1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 45 * 46 * 47 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 48 * All rights reserved. 49 * 50 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 51 * 52 * Permission to use, copy, modify and distribute this software and 53 * its documentation is hereby granted, provided that both the copyright 54 * notice and this permission notice appear in all copies of the 55 * software, derivative works or modified versions, and any portions 56 * thereof, and that both notices appear in supporting documentation. 57 * 58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 61 * 62 * Carnegie Mellon requests users of this software to return to 63 * 64 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 65 * School of Computer Science 66 * Carnegie Mellon University 67 * Pittsburgh PA 15213-3890 68 * 69 * any improvements or extensions that they make and grant Carnegie the 70 * rights to redistribute these changes. 71 */ 72 73 /* 74 * The proverbial page-out daemon. 75 */ 76 77 #include <sys/cdefs.h> 78 __FBSDID("$FreeBSD$"); 79 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/mutex.h> 88 #include <sys/proc.h> 89 #include <sys/kthread.h> 90 #include <sys/ktr.h> 91 #include <sys/mount.h> 92 #include <sys/racct.h> 93 #include <sys/resourcevar.h> 94 #include <sys/sched.h> 95 #include <sys/sdt.h> 96 #include <sys/signalvar.h> 97 #include <sys/smp.h> 98 #include <sys/time.h> 99 #include <sys/vnode.h> 100 #include <sys/vmmeter.h> 101 #include <sys/rwlock.h> 102 #include <sys/sx.h> 103 #include <sys/sysctl.h> 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_page.h> 109 #include <vm/vm_map.h> 110 #include <vm/vm_pageout.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_phys.h> 113 #include <vm/vm_pagequeue.h> 114 #include <vm/swap_pager.h> 115 #include <vm/vm_extern.h> 116 #include <vm/uma.h> 117 118 /* 119 * System initialization 120 */ 121 122 /* the kernel process "vm_pageout"*/ 123 static void vm_pageout(void); 124 static void vm_pageout_init(void); 125 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 126 static int vm_pageout_cluster(vm_page_t m); 127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 128 int starting_page_shortage); 129 130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 131 NULL); 132 133 struct proc *pageproc; 134 135 static struct kproc_desc page_kp = { 136 "pagedaemon", 137 vm_pageout, 138 &pageproc 139 }; 140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 141 &page_kp); 142 143 SDT_PROVIDER_DEFINE(vm); 144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 145 146 /* Pagedaemon activity rates, in subdivisions of one second. */ 147 #define VM_LAUNDER_RATE 10 148 #define VM_INACT_SCAN_RATE 10 149 150 static int vm_pageout_oom_seq = 12; 151 152 static int vm_pageout_update_period; 153 static int disable_swap_pageouts; 154 static int lowmem_period = 10; 155 static int swapdev_enabled; 156 157 static int vm_panic_on_oom = 0; 158 159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 160 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 161 "panic on out of memory instead of killing the largest process"); 162 163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 164 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 165 "Maximum active LRU update period"); 166 167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 168 "Low memory callback period"); 169 170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 171 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages"); 172 173 static int pageout_lock_miss; 174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 175 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout"); 176 177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 178 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 179 "back-to-back calls to oom detector to start OOM"); 180 181 static int act_scan_laundry_weight = 3; 182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 183 &act_scan_laundry_weight, 0, 184 "weight given to clean vs. dirty pages in active queue scans"); 185 186 static u_int vm_background_launder_rate = 4096; 187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 188 &vm_background_launder_rate, 0, 189 "background laundering rate, in kilobytes per second"); 190 191 static u_int vm_background_launder_max = 20 * 1024; 192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 193 &vm_background_launder_max, 0, "background laundering cap, in kilobytes"); 194 195 int vm_pageout_page_count = 32; 196 197 int vm_page_max_wired; /* XXX max # of wired pages system-wide */ 198 SYSCTL_INT(_vm, OID_AUTO, max_wired, 199 CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count"); 200 201 static u_int isqrt(u_int num); 202 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 203 bool in_shortfall); 204 static void vm_pageout_laundry_worker(void *arg); 205 206 struct scan_state { 207 struct vm_batchqueue bq; 208 struct vm_pagequeue *pq; 209 vm_page_t marker; 210 int maxscan; 211 int scanned; 212 }; 213 214 static void 215 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq, 216 vm_page_t marker, vm_page_t after, int maxscan) 217 { 218 219 vm_pagequeue_assert_locked(pq); 220 KASSERT((marker->aflags & PGA_ENQUEUED) == 0, 221 ("marker %p already enqueued", marker)); 222 223 if (after == NULL) 224 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q); 225 else 226 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q); 227 vm_page_aflag_set(marker, PGA_ENQUEUED); 228 229 vm_batchqueue_init(&ss->bq); 230 ss->pq = pq; 231 ss->marker = marker; 232 ss->maxscan = maxscan; 233 ss->scanned = 0; 234 vm_pagequeue_unlock(pq); 235 } 236 237 static void 238 vm_pageout_end_scan(struct scan_state *ss) 239 { 240 struct vm_pagequeue *pq; 241 242 pq = ss->pq; 243 vm_pagequeue_assert_locked(pq); 244 KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0, 245 ("marker %p not enqueued", ss->marker)); 246 247 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q); 248 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED); 249 pq->pq_pdpages += ss->scanned; 250 } 251 252 /* 253 * Add a small number of queued pages to a batch queue for later processing 254 * without the corresponding queue lock held. The caller must have enqueued a 255 * marker page at the desired start point for the scan. Pages will be 256 * physically dequeued if the caller so requests. Otherwise, the returned 257 * batch may contain marker pages, and it is up to the caller to handle them. 258 * 259 * When processing the batch queue, vm_page_queue() must be used to 260 * determine whether the page has been logically dequeued by another thread. 261 * Once this check is performed, the page lock guarantees that the page will 262 * not be disassociated from the queue. 263 */ 264 static __always_inline void 265 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue) 266 { 267 struct vm_pagequeue *pq; 268 vm_page_t m, marker; 269 270 marker = ss->marker; 271 pq = ss->pq; 272 273 KASSERT((marker->aflags & PGA_ENQUEUED) != 0, 274 ("marker %p not enqueued", ss->marker)); 275 276 vm_pagequeue_lock(pq); 277 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL && 278 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE; 279 m = TAILQ_NEXT(m, plinks.q), ss->scanned++) { 280 if ((m->flags & PG_MARKER) == 0) { 281 KASSERT((m->aflags & PGA_ENQUEUED) != 0, 282 ("page %p not enqueued", m)); 283 KASSERT((m->flags & PG_FICTITIOUS) == 0, 284 ("Fictitious page %p cannot be in page queue", m)); 285 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 286 ("Unmanaged page %p cannot be in page queue", m)); 287 } else if (dequeue) 288 continue; 289 290 (void)vm_batchqueue_insert(&ss->bq, m); 291 if (dequeue) { 292 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 293 vm_page_aflag_clear(m, PGA_ENQUEUED); 294 } 295 } 296 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 297 if (__predict_true(m != NULL)) 298 TAILQ_INSERT_BEFORE(m, marker, plinks.q); 299 else 300 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q); 301 if (dequeue) 302 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt); 303 vm_pagequeue_unlock(pq); 304 } 305 306 /* Return the next page to be scanned, or NULL if the scan is complete. */ 307 static __always_inline vm_page_t 308 vm_pageout_next(struct scan_state *ss, const bool dequeue) 309 { 310 311 if (ss->bq.bq_cnt == 0) 312 vm_pageout_collect_batch(ss, dequeue); 313 return (vm_batchqueue_pop(&ss->bq)); 314 } 315 316 /* 317 * Scan for pages at adjacent offsets within the given page's object that are 318 * eligible for laundering, form a cluster of these pages and the given page, 319 * and launder that cluster. 320 */ 321 static int 322 vm_pageout_cluster(vm_page_t m) 323 { 324 vm_object_t object; 325 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; 326 vm_pindex_t pindex; 327 int ib, is, page_base, pageout_count; 328 329 vm_page_assert_locked(m); 330 object = m->object; 331 VM_OBJECT_ASSERT_WLOCKED(object); 332 pindex = m->pindex; 333 334 vm_page_assert_unbusied(m); 335 KASSERT(!vm_page_held(m), ("page %p is held", m)); 336 337 pmap_remove_write(m); 338 vm_page_unlock(m); 339 340 mc[vm_pageout_page_count] = pb = ps = m; 341 pageout_count = 1; 342 page_base = vm_pageout_page_count; 343 ib = 1; 344 is = 1; 345 346 /* 347 * We can cluster only if the page is not clean, busy, or held, and 348 * the page is in the laundry queue. 349 * 350 * During heavy mmap/modification loads the pageout 351 * daemon can really fragment the underlying file 352 * due to flushing pages out of order and not trying to 353 * align the clusters (which leaves sporadic out-of-order 354 * holes). To solve this problem we do the reverse scan 355 * first and attempt to align our cluster, then do a 356 * forward scan if room remains. 357 */ 358 more: 359 while (ib != 0 && pageout_count < vm_pageout_page_count) { 360 if (ib > pindex) { 361 ib = 0; 362 break; 363 } 364 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) { 365 ib = 0; 366 break; 367 } 368 vm_page_test_dirty(p); 369 if (p->dirty == 0) { 370 ib = 0; 371 break; 372 } 373 vm_page_lock(p); 374 if (vm_page_held(p) || !vm_page_in_laundry(p)) { 375 vm_page_unlock(p); 376 ib = 0; 377 break; 378 } 379 pmap_remove_write(p); 380 vm_page_unlock(p); 381 mc[--page_base] = pb = p; 382 ++pageout_count; 383 ++ib; 384 385 /* 386 * We are at an alignment boundary. Stop here, and switch 387 * directions. Do not clear ib. 388 */ 389 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 390 break; 391 } 392 while (pageout_count < vm_pageout_page_count && 393 pindex + is < object->size) { 394 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p)) 395 break; 396 vm_page_test_dirty(p); 397 if (p->dirty == 0) 398 break; 399 vm_page_lock(p); 400 if (vm_page_held(p) || !vm_page_in_laundry(p)) { 401 vm_page_unlock(p); 402 break; 403 } 404 pmap_remove_write(p); 405 vm_page_unlock(p); 406 mc[page_base + pageout_count] = ps = p; 407 ++pageout_count; 408 ++is; 409 } 410 411 /* 412 * If we exhausted our forward scan, continue with the reverse scan 413 * when possible, even past an alignment boundary. This catches 414 * boundary conditions. 415 */ 416 if (ib != 0 && pageout_count < vm_pageout_page_count) 417 goto more; 418 419 return (vm_pageout_flush(&mc[page_base], pageout_count, 420 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 421 } 422 423 /* 424 * vm_pageout_flush() - launder the given pages 425 * 426 * The given pages are laundered. Note that we setup for the start of 427 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 428 * reference count all in here rather then in the parent. If we want 429 * the parent to do more sophisticated things we may have to change 430 * the ordering. 431 * 432 * Returned runlen is the count of pages between mreq and first 433 * page after mreq with status VM_PAGER_AGAIN. 434 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 435 * for any page in runlen set. 436 */ 437 int 438 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 439 boolean_t *eio) 440 { 441 vm_object_t object = mc[0]->object; 442 int pageout_status[count]; 443 int numpagedout = 0; 444 int i, runlen; 445 446 VM_OBJECT_ASSERT_WLOCKED(object); 447 448 /* 449 * Initiate I/O. Mark the pages busy and verify that they're valid 450 * and read-only. 451 * 452 * We do not have to fixup the clean/dirty bits here... we can 453 * allow the pager to do it after the I/O completes. 454 * 455 * NOTE! mc[i]->dirty may be partial or fragmented due to an 456 * edge case with file fragments. 457 */ 458 for (i = 0; i < count; i++) { 459 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, 460 ("vm_pageout_flush: partially invalid page %p index %d/%d", 461 mc[i], i, count)); 462 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0, 463 ("vm_pageout_flush: writeable page %p", mc[i])); 464 vm_page_sbusy(mc[i]); 465 } 466 vm_object_pip_add(object, count); 467 468 vm_pager_put_pages(object, mc, count, flags, pageout_status); 469 470 runlen = count - mreq; 471 if (eio != NULL) 472 *eio = FALSE; 473 for (i = 0; i < count; i++) { 474 vm_page_t mt = mc[i]; 475 476 KASSERT(pageout_status[i] == VM_PAGER_PEND || 477 !pmap_page_is_write_mapped(mt), 478 ("vm_pageout_flush: page %p is not write protected", mt)); 479 switch (pageout_status[i]) { 480 case VM_PAGER_OK: 481 vm_page_lock(mt); 482 if (vm_page_in_laundry(mt)) 483 vm_page_deactivate_noreuse(mt); 484 vm_page_unlock(mt); 485 /* FALLTHROUGH */ 486 case VM_PAGER_PEND: 487 numpagedout++; 488 break; 489 case VM_PAGER_BAD: 490 /* 491 * The page is outside the object's range. We pretend 492 * that the page out worked and clean the page, so the 493 * changes will be lost if the page is reclaimed by 494 * the page daemon. 495 */ 496 vm_page_undirty(mt); 497 vm_page_lock(mt); 498 if (vm_page_in_laundry(mt)) 499 vm_page_deactivate_noreuse(mt); 500 vm_page_unlock(mt); 501 break; 502 case VM_PAGER_ERROR: 503 case VM_PAGER_FAIL: 504 /* 505 * If the page couldn't be paged out to swap because the 506 * pager wasn't able to find space, place the page in 507 * the PQ_UNSWAPPABLE holding queue. This is an 508 * optimization that prevents the page daemon from 509 * wasting CPU cycles on pages that cannot be reclaimed 510 * becase no swap device is configured. 511 * 512 * Otherwise, reactivate the page so that it doesn't 513 * clog the laundry and inactive queues. (We will try 514 * paging it out again later.) 515 */ 516 vm_page_lock(mt); 517 if (object->type == OBJT_SWAP && 518 pageout_status[i] == VM_PAGER_FAIL) { 519 vm_page_unswappable(mt); 520 numpagedout++; 521 } else 522 vm_page_activate(mt); 523 vm_page_unlock(mt); 524 if (eio != NULL && i >= mreq && i - mreq < runlen) 525 *eio = TRUE; 526 break; 527 case VM_PAGER_AGAIN: 528 if (i >= mreq && i - mreq < runlen) 529 runlen = i - mreq; 530 break; 531 } 532 533 /* 534 * If the operation is still going, leave the page busy to 535 * block all other accesses. Also, leave the paging in 536 * progress indicator set so that we don't attempt an object 537 * collapse. 538 */ 539 if (pageout_status[i] != VM_PAGER_PEND) { 540 vm_object_pip_wakeup(object); 541 vm_page_sunbusy(mt); 542 } 543 } 544 if (prunlen != NULL) 545 *prunlen = runlen; 546 return (numpagedout); 547 } 548 549 static void 550 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 551 { 552 553 atomic_store_rel_int(&swapdev_enabled, 1); 554 } 555 556 static void 557 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 558 { 559 560 if (swap_pager_nswapdev() == 1) 561 atomic_store_rel_int(&swapdev_enabled, 0); 562 } 563 564 /* 565 * Attempt to acquire all of the necessary locks to launder a page and 566 * then call through the clustering layer to PUTPAGES. Wait a short 567 * time for a vnode lock. 568 * 569 * Requires the page and object lock on entry, releases both before return. 570 * Returns 0 on success and an errno otherwise. 571 */ 572 static int 573 vm_pageout_clean(vm_page_t m, int *numpagedout) 574 { 575 struct vnode *vp; 576 struct mount *mp; 577 vm_object_t object; 578 vm_pindex_t pindex; 579 int error, lockmode; 580 581 vm_page_assert_locked(m); 582 object = m->object; 583 VM_OBJECT_ASSERT_WLOCKED(object); 584 error = 0; 585 vp = NULL; 586 mp = NULL; 587 588 /* 589 * The object is already known NOT to be dead. It 590 * is possible for the vget() to block the whole 591 * pageout daemon, but the new low-memory handling 592 * code should prevent it. 593 * 594 * We can't wait forever for the vnode lock, we might 595 * deadlock due to a vn_read() getting stuck in 596 * vm_wait while holding this vnode. We skip the 597 * vnode if we can't get it in a reasonable amount 598 * of time. 599 */ 600 if (object->type == OBJT_VNODE) { 601 vm_page_unlock(m); 602 vp = object->handle; 603 if (vp->v_type == VREG && 604 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 605 mp = NULL; 606 error = EDEADLK; 607 goto unlock_all; 608 } 609 KASSERT(mp != NULL, 610 ("vp %p with NULL v_mount", vp)); 611 vm_object_reference_locked(object); 612 pindex = m->pindex; 613 VM_OBJECT_WUNLOCK(object); 614 lockmode = MNT_SHARED_WRITES(vp->v_mount) ? 615 LK_SHARED : LK_EXCLUSIVE; 616 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) { 617 vp = NULL; 618 error = EDEADLK; 619 goto unlock_mp; 620 } 621 VM_OBJECT_WLOCK(object); 622 623 /* 624 * Ensure that the object and vnode were not disassociated 625 * while locks were dropped. 626 */ 627 if (vp->v_object != object) { 628 error = ENOENT; 629 goto unlock_all; 630 } 631 vm_page_lock(m); 632 633 /* 634 * While the object and page were unlocked, the page 635 * may have been: 636 * (1) moved to a different queue, 637 * (2) reallocated to a different object, 638 * (3) reallocated to a different offset, or 639 * (4) cleaned. 640 */ 641 if (!vm_page_in_laundry(m) || m->object != object || 642 m->pindex != pindex || m->dirty == 0) { 643 vm_page_unlock(m); 644 error = ENXIO; 645 goto unlock_all; 646 } 647 648 /* 649 * The page may have been busied or referenced while the object 650 * and page locks were released. 651 */ 652 if (vm_page_busied(m) || vm_page_held(m)) { 653 vm_page_unlock(m); 654 error = EBUSY; 655 goto unlock_all; 656 } 657 } 658 659 /* 660 * If a page is dirty, then it is either being washed 661 * (but not yet cleaned) or it is still in the 662 * laundry. If it is still in the laundry, then we 663 * start the cleaning operation. 664 */ 665 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 666 error = EIO; 667 668 unlock_all: 669 VM_OBJECT_WUNLOCK(object); 670 671 unlock_mp: 672 vm_page_lock_assert(m, MA_NOTOWNED); 673 if (mp != NULL) { 674 if (vp != NULL) 675 vput(vp); 676 vm_object_deallocate(object); 677 vn_finished_write(mp); 678 } 679 680 return (error); 681 } 682 683 /* 684 * Attempt to launder the specified number of pages. 685 * 686 * Returns the number of pages successfully laundered. 687 */ 688 static int 689 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 690 { 691 struct scan_state ss; 692 struct vm_pagequeue *pq; 693 struct mtx *mtx; 694 vm_object_t object; 695 vm_page_t m, marker; 696 int act_delta, error, numpagedout, queue, starting_target; 697 int vnodes_skipped; 698 bool pageout_ok; 699 700 mtx = NULL; 701 object = NULL; 702 starting_target = launder; 703 vnodes_skipped = 0; 704 705 /* 706 * Scan the laundry queues for pages eligible to be laundered. We stop 707 * once the target number of dirty pages have been laundered, or once 708 * we've reached the end of the queue. A single iteration of this loop 709 * may cause more than one page to be laundered because of clustering. 710 * 711 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 712 * swap devices are configured. 713 */ 714 if (atomic_load_acq_int(&swapdev_enabled)) 715 queue = PQ_UNSWAPPABLE; 716 else 717 queue = PQ_LAUNDRY; 718 719 scan: 720 marker = &vmd->vmd_markers[queue]; 721 pq = &vmd->vmd_pagequeues[queue]; 722 vm_pagequeue_lock(pq); 723 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 724 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) { 725 if (__predict_false((m->flags & PG_MARKER) != 0)) 726 continue; 727 728 vm_page_change_lock(m, &mtx); 729 730 recheck: 731 /* 732 * The page may have been disassociated from the queue 733 * while locks were dropped. 734 */ 735 if (vm_page_queue(m) != queue) 736 continue; 737 738 /* 739 * A requeue was requested, so this page gets a second 740 * chance. 741 */ 742 if ((m->aflags & PGA_REQUEUE) != 0) { 743 vm_page_requeue(m); 744 continue; 745 } 746 747 /* 748 * Held pages are essentially stuck in the queue. 749 * 750 * Wired pages may not be freed. Complete their removal 751 * from the queue now to avoid needless revisits during 752 * future scans. 753 */ 754 if (m->hold_count != 0) 755 continue; 756 if (m->wire_count != 0) { 757 vm_page_dequeue_deferred(m); 758 continue; 759 } 760 761 if (object != m->object) { 762 if (object != NULL) 763 VM_OBJECT_WUNLOCK(object); 764 object = m->object; 765 if (!VM_OBJECT_TRYWLOCK(object)) { 766 mtx_unlock(mtx); 767 /* Depends on type-stability. */ 768 VM_OBJECT_WLOCK(object); 769 mtx_lock(mtx); 770 goto recheck; 771 } 772 } 773 774 if (vm_page_busied(m)) 775 continue; 776 777 /* 778 * Invalid pages can be easily freed. They cannot be 779 * mapped; vm_page_free() asserts this. 780 */ 781 if (m->valid == 0) 782 goto free_page; 783 784 /* 785 * If the page has been referenced and the object is not dead, 786 * reactivate or requeue the page depending on whether the 787 * object is mapped. 788 * 789 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 790 * that a reference from a concurrently destroyed mapping is 791 * observed here and now. 792 */ 793 if (object->ref_count != 0) 794 act_delta = pmap_ts_referenced(m); 795 else { 796 KASSERT(!pmap_page_is_mapped(m), 797 ("page %p is mapped", m)); 798 act_delta = 0; 799 } 800 if ((m->aflags & PGA_REFERENCED) != 0) { 801 vm_page_aflag_clear(m, PGA_REFERENCED); 802 act_delta++; 803 } 804 if (act_delta != 0) { 805 if (object->ref_count != 0) { 806 VM_CNT_INC(v_reactivated); 807 vm_page_activate(m); 808 809 /* 810 * Increase the activation count if the page 811 * was referenced while in the laundry queue. 812 * This makes it less likely that the page will 813 * be returned prematurely to the inactive 814 * queue. 815 */ 816 m->act_count += act_delta + ACT_ADVANCE; 817 818 /* 819 * If this was a background laundering, count 820 * activated pages towards our target. The 821 * purpose of background laundering is to ensure 822 * that pages are eventually cycled through the 823 * laundry queue, and an activation is a valid 824 * way out. 825 */ 826 if (!in_shortfall) 827 launder--; 828 continue; 829 } else if ((object->flags & OBJ_DEAD) == 0) { 830 vm_page_requeue(m); 831 continue; 832 } 833 } 834 835 /* 836 * If the page appears to be clean at the machine-independent 837 * layer, then remove all of its mappings from the pmap in 838 * anticipation of freeing it. If, however, any of the page's 839 * mappings allow write access, then the page may still be 840 * modified until the last of those mappings are removed. 841 */ 842 if (object->ref_count != 0) { 843 vm_page_test_dirty(m); 844 if (m->dirty == 0) 845 pmap_remove_all(m); 846 } 847 848 /* 849 * Clean pages are freed, and dirty pages are paged out unless 850 * they belong to a dead object. Requeueing dirty pages from 851 * dead objects is pointless, as they are being paged out and 852 * freed by the thread that destroyed the object. 853 */ 854 if (m->dirty == 0) { 855 free_page: 856 vm_page_free(m); 857 VM_CNT_INC(v_dfree); 858 } else if ((object->flags & OBJ_DEAD) == 0) { 859 if (object->type != OBJT_SWAP && 860 object->type != OBJT_DEFAULT) 861 pageout_ok = true; 862 else if (disable_swap_pageouts) 863 pageout_ok = false; 864 else 865 pageout_ok = true; 866 if (!pageout_ok) { 867 vm_page_requeue(m); 868 continue; 869 } 870 871 /* 872 * Form a cluster with adjacent, dirty pages from the 873 * same object, and page out that entire cluster. 874 * 875 * The adjacent, dirty pages must also be in the 876 * laundry. However, their mappings are not checked 877 * for new references. Consequently, a recently 878 * referenced page may be paged out. However, that 879 * page will not be prematurely reclaimed. After page 880 * out, the page will be placed in the inactive queue, 881 * where any new references will be detected and the 882 * page reactivated. 883 */ 884 error = vm_pageout_clean(m, &numpagedout); 885 if (error == 0) { 886 launder -= numpagedout; 887 ss.scanned += numpagedout; 888 } else if (error == EDEADLK) { 889 pageout_lock_miss++; 890 vnodes_skipped++; 891 } 892 mtx = NULL; 893 object = NULL; 894 } 895 } 896 if (mtx != NULL) { 897 mtx_unlock(mtx); 898 mtx = NULL; 899 } 900 if (object != NULL) { 901 VM_OBJECT_WUNLOCK(object); 902 object = NULL; 903 } 904 vm_pagequeue_lock(pq); 905 vm_pageout_end_scan(&ss); 906 vm_pagequeue_unlock(pq); 907 908 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 909 queue = PQ_LAUNDRY; 910 goto scan; 911 } 912 913 /* 914 * Wakeup the sync daemon if we skipped a vnode in a writeable object 915 * and we didn't launder enough pages. 916 */ 917 if (vnodes_skipped > 0 && launder > 0) 918 (void)speedup_syncer(); 919 920 return (starting_target - launder); 921 } 922 923 /* 924 * Compute the integer square root. 925 */ 926 static u_int 927 isqrt(u_int num) 928 { 929 u_int bit, root, tmp; 930 931 bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0; 932 root = 0; 933 while (bit != 0) { 934 tmp = root + bit; 935 root >>= 1; 936 if (num >= tmp) { 937 num -= tmp; 938 root += bit; 939 } 940 bit >>= 2; 941 } 942 return (root); 943 } 944 945 /* 946 * Perform the work of the laundry thread: periodically wake up and determine 947 * whether any pages need to be laundered. If so, determine the number of pages 948 * that need to be laundered, and launder them. 949 */ 950 static void 951 vm_pageout_laundry_worker(void *arg) 952 { 953 struct vm_domain *vmd; 954 struct vm_pagequeue *pq; 955 uint64_t nclean, ndirty, nfreed; 956 int domain, last_target, launder, shortfall, shortfall_cycle, target; 957 bool in_shortfall; 958 959 domain = (uintptr_t)arg; 960 vmd = VM_DOMAIN(domain); 961 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 962 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 963 964 shortfall = 0; 965 in_shortfall = false; 966 shortfall_cycle = 0; 967 last_target = target = 0; 968 nfreed = 0; 969 970 /* 971 * Calls to these handlers are serialized by the swap syscall lock. 972 */ 973 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 974 EVENTHANDLER_PRI_ANY); 975 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 976 EVENTHANDLER_PRI_ANY); 977 978 /* 979 * The pageout laundry worker is never done, so loop forever. 980 */ 981 for (;;) { 982 KASSERT(target >= 0, ("negative target %d", target)); 983 KASSERT(shortfall_cycle >= 0, 984 ("negative cycle %d", shortfall_cycle)); 985 launder = 0; 986 987 /* 988 * First determine whether we need to launder pages to meet a 989 * shortage of free pages. 990 */ 991 if (shortfall > 0) { 992 in_shortfall = true; 993 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 994 target = shortfall; 995 } else if (!in_shortfall) 996 goto trybackground; 997 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 998 /* 999 * We recently entered shortfall and began laundering 1000 * pages. If we have completed that laundering run 1001 * (and we are no longer in shortfall) or we have met 1002 * our laundry target through other activity, then we 1003 * can stop laundering pages. 1004 */ 1005 in_shortfall = false; 1006 target = 0; 1007 goto trybackground; 1008 } 1009 launder = target / shortfall_cycle--; 1010 goto dolaundry; 1011 1012 /* 1013 * There's no immediate need to launder any pages; see if we 1014 * meet the conditions to perform background laundering: 1015 * 1016 * 1. The ratio of dirty to clean inactive pages exceeds the 1017 * background laundering threshold, or 1018 * 2. we haven't yet reached the target of the current 1019 * background laundering run. 1020 * 1021 * The background laundering threshold is not a constant. 1022 * Instead, it is a slowly growing function of the number of 1023 * clean pages freed by the page daemon since the last 1024 * background laundering. Thus, as the ratio of dirty to 1025 * clean inactive pages grows, the amount of memory pressure 1026 * required to trigger laundering decreases. We ensure 1027 * that the threshold is non-zero after an inactive queue 1028 * scan, even if that scan failed to free a single clean page. 1029 */ 1030 trybackground: 1031 nclean = vmd->vmd_free_count + 1032 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1033 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1034 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1035 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1036 target = vmd->vmd_background_launder_target; 1037 } 1038 1039 /* 1040 * We have a non-zero background laundering target. If we've 1041 * laundered up to our maximum without observing a page daemon 1042 * request, just stop. This is a safety belt that ensures we 1043 * don't launder an excessive amount if memory pressure is low 1044 * and the ratio of dirty to clean pages is large. Otherwise, 1045 * proceed at the background laundering rate. 1046 */ 1047 if (target > 0) { 1048 if (nfreed > 0) { 1049 nfreed = 0; 1050 last_target = target; 1051 } else if (last_target - target >= 1052 vm_background_launder_max * PAGE_SIZE / 1024) { 1053 target = 0; 1054 } 1055 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1056 launder /= VM_LAUNDER_RATE; 1057 if (launder > target) 1058 launder = target; 1059 } 1060 1061 dolaundry: 1062 if (launder > 0) { 1063 /* 1064 * Because of I/O clustering, the number of laundered 1065 * pages could exceed "target" by the maximum size of 1066 * a cluster minus one. 1067 */ 1068 target -= min(vm_pageout_launder(vmd, launder, 1069 in_shortfall), target); 1070 pause("laundp", hz / VM_LAUNDER_RATE); 1071 } 1072 1073 /* 1074 * If we're not currently laundering pages and the page daemon 1075 * hasn't posted a new request, sleep until the page daemon 1076 * kicks us. 1077 */ 1078 vm_pagequeue_lock(pq); 1079 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1080 (void)mtx_sleep(&vmd->vmd_laundry_request, 1081 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1082 1083 /* 1084 * If the pagedaemon has indicated that it's in shortfall, start 1085 * a shortfall laundering unless we're already in the middle of 1086 * one. This may preempt a background laundering. 1087 */ 1088 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1089 (!in_shortfall || shortfall_cycle == 0)) { 1090 shortfall = vm_laundry_target(vmd) + 1091 vmd->vmd_pageout_deficit; 1092 target = 0; 1093 } else 1094 shortfall = 0; 1095 1096 if (target == 0) 1097 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1098 nfreed += vmd->vmd_clean_pages_freed; 1099 vmd->vmd_clean_pages_freed = 0; 1100 vm_pagequeue_unlock(pq); 1101 } 1102 } 1103 1104 /* 1105 * Compute the number of pages we want to try to move from the 1106 * active queue to either the inactive or laundry queue. 1107 * 1108 * When scanning active pages during a shortage, we make clean pages 1109 * count more heavily towards the page shortage than dirty pages. 1110 * This is because dirty pages must be laundered before they can be 1111 * reused and thus have less utility when attempting to quickly 1112 * alleviate a free page shortage. However, this weighting also 1113 * causes the scan to deactivate dirty pages more aggressively, 1114 * improving the effectiveness of clustering. 1115 */ 1116 static int 1117 vm_pageout_active_target(struct vm_domain *vmd) 1118 { 1119 int shortage; 1120 1121 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) - 1122 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt + 1123 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight); 1124 shortage *= act_scan_laundry_weight; 1125 return (shortage); 1126 } 1127 1128 /* 1129 * Scan the active queue. If there is no shortage of inactive pages, scan a 1130 * small portion of the queue in order to maintain quasi-LRU. 1131 */ 1132 static void 1133 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage) 1134 { 1135 struct scan_state ss; 1136 struct mtx *mtx; 1137 vm_page_t m, marker; 1138 struct vm_pagequeue *pq; 1139 long min_scan; 1140 int act_delta, max_scan, scan_tick; 1141 1142 marker = &vmd->vmd_markers[PQ_ACTIVE]; 1143 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1144 vm_pagequeue_lock(pq); 1145 1146 /* 1147 * If we're just idle polling attempt to visit every 1148 * active page within 'update_period' seconds. 1149 */ 1150 scan_tick = ticks; 1151 if (vm_pageout_update_period != 0) { 1152 min_scan = pq->pq_cnt; 1153 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1154 min_scan /= hz * vm_pageout_update_period; 1155 } else 1156 min_scan = 0; 1157 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0)) 1158 vmd->vmd_last_active_scan = scan_tick; 1159 1160 /* 1161 * Scan the active queue for pages that can be deactivated. Update 1162 * the per-page activity counter and use it to identify deactivation 1163 * candidates. Held pages may be deactivated. 1164 * 1165 * To avoid requeuing each page that remains in the active queue, we 1166 * implement the CLOCK algorithm. To keep the implementation of the 1167 * enqueue operation consistent for all page queues, we use two hands, 1168 * represented by marker pages. Scans begin at the first hand, which 1169 * precedes the second hand in the queue. When the two hands meet, 1170 * they are moved back to the head and tail of the queue, respectively, 1171 * and scanning resumes. 1172 */ 1173 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan; 1174 mtx = NULL; 1175 act_scan: 1176 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan); 1177 while ((m = vm_pageout_next(&ss, false)) != NULL) { 1178 if (__predict_false(m == &vmd->vmd_clock[1])) { 1179 vm_pagequeue_lock(pq); 1180 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1181 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q); 1182 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0], 1183 plinks.q); 1184 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1], 1185 plinks.q); 1186 max_scan -= ss.scanned; 1187 vm_pageout_end_scan(&ss); 1188 goto act_scan; 1189 } 1190 if (__predict_false((m->flags & PG_MARKER) != 0)) 1191 continue; 1192 1193 vm_page_change_lock(m, &mtx); 1194 1195 /* 1196 * The page may have been disassociated from the queue 1197 * while locks were dropped. 1198 */ 1199 if (vm_page_queue(m) != PQ_ACTIVE) 1200 continue; 1201 1202 /* 1203 * Wired pages are dequeued lazily. 1204 */ 1205 if (m->wire_count != 0) { 1206 vm_page_dequeue_deferred(m); 1207 continue; 1208 } 1209 1210 /* 1211 * Check to see "how much" the page has been used. 1212 * 1213 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1214 * that a reference from a concurrently destroyed mapping is 1215 * observed here and now. 1216 * 1217 * Perform an unsynchronized object ref count check. While 1218 * the page lock ensures that the page is not reallocated to 1219 * another object, in particular, one with unmanaged mappings 1220 * that cannot support pmap_ts_referenced(), two races are, 1221 * nonetheless, possible: 1222 * 1) The count was transitioning to zero, but we saw a non- 1223 * zero value. pmap_ts_referenced() will return zero 1224 * because the page is not mapped. 1225 * 2) The count was transitioning to one, but we saw zero. 1226 * This race delays the detection of a new reference. At 1227 * worst, we will deactivate and reactivate the page. 1228 */ 1229 if (m->object->ref_count != 0) 1230 act_delta = pmap_ts_referenced(m); 1231 else 1232 act_delta = 0; 1233 if ((m->aflags & PGA_REFERENCED) != 0) { 1234 vm_page_aflag_clear(m, PGA_REFERENCED); 1235 act_delta++; 1236 } 1237 1238 /* 1239 * Advance or decay the act_count based on recent usage. 1240 */ 1241 if (act_delta != 0) { 1242 m->act_count += ACT_ADVANCE + act_delta; 1243 if (m->act_count > ACT_MAX) 1244 m->act_count = ACT_MAX; 1245 } else 1246 m->act_count -= min(m->act_count, ACT_DECLINE); 1247 1248 if (m->act_count == 0) { 1249 /* 1250 * When not short for inactive pages, let dirty pages go 1251 * through the inactive queue before moving to the 1252 * laundry queues. This gives them some extra time to 1253 * be reactivated, potentially avoiding an expensive 1254 * pageout. However, during a page shortage, the 1255 * inactive queue is necessarily small, and so dirty 1256 * pages would only spend a trivial amount of time in 1257 * the inactive queue. Therefore, we might as well 1258 * place them directly in the laundry queue to reduce 1259 * queuing overhead. 1260 */ 1261 if (page_shortage <= 0) 1262 vm_page_deactivate(m); 1263 else { 1264 /* 1265 * Calling vm_page_test_dirty() here would 1266 * require acquisition of the object's write 1267 * lock. However, during a page shortage, 1268 * directing dirty pages into the laundry 1269 * queue is only an optimization and not a 1270 * requirement. Therefore, we simply rely on 1271 * the opportunistic updates to the page's 1272 * dirty field by the pmap. 1273 */ 1274 if (m->dirty == 0) { 1275 vm_page_deactivate(m); 1276 page_shortage -= 1277 act_scan_laundry_weight; 1278 } else { 1279 vm_page_launder(m); 1280 page_shortage--; 1281 } 1282 } 1283 } 1284 } 1285 if (mtx != NULL) { 1286 mtx_unlock(mtx); 1287 mtx = NULL; 1288 } 1289 vm_pagequeue_lock(pq); 1290 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1291 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q); 1292 vm_pageout_end_scan(&ss); 1293 vm_pagequeue_unlock(pq); 1294 } 1295 1296 static int 1297 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m) 1298 { 1299 struct vm_domain *vmd; 1300 1301 if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0) 1302 return (0); 1303 vm_page_aflag_set(m, PGA_ENQUEUED); 1304 if ((m->aflags & PGA_REQUEUE_HEAD) != 0) { 1305 vmd = vm_pagequeue_domain(m); 1306 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 1307 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 1308 } else if ((m->aflags & PGA_REQUEUE) != 0) { 1309 TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q); 1310 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 1311 } else 1312 TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q); 1313 return (1); 1314 } 1315 1316 /* 1317 * Re-add stuck pages to the inactive queue. We will examine them again 1318 * during the next scan. If the queue state of a page has changed since 1319 * it was physically removed from the page queue in 1320 * vm_pageout_collect_batch(), don't do anything with that page. 1321 */ 1322 static void 1323 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq, 1324 vm_page_t m) 1325 { 1326 struct vm_pagequeue *pq; 1327 int delta; 1328 1329 delta = 0; 1330 pq = ss->pq; 1331 1332 if (m != NULL) { 1333 if (vm_batchqueue_insert(bq, m)) 1334 return; 1335 vm_pagequeue_lock(pq); 1336 delta += vm_pageout_reinsert_inactive_page(ss, m); 1337 } else 1338 vm_pagequeue_lock(pq); 1339 while ((m = vm_batchqueue_pop(bq)) != NULL) 1340 delta += vm_pageout_reinsert_inactive_page(ss, m); 1341 vm_pagequeue_cnt_add(pq, delta); 1342 vm_pagequeue_unlock(pq); 1343 vm_batchqueue_init(bq); 1344 } 1345 1346 /* 1347 * Attempt to reclaim the requested number of pages from the inactive queue. 1348 * Returns true if the shortage was addressed. 1349 */ 1350 static int 1351 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage, 1352 int *addl_shortage) 1353 { 1354 struct scan_state ss; 1355 struct vm_batchqueue rq; 1356 struct mtx *mtx; 1357 vm_page_t m, marker; 1358 struct vm_pagequeue *pq; 1359 vm_object_t object; 1360 int act_delta, addl_page_shortage, deficit, page_shortage; 1361 int starting_page_shortage; 1362 1363 /* 1364 * The addl_page_shortage is an estimate of the number of temporarily 1365 * stuck pages in the inactive queue. In other words, the 1366 * number of pages from the inactive count that should be 1367 * discounted in setting the target for the active queue scan. 1368 */ 1369 addl_page_shortage = 0; 1370 1371 /* 1372 * vmd_pageout_deficit counts the number of pages requested in 1373 * allocations that failed because of a free page shortage. We assume 1374 * that the allocations will be reattempted and thus include the deficit 1375 * in our scan target. 1376 */ 1377 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1378 starting_page_shortage = page_shortage = shortage + deficit; 1379 1380 mtx = NULL; 1381 object = NULL; 1382 vm_batchqueue_init(&rq); 1383 1384 /* 1385 * Start scanning the inactive queue for pages that we can free. The 1386 * scan will stop when we reach the target or we have scanned the 1387 * entire queue. (Note that m->act_count is not used to make 1388 * decisions for the inactive queue, only for the active queue.) 1389 */ 1390 marker = &vmd->vmd_markers[PQ_INACTIVE]; 1391 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1392 vm_pagequeue_lock(pq); 1393 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 1394 while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) { 1395 KASSERT((m->flags & PG_MARKER) == 0, 1396 ("marker page %p was dequeued", m)); 1397 1398 vm_page_change_lock(m, &mtx); 1399 1400 recheck: 1401 /* 1402 * The page may have been disassociated from the queue 1403 * while locks were dropped. 1404 */ 1405 if (vm_page_queue(m) != PQ_INACTIVE) { 1406 addl_page_shortage++; 1407 continue; 1408 } 1409 1410 /* 1411 * The page was re-enqueued after the page queue lock was 1412 * dropped, or a requeue was requested. This page gets a second 1413 * chance. 1414 */ 1415 if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE | 1416 PGA_REQUEUE_HEAD)) != 0) 1417 goto reinsert; 1418 1419 /* 1420 * Held pages are essentially stuck in the queue. So, 1421 * they ought to be discounted from the inactive count. 1422 * See the description of addl_page_shortage above. 1423 * 1424 * Wired pages may not be freed. Complete their removal 1425 * from the queue now to avoid needless revisits during 1426 * future scans. 1427 */ 1428 if (m->hold_count != 0) { 1429 addl_page_shortage++; 1430 goto reinsert; 1431 } 1432 if (m->wire_count != 0) { 1433 vm_page_dequeue_deferred(m); 1434 continue; 1435 } 1436 1437 if (object != m->object) { 1438 if (object != NULL) 1439 VM_OBJECT_WUNLOCK(object); 1440 object = m->object; 1441 if (!VM_OBJECT_TRYWLOCK(object)) { 1442 mtx_unlock(mtx); 1443 /* Depends on type-stability. */ 1444 VM_OBJECT_WLOCK(object); 1445 mtx_lock(mtx); 1446 goto recheck; 1447 } 1448 } 1449 1450 if (vm_page_busied(m)) { 1451 /* 1452 * Don't mess with busy pages. Leave them at 1453 * the front of the queue. Most likely, they 1454 * are being paged out and will leave the 1455 * queue shortly after the scan finishes. So, 1456 * they ought to be discounted from the 1457 * inactive count. 1458 */ 1459 addl_page_shortage++; 1460 goto reinsert; 1461 } 1462 1463 /* 1464 * Invalid pages can be easily freed. They cannot be 1465 * mapped, vm_page_free() asserts this. 1466 */ 1467 if (m->valid == 0) 1468 goto free_page; 1469 1470 /* 1471 * If the page has been referenced and the object is not dead, 1472 * reactivate or requeue the page depending on whether the 1473 * object is mapped. 1474 * 1475 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1476 * that a reference from a concurrently destroyed mapping is 1477 * observed here and now. 1478 */ 1479 if (object->ref_count != 0) 1480 act_delta = pmap_ts_referenced(m); 1481 else { 1482 KASSERT(!pmap_page_is_mapped(m), 1483 ("page %p is mapped", m)); 1484 act_delta = 0; 1485 } 1486 if ((m->aflags & PGA_REFERENCED) != 0) { 1487 vm_page_aflag_clear(m, PGA_REFERENCED); 1488 act_delta++; 1489 } 1490 if (act_delta != 0) { 1491 if (object->ref_count != 0) { 1492 VM_CNT_INC(v_reactivated); 1493 vm_page_activate(m); 1494 1495 /* 1496 * Increase the activation count if the page 1497 * was referenced while in the inactive queue. 1498 * This makes it less likely that the page will 1499 * be returned prematurely to the inactive 1500 * queue. 1501 */ 1502 m->act_count += act_delta + ACT_ADVANCE; 1503 continue; 1504 } else if ((object->flags & OBJ_DEAD) == 0) { 1505 vm_page_aflag_set(m, PGA_REQUEUE); 1506 goto reinsert; 1507 } 1508 } 1509 1510 /* 1511 * If the page appears to be clean at the machine-independent 1512 * layer, then remove all of its mappings from the pmap in 1513 * anticipation of freeing it. If, however, any of the page's 1514 * mappings allow write access, then the page may still be 1515 * modified until the last of those mappings are removed. 1516 */ 1517 if (object->ref_count != 0) { 1518 vm_page_test_dirty(m); 1519 if (m->dirty == 0) 1520 pmap_remove_all(m); 1521 } 1522 1523 /* 1524 * Clean pages can be freed, but dirty pages must be sent back 1525 * to the laundry, unless they belong to a dead object. 1526 * Requeueing dirty pages from dead objects is pointless, as 1527 * they are being paged out and freed by the thread that 1528 * destroyed the object. 1529 */ 1530 if (m->dirty == 0) { 1531 free_page: 1532 /* 1533 * Because we dequeued the page and have already 1534 * checked for concurrent dequeue and enqueue 1535 * requests, we can safely disassociate the page 1536 * from the inactive queue. 1537 */ 1538 KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0, 1539 ("page %p has queue state", m)); 1540 m->queue = PQ_NONE; 1541 vm_page_free(m); 1542 page_shortage--; 1543 } else if ((object->flags & OBJ_DEAD) == 0) 1544 vm_page_launder(m); 1545 continue; 1546 reinsert: 1547 vm_pageout_reinsert_inactive(&ss, &rq, m); 1548 } 1549 if (mtx != NULL) 1550 mtx_unlock(mtx); 1551 if (object != NULL) 1552 VM_OBJECT_WUNLOCK(object); 1553 vm_pageout_reinsert_inactive(&ss, &rq, NULL); 1554 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL); 1555 vm_pagequeue_lock(pq); 1556 vm_pageout_end_scan(&ss); 1557 vm_pagequeue_unlock(pq); 1558 1559 VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage); 1560 1561 /* 1562 * Wake up the laundry thread so that it can perform any needed 1563 * laundering. If we didn't meet our target, we're in shortfall and 1564 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1565 * swap devices are configured, the laundry thread has no work to do, so 1566 * don't bother waking it up. 1567 * 1568 * The laundry thread uses the number of inactive queue scans elapsed 1569 * since the last laundering to determine whether to launder again, so 1570 * keep count. 1571 */ 1572 if (starting_page_shortage > 0) { 1573 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1574 vm_pagequeue_lock(pq); 1575 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1576 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1577 if (page_shortage > 0) { 1578 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1579 VM_CNT_INC(v_pdshortfalls); 1580 } else if (vmd->vmd_laundry_request != 1581 VM_LAUNDRY_SHORTFALL) 1582 vmd->vmd_laundry_request = 1583 VM_LAUNDRY_BACKGROUND; 1584 wakeup(&vmd->vmd_laundry_request); 1585 } 1586 vmd->vmd_clean_pages_freed += 1587 starting_page_shortage - page_shortage; 1588 vm_pagequeue_unlock(pq); 1589 } 1590 1591 /* 1592 * Wakeup the swapout daemon if we didn't free the targeted number of 1593 * pages. 1594 */ 1595 if (page_shortage > 0) 1596 vm_swapout_run(); 1597 1598 /* 1599 * If the inactive queue scan fails repeatedly to meet its 1600 * target, kill the largest process. 1601 */ 1602 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1603 1604 /* 1605 * Reclaim pages by swapping out idle processes, if configured to do so. 1606 */ 1607 vm_swapout_run_idle(); 1608 1609 /* 1610 * See the description of addl_page_shortage above. 1611 */ 1612 *addl_shortage = addl_page_shortage + deficit; 1613 1614 return (page_shortage <= 0); 1615 } 1616 1617 static int vm_pageout_oom_vote; 1618 1619 /* 1620 * The pagedaemon threads randlomly select one to perform the 1621 * OOM. Trying to kill processes before all pagedaemons 1622 * failed to reach free target is premature. 1623 */ 1624 static void 1625 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1626 int starting_page_shortage) 1627 { 1628 int old_vote; 1629 1630 if (starting_page_shortage <= 0 || starting_page_shortage != 1631 page_shortage) 1632 vmd->vmd_oom_seq = 0; 1633 else 1634 vmd->vmd_oom_seq++; 1635 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1636 if (vmd->vmd_oom) { 1637 vmd->vmd_oom = FALSE; 1638 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1639 } 1640 return; 1641 } 1642 1643 /* 1644 * Do not follow the call sequence until OOM condition is 1645 * cleared. 1646 */ 1647 vmd->vmd_oom_seq = 0; 1648 1649 if (vmd->vmd_oom) 1650 return; 1651 1652 vmd->vmd_oom = TRUE; 1653 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1654 if (old_vote != vm_ndomains - 1) 1655 return; 1656 1657 /* 1658 * The current pagedaemon thread is the last in the quorum to 1659 * start OOM. Initiate the selection and signaling of the 1660 * victim. 1661 */ 1662 vm_pageout_oom(VM_OOM_MEM); 1663 1664 /* 1665 * After one round of OOM terror, recall our vote. On the 1666 * next pass, current pagedaemon would vote again if the low 1667 * memory condition is still there, due to vmd_oom being 1668 * false. 1669 */ 1670 vmd->vmd_oom = FALSE; 1671 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1672 } 1673 1674 /* 1675 * The OOM killer is the page daemon's action of last resort when 1676 * memory allocation requests have been stalled for a prolonged period 1677 * of time because it cannot reclaim memory. This function computes 1678 * the approximate number of physical pages that could be reclaimed if 1679 * the specified address space is destroyed. 1680 * 1681 * Private, anonymous memory owned by the address space is the 1682 * principal resource that we expect to recover after an OOM kill. 1683 * Since the physical pages mapped by the address space's COW entries 1684 * are typically shared pages, they are unlikely to be released and so 1685 * they are not counted. 1686 * 1687 * To get to the point where the page daemon runs the OOM killer, its 1688 * efforts to write-back vnode-backed pages may have stalled. This 1689 * could be caused by a memory allocation deadlock in the write path 1690 * that might be resolved by an OOM kill. Therefore, physical pages 1691 * belonging to vnode-backed objects are counted, because they might 1692 * be freed without being written out first if the address space holds 1693 * the last reference to an unlinked vnode. 1694 * 1695 * Similarly, physical pages belonging to OBJT_PHYS objects are 1696 * counted because the address space might hold the last reference to 1697 * the object. 1698 */ 1699 static long 1700 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1701 { 1702 vm_map_t map; 1703 vm_map_entry_t entry; 1704 vm_object_t obj; 1705 long res; 1706 1707 map = &vmspace->vm_map; 1708 KASSERT(!map->system_map, ("system map")); 1709 sx_assert(&map->lock, SA_LOCKED); 1710 res = 0; 1711 for (entry = map->header.next; entry != &map->header; 1712 entry = entry->next) { 1713 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1714 continue; 1715 obj = entry->object.vm_object; 1716 if (obj == NULL) 1717 continue; 1718 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1719 obj->ref_count != 1) 1720 continue; 1721 switch (obj->type) { 1722 case OBJT_DEFAULT: 1723 case OBJT_SWAP: 1724 case OBJT_PHYS: 1725 case OBJT_VNODE: 1726 res += obj->resident_page_count; 1727 break; 1728 } 1729 } 1730 return (res); 1731 } 1732 1733 void 1734 vm_pageout_oom(int shortage) 1735 { 1736 struct proc *p, *bigproc; 1737 vm_offset_t size, bigsize; 1738 struct thread *td; 1739 struct vmspace *vm; 1740 bool breakout; 1741 1742 /* 1743 * We keep the process bigproc locked once we find it to keep anyone 1744 * from messing with it; however, there is a possibility of 1745 * deadlock if process B is bigproc and one of its child processes 1746 * attempts to propagate a signal to B while we are waiting for A's 1747 * lock while walking this list. To avoid this, we don't block on 1748 * the process lock but just skip a process if it is already locked. 1749 */ 1750 bigproc = NULL; 1751 bigsize = 0; 1752 sx_slock(&allproc_lock); 1753 FOREACH_PROC_IN_SYSTEM(p) { 1754 PROC_LOCK(p); 1755 1756 /* 1757 * If this is a system, protected or killed process, skip it. 1758 */ 1759 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1760 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1761 p->p_pid == 1 || P_KILLED(p) || 1762 (p->p_pid < 48 && swap_pager_avail != 0)) { 1763 PROC_UNLOCK(p); 1764 continue; 1765 } 1766 /* 1767 * If the process is in a non-running type state, 1768 * don't touch it. Check all the threads individually. 1769 */ 1770 breakout = false; 1771 FOREACH_THREAD_IN_PROC(p, td) { 1772 thread_lock(td); 1773 if (!TD_ON_RUNQ(td) && 1774 !TD_IS_RUNNING(td) && 1775 !TD_IS_SLEEPING(td) && 1776 !TD_IS_SUSPENDED(td) && 1777 !TD_IS_SWAPPED(td)) { 1778 thread_unlock(td); 1779 breakout = true; 1780 break; 1781 } 1782 thread_unlock(td); 1783 } 1784 if (breakout) { 1785 PROC_UNLOCK(p); 1786 continue; 1787 } 1788 /* 1789 * get the process size 1790 */ 1791 vm = vmspace_acquire_ref(p); 1792 if (vm == NULL) { 1793 PROC_UNLOCK(p); 1794 continue; 1795 } 1796 _PHOLD_LITE(p); 1797 PROC_UNLOCK(p); 1798 sx_sunlock(&allproc_lock); 1799 if (!vm_map_trylock_read(&vm->vm_map)) { 1800 vmspace_free(vm); 1801 sx_slock(&allproc_lock); 1802 PRELE(p); 1803 continue; 1804 } 1805 size = vmspace_swap_count(vm); 1806 if (shortage == VM_OOM_MEM) 1807 size += vm_pageout_oom_pagecount(vm); 1808 vm_map_unlock_read(&vm->vm_map); 1809 vmspace_free(vm); 1810 sx_slock(&allproc_lock); 1811 1812 /* 1813 * If this process is bigger than the biggest one, 1814 * remember it. 1815 */ 1816 if (size > bigsize) { 1817 if (bigproc != NULL) 1818 PRELE(bigproc); 1819 bigproc = p; 1820 bigsize = size; 1821 } else { 1822 PRELE(p); 1823 } 1824 } 1825 sx_sunlock(&allproc_lock); 1826 if (bigproc != NULL) { 1827 if (vm_panic_on_oom != 0) 1828 panic("out of swap space"); 1829 PROC_LOCK(bigproc); 1830 killproc(bigproc, "out of swap space"); 1831 sched_nice(bigproc, PRIO_MIN); 1832 _PRELE(bigproc); 1833 PROC_UNLOCK(bigproc); 1834 } 1835 } 1836 1837 static bool 1838 vm_pageout_lowmem(void) 1839 { 1840 static int lowmem_ticks = 0; 1841 int last; 1842 1843 last = atomic_load_int(&lowmem_ticks); 1844 while ((u_int)(ticks - last) / hz >= lowmem_period) { 1845 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0) 1846 continue; 1847 1848 /* 1849 * Decrease registered cache sizes. 1850 */ 1851 SDT_PROBE0(vm, , , vm__lowmem_scan); 1852 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 1853 1854 /* 1855 * We do this explicitly after the caches have been 1856 * drained above. 1857 */ 1858 uma_reclaim(); 1859 return (true); 1860 } 1861 return (false); 1862 } 1863 1864 static void 1865 vm_pageout_worker(void *arg) 1866 { 1867 struct vm_domain *vmd; 1868 u_int ofree; 1869 int addl_shortage, domain, shortage; 1870 bool target_met; 1871 1872 domain = (uintptr_t)arg; 1873 vmd = VM_DOMAIN(domain); 1874 shortage = 0; 1875 target_met = true; 1876 1877 /* 1878 * XXXKIB It could be useful to bind pageout daemon threads to 1879 * the cores belonging to the domain, from which vm_page_array 1880 * is allocated. 1881 */ 1882 1883 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 1884 vmd->vmd_last_active_scan = ticks; 1885 1886 /* 1887 * The pageout daemon worker is never done, so loop forever. 1888 */ 1889 while (TRUE) { 1890 vm_domain_pageout_lock(vmd); 1891 1892 /* 1893 * We need to clear wanted before we check the limits. This 1894 * prevents races with wakers who will check wanted after they 1895 * reach the limit. 1896 */ 1897 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 1898 1899 /* 1900 * Might the page daemon need to run again? 1901 */ 1902 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 1903 /* 1904 * Yes. If the scan failed to produce enough free 1905 * pages, sleep uninterruptibly for some time in the 1906 * hope that the laundry thread will clean some pages. 1907 */ 1908 vm_domain_pageout_unlock(vmd); 1909 if (!target_met) 1910 pause("pwait", hz / VM_INACT_SCAN_RATE); 1911 } else { 1912 /* 1913 * No, sleep until the next wakeup or until pages 1914 * need to have their reference stats updated. 1915 */ 1916 if (mtx_sleep(&vmd->vmd_pageout_wanted, 1917 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 1918 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 1919 VM_CNT_INC(v_pdwakeups); 1920 } 1921 1922 /* Prevent spurious wakeups by ensuring that wanted is set. */ 1923 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 1924 1925 /* 1926 * Use the controller to calculate how many pages to free in 1927 * this interval, and scan the inactive queue. If the lowmem 1928 * handlers appear to have freed up some pages, subtract the 1929 * difference from the inactive queue scan target. 1930 */ 1931 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 1932 if (shortage > 0) { 1933 ofree = vmd->vmd_free_count; 1934 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree) 1935 shortage -= min(vmd->vmd_free_count - ofree, 1936 (u_int)shortage); 1937 target_met = vm_pageout_scan_inactive(vmd, shortage, 1938 &addl_shortage); 1939 } else 1940 addl_shortage = 0; 1941 1942 /* 1943 * Scan the active queue. A positive value for shortage 1944 * indicates that we must aggressively deactivate pages to avoid 1945 * a shortfall. 1946 */ 1947 shortage = vm_pageout_active_target(vmd) + addl_shortage; 1948 vm_pageout_scan_active(vmd, shortage); 1949 } 1950 } 1951 1952 /* 1953 * vm_pageout_init initialises basic pageout daemon settings. 1954 */ 1955 static void 1956 vm_pageout_init_domain(int domain) 1957 { 1958 struct vm_domain *vmd; 1959 struct sysctl_oid *oid; 1960 1961 vmd = VM_DOMAIN(domain); 1962 vmd->vmd_interrupt_free_min = 2; 1963 1964 /* 1965 * v_free_reserved needs to include enough for the largest 1966 * swap pager structures plus enough for any pv_entry structs 1967 * when paging. 1968 */ 1969 if (vmd->vmd_page_count > 1024) 1970 vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200; 1971 else 1972 vmd->vmd_free_min = 4; 1973 vmd->vmd_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE + 1974 vmd->vmd_interrupt_free_min; 1975 vmd->vmd_free_reserved = vm_pageout_page_count + 1976 vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768); 1977 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 1978 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 1979 vmd->vmd_free_min += vmd->vmd_free_reserved; 1980 vmd->vmd_free_severe += vmd->vmd_free_reserved; 1981 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 1982 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 1983 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 1984 1985 /* 1986 * Set the default wakeup threshold to be 10% below the paging 1987 * target. This keeps the steady state out of shortfall. 1988 */ 1989 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 1990 1991 /* 1992 * Target amount of memory to move out of the laundry queue during a 1993 * background laundering. This is proportional to the amount of system 1994 * memory. 1995 */ 1996 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 1997 vmd->vmd_free_min) / 10; 1998 1999 /* Initialize the pageout daemon pid controller. */ 2000 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 2001 vmd->vmd_free_target, PIDCTRL_BOUND, 2002 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 2003 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 2004 "pidctrl", CTLFLAG_RD, NULL, ""); 2005 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 2006 } 2007 2008 static void 2009 vm_pageout_init(void) 2010 { 2011 u_int freecount; 2012 int i; 2013 2014 /* 2015 * Initialize some paging parameters. 2016 */ 2017 if (vm_cnt.v_page_count < 2000) 2018 vm_pageout_page_count = 8; 2019 2020 freecount = 0; 2021 for (i = 0; i < vm_ndomains; i++) { 2022 struct vm_domain *vmd; 2023 2024 vm_pageout_init_domain(i); 2025 vmd = VM_DOMAIN(i); 2026 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 2027 vm_cnt.v_free_target += vmd->vmd_free_target; 2028 vm_cnt.v_free_min += vmd->vmd_free_min; 2029 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 2030 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 2031 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 2032 vm_cnt.v_free_severe += vmd->vmd_free_severe; 2033 freecount += vmd->vmd_free_count; 2034 } 2035 2036 /* 2037 * Set interval in seconds for active scan. We want to visit each 2038 * page at least once every ten minutes. This is to prevent worst 2039 * case paging behaviors with stale active LRU. 2040 */ 2041 if (vm_pageout_update_period == 0) 2042 vm_pageout_update_period = 600; 2043 2044 if (vm_page_max_wired == 0) 2045 vm_page_max_wired = freecount / 3; 2046 } 2047 2048 /* 2049 * vm_pageout is the high level pageout daemon. 2050 */ 2051 static void 2052 vm_pageout(void) 2053 { 2054 struct proc *p; 2055 struct thread *td; 2056 int error, first, i; 2057 2058 p = curproc; 2059 td = curthread; 2060 2061 swap_pager_swap_init(); 2062 for (first = -1, i = 0; i < vm_ndomains; i++) { 2063 if (VM_DOMAIN_EMPTY(i)) { 2064 if (bootverbose) 2065 printf("domain %d empty; skipping pageout\n", 2066 i); 2067 continue; 2068 } 2069 if (first == -1) 2070 first = i; 2071 else { 2072 error = kthread_add(vm_pageout_worker, 2073 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i); 2074 if (error != 0) 2075 panic("starting pageout for domain %d: %d\n", 2076 i, error); 2077 } 2078 error = kthread_add(vm_pageout_laundry_worker, 2079 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i); 2080 if (error != 0) 2081 panic("starting laundry for domain %d: %d", i, error); 2082 } 2083 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma"); 2084 if (error != 0) 2085 panic("starting uma_reclaim helper, error %d\n", error); 2086 2087 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first); 2088 vm_pageout_worker((void *)(uintptr_t)first); 2089 } 2090 2091 /* 2092 * Perform an advisory wakeup of the page daemon. 2093 */ 2094 void 2095 pagedaemon_wakeup(int domain) 2096 { 2097 struct vm_domain *vmd; 2098 2099 vmd = VM_DOMAIN(domain); 2100 vm_domain_pageout_assert_unlocked(vmd); 2101 if (curproc == pageproc) 2102 return; 2103 2104 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 2105 vm_domain_pageout_lock(vmd); 2106 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2107 wakeup(&vmd->vmd_pageout_wanted); 2108 vm_domain_pageout_unlock(vmd); 2109 } 2110 } 2111