xref: /freebsd/sys/vm/vm_pageout.c (revision d96700a6da2afa88607fbd7405ade439424d10d9)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_vm.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/lock.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/mount.h>
90 #include <sys/racct.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sched.h>
93 #include <sys/sdt.h>
94 #include <sys/signalvar.h>
95 #include <sys/smp.h>
96 #include <sys/time.h>
97 #include <sys/vnode.h>
98 #include <sys/vmmeter.h>
99 #include <sys/rwlock.h>
100 #include <sys/sx.h>
101 #include <sys/sysctl.h>
102 
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_phys.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114 
115 /*
116  * System initialization
117  */
118 
119 /* the kernel process "vm_pageout"*/
120 static void vm_pageout(void);
121 static void vm_pageout_init(void);
122 static int vm_pageout_clean(vm_page_t m);
123 static int vm_pageout_cluster(vm_page_t m);
124 static void vm_pageout_scan(struct vm_domain *vmd, int pass);
125 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
126     int starting_page_shortage);
127 
128 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
129     NULL);
130 
131 struct proc *pageproc;
132 
133 static struct kproc_desc page_kp = {
134 	"pagedaemon",
135 	vm_pageout,
136 	&pageproc
137 };
138 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
139     &page_kp);
140 
141 SDT_PROVIDER_DEFINE(vm);
142 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
143 
144 #if !defined(NO_SWAPPING)
145 /* the kernel process "vm_daemon"*/
146 static void vm_daemon(void);
147 static struct	proc *vmproc;
148 
149 static struct kproc_desc vm_kp = {
150 	"vmdaemon",
151 	vm_daemon,
152 	&vmproc
153 };
154 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
155 #endif
156 
157 
158 int vm_pageout_deficit;		/* Estimated number of pages deficit */
159 u_int vm_pageout_wakeup_thresh;
160 static int vm_pageout_oom_seq = 12;
161 bool vm_pageout_wanted;		/* Event on which pageout daemon sleeps */
162 bool vm_pages_needed;		/* Are threads waiting for free pages? */
163 
164 #if !defined(NO_SWAPPING)
165 static int vm_pageout_req_swapout;	/* XXX */
166 static int vm_daemon_needed;
167 static struct mtx vm_daemon_mtx;
168 /* Allow for use by vm_pageout before vm_daemon is initialized. */
169 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
170 #endif
171 static int vm_max_launder = 32;
172 static int vm_pageout_update_period;
173 static int defer_swap_pageouts;
174 static int disable_swap_pageouts;
175 static int lowmem_period = 10;
176 static time_t lowmem_uptime;
177 
178 #if defined(NO_SWAPPING)
179 static int vm_swap_enabled = 0;
180 static int vm_swap_idle_enabled = 0;
181 #else
182 static int vm_swap_enabled = 1;
183 static int vm_swap_idle_enabled = 0;
184 #endif
185 
186 static int vm_panic_on_oom = 0;
187 
188 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
189 	CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
190 	"panic on out of memory instead of killing the largest process");
191 
192 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
193 	CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
194 	"free page threshold for waking up the pageout daemon");
195 
196 SYSCTL_INT(_vm, OID_AUTO, max_launder,
197 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
198 
199 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
200 	CTLFLAG_RW, &vm_pageout_update_period, 0,
201 	"Maximum active LRU update period");
202 
203 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
204 	"Low memory callback period");
205 
206 #if defined(NO_SWAPPING)
207 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
208 	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
209 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
210 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
211 #else
212 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
213 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
214 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
215 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
216 #endif
217 
218 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
219 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
220 
221 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
222 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
223 
224 static int pageout_lock_miss;
225 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
226 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
227 
228 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
229 	CTLFLAG_RW, &vm_pageout_oom_seq, 0,
230 	"back-to-back calls to oom detector to start OOM");
231 
232 #define VM_PAGEOUT_PAGE_COUNT 16
233 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
234 
235 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
236 SYSCTL_INT(_vm, OID_AUTO, max_wired,
237 	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
238 
239 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
240 #if !defined(NO_SWAPPING)
241 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
242 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
243 static void vm_req_vmdaemon(int req);
244 #endif
245 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
246 
247 /*
248  * Initialize a dummy page for marking the caller's place in the specified
249  * paging queue.  In principle, this function only needs to set the flag
250  * PG_MARKER.  Nonetheless, it write busies and initializes the hold count
251  * to one as safety precautions.
252  */
253 static void
254 vm_pageout_init_marker(vm_page_t marker, u_short queue)
255 {
256 
257 	bzero(marker, sizeof(*marker));
258 	marker->flags = PG_MARKER;
259 	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
260 	marker->queue = queue;
261 	marker->hold_count = 1;
262 }
263 
264 /*
265  * vm_pageout_fallback_object_lock:
266  *
267  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
268  * known to have failed and page queue must be either PQ_ACTIVE or
269  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queue
270  * while locking the vm object.  Use marker page to detect page queue
271  * changes and maintain notion of next page on page queue.  Return
272  * TRUE if no changes were detected, FALSE otherwise.  vm object is
273  * locked on return.
274  *
275  * This function depends on both the lock portion of struct vm_object
276  * and normal struct vm_page being type stable.
277  */
278 static boolean_t
279 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
280 {
281 	struct vm_page marker;
282 	struct vm_pagequeue *pq;
283 	boolean_t unchanged;
284 	u_short queue;
285 	vm_object_t object;
286 
287 	queue = m->queue;
288 	vm_pageout_init_marker(&marker, queue);
289 	pq = vm_page_pagequeue(m);
290 	object = m->object;
291 
292 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
293 	vm_pagequeue_unlock(pq);
294 	vm_page_unlock(m);
295 	VM_OBJECT_WLOCK(object);
296 	vm_page_lock(m);
297 	vm_pagequeue_lock(pq);
298 
299 	/*
300 	 * The page's object might have changed, and/or the page might
301 	 * have moved from its original position in the queue.  If the
302 	 * page's object has changed, then the caller should abandon
303 	 * processing the page because the wrong object lock was
304 	 * acquired.  Use the marker's plinks.q, not the page's, to
305 	 * determine if the page has been moved.  The state of the
306 	 * page's plinks.q can be indeterminate; whereas, the marker's
307 	 * plinks.q must be valid.
308 	 */
309 	*next = TAILQ_NEXT(&marker, plinks.q);
310 	unchanged = m->object == object &&
311 	    m == TAILQ_PREV(&marker, pglist, plinks.q);
312 	KASSERT(!unchanged || m->queue == queue,
313 	    ("page %p queue %d %d", m, queue, m->queue));
314 	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
315 	return (unchanged);
316 }
317 
318 /*
319  * Lock the page while holding the page queue lock.  Use marker page
320  * to detect page queue changes and maintain notion of next page on
321  * page queue.  Return TRUE if no changes were detected, FALSE
322  * otherwise.  The page is locked on return. The page queue lock might
323  * be dropped and reacquired.
324  *
325  * This function depends on normal struct vm_page being type stable.
326  */
327 static boolean_t
328 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
329 {
330 	struct vm_page marker;
331 	struct vm_pagequeue *pq;
332 	boolean_t unchanged;
333 	u_short queue;
334 
335 	vm_page_lock_assert(m, MA_NOTOWNED);
336 	if (vm_page_trylock(m))
337 		return (TRUE);
338 
339 	queue = m->queue;
340 	vm_pageout_init_marker(&marker, queue);
341 	pq = vm_page_pagequeue(m);
342 
343 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
344 	vm_pagequeue_unlock(pq);
345 	vm_page_lock(m);
346 	vm_pagequeue_lock(pq);
347 
348 	/* Page queue might have changed. */
349 	*next = TAILQ_NEXT(&marker, plinks.q);
350 	unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q);
351 	KASSERT(!unchanged || m->queue == queue,
352 	    ("page %p queue %d %d", m, queue, m->queue));
353 	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
354 	return (unchanged);
355 }
356 
357 /*
358  * Scan for pages at adjacent offsets within the given page's object that are
359  * eligible for laundering, form a cluster of these pages and the given page,
360  * and launder that cluster.
361  */
362 static int
363 vm_pageout_cluster(vm_page_t m)
364 {
365 	vm_object_t object;
366 	vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
367 	vm_pindex_t pindex;
368 	int ib, is, page_base, pageout_count;
369 
370 	vm_page_assert_locked(m);
371 	object = m->object;
372 	VM_OBJECT_ASSERT_WLOCKED(object);
373 	pindex = m->pindex;
374 
375 	/*
376 	 * We can't clean the page if it is busy or held.
377 	 */
378 	vm_page_assert_unbusied(m);
379 	KASSERT(m->hold_count == 0, ("page %p is held", m));
380 	vm_page_unlock(m);
381 
382 	mc[vm_pageout_page_count] = pb = ps = m;
383 	pageout_count = 1;
384 	page_base = vm_pageout_page_count;
385 	ib = 1;
386 	is = 1;
387 
388 	/*
389 	 * We can cluster only if the page is not clean, busy, or held, and
390 	 * the page is inactive.
391 	 *
392 	 * During heavy mmap/modification loads the pageout
393 	 * daemon can really fragment the underlying file
394 	 * due to flushing pages out of order and not trying to
395 	 * align the clusters (which leaves sporadic out-of-order
396 	 * holes).  To solve this problem we do the reverse scan
397 	 * first and attempt to align our cluster, then do a
398 	 * forward scan if room remains.
399 	 */
400 more:
401 	while (ib != 0 && pageout_count < vm_pageout_page_count) {
402 		if (ib > pindex) {
403 			ib = 0;
404 			break;
405 		}
406 		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
407 			ib = 0;
408 			break;
409 		}
410 		vm_page_test_dirty(p);
411 		if (p->dirty == 0) {
412 			ib = 0;
413 			break;
414 		}
415 		vm_page_lock(p);
416 		if (p->queue != PQ_INACTIVE ||
417 		    p->hold_count != 0) {	/* may be undergoing I/O */
418 			vm_page_unlock(p);
419 			ib = 0;
420 			break;
421 		}
422 		vm_page_unlock(p);
423 		mc[--page_base] = pb = p;
424 		++pageout_count;
425 		++ib;
426 
427 		/*
428 		 * We are at an alignment boundary.  Stop here, and switch
429 		 * directions.  Do not clear ib.
430 		 */
431 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
432 			break;
433 	}
434 	while (pageout_count < vm_pageout_page_count &&
435 	    pindex + is < object->size) {
436 		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
437 			break;
438 		vm_page_test_dirty(p);
439 		if (p->dirty == 0)
440 			break;
441 		vm_page_lock(p);
442 		if (p->queue != PQ_INACTIVE ||
443 		    p->hold_count != 0) {	/* may be undergoing I/O */
444 			vm_page_unlock(p);
445 			break;
446 		}
447 		vm_page_unlock(p);
448 		mc[page_base + pageout_count] = ps = p;
449 		++pageout_count;
450 		++is;
451 	}
452 
453 	/*
454 	 * If we exhausted our forward scan, continue with the reverse scan
455 	 * when possible, even past an alignment boundary.  This catches
456 	 * boundary conditions.
457 	 */
458 	if (ib != 0 && pageout_count < vm_pageout_page_count)
459 		goto more;
460 
461 	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
462 	    NULL));
463 }
464 
465 /*
466  * vm_pageout_flush() - launder the given pages
467  *
468  *	The given pages are laundered.  Note that we setup for the start of
469  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
470  *	reference count all in here rather then in the parent.  If we want
471  *	the parent to do more sophisticated things we may have to change
472  *	the ordering.
473  *
474  *	Returned runlen is the count of pages between mreq and first
475  *	page after mreq with status VM_PAGER_AGAIN.
476  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
477  *	for any page in runlen set.
478  */
479 int
480 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
481     boolean_t *eio)
482 {
483 	vm_object_t object = mc[0]->object;
484 	int pageout_status[count];
485 	int numpagedout = 0;
486 	int i, runlen;
487 
488 	VM_OBJECT_ASSERT_WLOCKED(object);
489 
490 	/*
491 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
492 	 * mark the pages read-only.
493 	 *
494 	 * We do not have to fixup the clean/dirty bits here... we can
495 	 * allow the pager to do it after the I/O completes.
496 	 *
497 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
498 	 * edge case with file fragments.
499 	 */
500 	for (i = 0; i < count; i++) {
501 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
502 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
503 			mc[i], i, count));
504 		vm_page_sbusy(mc[i]);
505 		pmap_remove_write(mc[i]);
506 	}
507 	vm_object_pip_add(object, count);
508 
509 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
510 
511 	runlen = count - mreq;
512 	if (eio != NULL)
513 		*eio = FALSE;
514 	for (i = 0; i < count; i++) {
515 		vm_page_t mt = mc[i];
516 
517 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
518 		    !pmap_page_is_write_mapped(mt),
519 		    ("vm_pageout_flush: page %p is not write protected", mt));
520 		switch (pageout_status[i]) {
521 		case VM_PAGER_OK:
522 		case VM_PAGER_PEND:
523 			numpagedout++;
524 			break;
525 		case VM_PAGER_BAD:
526 			/*
527 			 * Page outside of range of object. Right now we
528 			 * essentially lose the changes by pretending it
529 			 * worked.
530 			 */
531 			vm_page_undirty(mt);
532 			break;
533 		case VM_PAGER_ERROR:
534 		case VM_PAGER_FAIL:
535 			/*
536 			 * If page couldn't be paged out, then reactivate the
537 			 * page so it doesn't clog the inactive list.  (We
538 			 * will try paging out it again later).
539 			 */
540 			vm_page_lock(mt);
541 			vm_page_activate(mt);
542 			vm_page_unlock(mt);
543 			if (eio != NULL && i >= mreq && i - mreq < runlen)
544 				*eio = TRUE;
545 			break;
546 		case VM_PAGER_AGAIN:
547 			if (i >= mreq && i - mreq < runlen)
548 				runlen = i - mreq;
549 			break;
550 		}
551 
552 		/*
553 		 * If the operation is still going, leave the page busy to
554 		 * block all other accesses. Also, leave the paging in
555 		 * progress indicator set so that we don't attempt an object
556 		 * collapse.
557 		 */
558 		if (pageout_status[i] != VM_PAGER_PEND) {
559 			vm_object_pip_wakeup(object);
560 			vm_page_sunbusy(mt);
561 		}
562 	}
563 	if (prunlen != NULL)
564 		*prunlen = runlen;
565 	return (numpagedout);
566 }
567 
568 #if !defined(NO_SWAPPING)
569 /*
570  *	vm_pageout_object_deactivate_pages
571  *
572  *	Deactivate enough pages to satisfy the inactive target
573  *	requirements.
574  *
575  *	The object and map must be locked.
576  */
577 static void
578 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
579     long desired)
580 {
581 	vm_object_t backing_object, object;
582 	vm_page_t p;
583 	int act_delta, remove_mode;
584 
585 	VM_OBJECT_ASSERT_LOCKED(first_object);
586 	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
587 		return;
588 	for (object = first_object;; object = backing_object) {
589 		if (pmap_resident_count(pmap) <= desired)
590 			goto unlock_return;
591 		VM_OBJECT_ASSERT_LOCKED(object);
592 		if ((object->flags & OBJ_UNMANAGED) != 0 ||
593 		    object->paging_in_progress != 0)
594 			goto unlock_return;
595 
596 		remove_mode = 0;
597 		if (object->shadow_count > 1)
598 			remove_mode = 1;
599 		/*
600 		 * Scan the object's entire memory queue.
601 		 */
602 		TAILQ_FOREACH(p, &object->memq, listq) {
603 			if (pmap_resident_count(pmap) <= desired)
604 				goto unlock_return;
605 			if (vm_page_busied(p))
606 				continue;
607 			PCPU_INC(cnt.v_pdpages);
608 			vm_page_lock(p);
609 			if (p->wire_count != 0 || p->hold_count != 0 ||
610 			    !pmap_page_exists_quick(pmap, p)) {
611 				vm_page_unlock(p);
612 				continue;
613 			}
614 			act_delta = pmap_ts_referenced(p);
615 			if ((p->aflags & PGA_REFERENCED) != 0) {
616 				if (act_delta == 0)
617 					act_delta = 1;
618 				vm_page_aflag_clear(p, PGA_REFERENCED);
619 			}
620 			if (p->queue != PQ_ACTIVE && act_delta != 0) {
621 				vm_page_activate(p);
622 				p->act_count += act_delta;
623 			} else if (p->queue == PQ_ACTIVE) {
624 				if (act_delta == 0) {
625 					p->act_count -= min(p->act_count,
626 					    ACT_DECLINE);
627 					if (!remove_mode && p->act_count == 0) {
628 						pmap_remove_all(p);
629 						vm_page_deactivate(p);
630 					} else
631 						vm_page_requeue(p);
632 				} else {
633 					vm_page_activate(p);
634 					if (p->act_count < ACT_MAX -
635 					    ACT_ADVANCE)
636 						p->act_count += ACT_ADVANCE;
637 					vm_page_requeue(p);
638 				}
639 			} else if (p->queue == PQ_INACTIVE)
640 				pmap_remove_all(p);
641 			vm_page_unlock(p);
642 		}
643 		if ((backing_object = object->backing_object) == NULL)
644 			goto unlock_return;
645 		VM_OBJECT_RLOCK(backing_object);
646 		if (object != first_object)
647 			VM_OBJECT_RUNLOCK(object);
648 	}
649 unlock_return:
650 	if (object != first_object)
651 		VM_OBJECT_RUNLOCK(object);
652 }
653 
654 /*
655  * deactivate some number of pages in a map, try to do it fairly, but
656  * that is really hard to do.
657  */
658 static void
659 vm_pageout_map_deactivate_pages(map, desired)
660 	vm_map_t map;
661 	long desired;
662 {
663 	vm_map_entry_t tmpe;
664 	vm_object_t obj, bigobj;
665 	int nothingwired;
666 
667 	if (!vm_map_trylock(map))
668 		return;
669 
670 	bigobj = NULL;
671 	nothingwired = TRUE;
672 
673 	/*
674 	 * first, search out the biggest object, and try to free pages from
675 	 * that.
676 	 */
677 	tmpe = map->header.next;
678 	while (tmpe != &map->header) {
679 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
680 			obj = tmpe->object.vm_object;
681 			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
682 				if (obj->shadow_count <= 1 &&
683 				    (bigobj == NULL ||
684 				     bigobj->resident_page_count < obj->resident_page_count)) {
685 					if (bigobj != NULL)
686 						VM_OBJECT_RUNLOCK(bigobj);
687 					bigobj = obj;
688 				} else
689 					VM_OBJECT_RUNLOCK(obj);
690 			}
691 		}
692 		if (tmpe->wired_count > 0)
693 			nothingwired = FALSE;
694 		tmpe = tmpe->next;
695 	}
696 
697 	if (bigobj != NULL) {
698 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
699 		VM_OBJECT_RUNLOCK(bigobj);
700 	}
701 	/*
702 	 * Next, hunt around for other pages to deactivate.  We actually
703 	 * do this search sort of wrong -- .text first is not the best idea.
704 	 */
705 	tmpe = map->header.next;
706 	while (tmpe != &map->header) {
707 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
708 			break;
709 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
710 			obj = tmpe->object.vm_object;
711 			if (obj != NULL) {
712 				VM_OBJECT_RLOCK(obj);
713 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
714 				VM_OBJECT_RUNLOCK(obj);
715 			}
716 		}
717 		tmpe = tmpe->next;
718 	}
719 
720 	/*
721 	 * Remove all mappings if a process is swapped out, this will free page
722 	 * table pages.
723 	 */
724 	if (desired == 0 && nothingwired) {
725 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
726 		    vm_map_max(map));
727 	}
728 
729 	vm_map_unlock(map);
730 }
731 #endif		/* !defined(NO_SWAPPING) */
732 
733 /*
734  * Attempt to acquire all of the necessary locks to launder a page and
735  * then call through the clustering layer to PUTPAGES.  Wait a short
736  * time for a vnode lock.
737  *
738  * Requires the page and object lock on entry, releases both before return.
739  * Returns 0 on success and an errno otherwise.
740  */
741 static int
742 vm_pageout_clean(vm_page_t m)
743 {
744 	struct vnode *vp;
745 	struct mount *mp;
746 	vm_object_t object;
747 	vm_pindex_t pindex;
748 	int error, lockmode;
749 
750 	vm_page_assert_locked(m);
751 	object = m->object;
752 	VM_OBJECT_ASSERT_WLOCKED(object);
753 	error = 0;
754 	vp = NULL;
755 	mp = NULL;
756 
757 	/*
758 	 * The object is already known NOT to be dead.   It
759 	 * is possible for the vget() to block the whole
760 	 * pageout daemon, but the new low-memory handling
761 	 * code should prevent it.
762 	 *
763 	 * We can't wait forever for the vnode lock, we might
764 	 * deadlock due to a vn_read() getting stuck in
765 	 * vm_wait while holding this vnode.  We skip the
766 	 * vnode if we can't get it in a reasonable amount
767 	 * of time.
768 	 */
769 	if (object->type == OBJT_VNODE) {
770 		vm_page_unlock(m);
771 		vp = object->handle;
772 		if (vp->v_type == VREG &&
773 		    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
774 			mp = NULL;
775 			error = EDEADLK;
776 			goto unlock_all;
777 		}
778 		KASSERT(mp != NULL,
779 		    ("vp %p with NULL v_mount", vp));
780 		vm_object_reference_locked(object);
781 		pindex = m->pindex;
782 		VM_OBJECT_WUNLOCK(object);
783 		lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
784 		    LK_SHARED : LK_EXCLUSIVE;
785 		if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
786 			vp = NULL;
787 			error = EDEADLK;
788 			goto unlock_mp;
789 		}
790 		VM_OBJECT_WLOCK(object);
791 		vm_page_lock(m);
792 		/*
793 		 * While the object and page were unlocked, the page
794 		 * may have been:
795 		 * (1) moved to a different queue,
796 		 * (2) reallocated to a different object,
797 		 * (3) reallocated to a different offset, or
798 		 * (4) cleaned.
799 		 */
800 		if (m->queue != PQ_INACTIVE || m->object != object ||
801 		    m->pindex != pindex || m->dirty == 0) {
802 			vm_page_unlock(m);
803 			error = ENXIO;
804 			goto unlock_all;
805 		}
806 
807 		/*
808 		 * The page may have been busied or held while the object
809 		 * and page locks were released.
810 		 */
811 		if (vm_page_busied(m) || m->hold_count != 0) {
812 			vm_page_unlock(m);
813 			error = EBUSY;
814 			goto unlock_all;
815 		}
816 	}
817 
818 	/*
819 	 * If a page is dirty, then it is either being washed
820 	 * (but not yet cleaned) or it is still in the
821 	 * laundry.  If it is still in the laundry, then we
822 	 * start the cleaning operation.
823 	 */
824 	if (vm_pageout_cluster(m) == 0)
825 		error = EIO;
826 
827 unlock_all:
828 	VM_OBJECT_WUNLOCK(object);
829 
830 unlock_mp:
831 	vm_page_lock_assert(m, MA_NOTOWNED);
832 	if (mp != NULL) {
833 		if (vp != NULL)
834 			vput(vp);
835 		vm_object_deallocate(object);
836 		vn_finished_write(mp);
837 	}
838 
839 	return (error);
840 }
841 
842 /*
843  *	vm_pageout_scan does the dirty work for the pageout daemon.
844  *
845  *	pass 0 - Update active LRU/deactivate pages
846  *	pass 1 - Free inactive pages
847  *	pass 2 - Launder dirty pages
848  */
849 static void
850 vm_pageout_scan(struct vm_domain *vmd, int pass)
851 {
852 	vm_page_t m, next;
853 	struct vm_pagequeue *pq;
854 	vm_object_t object;
855 	long min_scan;
856 	int act_delta, addl_page_shortage, deficit, error, maxlaunder, maxscan;
857 	int page_shortage, scan_tick, scanned, starting_page_shortage;
858 	int vnodes_skipped;
859 	boolean_t pageout_ok, queue_locked;
860 
861 	/*
862 	 * If we need to reclaim memory ask kernel caches to return
863 	 * some.  We rate limit to avoid thrashing.
864 	 */
865 	if (vmd == &vm_dom[0] && pass > 0 &&
866 	    (time_uptime - lowmem_uptime) >= lowmem_period) {
867 		/*
868 		 * Decrease registered cache sizes.
869 		 */
870 		SDT_PROBE0(vm, , , vm__lowmem_scan);
871 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
872 		/*
873 		 * We do this explicitly after the caches have been
874 		 * drained above.
875 		 */
876 		uma_reclaim();
877 		lowmem_uptime = time_uptime;
878 	}
879 
880 	/*
881 	 * The addl_page_shortage is the number of temporarily
882 	 * stuck pages in the inactive queue.  In other words, the
883 	 * number of pages from the inactive count that should be
884 	 * discounted in setting the target for the active queue scan.
885 	 */
886 	addl_page_shortage = 0;
887 
888 	/*
889 	 * Calculate the number of pages that we want to free.
890 	 */
891 	if (pass > 0) {
892 		deficit = atomic_readandclear_int(&vm_pageout_deficit);
893 		page_shortage = vm_paging_target() + deficit;
894 	} else
895 		page_shortage = deficit = 0;
896 	starting_page_shortage = page_shortage;
897 
898 	/*
899 	 * maxlaunder limits the number of dirty pages we flush per scan.
900 	 * For most systems a smaller value (16 or 32) is more robust under
901 	 * extreme memory and disk pressure because any unnecessary writes
902 	 * to disk can result in extreme performance degredation.  However,
903 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
904 	 * used) will die horribly with limited laundering.  If the pageout
905 	 * daemon cannot clean enough pages in the first pass, we let it go
906 	 * all out in succeeding passes.
907 	 */
908 	if ((maxlaunder = vm_max_launder) <= 1)
909 		maxlaunder = 1;
910 	if (pass > 1)
911 		maxlaunder = 10000;
912 
913 	vnodes_skipped = 0;
914 
915 	/*
916 	 * Start scanning the inactive queue for pages that we can free.  The
917 	 * scan will stop when we reach the target or we have scanned the
918 	 * entire queue.  (Note that m->act_count is not used to make
919 	 * decisions for the inactive queue, only for the active queue.)
920 	 */
921 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
922 	maxscan = pq->pq_cnt;
923 	vm_pagequeue_lock(pq);
924 	queue_locked = TRUE;
925 	for (m = TAILQ_FIRST(&pq->pq_pl);
926 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
927 	     m = next) {
928 		vm_pagequeue_assert_locked(pq);
929 		KASSERT(queue_locked, ("unlocked inactive queue"));
930 		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
931 
932 		PCPU_INC(cnt.v_pdpages);
933 		next = TAILQ_NEXT(m, plinks.q);
934 
935 		/*
936 		 * skip marker pages
937 		 */
938 		if (m->flags & PG_MARKER)
939 			continue;
940 
941 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
942 		    ("Fictitious page %p cannot be in inactive queue", m));
943 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
944 		    ("Unmanaged page %p cannot be in inactive queue", m));
945 
946 		/*
947 		 * The page or object lock acquisitions fail if the
948 		 * page was removed from the queue or moved to a
949 		 * different position within the queue.  In either
950 		 * case, addl_page_shortage should not be incremented.
951 		 */
952 		if (!vm_pageout_page_lock(m, &next))
953 			goto unlock_page;
954 		else if (m->hold_count != 0) {
955 			/*
956 			 * Held pages are essentially stuck in the
957 			 * queue.  So, they ought to be discounted
958 			 * from the inactive count.  See the
959 			 * calculation of the page_shortage for the
960 			 * loop over the active queue below.
961 			 */
962 			addl_page_shortage++;
963 			goto unlock_page;
964 		}
965 		object = m->object;
966 		if (!VM_OBJECT_TRYWLOCK(object)) {
967 			if (!vm_pageout_fallback_object_lock(m, &next))
968 				goto unlock_object;
969 			else if (m->hold_count != 0) {
970 				addl_page_shortage++;
971 				goto unlock_object;
972 			}
973 		}
974 		if (vm_page_busied(m)) {
975 			/*
976 			 * Don't mess with busy pages.  Leave them at
977 			 * the front of the queue.  Most likely, they
978 			 * are being paged out and will leave the
979 			 * queue shortly after the scan finishes.  So,
980 			 * they ought to be discounted from the
981 			 * inactive count.
982 			 */
983 			addl_page_shortage++;
984 unlock_object:
985 			VM_OBJECT_WUNLOCK(object);
986 unlock_page:
987 			vm_page_unlock(m);
988 			continue;
989 		}
990 		KASSERT(m->hold_count == 0, ("Held page %p", m));
991 
992 		/*
993 		 * We unlock the inactive page queue, invalidating the
994 		 * 'next' pointer.  Use our marker to remember our
995 		 * place.
996 		 */
997 		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
998 		vm_pagequeue_unlock(pq);
999 		queue_locked = FALSE;
1000 
1001 		/*
1002 		 * Invalid pages can be easily freed. They cannot be
1003 		 * mapped, vm_page_free() asserts this.
1004 		 */
1005 		if (m->valid == 0)
1006 			goto free_page;
1007 
1008 		/*
1009 		 * If the page has been referenced and the object is not dead,
1010 		 * reactivate or requeue the page depending on whether the
1011 		 * object is mapped.
1012 		 */
1013 		if ((m->aflags & PGA_REFERENCED) != 0) {
1014 			vm_page_aflag_clear(m, PGA_REFERENCED);
1015 			act_delta = 1;
1016 		} else
1017 			act_delta = 0;
1018 		if (object->ref_count != 0) {
1019 			act_delta += pmap_ts_referenced(m);
1020 		} else {
1021 			KASSERT(!pmap_page_is_mapped(m),
1022 			    ("vm_pageout_scan: page %p is mapped", m));
1023 		}
1024 		if (act_delta != 0) {
1025 			if (object->ref_count != 0) {
1026 				vm_page_activate(m);
1027 
1028 				/*
1029 				 * Increase the activation count if the page
1030 				 * was referenced while in the inactive queue.
1031 				 * This makes it less likely that the page will
1032 				 * be returned prematurely to the inactive
1033 				 * queue.
1034  				 */
1035 				m->act_count += act_delta + ACT_ADVANCE;
1036 				goto drop_page;
1037 			} else if ((object->flags & OBJ_DEAD) == 0)
1038 				goto requeue_page;
1039 		}
1040 
1041 		/*
1042 		 * If the page appears to be clean at the machine-independent
1043 		 * layer, then remove all of its mappings from the pmap in
1044 		 * anticipation of freeing it.  If, however, any of the page's
1045 		 * mappings allow write access, then the page may still be
1046 		 * modified until the last of those mappings are removed.
1047 		 */
1048 		if (object->ref_count != 0) {
1049 			vm_page_test_dirty(m);
1050 			if (m->dirty == 0)
1051 				pmap_remove_all(m);
1052 		}
1053 
1054 		if (m->dirty == 0) {
1055 			/*
1056 			 * Clean pages can be freed.
1057 			 */
1058 free_page:
1059 			vm_page_free(m);
1060 			PCPU_INC(cnt.v_dfree);
1061 			--page_shortage;
1062 		} else if ((object->flags & OBJ_DEAD) != 0) {
1063 			/*
1064 			 * Leave dirty pages from dead objects at the front of
1065 			 * the queue.  They are being paged out and freed by
1066 			 * the thread that destroyed the object.  They will
1067 			 * leave the queue shortly after the scan finishes, so
1068 			 * they should be discounted from the inactive count.
1069 			 */
1070 			addl_page_shortage++;
1071 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1072 			/*
1073 			 * Dirty pages need to be paged out, but flushing
1074 			 * a page is extremely expensive versus freeing
1075 			 * a clean page.  Rather then artificially limiting
1076 			 * the number of pages we can flush, we instead give
1077 			 * dirty pages extra priority on the inactive queue
1078 			 * by forcing them to be cycled through the queue
1079 			 * twice before being flushed, after which the
1080 			 * (now clean) page will cycle through once more
1081 			 * before being freed.  This significantly extends
1082 			 * the thrash point for a heavily loaded machine.
1083 			 */
1084 			m->flags |= PG_WINATCFLS;
1085 requeue_page:
1086 			vm_pagequeue_lock(pq);
1087 			queue_locked = TRUE;
1088 			vm_page_requeue_locked(m);
1089 		} else if (maxlaunder > 0) {
1090 			/*
1091 			 * We always want to try to flush some dirty pages if
1092 			 * we encounter them, to keep the system stable.
1093 			 * Normally this number is small, but under extreme
1094 			 * pressure where there are insufficient clean pages
1095 			 * on the inactive queue, we may have to go all out.
1096 			 */
1097 
1098 			if (object->type != OBJT_SWAP &&
1099 			    object->type != OBJT_DEFAULT)
1100 				pageout_ok = TRUE;
1101 			else if (disable_swap_pageouts)
1102 				pageout_ok = FALSE;
1103 			else if (defer_swap_pageouts)
1104 				pageout_ok = vm_page_count_min();
1105 			else
1106 				pageout_ok = TRUE;
1107 			if (!pageout_ok)
1108 				goto requeue_page;
1109 			error = vm_pageout_clean(m);
1110 			/*
1111 			 * Decrement page_shortage on success to account for
1112 			 * the (future) cleaned page.  Otherwise we could wind
1113 			 * up laundering or cleaning too many pages.
1114 			 */
1115 			if (error == 0) {
1116 				page_shortage--;
1117 				maxlaunder--;
1118 			} else if (error == EDEADLK) {
1119 				pageout_lock_miss++;
1120 				vnodes_skipped++;
1121 			} else if (error == EBUSY) {
1122 				addl_page_shortage++;
1123 			}
1124 			vm_page_lock_assert(m, MA_NOTOWNED);
1125 			goto relock_queue;
1126 		}
1127 drop_page:
1128 		vm_page_unlock(m);
1129 		VM_OBJECT_WUNLOCK(object);
1130 relock_queue:
1131 		if (!queue_locked) {
1132 			vm_pagequeue_lock(pq);
1133 			queue_locked = TRUE;
1134 		}
1135 		next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1136 		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1137 	}
1138 	vm_pagequeue_unlock(pq);
1139 
1140 #if !defined(NO_SWAPPING)
1141 	/*
1142 	 * Wakeup the swapout daemon if we didn't free the targeted number of
1143 	 * pages.
1144 	 */
1145 	if (vm_swap_enabled && page_shortage > 0)
1146 		vm_req_vmdaemon(VM_SWAP_NORMAL);
1147 #endif
1148 
1149 	/*
1150 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
1151 	 * and we didn't free enough pages.
1152 	 */
1153 	if (vnodes_skipped > 0 && page_shortage > vm_cnt.v_free_target -
1154 	    vm_cnt.v_free_min)
1155 		(void)speedup_syncer();
1156 
1157 	/*
1158 	 * If the inactive queue scan fails repeatedly to meet its
1159 	 * target, kill the largest process.
1160 	 */
1161 	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1162 
1163 	/*
1164 	 * Compute the number of pages we want to try to move from the
1165 	 * active queue to the inactive queue.
1166 	 */
1167 	page_shortage = vm_cnt.v_inactive_target - vm_cnt.v_inactive_count +
1168 	    vm_paging_target() + deficit + addl_page_shortage;
1169 
1170 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1171 	vm_pagequeue_lock(pq);
1172 	maxscan = pq->pq_cnt;
1173 
1174 	/*
1175 	 * If we're just idle polling attempt to visit every
1176 	 * active page within 'update_period' seconds.
1177 	 */
1178 	scan_tick = ticks;
1179 	if (vm_pageout_update_period != 0) {
1180 		min_scan = pq->pq_cnt;
1181 		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1182 		min_scan /= hz * vm_pageout_update_period;
1183 	} else
1184 		min_scan = 0;
1185 	if (min_scan > 0 || (page_shortage > 0 && maxscan > 0))
1186 		vmd->vmd_last_active_scan = scan_tick;
1187 
1188 	/*
1189 	 * Scan the active queue for pages that can be deactivated.  Update
1190 	 * the per-page activity counter and use it to identify deactivation
1191 	 * candidates.  Held pages may be deactivated.
1192 	 */
1193 	for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned <
1194 	    min_scan || (page_shortage > 0 && scanned < maxscan)); m = next,
1195 	    scanned++) {
1196 		KASSERT(m->queue == PQ_ACTIVE,
1197 		    ("vm_pageout_scan: page %p isn't active", m));
1198 		next = TAILQ_NEXT(m, plinks.q);
1199 		if ((m->flags & PG_MARKER) != 0)
1200 			continue;
1201 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1202 		    ("Fictitious page %p cannot be in active queue", m));
1203 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1204 		    ("Unmanaged page %p cannot be in active queue", m));
1205 		if (!vm_pageout_page_lock(m, &next)) {
1206 			vm_page_unlock(m);
1207 			continue;
1208 		}
1209 
1210 		/*
1211 		 * The count for page daemon pages is updated after checking
1212 		 * the page for eligibility.
1213 		 */
1214 		PCPU_INC(cnt.v_pdpages);
1215 
1216 		/*
1217 		 * Check to see "how much" the page has been used.
1218 		 */
1219 		if ((m->aflags & PGA_REFERENCED) != 0) {
1220 			vm_page_aflag_clear(m, PGA_REFERENCED);
1221 			act_delta = 1;
1222 		} else
1223 			act_delta = 0;
1224 
1225 		/*
1226 		 * Perform an unsynchronized object ref count check.  While
1227 		 * the page lock ensures that the page is not reallocated to
1228 		 * another object, in particular, one with unmanaged mappings
1229 		 * that cannot support pmap_ts_referenced(), two races are,
1230 		 * nonetheless, possible:
1231 		 * 1) The count was transitioning to zero, but we saw a non-
1232 		 *    zero value.  pmap_ts_referenced() will return zero
1233 		 *    because the page is not mapped.
1234 		 * 2) The count was transitioning to one, but we saw zero.
1235 		 *    This race delays the detection of a new reference.  At
1236 		 *    worst, we will deactivate and reactivate the page.
1237 		 */
1238 		if (m->object->ref_count != 0)
1239 			act_delta += pmap_ts_referenced(m);
1240 
1241 		/*
1242 		 * Advance or decay the act_count based on recent usage.
1243 		 */
1244 		if (act_delta != 0) {
1245 			m->act_count += ACT_ADVANCE + act_delta;
1246 			if (m->act_count > ACT_MAX)
1247 				m->act_count = ACT_MAX;
1248 		} else
1249 			m->act_count -= min(m->act_count, ACT_DECLINE);
1250 
1251 		/*
1252 		 * Move this page to the tail of the active or inactive
1253 		 * queue depending on usage.
1254 		 */
1255 		if (m->act_count == 0) {
1256 			/* Dequeue to avoid later lock recursion. */
1257 			vm_page_dequeue_locked(m);
1258 			vm_page_deactivate(m);
1259 			page_shortage--;
1260 		} else
1261 			vm_page_requeue_locked(m);
1262 		vm_page_unlock(m);
1263 	}
1264 	vm_pagequeue_unlock(pq);
1265 #if !defined(NO_SWAPPING)
1266 	/*
1267 	 * Idle process swapout -- run once per second when we are reclaiming
1268 	 * pages.
1269 	 */
1270 	if (vm_swap_idle_enabled && pass > 0) {
1271 		static long lsec;
1272 		if (time_second != lsec) {
1273 			vm_req_vmdaemon(VM_SWAP_IDLE);
1274 			lsec = time_second;
1275 		}
1276 	}
1277 #endif
1278 }
1279 
1280 static int vm_pageout_oom_vote;
1281 
1282 /*
1283  * The pagedaemon threads randlomly select one to perform the
1284  * OOM.  Trying to kill processes before all pagedaemons
1285  * failed to reach free target is premature.
1286  */
1287 static void
1288 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1289     int starting_page_shortage)
1290 {
1291 	int old_vote;
1292 
1293 	if (starting_page_shortage <= 0 || starting_page_shortage !=
1294 	    page_shortage)
1295 		vmd->vmd_oom_seq = 0;
1296 	else
1297 		vmd->vmd_oom_seq++;
1298 	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1299 		if (vmd->vmd_oom) {
1300 			vmd->vmd_oom = FALSE;
1301 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1302 		}
1303 		return;
1304 	}
1305 
1306 	/*
1307 	 * Do not follow the call sequence until OOM condition is
1308 	 * cleared.
1309 	 */
1310 	vmd->vmd_oom_seq = 0;
1311 
1312 	if (vmd->vmd_oom)
1313 		return;
1314 
1315 	vmd->vmd_oom = TRUE;
1316 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1317 	if (old_vote != vm_ndomains - 1)
1318 		return;
1319 
1320 	/*
1321 	 * The current pagedaemon thread is the last in the quorum to
1322 	 * start OOM.  Initiate the selection and signaling of the
1323 	 * victim.
1324 	 */
1325 	vm_pageout_oom(VM_OOM_MEM);
1326 
1327 	/*
1328 	 * After one round of OOM terror, recall our vote.  On the
1329 	 * next pass, current pagedaemon would vote again if the low
1330 	 * memory condition is still there, due to vmd_oom being
1331 	 * false.
1332 	 */
1333 	vmd->vmd_oom = FALSE;
1334 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1335 }
1336 
1337 /*
1338  * The OOM killer is the page daemon's action of last resort when
1339  * memory allocation requests have been stalled for a prolonged period
1340  * of time because it cannot reclaim memory.  This function computes
1341  * the approximate number of physical pages that could be reclaimed if
1342  * the specified address space is destroyed.
1343  *
1344  * Private, anonymous memory owned by the address space is the
1345  * principal resource that we expect to recover after an OOM kill.
1346  * Since the physical pages mapped by the address space's COW entries
1347  * are typically shared pages, they are unlikely to be released and so
1348  * they are not counted.
1349  *
1350  * To get to the point where the page daemon runs the OOM killer, its
1351  * efforts to write-back vnode-backed pages may have stalled.  This
1352  * could be caused by a memory allocation deadlock in the write path
1353  * that might be resolved by an OOM kill.  Therefore, physical pages
1354  * belonging to vnode-backed objects are counted, because they might
1355  * be freed without being written out first if the address space holds
1356  * the last reference to an unlinked vnode.
1357  *
1358  * Similarly, physical pages belonging to OBJT_PHYS objects are
1359  * counted because the address space might hold the last reference to
1360  * the object.
1361  */
1362 static long
1363 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1364 {
1365 	vm_map_t map;
1366 	vm_map_entry_t entry;
1367 	vm_object_t obj;
1368 	long res;
1369 
1370 	map = &vmspace->vm_map;
1371 	KASSERT(!map->system_map, ("system map"));
1372 	sx_assert(&map->lock, SA_LOCKED);
1373 	res = 0;
1374 	for (entry = map->header.next; entry != &map->header;
1375 	    entry = entry->next) {
1376 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1377 			continue;
1378 		obj = entry->object.vm_object;
1379 		if (obj == NULL)
1380 			continue;
1381 		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1382 		    obj->ref_count != 1)
1383 			continue;
1384 		switch (obj->type) {
1385 		case OBJT_DEFAULT:
1386 		case OBJT_SWAP:
1387 		case OBJT_PHYS:
1388 		case OBJT_VNODE:
1389 			res += obj->resident_page_count;
1390 			break;
1391 		}
1392 	}
1393 	return (res);
1394 }
1395 
1396 void
1397 vm_pageout_oom(int shortage)
1398 {
1399 	struct proc *p, *bigproc;
1400 	vm_offset_t size, bigsize;
1401 	struct thread *td;
1402 	struct vmspace *vm;
1403 
1404 	/*
1405 	 * We keep the process bigproc locked once we find it to keep anyone
1406 	 * from messing with it; however, there is a possibility of
1407 	 * deadlock if process B is bigproc and one of it's child processes
1408 	 * attempts to propagate a signal to B while we are waiting for A's
1409 	 * lock while walking this list.  To avoid this, we don't block on
1410 	 * the process lock but just skip a process if it is already locked.
1411 	 */
1412 	bigproc = NULL;
1413 	bigsize = 0;
1414 	sx_slock(&allproc_lock);
1415 	FOREACH_PROC_IN_SYSTEM(p) {
1416 		int breakout;
1417 
1418 		PROC_LOCK(p);
1419 
1420 		/*
1421 		 * If this is a system, protected or killed process, skip it.
1422 		 */
1423 		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1424 		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1425 		    p->p_pid == 1 || P_KILLED(p) ||
1426 		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1427 			PROC_UNLOCK(p);
1428 			continue;
1429 		}
1430 		/*
1431 		 * If the process is in a non-running type state,
1432 		 * don't touch it.  Check all the threads individually.
1433 		 */
1434 		breakout = 0;
1435 		FOREACH_THREAD_IN_PROC(p, td) {
1436 			thread_lock(td);
1437 			if (!TD_ON_RUNQ(td) &&
1438 			    !TD_IS_RUNNING(td) &&
1439 			    !TD_IS_SLEEPING(td) &&
1440 			    !TD_IS_SUSPENDED(td) &&
1441 			    !TD_IS_SWAPPED(td)) {
1442 				thread_unlock(td);
1443 				breakout = 1;
1444 				break;
1445 			}
1446 			thread_unlock(td);
1447 		}
1448 		if (breakout) {
1449 			PROC_UNLOCK(p);
1450 			continue;
1451 		}
1452 		/*
1453 		 * get the process size
1454 		 */
1455 		vm = vmspace_acquire_ref(p);
1456 		if (vm == NULL) {
1457 			PROC_UNLOCK(p);
1458 			continue;
1459 		}
1460 		_PHOLD_LITE(p);
1461 		PROC_UNLOCK(p);
1462 		sx_sunlock(&allproc_lock);
1463 		if (!vm_map_trylock_read(&vm->vm_map)) {
1464 			vmspace_free(vm);
1465 			sx_slock(&allproc_lock);
1466 			PRELE(p);
1467 			continue;
1468 		}
1469 		size = vmspace_swap_count(vm);
1470 		if (shortage == VM_OOM_MEM)
1471 			size += vm_pageout_oom_pagecount(vm);
1472 		vm_map_unlock_read(&vm->vm_map);
1473 		vmspace_free(vm);
1474 		sx_slock(&allproc_lock);
1475 
1476 		/*
1477 		 * If this process is bigger than the biggest one,
1478 		 * remember it.
1479 		 */
1480 		if (size > bigsize) {
1481 			if (bigproc != NULL)
1482 				PRELE(bigproc);
1483 			bigproc = p;
1484 			bigsize = size;
1485 		} else {
1486 			PRELE(p);
1487 		}
1488 	}
1489 	sx_sunlock(&allproc_lock);
1490 	if (bigproc != NULL) {
1491 		if (vm_panic_on_oom != 0)
1492 			panic("out of swap space");
1493 		PROC_LOCK(bigproc);
1494 		killproc(bigproc, "out of swap space");
1495 		sched_nice(bigproc, PRIO_MIN);
1496 		_PRELE(bigproc);
1497 		PROC_UNLOCK(bigproc);
1498 		wakeup(&vm_cnt.v_free_count);
1499 	}
1500 }
1501 
1502 static void
1503 vm_pageout_worker(void *arg)
1504 {
1505 	struct vm_domain *domain;
1506 	int domidx;
1507 
1508 	domidx = (uintptr_t)arg;
1509 	domain = &vm_dom[domidx];
1510 
1511 	/*
1512 	 * XXXKIB It could be useful to bind pageout daemon threads to
1513 	 * the cores belonging to the domain, from which vm_page_array
1514 	 * is allocated.
1515 	 */
1516 
1517 	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1518 	domain->vmd_last_active_scan = ticks;
1519 	vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1520 	vm_pageout_init_marker(&domain->vmd_inacthead, PQ_INACTIVE);
1521 	TAILQ_INSERT_HEAD(&domain->vmd_pagequeues[PQ_INACTIVE].pq_pl,
1522 	    &domain->vmd_inacthead, plinks.q);
1523 
1524 	/*
1525 	 * The pageout daemon worker is never done, so loop forever.
1526 	 */
1527 	while (TRUE) {
1528 		mtx_lock(&vm_page_queue_free_mtx);
1529 
1530 		/*
1531 		 * Generally, after a level >= 1 scan, if there are enough
1532 		 * free pages to wakeup the waiters, then they are already
1533 		 * awake.  A call to vm_page_free() during the scan awakened
1534 		 * them.  However, in the following case, this wakeup serves
1535 		 * to bound the amount of time that a thread might wait.
1536 		 * Suppose a thread's call to vm_page_alloc() fails, but
1537 		 * before that thread calls VM_WAIT, enough pages are freed by
1538 		 * other threads to alleviate the free page shortage.  The
1539 		 * thread will, nonetheless, wait until another page is freed
1540 		 * or this wakeup is performed.
1541 		 */
1542 		if (vm_pages_needed && !vm_page_count_min()) {
1543 			vm_pages_needed = false;
1544 			wakeup(&vm_cnt.v_free_count);
1545 		}
1546 
1547 		/*
1548 		 * Do not clear vm_pageout_wanted until we reach our target.
1549 		 * Otherwise, we may be awakened over and over again, wasting
1550 		 * CPU time.
1551 		 */
1552 		if (vm_pageout_wanted && !vm_paging_needed())
1553 			vm_pageout_wanted = false;
1554 
1555 		/*
1556 		 * Might the page daemon receive a wakeup call?
1557 		 */
1558 		if (vm_pageout_wanted) {
1559 			/*
1560 			 * No.  Either vm_pageout_wanted was set by another
1561 			 * thread during the previous scan, which must have
1562 			 * been a level 0 scan, or vm_pageout_wanted was
1563 			 * already set and the scan failed to free enough
1564 			 * pages.  If we haven't yet performed a level >= 2
1565 			 * scan (unlimited dirty cleaning), then upgrade the
1566 			 * level and scan again now.  Otherwise, sleep a bit
1567 			 * and try again later.
1568 			 */
1569 			mtx_unlock(&vm_page_queue_free_mtx);
1570 			if (domain->vmd_pass > 1)
1571 				pause("psleep", hz / 2);
1572 			domain->vmd_pass++;
1573 		} else {
1574 			/*
1575 			 * Yes.  Sleep until pages need to be reclaimed or
1576 			 * have their reference stats updated.
1577 			 */
1578 			if (mtx_sleep(&vm_pageout_wanted,
1579 			    &vm_page_queue_free_mtx, PDROP | PVM, "psleep",
1580 			    hz) == 0) {
1581 				PCPU_INC(cnt.v_pdwakeups);
1582 				domain->vmd_pass = 1;
1583 			} else
1584 				domain->vmd_pass = 0;
1585 		}
1586 
1587 		vm_pageout_scan(domain, domain->vmd_pass);
1588 	}
1589 }
1590 
1591 /*
1592  *	vm_pageout_init initialises basic pageout daemon settings.
1593  */
1594 static void
1595 vm_pageout_init(void)
1596 {
1597 	/*
1598 	 * Initialize some paging parameters.
1599 	 */
1600 	vm_cnt.v_interrupt_free_min = 2;
1601 	if (vm_cnt.v_page_count < 2000)
1602 		vm_pageout_page_count = 8;
1603 
1604 	/*
1605 	 * v_free_reserved needs to include enough for the largest
1606 	 * swap pager structures plus enough for any pv_entry structs
1607 	 * when paging.
1608 	 */
1609 	if (vm_cnt.v_page_count > 1024)
1610 		vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200;
1611 	else
1612 		vm_cnt.v_free_min = 4;
1613 	vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1614 	    vm_cnt.v_interrupt_free_min;
1615 	vm_cnt.v_free_reserved = vm_pageout_page_count +
1616 	    vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768);
1617 	vm_cnt.v_free_severe = vm_cnt.v_free_min / 2;
1618 	vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved;
1619 	vm_cnt.v_free_min += vm_cnt.v_free_reserved;
1620 	vm_cnt.v_free_severe += vm_cnt.v_free_reserved;
1621 	vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2;
1622 	if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3)
1623 		vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3;
1624 
1625 	/*
1626 	 * Set the default wakeup threshold to be 10% above the minimum
1627 	 * page limit.  This keeps the steady state out of shortfall.
1628 	 */
1629 	vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11;
1630 
1631 	/*
1632 	 * Set interval in seconds for active scan.  We want to visit each
1633 	 * page at least once every ten minutes.  This is to prevent worst
1634 	 * case paging behaviors with stale active LRU.
1635 	 */
1636 	if (vm_pageout_update_period == 0)
1637 		vm_pageout_update_period = 600;
1638 
1639 	/* XXX does not really belong here */
1640 	if (vm_page_max_wired == 0)
1641 		vm_page_max_wired = vm_cnt.v_free_count / 3;
1642 }
1643 
1644 /*
1645  *     vm_pageout is the high level pageout daemon.
1646  */
1647 static void
1648 vm_pageout(void)
1649 {
1650 	int error;
1651 #ifdef VM_NUMA_ALLOC
1652 	int i;
1653 #endif
1654 
1655 	swap_pager_swap_init();
1656 #ifdef VM_NUMA_ALLOC
1657 	for (i = 1; i < vm_ndomains; i++) {
1658 		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1659 		    curproc, NULL, 0, 0, "dom%d", i);
1660 		if (error != 0) {
1661 			panic("starting pageout for domain %d, error %d\n",
1662 			    i, error);
1663 		}
1664 	}
1665 #endif
1666 	error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
1667 	    0, 0, "uma");
1668 	if (error != 0)
1669 		panic("starting uma_reclaim helper, error %d\n", error);
1670 	vm_pageout_worker((void *)(uintptr_t)0);
1671 }
1672 
1673 /*
1674  * Unless the free page queue lock is held by the caller, this function
1675  * should be regarded as advisory.  Specifically, the caller should
1676  * not msleep() on &vm_cnt.v_free_count following this function unless
1677  * the free page queue lock is held until the msleep() is performed.
1678  */
1679 void
1680 pagedaemon_wakeup(void)
1681 {
1682 
1683 	if (!vm_pageout_wanted && curthread->td_proc != pageproc) {
1684 		vm_pageout_wanted = true;
1685 		wakeup(&vm_pageout_wanted);
1686 	}
1687 }
1688 
1689 #if !defined(NO_SWAPPING)
1690 static void
1691 vm_req_vmdaemon(int req)
1692 {
1693 	static int lastrun = 0;
1694 
1695 	mtx_lock(&vm_daemon_mtx);
1696 	vm_pageout_req_swapout |= req;
1697 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1698 		wakeup(&vm_daemon_needed);
1699 		lastrun = ticks;
1700 	}
1701 	mtx_unlock(&vm_daemon_mtx);
1702 }
1703 
1704 static void
1705 vm_daemon(void)
1706 {
1707 	struct rlimit rsslim;
1708 	struct proc *p;
1709 	struct thread *td;
1710 	struct vmspace *vm;
1711 	int breakout, swapout_flags, tryagain, attempts;
1712 #ifdef RACCT
1713 	uint64_t rsize, ravailable;
1714 #endif
1715 
1716 	while (TRUE) {
1717 		mtx_lock(&vm_daemon_mtx);
1718 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
1719 #ifdef RACCT
1720 		    racct_enable ? hz : 0
1721 #else
1722 		    0
1723 #endif
1724 		);
1725 		swapout_flags = vm_pageout_req_swapout;
1726 		vm_pageout_req_swapout = 0;
1727 		mtx_unlock(&vm_daemon_mtx);
1728 		if (swapout_flags)
1729 			swapout_procs(swapout_flags);
1730 
1731 		/*
1732 		 * scan the processes for exceeding their rlimits or if
1733 		 * process is swapped out -- deactivate pages
1734 		 */
1735 		tryagain = 0;
1736 		attempts = 0;
1737 again:
1738 		attempts++;
1739 		sx_slock(&allproc_lock);
1740 		FOREACH_PROC_IN_SYSTEM(p) {
1741 			vm_pindex_t limit, size;
1742 
1743 			/*
1744 			 * if this is a system process or if we have already
1745 			 * looked at this process, skip it.
1746 			 */
1747 			PROC_LOCK(p);
1748 			if (p->p_state != PRS_NORMAL ||
1749 			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1750 				PROC_UNLOCK(p);
1751 				continue;
1752 			}
1753 			/*
1754 			 * if the process is in a non-running type state,
1755 			 * don't touch it.
1756 			 */
1757 			breakout = 0;
1758 			FOREACH_THREAD_IN_PROC(p, td) {
1759 				thread_lock(td);
1760 				if (!TD_ON_RUNQ(td) &&
1761 				    !TD_IS_RUNNING(td) &&
1762 				    !TD_IS_SLEEPING(td) &&
1763 				    !TD_IS_SUSPENDED(td)) {
1764 					thread_unlock(td);
1765 					breakout = 1;
1766 					break;
1767 				}
1768 				thread_unlock(td);
1769 			}
1770 			if (breakout) {
1771 				PROC_UNLOCK(p);
1772 				continue;
1773 			}
1774 			/*
1775 			 * get a limit
1776 			 */
1777 			lim_rlimit_proc(p, RLIMIT_RSS, &rsslim);
1778 			limit = OFF_TO_IDX(
1779 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1780 
1781 			/*
1782 			 * let processes that are swapped out really be
1783 			 * swapped out set the limit to nothing (will force a
1784 			 * swap-out.)
1785 			 */
1786 			if ((p->p_flag & P_INMEM) == 0)
1787 				limit = 0;	/* XXX */
1788 			vm = vmspace_acquire_ref(p);
1789 			_PHOLD_LITE(p);
1790 			PROC_UNLOCK(p);
1791 			if (vm == NULL) {
1792 				PRELE(p);
1793 				continue;
1794 			}
1795 			sx_sunlock(&allproc_lock);
1796 
1797 			size = vmspace_resident_count(vm);
1798 			if (size >= limit) {
1799 				vm_pageout_map_deactivate_pages(
1800 				    &vm->vm_map, limit);
1801 			}
1802 #ifdef RACCT
1803 			if (racct_enable) {
1804 				rsize = IDX_TO_OFF(size);
1805 				PROC_LOCK(p);
1806 				racct_set(p, RACCT_RSS, rsize);
1807 				ravailable = racct_get_available(p, RACCT_RSS);
1808 				PROC_UNLOCK(p);
1809 				if (rsize > ravailable) {
1810 					/*
1811 					 * Don't be overly aggressive; this
1812 					 * might be an innocent process,
1813 					 * and the limit could've been exceeded
1814 					 * by some memory hog.  Don't try
1815 					 * to deactivate more than 1/4th
1816 					 * of process' resident set size.
1817 					 */
1818 					if (attempts <= 8) {
1819 						if (ravailable < rsize -
1820 						    (rsize / 4)) {
1821 							ravailable = rsize -
1822 							    (rsize / 4);
1823 						}
1824 					}
1825 					vm_pageout_map_deactivate_pages(
1826 					    &vm->vm_map,
1827 					    OFF_TO_IDX(ravailable));
1828 					/* Update RSS usage after paging out. */
1829 					size = vmspace_resident_count(vm);
1830 					rsize = IDX_TO_OFF(size);
1831 					PROC_LOCK(p);
1832 					racct_set(p, RACCT_RSS, rsize);
1833 					PROC_UNLOCK(p);
1834 					if (rsize > ravailable)
1835 						tryagain = 1;
1836 				}
1837 			}
1838 #endif
1839 			vmspace_free(vm);
1840 			sx_slock(&allproc_lock);
1841 			PRELE(p);
1842 		}
1843 		sx_sunlock(&allproc_lock);
1844 		if (tryagain != 0 && attempts <= 10)
1845 			goto again;
1846 	}
1847 }
1848 #endif			/* !defined(NO_SWAPPING) */
1849