xref: /freebsd/sys/vm/vm_pageout.c (revision dce6e6518b85561495cff38a3074a69d29d58a55)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 /*
70  *	The proverbial page-out daemon.
71  */
72 
73 #include <sys/cdefs.h>
74 __FBSDID("$FreeBSD$");
75 
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/eventhandler.h>
81 #include <sys/lock.h>
82 #include <sys/mutex.h>
83 #include <sys/proc.h>
84 #include <sys/kthread.h>
85 #include <sys/ktr.h>
86 #include <sys/resourcevar.h>
87 #include <sys/sched.h>
88 #include <sys/signalvar.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91 #include <sys/sx.h>
92 #include <sys/sysctl.h>
93 
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_pager.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_extern.h>
103 #include <vm/uma.h>
104 
105 #include <machine/mutex.h>
106 
107 /*
108  * System initialization
109  */
110 
111 /* the kernel process "vm_pageout"*/
112 static void vm_pageout(void);
113 static int vm_pageout_clean(vm_page_t);
114 static void vm_pageout_page_free(vm_page_t);
115 static void vm_pageout_pmap_collect(void);
116 static void vm_pageout_scan(int pass);
117 static int vm_pageout_free_page_calc(vm_size_t count);
118 struct proc *pageproc;
119 
120 static struct kproc_desc page_kp = {
121 	"pagedaemon",
122 	vm_pageout,
123 	&pageproc
124 };
125 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
126 
127 #if !defined(NO_SWAPPING)
128 /* the kernel process "vm_daemon"*/
129 static void vm_daemon(void);
130 static struct	proc *vmproc;
131 
132 static struct kproc_desc vm_kp = {
133 	"vmdaemon",
134 	vm_daemon,
135 	&vmproc
136 };
137 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
138 #endif
139 
140 
141 int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142 int vm_pageout_deficit;		/* Estimated number of pages deficit */
143 int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144 
145 #if !defined(NO_SWAPPING)
146 static int vm_pageout_req_swapout;	/* XXX */
147 static int vm_daemon_needed;
148 #endif
149 static int vm_max_launder = 32;
150 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
151 static int vm_pageout_full_stats_interval = 0;
152 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
153 static int defer_swap_pageouts=0;
154 static int disable_swap_pageouts=0;
155 
156 #if defined(NO_SWAPPING)
157 static int vm_swap_enabled=0;
158 static int vm_swap_idle_enabled=0;
159 #else
160 static int vm_swap_enabled=1;
161 static int vm_swap_idle_enabled=0;
162 #endif
163 
164 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
165 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
166 
167 SYSCTL_INT(_vm, OID_AUTO, max_launder,
168 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
169 
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
171 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
174 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
175 
176 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
177 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
178 
179 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
180 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
181 
182 #if defined(NO_SWAPPING)
183 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
185 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
187 #else
188 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192 #endif
193 
194 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196 
197 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199 
200 static int pageout_lock_miss;
201 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203 
204 #define VM_PAGEOUT_PAGE_COUNT 16
205 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206 
207 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
208 
209 #if !defined(NO_SWAPPING)
210 typedef void freeer_fcn_t(vm_map_t, vm_object_t, vm_pindex_t);
211 static void vm_pageout_map_deactivate_pages(vm_map_t, vm_pindex_t);
212 static freeer_fcn_t vm_pageout_object_deactivate_pages;
213 static void vm_req_vmdaemon(void);
214 #endif
215 static void vm_pageout_page_stats(void);
216 
217 /*
218  * vm_pageout_clean:
219  *
220  * Clean the page and remove it from the laundry.
221  *
222  * We set the busy bit to cause potential page faults on this page to
223  * block.  Note the careful timing, however, the busy bit isn't set till
224  * late and we cannot do anything that will mess with the page.
225  */
226 static int
227 vm_pageout_clean(m)
228 	vm_page_t m;
229 {
230 	vm_object_t object;
231 	vm_page_t mc[2*vm_pageout_page_count];
232 	int numpagedout, pageout_count;
233 	int ib, is, page_base;
234 	vm_pindex_t pindex = m->pindex;
235 
236 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
237 
238 	/*
239 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
240 	 * with the new swapper, but we could have serious problems paging
241 	 * out other object types if there is insufficient memory.
242 	 *
243 	 * Unfortunately, checking free memory here is far too late, so the
244 	 * check has been moved up a procedural level.
245 	 */
246 
247 	/*
248 	 * Don't mess with the page if it's busy, held, or special
249 	 */
250 	if ((m->hold_count != 0) ||
251 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED))) ||
252 	    !VM_OBJECT_TRYLOCK(m->object)) {
253 		return 0;
254 	}
255 
256 	mc[vm_pageout_page_count] = m;
257 	pageout_count = 1;
258 	page_base = vm_pageout_page_count;
259 	ib = 1;
260 	is = 1;
261 
262 	/*
263 	 * Scan object for clusterable pages.
264 	 *
265 	 * We can cluster ONLY if: ->> the page is NOT
266 	 * clean, wired, busy, held, or mapped into a
267 	 * buffer, and one of the following:
268 	 * 1) The page is inactive, or a seldom used
269 	 *    active page.
270 	 * -or-
271 	 * 2) we force the issue.
272 	 *
273 	 * During heavy mmap/modification loads the pageout
274 	 * daemon can really fragment the underlying file
275 	 * due to flushing pages out of order and not trying
276 	 * align the clusters (which leave sporatic out-of-order
277 	 * holes).  To solve this problem we do the reverse scan
278 	 * first and attempt to align our cluster, then do a
279 	 * forward scan if room remains.
280 	 */
281 	object = m->object;
282 more:
283 	while (ib && pageout_count < vm_pageout_page_count) {
284 		vm_page_t p;
285 
286 		if (ib > pindex) {
287 			ib = 0;
288 			break;
289 		}
290 
291 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
292 			ib = 0;
293 			break;
294 		}
295 		if (((p->queue - p->pc) == PQ_CACHE) ||
296 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
297 			ib = 0;
298 			break;
299 		}
300 		vm_page_test_dirty(p);
301 		if ((p->dirty & p->valid) == 0 ||
302 		    p->queue != PQ_INACTIVE ||
303 		    p->wire_count != 0 ||	/* may be held by buf cache */
304 		    p->hold_count != 0) {	/* may be undergoing I/O */
305 			ib = 0;
306 			break;
307 		}
308 		mc[--page_base] = p;
309 		++pageout_count;
310 		++ib;
311 		/*
312 		 * alignment boundry, stop here and switch directions.  Do
313 		 * not clear ib.
314 		 */
315 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
316 			break;
317 	}
318 
319 	while (pageout_count < vm_pageout_page_count &&
320 	    pindex + is < object->size) {
321 		vm_page_t p;
322 
323 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
324 			break;
325 		if (((p->queue - p->pc) == PQ_CACHE) ||
326 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
327 			break;
328 		}
329 		vm_page_test_dirty(p);
330 		if ((p->dirty & p->valid) == 0 ||
331 		    p->queue != PQ_INACTIVE ||
332 		    p->wire_count != 0 ||	/* may be held by buf cache */
333 		    p->hold_count != 0) {	/* may be undergoing I/O */
334 			break;
335 		}
336 		mc[page_base + pageout_count] = p;
337 		++pageout_count;
338 		++is;
339 	}
340 
341 	/*
342 	 * If we exhausted our forward scan, continue with the reverse scan
343 	 * when possible, even past a page boundry.  This catches boundry
344 	 * conditions.
345 	 */
346 	if (ib && pageout_count < vm_pageout_page_count)
347 		goto more;
348 
349 	/*
350 	 * we allow reads during pageouts...
351 	 */
352 	numpagedout = vm_pageout_flush(&mc[page_base], pageout_count, 0, TRUE);
353 	VM_OBJECT_UNLOCK(object);
354 	return (numpagedout);
355 }
356 
357 /*
358  * vm_pageout_flush() - launder the given pages
359  *
360  *	The given pages are laundered.  Note that we setup for the start of
361  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
362  *	reference count all in here rather then in the parent.  If we want
363  *	the parent to do more sophisticated things we may have to change
364  *	the ordering.
365  */
366 int
367 vm_pageout_flush(mc, count, flags, is_object_locked)
368 	vm_page_t *mc;
369 	int count;
370 	int flags;
371 	int is_object_locked;
372 {
373 	vm_object_t object;
374 	int pageout_status[count];
375 	int numpagedout = 0;
376 	int i;
377 
378 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
379 	/*
380 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
381 	 * mark the pages read-only.
382 	 *
383 	 * We do not have to fixup the clean/dirty bits here... we can
384 	 * allow the pager to do it after the I/O completes.
385 	 *
386 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
387 	 * edge case with file fragments.
388 	 */
389 	for (i = 0; i < count; i++) {
390 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
391 		vm_page_io_start(mc[i]);
392 		pmap_page_protect(mc[i], VM_PROT_READ);
393 	}
394 	object = mc[0]->object;
395 	vm_page_unlock_queues();
396 	if (!is_object_locked)
397 		VM_OBJECT_LOCK(object);
398 	vm_object_pip_add(object, count);
399 	VM_OBJECT_UNLOCK(object);
400 
401 	vm_pager_put_pages(object, mc, count,
402 	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
403 	    pageout_status);
404 
405 	VM_OBJECT_LOCK(object);
406 	vm_page_lock_queues();
407 	for (i = 0; i < count; i++) {
408 		vm_page_t mt = mc[i];
409 
410 		switch (pageout_status[i]) {
411 		case VM_PAGER_OK:
412 		case VM_PAGER_PEND:
413 			numpagedout++;
414 			break;
415 		case VM_PAGER_BAD:
416 			/*
417 			 * Page outside of range of object. Right now we
418 			 * essentially lose the changes by pretending it
419 			 * worked.
420 			 */
421 			pmap_clear_modify(mt);
422 			vm_page_undirty(mt);
423 			break;
424 		case VM_PAGER_ERROR:
425 		case VM_PAGER_FAIL:
426 			/*
427 			 * If page couldn't be paged out, then reactivate the
428 			 * page so it doesn't clog the inactive list.  (We
429 			 * will try paging out it again later).
430 			 */
431 			vm_page_activate(mt);
432 			break;
433 		case VM_PAGER_AGAIN:
434 			break;
435 		}
436 
437 		/*
438 		 * If the operation is still going, leave the page busy to
439 		 * block all other accesses. Also, leave the paging in
440 		 * progress indicator set so that we don't attempt an object
441 		 * collapse.
442 		 */
443 		if (pageout_status[i] != VM_PAGER_PEND) {
444 			vm_object_pip_wakeup(object);
445 			vm_page_io_finish(mt);
446 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
447 				pmap_page_protect(mt, VM_PROT_READ);
448 		}
449 	}
450 	if (!is_object_locked)
451 		VM_OBJECT_UNLOCK(object);
452 	return numpagedout;
453 }
454 
455 #if !defined(NO_SWAPPING)
456 /*
457  *	vm_pageout_object_deactivate_pages
458  *
459  *	deactivate enough pages to satisfy the inactive target
460  *	requirements or if vm_page_proc_limit is set, then
461  *	deactivate all of the pages in the object and its
462  *	backing_objects.
463  *
464  *	The object and map must be locked.
465  */
466 static void
467 vm_pageout_object_deactivate_pages(map, object, desired)
468 	vm_map_t map;
469 	vm_object_t object;
470 	vm_pindex_t desired;
471 {
472 	vm_page_t p, next;
473 	int actcount, rcount, remove_mode;
474 
475 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
476 	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
477 		return;
478 
479 	while (object) {
480 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
481 			return;
482 		if (object->paging_in_progress)
483 			return;
484 
485 		remove_mode = 0;
486 		if (object->shadow_count > 1)
487 			remove_mode = 1;
488 		/*
489 		 * scan the objects entire memory queue
490 		 */
491 		rcount = object->resident_page_count;
492 		p = TAILQ_FIRST(&object->memq);
493 		vm_page_lock_queues();
494 		while (p && (rcount-- > 0)) {
495 			if (pmap_resident_count(map->pmap) <= desired) {
496 				vm_page_unlock_queues();
497 				return;
498 			}
499 			next = TAILQ_NEXT(p, listq);
500 			cnt.v_pdpages++;
501 			if (p->wire_count != 0 ||
502 			    p->hold_count != 0 ||
503 			    p->busy != 0 ||
504 			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
505 			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
506 				p = next;
507 				continue;
508 			}
509 			actcount = pmap_ts_referenced(p);
510 			if (actcount) {
511 				vm_page_flag_set(p, PG_REFERENCED);
512 			} else if (p->flags & PG_REFERENCED) {
513 				actcount = 1;
514 			}
515 			if ((p->queue != PQ_ACTIVE) &&
516 				(p->flags & PG_REFERENCED)) {
517 				vm_page_activate(p);
518 				p->act_count += actcount;
519 				vm_page_flag_clear(p, PG_REFERENCED);
520 			} else if (p->queue == PQ_ACTIVE) {
521 				if ((p->flags & PG_REFERENCED) == 0) {
522 					p->act_count -= min(p->act_count, ACT_DECLINE);
523 					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
524 						pmap_remove_all(p);
525 						vm_page_deactivate(p);
526 					} else {
527 						vm_pageq_requeue(p);
528 					}
529 				} else {
530 					vm_page_activate(p);
531 					vm_page_flag_clear(p, PG_REFERENCED);
532 					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
533 						p->act_count += ACT_ADVANCE;
534 					vm_pageq_requeue(p);
535 				}
536 			} else if (p->queue == PQ_INACTIVE) {
537 				pmap_remove_all(p);
538 			}
539 			p = next;
540 		}
541 		vm_page_unlock_queues();
542 		object = object->backing_object;
543 	}
544 }
545 
546 /*
547  * deactivate some number of pages in a map, try to do it fairly, but
548  * that is really hard to do.
549  */
550 static void
551 vm_pageout_map_deactivate_pages(map, desired)
552 	vm_map_t map;
553 	vm_pindex_t desired;
554 {
555 	vm_map_entry_t tmpe;
556 	vm_object_t obj, bigobj;
557 	int nothingwired;
558 
559 	if (!vm_map_trylock(map))
560 		return;
561 
562 	bigobj = NULL;
563 	nothingwired = TRUE;
564 
565 	/*
566 	 * first, search out the biggest object, and try to free pages from
567 	 * that.
568 	 */
569 	tmpe = map->header.next;
570 	while (tmpe != &map->header) {
571 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
572 			obj = tmpe->object.vm_object;
573 			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
574 				if (obj->shadow_count <= 1 &&
575 				    (bigobj == NULL ||
576 				     bigobj->resident_page_count < obj->resident_page_count)) {
577 					if (bigobj != NULL)
578 						VM_OBJECT_UNLOCK(bigobj);
579 					bigobj = obj;
580 				} else
581 					VM_OBJECT_UNLOCK(obj);
582 			}
583 		}
584 		if (tmpe->wired_count > 0)
585 			nothingwired = FALSE;
586 		tmpe = tmpe->next;
587 	}
588 
589 	if (bigobj != NULL) {
590 		vm_pageout_object_deactivate_pages(map, bigobj, desired);
591 		VM_OBJECT_UNLOCK(bigobj);
592 	}
593 	/*
594 	 * Next, hunt around for other pages to deactivate.  We actually
595 	 * do this search sort of wrong -- .text first is not the best idea.
596 	 */
597 	tmpe = map->header.next;
598 	while (tmpe != &map->header) {
599 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
600 			break;
601 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
602 			obj = tmpe->object.vm_object;
603 			if (obj != NULL) {
604 				VM_OBJECT_LOCK(obj);
605 				vm_pageout_object_deactivate_pages(map, obj, desired);
606 				VM_OBJECT_UNLOCK(obj);
607 			}
608 		}
609 		tmpe = tmpe->next;
610 	}
611 
612 	/*
613 	 * Remove all mappings if a process is swapped out, this will free page
614 	 * table pages.
615 	 */
616 	if (desired == 0 && nothingwired) {
617 		GIANT_REQUIRED;
618 		vm_page_lock_queues();
619 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
620 		    vm_map_max(map));
621 		vm_page_unlock_queues();
622 	}
623 	vm_map_unlock(map);
624 }
625 #endif		/* !defined(NO_SWAPPING) */
626 
627 /*
628  * Warning! The page queue lock is released and reacquired.
629  */
630 static void
631 vm_pageout_page_free(vm_page_t m)
632 {
633 	vm_object_t object = m->object;
634 
635 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
636 	vm_page_busy(m);
637 	vm_page_unlock_queues();
638 	/*
639 	 * Avoid a lock order reversal.  The page must be busy.
640 	 */
641 	VM_OBJECT_LOCK(object);
642 	vm_page_lock_queues();
643 	pmap_remove_all(m);
644 	vm_page_free(m);
645 	VM_OBJECT_UNLOCK(object);
646 	cnt.v_dfree++;
647 }
648 
649 /*
650  * This routine is very drastic, but can save the system
651  * in a pinch.
652  */
653 static void
654 vm_pageout_pmap_collect(void)
655 {
656 	int i;
657 	vm_page_t m;
658 	static int warningdone;
659 
660 	if (pmap_pagedaemon_waken == 0)
661 		return;
662 	if (warningdone < 5) {
663 		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
664 		warningdone++;
665 	}
666 	vm_page_lock_queues();
667 	for (i = 0; i < vm_page_array_size; i++) {
668 		m = &vm_page_array[i];
669 		if (m->wire_count || m->hold_count || m->busy ||
670 		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
671 			continue;
672 		pmap_remove_all(m);
673 	}
674 	vm_page_unlock_queues();
675 	pmap_pagedaemon_waken = 0;
676 }
677 
678 /*
679  *	vm_pageout_scan does the dirty work for the pageout daemon.
680  */
681 static void
682 vm_pageout_scan(int pass)
683 {
684 	vm_page_t m, next;
685 	struct vm_page marker;
686 	int save_page_shortage;
687 	int save_inactive_count;
688 	int page_shortage, maxscan, pcount;
689 	int addl_page_shortage, addl_page_shortage_init;
690 	struct proc *p, *bigproc;
691 	vm_offset_t size, bigsize;
692 	vm_object_t object;
693 	int actcount;
694 	int vnodes_skipped = 0;
695 	int maxlaunder;
696 	int s;
697 	struct thread *td;
698 
699 	GIANT_REQUIRED;
700 	/*
701 	 * Decrease registered cache sizes.
702 	 */
703 	EVENTHANDLER_INVOKE(vm_lowmem, 0);
704 	/*
705 	 * We do this explicitly after the caches have been drained above.
706 	 */
707 	uma_reclaim();
708 	/*
709 	 * Do whatever cleanup that the pmap code can.
710 	 */
711 	vm_pageout_pmap_collect();
712 
713 	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
714 
715 	/*
716 	 * Calculate the number of pages we want to either free or move
717 	 * to the cache.
718 	 */
719 	page_shortage = vm_paging_target() + addl_page_shortage_init;
720 	save_page_shortage = page_shortage;
721 	save_inactive_count = cnt.v_inactive_count;
722 
723 	/*
724 	 * Initialize our marker
725 	 */
726 	bzero(&marker, sizeof(marker));
727 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
728 	marker.queue = PQ_INACTIVE;
729 	marker.wire_count = 1;
730 
731 	/*
732 	 * Start scanning the inactive queue for pages we can move to the
733 	 * cache or free.  The scan will stop when the target is reached or
734 	 * we have scanned the entire inactive queue.  Note that m->act_count
735 	 * is not used to form decisions for the inactive queue, only for the
736 	 * active queue.
737 	 *
738 	 * maxlaunder limits the number of dirty pages we flush per scan.
739 	 * For most systems a smaller value (16 or 32) is more robust under
740 	 * extreme memory and disk pressure because any unnecessary writes
741 	 * to disk can result in extreme performance degredation.  However,
742 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
743 	 * used) will die horribly with limited laundering.  If the pageout
744 	 * daemon cannot clean enough pages in the first pass, we let it go
745 	 * all out in succeeding passes.
746 	 */
747 	if ((maxlaunder = vm_max_launder) <= 1)
748 		maxlaunder = 1;
749 	if (pass)
750 		maxlaunder = 10000;
751 rescan0:
752 	addl_page_shortage = addl_page_shortage_init;
753 	maxscan = cnt.v_inactive_count;
754 
755 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
756 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
757 	     m = next) {
758 
759 		cnt.v_pdpages++;
760 
761 		if (m->queue != PQ_INACTIVE) {
762 			goto rescan0;
763 		}
764 
765 		next = TAILQ_NEXT(m, pageq);
766 
767 		/*
768 		 * skip marker pages
769 		 */
770 		if (m->flags & PG_MARKER)
771 			continue;
772 
773 		/*
774 		 * A held page may be undergoing I/O, so skip it.
775 		 */
776 		if (m->hold_count) {
777 			vm_pageq_requeue(m);
778 			addl_page_shortage++;
779 			continue;
780 		}
781 		/*
782 		 * Don't mess with busy pages, keep in the front of the
783 		 * queue, most likely are being paged out.
784 		 */
785 		if (m->busy || (m->flags & PG_BUSY)) {
786 			addl_page_shortage++;
787 			continue;
788 		}
789 
790 		vm_page_lock_queues();
791 		/*
792 		 * If the object is not being used, we ignore previous
793 		 * references.
794 		 */
795 		if (m->object->ref_count == 0) {
796 			vm_page_flag_clear(m, PG_REFERENCED);
797 			pmap_clear_reference(m);
798 
799 		/*
800 		 * Otherwise, if the page has been referenced while in the
801 		 * inactive queue, we bump the "activation count" upwards,
802 		 * making it less likely that the page will be added back to
803 		 * the inactive queue prematurely again.  Here we check the
804 		 * page tables (or emulated bits, if any), given the upper
805 		 * level VM system not knowing anything about existing
806 		 * references.
807 		 */
808 		} else if (((m->flags & PG_REFERENCED) == 0) &&
809 			(actcount = pmap_ts_referenced(m))) {
810 			vm_page_activate(m);
811 			vm_page_unlock_queues();
812 			m->act_count += (actcount + ACT_ADVANCE);
813 			continue;
814 		}
815 
816 		/*
817 		 * If the upper level VM system knows about any page
818 		 * references, we activate the page.  We also set the
819 		 * "activation count" higher than normal so that we will less
820 		 * likely place pages back onto the inactive queue again.
821 		 */
822 		if ((m->flags & PG_REFERENCED) != 0) {
823 			vm_page_flag_clear(m, PG_REFERENCED);
824 			actcount = pmap_ts_referenced(m);
825 			vm_page_activate(m);
826 			vm_page_unlock_queues();
827 			m->act_count += (actcount + ACT_ADVANCE + 1);
828 			continue;
829 		}
830 
831 		/*
832 		 * If the upper level VM system doesn't know anything about
833 		 * the page being dirty, we have to check for it again.  As
834 		 * far as the VM code knows, any partially dirty pages are
835 		 * fully dirty.
836 		 */
837 		if (m->dirty == 0) {
838 			vm_page_test_dirty(m);
839 		} else {
840 			vm_page_dirty(m);
841 		}
842 		vm_page_unlock_queues();
843 
844 		/*
845 		 * Invalid pages can be easily freed
846 		 */
847 		if (m->valid == 0) {
848 			vm_page_lock_queues();
849 			vm_pageout_page_free(m);
850 			vm_page_unlock_queues();
851 			--page_shortage;
852 
853 		/*
854 		 * Clean pages can be placed onto the cache queue.  This
855 		 * effectively frees them.
856 		 */
857 		} else if (m->dirty == 0) {
858 			vm_page_lock_queues();
859 			vm_page_cache(m);
860 			vm_page_unlock_queues();
861 			--page_shortage;
862 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
863 			/*
864 			 * Dirty pages need to be paged out, but flushing
865 			 * a page is extremely expensive verses freeing
866 			 * a clean page.  Rather then artificially limiting
867 			 * the number of pages we can flush, we instead give
868 			 * dirty pages extra priority on the inactive queue
869 			 * by forcing them to be cycled through the queue
870 			 * twice before being flushed, after which the
871 			 * (now clean) page will cycle through once more
872 			 * before being freed.  This significantly extends
873 			 * the thrash point for a heavily loaded machine.
874 			 */
875 			vm_page_lock_queues();
876 			vm_page_flag_set(m, PG_WINATCFLS);
877 			vm_pageq_requeue(m);
878 			vm_page_unlock_queues();
879 		} else if (maxlaunder > 0) {
880 			/*
881 			 * We always want to try to flush some dirty pages if
882 			 * we encounter them, to keep the system stable.
883 			 * Normally this number is small, but under extreme
884 			 * pressure where there are insufficient clean pages
885 			 * on the inactive queue, we may have to go all out.
886 			 */
887 			int swap_pageouts_ok;
888 			struct vnode *vp = NULL;
889 			struct mount *mp;
890 
891 			object = m->object;
892 
893 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
894 				swap_pageouts_ok = 1;
895 			} else {
896 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
897 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
898 				vm_page_count_min());
899 
900 			}
901 
902 			/*
903 			 * We don't bother paging objects that are "dead".
904 			 * Those objects are in a "rundown" state.
905 			 */
906 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
907 				vm_pageq_requeue(m);
908 				continue;
909 			}
910 
911 			/*
912 			 * The object is already known NOT to be dead.   It
913 			 * is possible for the vget() to block the whole
914 			 * pageout daemon, but the new low-memory handling
915 			 * code should prevent it.
916 			 *
917 			 * The previous code skipped locked vnodes and, worse,
918 			 * reordered pages in the queue.  This results in
919 			 * completely non-deterministic operation and, on a
920 			 * busy system, can lead to extremely non-optimal
921 			 * pageouts.  For example, it can cause clean pages
922 			 * to be freed and dirty pages to be moved to the end
923 			 * of the queue.  Since dirty pages are also moved to
924 			 * the end of the queue once-cleaned, this gives
925 			 * way too large a weighting to defering the freeing
926 			 * of dirty pages.
927 			 *
928 			 * We can't wait forever for the vnode lock, we might
929 			 * deadlock due to a vn_read() getting stuck in
930 			 * vm_wait while holding this vnode.  We skip the
931 			 * vnode if we can't get it in a reasonable amount
932 			 * of time.
933 			 */
934 			if (object->type == OBJT_VNODE) {
935 				vp = object->handle;
936 
937 				mp = NULL;
938 				if (vp->v_type == VREG)
939 					vn_start_write(vp, &mp, V_NOWAIT);
940 				if (vget(vp, LK_EXCLUSIVE|LK_TIMELOCK, curthread)) {
941 					++pageout_lock_miss;
942 					vn_finished_write(mp);
943 					if (object->flags & OBJ_MIGHTBEDIRTY)
944 						vnodes_skipped++;
945 					continue;
946 				}
947 
948 				/*
949 				 * The page might have been moved to another
950 				 * queue during potential blocking in vget()
951 				 * above.  The page might have been freed and
952 				 * reused for another vnode.  The object might
953 				 * have been reused for another vnode.
954 				 */
955 				if (m->queue != PQ_INACTIVE ||
956 				    m->object != object ||
957 				    object->handle != vp) {
958 					if (object->flags & OBJ_MIGHTBEDIRTY)
959 						vnodes_skipped++;
960 					vput(vp);
961 					vn_finished_write(mp);
962 					continue;
963 				}
964 
965 				/*
966 				 * The page may have been busied during the
967 				 * blocking in vput();  We don't move the
968 				 * page back onto the end of the queue so that
969 				 * statistics are more correct if we don't.
970 				 */
971 				if (m->busy || (m->flags & PG_BUSY)) {
972 					vput(vp);
973 					vn_finished_write(mp);
974 					continue;
975 				}
976 
977 				/*
978 				 * If the page has become held it might
979 				 * be undergoing I/O, so skip it
980 				 */
981 				if (m->hold_count) {
982 					vm_pageq_requeue(m);
983 					if (object->flags & OBJ_MIGHTBEDIRTY)
984 						vnodes_skipped++;
985 					vput(vp);
986 					vn_finished_write(mp);
987 					continue;
988 				}
989 			}
990 
991 			/*
992 			 * If a page is dirty, then it is either being washed
993 			 * (but not yet cleaned) or it is still in the
994 			 * laundry.  If it is still in the laundry, then we
995 			 * start the cleaning operation.
996 			 *
997 			 * This operation may cluster, invalidating the 'next'
998 			 * pointer.  To prevent an inordinate number of
999 			 * restarts we use our marker to remember our place.
1000 			 *
1001 			 * decrement page_shortage on success to account for
1002 			 * the (future) cleaned page.  Otherwise we could wind
1003 			 * up laundering or cleaning too many pages.
1004 			 */
1005 			vm_page_lock_queues();
1006 			s = splvm();
1007 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1008 			splx(s);
1009 			if (vm_pageout_clean(m) != 0) {
1010 				--page_shortage;
1011 				--maxlaunder;
1012 			}
1013 			s = splvm();
1014 			next = TAILQ_NEXT(&marker, pageq);
1015 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1016 			splx(s);
1017 			vm_page_unlock_queues();
1018 			if (vp) {
1019 				vput(vp);
1020 				vn_finished_write(mp);
1021 			}
1022 		}
1023 	}
1024 
1025 	/*
1026 	 * Compute the number of pages we want to try to move from the
1027 	 * active queue to the inactive queue.
1028 	 */
1029 	page_shortage = vm_paging_target() +
1030 		cnt.v_inactive_target - cnt.v_inactive_count;
1031 	page_shortage += addl_page_shortage;
1032 
1033 	vm_page_lock_queues();
1034 	/*
1035 	 * Scan the active queue for things we can deactivate. We nominally
1036 	 * track the per-page activity counter and use it to locate
1037 	 * deactivation candidates.
1038 	 */
1039 	pcount = cnt.v_active_count;
1040 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1041 
1042 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1043 
1044 		/*
1045 		 * This is a consistency check, and should likely be a panic
1046 		 * or warning.
1047 		 */
1048 		if (m->queue != PQ_ACTIVE) {
1049 			break;
1050 		}
1051 
1052 		next = TAILQ_NEXT(m, pageq);
1053 		/*
1054 		 * Don't deactivate pages that are busy.
1055 		 */
1056 		if ((m->busy != 0) ||
1057 		    (m->flags & PG_BUSY) ||
1058 		    (m->hold_count != 0)) {
1059 			vm_pageq_requeue(m);
1060 			m = next;
1061 			continue;
1062 		}
1063 
1064 		/*
1065 		 * The count for pagedaemon pages is done after checking the
1066 		 * page for eligibility...
1067 		 */
1068 		cnt.v_pdpages++;
1069 
1070 		/*
1071 		 * Check to see "how much" the page has been used.
1072 		 */
1073 		actcount = 0;
1074 		if (m->object->ref_count != 0) {
1075 			if (m->flags & PG_REFERENCED) {
1076 				actcount += 1;
1077 			}
1078 			actcount += pmap_ts_referenced(m);
1079 			if (actcount) {
1080 				m->act_count += ACT_ADVANCE + actcount;
1081 				if (m->act_count > ACT_MAX)
1082 					m->act_count = ACT_MAX;
1083 			}
1084 		}
1085 
1086 		/*
1087 		 * Since we have "tested" this bit, we need to clear it now.
1088 		 */
1089 		vm_page_flag_clear(m, PG_REFERENCED);
1090 
1091 		/*
1092 		 * Only if an object is currently being used, do we use the
1093 		 * page activation count stats.
1094 		 */
1095 		if (actcount && (m->object->ref_count != 0)) {
1096 			vm_pageq_requeue(m);
1097 		} else {
1098 			m->act_count -= min(m->act_count, ACT_DECLINE);
1099 			if (vm_pageout_algorithm ||
1100 			    m->object->ref_count == 0 ||
1101 			    m->act_count == 0) {
1102 				page_shortage--;
1103 				if (m->object->ref_count == 0) {
1104 					pmap_remove_all(m);
1105 					if (m->dirty == 0)
1106 						vm_page_cache(m);
1107 					else
1108 						vm_page_deactivate(m);
1109 				} else {
1110 					vm_page_deactivate(m);
1111 				}
1112 			} else {
1113 				vm_pageq_requeue(m);
1114 			}
1115 		}
1116 		m = next;
1117 	}
1118 	s = splvm();
1119 
1120 	/*
1121 	 * We try to maintain some *really* free pages, this allows interrupt
1122 	 * code to be guaranteed space.  Since both cache and free queues
1123 	 * are considered basically 'free', moving pages from cache to free
1124 	 * does not effect other calculations.
1125 	 */
1126 	while (cnt.v_free_count < cnt.v_free_reserved) {
1127 		static int cache_rover = 0;
1128 		m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
1129 		if (!m)
1130 			break;
1131 		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1132 		    m->busy ||
1133 		    m->hold_count ||
1134 		    m->wire_count) {
1135 #ifdef INVARIANTS
1136 			printf("Warning: busy page %p found in cache\n", m);
1137 #endif
1138 			vm_page_deactivate(m);
1139 			continue;
1140 		}
1141 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1142 		vm_pageout_page_free(m);
1143 	}
1144 	splx(s);
1145 	vm_page_unlock_queues();
1146 #if !defined(NO_SWAPPING)
1147 	/*
1148 	 * Idle process swapout -- run once per second.
1149 	 */
1150 	if (vm_swap_idle_enabled) {
1151 		static long lsec;
1152 		if (time_second != lsec) {
1153 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1154 			vm_req_vmdaemon();
1155 			lsec = time_second;
1156 		}
1157 	}
1158 #endif
1159 
1160 	/*
1161 	 * If we didn't get enough free pages, and we have skipped a vnode
1162 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1163 	 * if we did not get enough free pages.
1164 	 */
1165 	if (vm_paging_target() > 0) {
1166 		if (vnodes_skipped && vm_page_count_min())
1167 			(void) speedup_syncer();
1168 #if !defined(NO_SWAPPING)
1169 		if (vm_swap_enabled && vm_page_count_target()) {
1170 			vm_req_vmdaemon();
1171 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1172 		}
1173 #endif
1174 	}
1175 
1176 	/*
1177 	 * If we are critically low on one of RAM or swap and low on
1178 	 * the other, kill the largest process.  However, we avoid
1179 	 * doing this on the first pass in order to give ourselves a
1180 	 * chance to flush out dirty vnode-backed pages and to allow
1181 	 * active pages to be moved to the inactive queue and reclaimed.
1182 	 *
1183 	 * We keep the process bigproc locked once we find it to keep anyone
1184 	 * from messing with it; however, there is a possibility of
1185 	 * deadlock if process B is bigproc and one of it's child processes
1186 	 * attempts to propagate a signal to B while we are waiting for A's
1187 	 * lock while walking this list.  To avoid this, we don't block on
1188 	 * the process lock but just skip a process if it is already locked.
1189 	 */
1190 	if (pass != 0 &&
1191 	    ((vm_swap_size < 64 && vm_page_count_min()) ||
1192 	     (swap_pager_full && vm_paging_target() > 0))) {
1193 		bigproc = NULL;
1194 		bigsize = 0;
1195 		sx_slock(&allproc_lock);
1196 		FOREACH_PROC_IN_SYSTEM(p) {
1197 			int breakout;
1198 			/*
1199 			 * If this process is already locked, skip it.
1200 			 */
1201 			if (PROC_TRYLOCK(p) == 0)
1202 				continue;
1203 			/*
1204 			 * If this is a system or protected process, skip it.
1205 			 */
1206 			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1207 			    (p->p_flag & P_PROTECTED) ||
1208 			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1209 				PROC_UNLOCK(p);
1210 				continue;
1211 			}
1212 			/*
1213 			 * if the process is in a non-running type state,
1214 			 * don't touch it. Check all the threads individually.
1215 			 */
1216 			mtx_lock_spin(&sched_lock);
1217 			breakout = 0;
1218 			FOREACH_THREAD_IN_PROC(p, td) {
1219 				if (!TD_ON_RUNQ(td) &&
1220 				    !TD_IS_RUNNING(td) &&
1221 				    !TD_IS_SLEEPING(td)) {
1222 					breakout = 1;
1223 					break;
1224 				}
1225 			}
1226 			if (breakout) {
1227 				mtx_unlock_spin(&sched_lock);
1228 				PROC_UNLOCK(p);
1229 				continue;
1230 			}
1231 			mtx_unlock_spin(&sched_lock);
1232 			/*
1233 			 * get the process size
1234 			 */
1235 			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1236 				PROC_UNLOCK(p);
1237 				continue;
1238 			}
1239 			size = vmspace_swap_count(p->p_vmspace);
1240 			vm_map_unlock_read(&p->p_vmspace->vm_map);
1241 			size += vmspace_resident_count(p->p_vmspace);
1242 			/*
1243 			 * if the this process is bigger than the biggest one
1244 			 * remember it.
1245 			 */
1246 			if (size > bigsize) {
1247 				if (bigproc != NULL)
1248 					PROC_UNLOCK(bigproc);
1249 				bigproc = p;
1250 				bigsize = size;
1251 			} else
1252 				PROC_UNLOCK(p);
1253 		}
1254 		sx_sunlock(&allproc_lock);
1255 		if (bigproc != NULL) {
1256 			struct ksegrp *kg;
1257 			killproc(bigproc, "out of swap space");
1258 			mtx_lock_spin(&sched_lock);
1259 			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1260 				sched_nice(kg, PRIO_MIN); /* XXXKSE ??? */
1261 			}
1262 			mtx_unlock_spin(&sched_lock);
1263 			PROC_UNLOCK(bigproc);
1264 			wakeup(&cnt.v_free_count);
1265 		}
1266 	}
1267 }
1268 
1269 /*
1270  * This routine tries to maintain the pseudo LRU active queue,
1271  * so that during long periods of time where there is no paging,
1272  * that some statistic accumulation still occurs.  This code
1273  * helps the situation where paging just starts to occur.
1274  */
1275 static void
1276 vm_pageout_page_stats()
1277 {
1278 	vm_page_t m,next;
1279 	int pcount,tpcount;		/* Number of pages to check */
1280 	static int fullintervalcount = 0;
1281 	int page_shortage;
1282 	int s0;
1283 
1284 	page_shortage =
1285 	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1286 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1287 
1288 	if (page_shortage <= 0)
1289 		return;
1290 
1291 	s0 = splvm();
1292 	vm_page_lock_queues();
1293 	pcount = cnt.v_active_count;
1294 	fullintervalcount += vm_pageout_stats_interval;
1295 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1296 		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1297 		if (pcount > tpcount)
1298 			pcount = tpcount;
1299 	} else {
1300 		fullintervalcount = 0;
1301 	}
1302 
1303 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1304 	while ((m != NULL) && (pcount-- > 0)) {
1305 		int actcount;
1306 
1307 		if (m->queue != PQ_ACTIVE) {
1308 			break;
1309 		}
1310 
1311 		next = TAILQ_NEXT(m, pageq);
1312 		/*
1313 		 * Don't deactivate pages that are busy.
1314 		 */
1315 		if ((m->busy != 0) ||
1316 		    (m->flags & PG_BUSY) ||
1317 		    (m->hold_count != 0)) {
1318 			vm_pageq_requeue(m);
1319 			m = next;
1320 			continue;
1321 		}
1322 
1323 		actcount = 0;
1324 		if (m->flags & PG_REFERENCED) {
1325 			vm_page_flag_clear(m, PG_REFERENCED);
1326 			actcount += 1;
1327 		}
1328 
1329 		actcount += pmap_ts_referenced(m);
1330 		if (actcount) {
1331 			m->act_count += ACT_ADVANCE + actcount;
1332 			if (m->act_count > ACT_MAX)
1333 				m->act_count = ACT_MAX;
1334 			vm_pageq_requeue(m);
1335 		} else {
1336 			if (m->act_count == 0) {
1337 				/*
1338 				 * We turn off page access, so that we have
1339 				 * more accurate RSS stats.  We don't do this
1340 				 * in the normal page deactivation when the
1341 				 * system is loaded VM wise, because the
1342 				 * cost of the large number of page protect
1343 				 * operations would be higher than the value
1344 				 * of doing the operation.
1345 				 */
1346 				pmap_remove_all(m);
1347 				vm_page_deactivate(m);
1348 			} else {
1349 				m->act_count -= min(m->act_count, ACT_DECLINE);
1350 				vm_pageq_requeue(m);
1351 			}
1352 		}
1353 
1354 		m = next;
1355 	}
1356 	vm_page_unlock_queues();
1357 	splx(s0);
1358 }
1359 
1360 static int
1361 vm_pageout_free_page_calc(count)
1362 vm_size_t count;
1363 {
1364 	if (count < cnt.v_page_count)
1365 		 return 0;
1366 	/*
1367 	 * free_reserved needs to include enough for the largest swap pager
1368 	 * structures plus enough for any pv_entry structs when paging.
1369 	 */
1370 	if (cnt.v_page_count > 1024)
1371 		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1372 	else
1373 		cnt.v_free_min = 4;
1374 	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1375 		cnt.v_interrupt_free_min;
1376 	cnt.v_free_reserved = vm_pageout_page_count +
1377 		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1378 	cnt.v_free_severe = cnt.v_free_min / 2;
1379 	cnt.v_free_min += cnt.v_free_reserved;
1380 	cnt.v_free_severe += cnt.v_free_reserved;
1381 	return 1;
1382 }
1383 
1384 /*
1385  *	vm_pageout is the high level pageout daemon.
1386  */
1387 static void
1388 vm_pageout()
1389 {
1390 	int error, pass, s;
1391 
1392 	mtx_lock(&Giant);
1393 
1394 	/*
1395 	 * Initialize some paging parameters.
1396 	 */
1397 	cnt.v_interrupt_free_min = 2;
1398 	if (cnt.v_page_count < 2000)
1399 		vm_pageout_page_count = 8;
1400 
1401 	vm_pageout_free_page_calc(cnt.v_page_count);
1402 	/*
1403 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1404 	 * that these are more a measure of the VM cache queue hysteresis
1405 	 * then the VM free queue.  Specifically, v_free_target is the
1406 	 * high water mark (free+cache pages).
1407 	 *
1408 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1409 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1410 	 * be big enough to handle memory needs while the pageout daemon
1411 	 * is signalled and run to free more pages.
1412 	 */
1413 	if (cnt.v_free_count > 6144)
1414 		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1415 	else
1416 		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1417 
1418 	if (cnt.v_free_count > 2048) {
1419 		cnt.v_cache_min = cnt.v_free_target;
1420 		cnt.v_cache_max = 2 * cnt.v_cache_min;
1421 		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1422 	} else {
1423 		cnt.v_cache_min = 0;
1424 		cnt.v_cache_max = 0;
1425 		cnt.v_inactive_target = cnt.v_free_count / 4;
1426 	}
1427 	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1428 		cnt.v_inactive_target = cnt.v_free_count / 3;
1429 
1430 	/* XXX does not really belong here */
1431 	if (vm_page_max_wired == 0)
1432 		vm_page_max_wired = cnt.v_free_count / 3;
1433 
1434 	if (vm_pageout_stats_max == 0)
1435 		vm_pageout_stats_max = cnt.v_free_target;
1436 
1437 	/*
1438 	 * Set interval in seconds for stats scan.
1439 	 */
1440 	if (vm_pageout_stats_interval == 0)
1441 		vm_pageout_stats_interval = 5;
1442 	if (vm_pageout_full_stats_interval == 0)
1443 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1444 
1445 	/*
1446 	 * Set maximum free per pass
1447 	 */
1448 	if (vm_pageout_stats_free_max == 0)
1449 		vm_pageout_stats_free_max = 5;
1450 
1451 	swap_pager_swap_init();
1452 	pass = 0;
1453 	/*
1454 	 * The pageout daemon is never done, so loop forever.
1455 	 */
1456 	while (TRUE) {
1457 		s = splvm();
1458 		vm_page_lock_queues();
1459 		/*
1460 		 * If we have enough free memory, wakeup waiters.  Do
1461 		 * not clear vm_pages_needed until we reach our target,
1462 		 * otherwise we may be woken up over and over again and
1463 		 * waste a lot of cpu.
1464 		 */
1465 		if (vm_pages_needed && !vm_page_count_min()) {
1466 			if (!vm_paging_needed())
1467 				vm_pages_needed = 0;
1468 			wakeup(&cnt.v_free_count);
1469 		}
1470 		if (vm_pages_needed) {
1471 			/*
1472 			 * Still not done, take a second pass without waiting
1473 			 * (unlimited dirty cleaning), otherwise sleep a bit
1474 			 * and try again.
1475 			 */
1476 			++pass;
1477 			if (pass > 1)
1478 				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1479 				       "psleep", hz/2);
1480 		} else {
1481 			/*
1482 			 * Good enough, sleep & handle stats.  Prime the pass
1483 			 * for the next run.
1484 			 */
1485 			if (pass > 1)
1486 				pass = 1;
1487 			else
1488 				pass = 0;
1489 			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1490 				    "psleep", vm_pageout_stats_interval * hz);
1491 			if (error && !vm_pages_needed) {
1492 				vm_page_unlock_queues();
1493 				splx(s);
1494 				pass = 0;
1495 				vm_pageout_page_stats();
1496 				continue;
1497 			}
1498 		}
1499 		if (vm_pages_needed)
1500 			cnt.v_pdwakeups++;
1501 		vm_page_unlock_queues();
1502 		splx(s);
1503 		vm_pageout_scan(pass);
1504 	}
1505 }
1506 
1507 /*
1508  * Unless the page queue lock is held by the caller, this function
1509  * should be regarded as advisory.  Specifically, the caller should
1510  * not msleep() on &cnt.v_free_count following this function unless
1511  * the page queue lock is held until the msleep() is performed.
1512  */
1513 void
1514 pagedaemon_wakeup()
1515 {
1516 
1517 	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1518 		vm_pages_needed = 1;
1519 		wakeup(&vm_pages_needed);
1520 	}
1521 }
1522 
1523 #if !defined(NO_SWAPPING)
1524 static void
1525 vm_req_vmdaemon()
1526 {
1527 	static int lastrun = 0;
1528 
1529 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1530 		wakeup(&vm_daemon_needed);
1531 		lastrun = ticks;
1532 	}
1533 }
1534 
1535 static void
1536 vm_daemon()
1537 {
1538 	struct proc *p;
1539 	int breakout;
1540 	struct thread *td;
1541 
1542 	mtx_lock(&Giant);
1543 	while (TRUE) {
1544 		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1545 		if (vm_pageout_req_swapout) {
1546 			swapout_procs(vm_pageout_req_swapout);
1547 			vm_pageout_req_swapout = 0;
1548 		}
1549 		/*
1550 		 * scan the processes for exceeding their rlimits or if
1551 		 * process is swapped out -- deactivate pages
1552 		 */
1553 		sx_slock(&allproc_lock);
1554 		LIST_FOREACH(p, &allproc, p_list) {
1555 			vm_pindex_t limit, size;
1556 
1557 			/*
1558 			 * if this is a system process or if we have already
1559 			 * looked at this process, skip it.
1560 			 */
1561 			PROC_LOCK(p);
1562 			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1563 				PROC_UNLOCK(p);
1564 				continue;
1565 			}
1566 			/*
1567 			 * if the process is in a non-running type state,
1568 			 * don't touch it.
1569 			 */
1570 			mtx_lock_spin(&sched_lock);
1571 			breakout = 0;
1572 			FOREACH_THREAD_IN_PROC(p, td) {
1573 				if (!TD_ON_RUNQ(td) &&
1574 				    !TD_IS_RUNNING(td) &&
1575 				    !TD_IS_SLEEPING(td)) {
1576 					breakout = 1;
1577 					break;
1578 				}
1579 			}
1580 			mtx_unlock_spin(&sched_lock);
1581 			if (breakout) {
1582 				PROC_UNLOCK(p);
1583 				continue;
1584 			}
1585 			/*
1586 			 * get a limit
1587 			 */
1588 			limit = OFF_TO_IDX(
1589 			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1590 				p->p_rlimit[RLIMIT_RSS].rlim_max));
1591 
1592 			/*
1593 			 * let processes that are swapped out really be
1594 			 * swapped out set the limit to nothing (will force a
1595 			 * swap-out.)
1596 			 */
1597 			if ((p->p_sflag & PS_INMEM) == 0)
1598 				limit = 0;	/* XXX */
1599 			PROC_UNLOCK(p);
1600 
1601 			size = vmspace_resident_count(p->p_vmspace);
1602 			if (limit >= 0 && size >= limit) {
1603 				vm_pageout_map_deactivate_pages(
1604 				    &p->p_vmspace->vm_map, limit);
1605 			}
1606 		}
1607 		sx_sunlock(&allproc_lock);
1608 	}
1609 }
1610 #endif			/* !defined(NO_SWAPPING) */
1611