2176 		 * Release the running count while the pageout lock is held to
2177 		 * prevent wakeup races.
2178 		 */
2179 		blockcount_release(&vmd->vmd_inactive_running, 1);
2180 	}
2181 }
2182 
2183 static int
2184 get_pageout_threads_per_domain(const struct vm_domain *vmd)
2185 {
2186 	unsigned total_pageout_threads, eligible_cpus, domain_cpus;
2187 
2188 	if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
2189 		return (0);
2190 
2191 	/*
2192 	 * Semi-arbitrarily constrain pagedaemon threads to less than half the
2193 	 * total number of CPUs in the system as an upper limit.
2194 	 */
2195 	if (pageout_cpus_per_thread < 2)
2196 		pageout_cpus_per_thread = 2;
2197 	else if (pageout_cpus_per_thread > mp_ncpus)
2198 		pageout_cpus_per_thread = mp_ncpus;
2199 
2200 	total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
2201 	domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);
2202 
2203 	/* Pagedaemons are not run in empty domains. */
2204 	eligible_cpus = mp_ncpus;
2205 	for (unsigned i = 0; i < vm_ndomains; i++)
2206 		if (VM_DOMAIN_EMPTY(i))
2207 			eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);
2208 
2209 	/*
2210 	 * Assign a portion of the total pageout threads to this domain
2211 	 * corresponding to the fraction of pagedaemon-eligible CPUs in the
2212 	 * domain.  In asymmetric NUMA systems, domains with more CPUs may be
2213 	 * allocated more threads than domains with fewer CPUs.
2214 	 */
2215 	return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
2216 }
2217 
2218 /*
2219  * Initialize basic pageout daemon settings.  See the comment above the
2220  * definition of vm_domain for some explanation of how these thresholds are
2221  * used.
2222  */
2223 static void
2224 vm_pageout_init_domain(int domain)
2225 {
2226 	struct vm_domain *vmd;
2227 	struct sysctl_oid *oid;
2228 
2229 	vmd = VM_DOMAIN(domain);
2230 	vmd->vmd_interrupt_free_min = 2;
2231 
2232 	/*
2233 	 * v_free_reserved needs to include enough for the largest
2234 	 * swap pager structures plus enough for any pv_entry structs
2235 	 * when paging.
2236 	 */
2237 	vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2238 	    vmd->vmd_interrupt_free_min;
2239 	vmd->vmd_free_reserved = vm_pageout_page_count +
2240 	    vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2241 	vmd->vmd_free_min = vmd->vmd_page_count / 200;
2242 	vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2243 	vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2244 	vmd->vmd_free_min += vmd->vmd_free_reserved;
2245 	vmd->vmd_free_severe += vmd->vmd_free_reserved;
2246 	vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2247 	if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2248 		vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2249 
2250 	/*
2251 	 * Set the default wakeup threshold to be 10% below the paging
2252 	 * target.  This keeps the steady state out of shortfall.
2253 	 */
2254 	vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2255 
2256 	/*
2257 	 * Target amount of memory to move out of the laundry queue during a
2258 	 * background laundering.  This is proportional to the amount of system
2259 	 * memory.
2260 	 */
2261 	vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2262 	    vmd->vmd_free_min) / 10;
2263 
2264 	/* Initialize the pageout daemon pid controller. */
2265 	pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2266 	    vmd->vmd_free_target, PIDCTRL_BOUND,
2267 	    PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2268 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2269 	    "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2270 	pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2271 
2272 	vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
2273 	SYSCTL_ADD_BOOL(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2274 	    "pageout_helper_threads_enabled", CTLFLAG_RWTUN,
2275 	    &vmd->vmd_helper_threads_enabled, 0,
2276 	    "Enable multi-threaded inactive queue scanning");
2277 }
2278 
2279 static void
2280 vm_pageout_init(void)
2281 {
2282 	u_long freecount;
2283 	int i;
2284 
2285 	/*
2286 	 * Initialize some paging parameters.
2287 	 */
2288 	freecount = 0;
2289 	for (i = 0; i < vm_ndomains; i++) {
2290 		struct vm_domain *vmd;
2291 
2292 		vm_pageout_init_domain(i);
2293 		vmd = VM_DOMAIN(i);
2294 		vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2295 		vm_cnt.v_free_target += vmd->vmd_free_target;
2296 		vm_cnt.v_free_min += vmd->vmd_free_min;
2297 		vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2298 		vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2299 		vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2300 		vm_cnt.v_free_severe += vmd->vmd_free_severe;
2301 		freecount += vmd->vmd_free_count;
2302 	}
2303 
2304 	/*
2305 	 * Set interval in seconds for active scan.  We want to visit each
2306 	 * page at least once every ten minutes.  This is to prevent worst
2307 	 * case paging behaviors with stale active LRU.
2308 	 */
2309 	if (vm_pageout_update_period == 0)
2310 		vm_pageout_update_period = 600;
2311 
2312 	/*
2313 	 * Set the maximum number of user-wired virtual pages.  Historically the
2314 	 * main source of such pages was mlock(2) and mlockall(2).  Hypervisors
2315 	 * may also request user-wired memory.
2316 	 */
2317 	if (vm_page_max_user_wired == 0)
2318 		vm_page_max_user_wired = 4 * freecount / 5;
2319 }
2320 
2321 /*
2322  *     vm_pageout is the high level pageout daemon.
2323  */
2324 static void
2325 vm_pageout(void)
2326 {
2327 	struct proc *p;
2328 	struct thread *td;
2329 	int error, first, i, j, pageout_threads;
2330 
2331 	p = curproc;
2332 	td = curthread;
2333 
2334 	mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2335 	swap_pager_swap_init();
2336 	for (first = -1, i = 0; i < vm_ndomains; i++) {
2337 		if (VM_DOMAIN_EMPTY(i)) {
2338 			if (bootverbose)
2339 				printf("domain %d empty; skipping pageout\n",
2340 				    i);
2341 			continue;
2342 		}
2343 		if (first == -1)
2344 			first = i;
2345 		else {
2346 			error = kthread_add(vm_pageout_worker,
2347 			    (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2348 			if (error != 0)
2349 				panic("starting pageout for domain %d: %d\n",
2350 				    i, error);
2351 		}
2352 		pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
2353 		for (j = 0; j < pageout_threads - 1; j++) {
2354 			error = kthread_add(vm_pageout_helper,
2355 			    (void *)(uintptr_t)i, p, NULL, 0, 0,
2356 			    "dom%d helper%d", i, j);
2357 			if (error != 0)
2358 				panic("starting pageout helper %d for domain "
2359 				    "%d: %d\n", j, i, error);
2360 		}
2361 		error = kthread_add(vm_pageout_laundry_worker,
2362 		    (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2363 		if (error != 0)
2364 			panic("starting laundry for domain %d: %d", i, error);
2365 	}
2366 	error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2367 	if (error != 0)
2368 		panic("starting uma_reclaim helper, error %d\n", error);
2369 
2370 	snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2371 	vm_pageout_worker((void *)(uintptr_t)first);
2372 }
2373 
2374 /*
2375  * Perform an advisory wakeup of the page daemon.
2376  */
2377 void
2378 pagedaemon_wakeup(int domain)
2379 {
2380 	struct vm_domain *vmd;
2381 
2382 	vmd = VM_DOMAIN(domain);
2383 	vm_domain_pageout_assert_unlocked(vmd);
2384 	if (curproc == pageproc)
2385 		return;
2386 
2387 	if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2388 		vm_domain_pageout_lock(vmd);
2389 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2390 		wakeup(&vmd->vmd_pageout_wanted);
2391 		vm_domain_pageout_unlock(vmd);
2392 	}
2393 }
2394