xref: /freebsd/sys/vm/vm_pageout.c (revision d93a896ef95946b0bf1219866fcb324b78543444)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_vm.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/lock.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/mount.h>
90 #include <sys/racct.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sched.h>
93 #include <sys/sdt.h>
94 #include <sys/signalvar.h>
95 #include <sys/smp.h>
96 #include <sys/time.h>
97 #include <sys/vnode.h>
98 #include <sys/vmmeter.h>
99 #include <sys/rwlock.h>
100 #include <sys/sx.h>
101 #include <sys/sysctl.h>
102 
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_phys.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114 
115 /*
116  * System initialization
117  */
118 
119 /* the kernel process "vm_pageout"*/
120 static void vm_pageout(void);
121 static void vm_pageout_init(void);
122 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
123 static int vm_pageout_cluster(vm_page_t m);
124 static bool vm_pageout_scan(struct vm_domain *vmd, int pass);
125 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
126     int starting_page_shortage);
127 
128 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
129     NULL);
130 
131 struct proc *pageproc;
132 
133 static struct kproc_desc page_kp = {
134 	"pagedaemon",
135 	vm_pageout,
136 	&pageproc
137 };
138 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
139     &page_kp);
140 
141 SDT_PROVIDER_DEFINE(vm);
142 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
143 
144 #if !defined(NO_SWAPPING)
145 /* the kernel process "vm_daemon"*/
146 static void vm_daemon(void);
147 static struct	proc *vmproc;
148 
149 static struct kproc_desc vm_kp = {
150 	"vmdaemon",
151 	vm_daemon,
152 	&vmproc
153 };
154 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
155 #endif
156 
157 /* Pagedaemon activity rates, in subdivisions of one second. */
158 #define	VM_LAUNDER_RATE		10
159 #define	VM_INACT_SCAN_RATE	2
160 
161 int vm_pageout_deficit;		/* Estimated number of pages deficit */
162 u_int vm_pageout_wakeup_thresh;
163 static int vm_pageout_oom_seq = 12;
164 bool vm_pageout_wanted;		/* Event on which pageout daemon sleeps */
165 bool vm_pages_needed;		/* Are threads waiting for free pages? */
166 
167 /* Pending request for dirty page laundering. */
168 static enum {
169 	VM_LAUNDRY_IDLE,
170 	VM_LAUNDRY_BACKGROUND,
171 	VM_LAUNDRY_SHORTFALL
172 } vm_laundry_request = VM_LAUNDRY_IDLE;
173 
174 #if !defined(NO_SWAPPING)
175 static int vm_pageout_req_swapout;	/* XXX */
176 static int vm_daemon_needed;
177 static struct mtx vm_daemon_mtx;
178 /* Allow for use by vm_pageout before vm_daemon is initialized. */
179 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
180 #endif
181 static int vm_pageout_update_period;
182 static int disable_swap_pageouts;
183 static int lowmem_period = 10;
184 static time_t lowmem_uptime;
185 static int swapdev_enabled;
186 
187 #if defined(NO_SWAPPING)
188 static int vm_swap_enabled = 0;
189 static int vm_swap_idle_enabled = 0;
190 #else
191 static int vm_swap_enabled = 1;
192 static int vm_swap_idle_enabled = 0;
193 #endif
194 
195 static int vm_panic_on_oom = 0;
196 
197 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
198 	CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
199 	"panic on out of memory instead of killing the largest process");
200 
201 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
202 	CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
203 	"free page threshold for waking up the pageout daemon");
204 
205 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
206 	CTLFLAG_RW, &vm_pageout_update_period, 0,
207 	"Maximum active LRU update period");
208 
209 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
210 	"Low memory callback period");
211 
212 #if defined(NO_SWAPPING)
213 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
214 	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
215 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
216 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
217 #else
218 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
219 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
220 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
221 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
222 #endif
223 
224 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
225 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
226 
227 static int pageout_lock_miss;
228 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
229 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
230 
231 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
232 	CTLFLAG_RW, &vm_pageout_oom_seq, 0,
233 	"back-to-back calls to oom detector to start OOM");
234 
235 static int act_scan_laundry_weight = 3;
236 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RW,
237     &act_scan_laundry_weight, 0,
238     "weight given to clean vs. dirty pages in active queue scans");
239 
240 static u_int vm_background_launder_target;
241 SYSCTL_UINT(_vm, OID_AUTO, background_launder_target, CTLFLAG_RW,
242     &vm_background_launder_target, 0,
243     "background laundering target, in pages");
244 
245 static u_int vm_background_launder_rate = 4096;
246 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RW,
247     &vm_background_launder_rate, 0,
248     "background laundering rate, in kilobytes per second");
249 
250 static u_int vm_background_launder_max = 20 * 1024;
251 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RW,
252     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
253 
254 int vm_pageout_page_count = 32;
255 
256 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
257 SYSCTL_INT(_vm, OID_AUTO, max_wired,
258 	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
259 
260 static u_int isqrt(u_int num);
261 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
262 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
263     bool in_shortfall);
264 static void vm_pageout_laundry_worker(void *arg);
265 #if !defined(NO_SWAPPING)
266 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
267 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
268 static void vm_req_vmdaemon(int req);
269 #endif
270 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
271 
272 /*
273  * Initialize a dummy page for marking the caller's place in the specified
274  * paging queue.  In principle, this function only needs to set the flag
275  * PG_MARKER.  Nonetheless, it write busies and initializes the hold count
276  * to one as safety precautions.
277  */
278 static void
279 vm_pageout_init_marker(vm_page_t marker, u_short queue)
280 {
281 
282 	bzero(marker, sizeof(*marker));
283 	marker->flags = PG_MARKER;
284 	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
285 	marker->queue = queue;
286 	marker->hold_count = 1;
287 }
288 
289 /*
290  * vm_pageout_fallback_object_lock:
291  *
292  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
293  * known to have failed and page queue must be either PQ_ACTIVE or
294  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queue
295  * while locking the vm object.  Use marker page to detect page queue
296  * changes and maintain notion of next page on page queue.  Return
297  * TRUE if no changes were detected, FALSE otherwise.  vm object is
298  * locked on return.
299  *
300  * This function depends on both the lock portion of struct vm_object
301  * and normal struct vm_page being type stable.
302  */
303 static boolean_t
304 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
305 {
306 	struct vm_page marker;
307 	struct vm_pagequeue *pq;
308 	boolean_t unchanged;
309 	u_short queue;
310 	vm_object_t object;
311 
312 	queue = m->queue;
313 	vm_pageout_init_marker(&marker, queue);
314 	pq = vm_page_pagequeue(m);
315 	object = m->object;
316 
317 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
318 	vm_pagequeue_unlock(pq);
319 	vm_page_unlock(m);
320 	VM_OBJECT_WLOCK(object);
321 	vm_page_lock(m);
322 	vm_pagequeue_lock(pq);
323 
324 	/*
325 	 * The page's object might have changed, and/or the page might
326 	 * have moved from its original position in the queue.  If the
327 	 * page's object has changed, then the caller should abandon
328 	 * processing the page because the wrong object lock was
329 	 * acquired.  Use the marker's plinks.q, not the page's, to
330 	 * determine if the page has been moved.  The state of the
331 	 * page's plinks.q can be indeterminate; whereas, the marker's
332 	 * plinks.q must be valid.
333 	 */
334 	*next = TAILQ_NEXT(&marker, plinks.q);
335 	unchanged = m->object == object &&
336 	    m == TAILQ_PREV(&marker, pglist, plinks.q);
337 	KASSERT(!unchanged || m->queue == queue,
338 	    ("page %p queue %d %d", m, queue, m->queue));
339 	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
340 	return (unchanged);
341 }
342 
343 /*
344  * Lock the page while holding the page queue lock.  Use marker page
345  * to detect page queue changes and maintain notion of next page on
346  * page queue.  Return TRUE if no changes were detected, FALSE
347  * otherwise.  The page is locked on return. The page queue lock might
348  * be dropped and reacquired.
349  *
350  * This function depends on normal struct vm_page being type stable.
351  */
352 static boolean_t
353 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
354 {
355 	struct vm_page marker;
356 	struct vm_pagequeue *pq;
357 	boolean_t unchanged;
358 	u_short queue;
359 
360 	vm_page_lock_assert(m, MA_NOTOWNED);
361 	if (vm_page_trylock(m))
362 		return (TRUE);
363 
364 	queue = m->queue;
365 	vm_pageout_init_marker(&marker, queue);
366 	pq = vm_page_pagequeue(m);
367 
368 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
369 	vm_pagequeue_unlock(pq);
370 	vm_page_lock(m);
371 	vm_pagequeue_lock(pq);
372 
373 	/* Page queue might have changed. */
374 	*next = TAILQ_NEXT(&marker, plinks.q);
375 	unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q);
376 	KASSERT(!unchanged || m->queue == queue,
377 	    ("page %p queue %d %d", m, queue, m->queue));
378 	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
379 	return (unchanged);
380 }
381 
382 /*
383  * Scan for pages at adjacent offsets within the given page's object that are
384  * eligible for laundering, form a cluster of these pages and the given page,
385  * and launder that cluster.
386  */
387 static int
388 vm_pageout_cluster(vm_page_t m)
389 {
390 	vm_object_t object;
391 	vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
392 	vm_pindex_t pindex;
393 	int ib, is, page_base, pageout_count;
394 
395 	vm_page_assert_locked(m);
396 	object = m->object;
397 	VM_OBJECT_ASSERT_WLOCKED(object);
398 	pindex = m->pindex;
399 
400 	/*
401 	 * We can't clean the page if it is busy or held.
402 	 */
403 	vm_page_assert_unbusied(m);
404 	KASSERT(m->hold_count == 0, ("page %p is held", m));
405 	vm_page_unlock(m);
406 
407 	mc[vm_pageout_page_count] = pb = ps = m;
408 	pageout_count = 1;
409 	page_base = vm_pageout_page_count;
410 	ib = 1;
411 	is = 1;
412 
413 	/*
414 	 * We can cluster only if the page is not clean, busy, or held, and
415 	 * the page is in the laundry queue.
416 	 *
417 	 * During heavy mmap/modification loads the pageout
418 	 * daemon can really fragment the underlying file
419 	 * due to flushing pages out of order and not trying to
420 	 * align the clusters (which leaves sporadic out-of-order
421 	 * holes).  To solve this problem we do the reverse scan
422 	 * first and attempt to align our cluster, then do a
423 	 * forward scan if room remains.
424 	 */
425 more:
426 	while (ib != 0 && pageout_count < vm_pageout_page_count) {
427 		if (ib > pindex) {
428 			ib = 0;
429 			break;
430 		}
431 		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
432 			ib = 0;
433 			break;
434 		}
435 		vm_page_test_dirty(p);
436 		if (p->dirty == 0) {
437 			ib = 0;
438 			break;
439 		}
440 		vm_page_lock(p);
441 		if (!vm_page_in_laundry(p) ||
442 		    p->hold_count != 0) {	/* may be undergoing I/O */
443 			vm_page_unlock(p);
444 			ib = 0;
445 			break;
446 		}
447 		vm_page_unlock(p);
448 		mc[--page_base] = pb = p;
449 		++pageout_count;
450 		++ib;
451 
452 		/*
453 		 * We are at an alignment boundary.  Stop here, and switch
454 		 * directions.  Do not clear ib.
455 		 */
456 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
457 			break;
458 	}
459 	while (pageout_count < vm_pageout_page_count &&
460 	    pindex + is < object->size) {
461 		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
462 			break;
463 		vm_page_test_dirty(p);
464 		if (p->dirty == 0)
465 			break;
466 		vm_page_lock(p);
467 		if (!vm_page_in_laundry(p) ||
468 		    p->hold_count != 0) {	/* may be undergoing I/O */
469 			vm_page_unlock(p);
470 			break;
471 		}
472 		vm_page_unlock(p);
473 		mc[page_base + pageout_count] = ps = p;
474 		++pageout_count;
475 		++is;
476 	}
477 
478 	/*
479 	 * If we exhausted our forward scan, continue with the reverse scan
480 	 * when possible, even past an alignment boundary.  This catches
481 	 * boundary conditions.
482 	 */
483 	if (ib != 0 && pageout_count < vm_pageout_page_count)
484 		goto more;
485 
486 	return (vm_pageout_flush(&mc[page_base], pageout_count,
487 	    VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
488 }
489 
490 /*
491  * vm_pageout_flush() - launder the given pages
492  *
493  *	The given pages are laundered.  Note that we setup for the start of
494  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
495  *	reference count all in here rather then in the parent.  If we want
496  *	the parent to do more sophisticated things we may have to change
497  *	the ordering.
498  *
499  *	Returned runlen is the count of pages between mreq and first
500  *	page after mreq with status VM_PAGER_AGAIN.
501  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
502  *	for any page in runlen set.
503  */
504 int
505 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
506     boolean_t *eio)
507 {
508 	vm_object_t object = mc[0]->object;
509 	int pageout_status[count];
510 	int numpagedout = 0;
511 	int i, runlen;
512 
513 	VM_OBJECT_ASSERT_WLOCKED(object);
514 
515 	/*
516 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
517 	 * mark the pages read-only.
518 	 *
519 	 * We do not have to fixup the clean/dirty bits here... we can
520 	 * allow the pager to do it after the I/O completes.
521 	 *
522 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
523 	 * edge case with file fragments.
524 	 */
525 	for (i = 0; i < count; i++) {
526 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
527 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
528 			mc[i], i, count));
529 		vm_page_sbusy(mc[i]);
530 		pmap_remove_write(mc[i]);
531 	}
532 	vm_object_pip_add(object, count);
533 
534 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
535 
536 	runlen = count - mreq;
537 	if (eio != NULL)
538 		*eio = FALSE;
539 	for (i = 0; i < count; i++) {
540 		vm_page_t mt = mc[i];
541 
542 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
543 		    !pmap_page_is_write_mapped(mt),
544 		    ("vm_pageout_flush: page %p is not write protected", mt));
545 		switch (pageout_status[i]) {
546 		case VM_PAGER_OK:
547 			vm_page_lock(mt);
548 			if (vm_page_in_laundry(mt))
549 				vm_page_deactivate_noreuse(mt);
550 			vm_page_unlock(mt);
551 			/* FALLTHROUGH */
552 		case VM_PAGER_PEND:
553 			numpagedout++;
554 			break;
555 		case VM_PAGER_BAD:
556 			/*
557 			 * The page is outside the object's range.  We pretend
558 			 * that the page out worked and clean the page, so the
559 			 * changes will be lost if the page is reclaimed by
560 			 * the page daemon.
561 			 */
562 			vm_page_undirty(mt);
563 			vm_page_lock(mt);
564 			if (vm_page_in_laundry(mt))
565 				vm_page_deactivate_noreuse(mt);
566 			vm_page_unlock(mt);
567 			break;
568 		case VM_PAGER_ERROR:
569 		case VM_PAGER_FAIL:
570 			/*
571 			 * If the page couldn't be paged out to swap because the
572 			 * pager wasn't able to find space, place the page in
573 			 * the PQ_UNSWAPPABLE holding queue.  This is an
574 			 * optimization that prevents the page daemon from
575 			 * wasting CPU cycles on pages that cannot be reclaimed
576 			 * becase no swap device is configured.
577 			 *
578 			 * Otherwise, reactivate the page so that it doesn't
579 			 * clog the laundry and inactive queues.  (We will try
580 			 * paging it out again later.)
581 			 */
582 			vm_page_lock(mt);
583 			if (object->type == OBJT_SWAP &&
584 			    pageout_status[i] == VM_PAGER_FAIL) {
585 				vm_page_unswappable(mt);
586 				numpagedout++;
587 			} else
588 				vm_page_activate(mt);
589 			vm_page_unlock(mt);
590 			if (eio != NULL && i >= mreq && i - mreq < runlen)
591 				*eio = TRUE;
592 			break;
593 		case VM_PAGER_AGAIN:
594 			if (i >= mreq && i - mreq < runlen)
595 				runlen = i - mreq;
596 			break;
597 		}
598 
599 		/*
600 		 * If the operation is still going, leave the page busy to
601 		 * block all other accesses. Also, leave the paging in
602 		 * progress indicator set so that we don't attempt an object
603 		 * collapse.
604 		 */
605 		if (pageout_status[i] != VM_PAGER_PEND) {
606 			vm_object_pip_wakeup(object);
607 			vm_page_sunbusy(mt);
608 		}
609 	}
610 	if (prunlen != NULL)
611 		*prunlen = runlen;
612 	return (numpagedout);
613 }
614 
615 static void
616 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
617 {
618 
619 	atomic_store_rel_int(&swapdev_enabled, 1);
620 }
621 
622 static void
623 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
624 {
625 
626 	if (swap_pager_nswapdev() == 1)
627 		atomic_store_rel_int(&swapdev_enabled, 0);
628 }
629 
630 #if !defined(NO_SWAPPING)
631 /*
632  *	vm_pageout_object_deactivate_pages
633  *
634  *	Deactivate enough pages to satisfy the inactive target
635  *	requirements.
636  *
637  *	The object and map must be locked.
638  */
639 static void
640 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
641     long desired)
642 {
643 	vm_object_t backing_object, object;
644 	vm_page_t p;
645 	int act_delta, remove_mode;
646 
647 	VM_OBJECT_ASSERT_LOCKED(first_object);
648 	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
649 		return;
650 	for (object = first_object;; object = backing_object) {
651 		if (pmap_resident_count(pmap) <= desired)
652 			goto unlock_return;
653 		VM_OBJECT_ASSERT_LOCKED(object);
654 		if ((object->flags & OBJ_UNMANAGED) != 0 ||
655 		    object->paging_in_progress != 0)
656 			goto unlock_return;
657 
658 		remove_mode = 0;
659 		if (object->shadow_count > 1)
660 			remove_mode = 1;
661 		/*
662 		 * Scan the object's entire memory queue.
663 		 */
664 		TAILQ_FOREACH(p, &object->memq, listq) {
665 			if (pmap_resident_count(pmap) <= desired)
666 				goto unlock_return;
667 			if (vm_page_busied(p))
668 				continue;
669 			VM_CNT_INC(v_pdpages);
670 			vm_page_lock(p);
671 			if (p->wire_count != 0 || p->hold_count != 0 ||
672 			    !pmap_page_exists_quick(pmap, p)) {
673 				vm_page_unlock(p);
674 				continue;
675 			}
676 			act_delta = pmap_ts_referenced(p);
677 			if ((p->aflags & PGA_REFERENCED) != 0) {
678 				if (act_delta == 0)
679 					act_delta = 1;
680 				vm_page_aflag_clear(p, PGA_REFERENCED);
681 			}
682 			if (!vm_page_active(p) && act_delta != 0) {
683 				vm_page_activate(p);
684 				p->act_count += act_delta;
685 			} else if (vm_page_active(p)) {
686 				if (act_delta == 0) {
687 					p->act_count -= min(p->act_count,
688 					    ACT_DECLINE);
689 					if (!remove_mode && p->act_count == 0) {
690 						pmap_remove_all(p);
691 						vm_page_deactivate(p);
692 					} else
693 						vm_page_requeue(p);
694 				} else {
695 					vm_page_activate(p);
696 					if (p->act_count < ACT_MAX -
697 					    ACT_ADVANCE)
698 						p->act_count += ACT_ADVANCE;
699 					vm_page_requeue(p);
700 				}
701 			} else if (vm_page_inactive(p))
702 				pmap_remove_all(p);
703 			vm_page_unlock(p);
704 		}
705 		if ((backing_object = object->backing_object) == NULL)
706 			goto unlock_return;
707 		VM_OBJECT_RLOCK(backing_object);
708 		if (object != first_object)
709 			VM_OBJECT_RUNLOCK(object);
710 	}
711 unlock_return:
712 	if (object != first_object)
713 		VM_OBJECT_RUNLOCK(object);
714 }
715 
716 /*
717  * deactivate some number of pages in a map, try to do it fairly, but
718  * that is really hard to do.
719  */
720 static void
721 vm_pageout_map_deactivate_pages(map, desired)
722 	vm_map_t map;
723 	long desired;
724 {
725 	vm_map_entry_t tmpe;
726 	vm_object_t obj, bigobj;
727 	int nothingwired;
728 
729 	if (!vm_map_trylock(map))
730 		return;
731 
732 	bigobj = NULL;
733 	nothingwired = TRUE;
734 
735 	/*
736 	 * first, search out the biggest object, and try to free pages from
737 	 * that.
738 	 */
739 	tmpe = map->header.next;
740 	while (tmpe != &map->header) {
741 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
742 			obj = tmpe->object.vm_object;
743 			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
744 				if (obj->shadow_count <= 1 &&
745 				    (bigobj == NULL ||
746 				     bigobj->resident_page_count < obj->resident_page_count)) {
747 					if (bigobj != NULL)
748 						VM_OBJECT_RUNLOCK(bigobj);
749 					bigobj = obj;
750 				} else
751 					VM_OBJECT_RUNLOCK(obj);
752 			}
753 		}
754 		if (tmpe->wired_count > 0)
755 			nothingwired = FALSE;
756 		tmpe = tmpe->next;
757 	}
758 
759 	if (bigobj != NULL) {
760 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
761 		VM_OBJECT_RUNLOCK(bigobj);
762 	}
763 	/*
764 	 * Next, hunt around for other pages to deactivate.  We actually
765 	 * do this search sort of wrong -- .text first is not the best idea.
766 	 */
767 	tmpe = map->header.next;
768 	while (tmpe != &map->header) {
769 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
770 			break;
771 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
772 			obj = tmpe->object.vm_object;
773 			if (obj != NULL) {
774 				VM_OBJECT_RLOCK(obj);
775 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
776 				VM_OBJECT_RUNLOCK(obj);
777 			}
778 		}
779 		tmpe = tmpe->next;
780 	}
781 
782 	/*
783 	 * Remove all mappings if a process is swapped out, this will free page
784 	 * table pages.
785 	 */
786 	if (desired == 0 && nothingwired) {
787 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
788 		    vm_map_max(map));
789 	}
790 
791 	vm_map_unlock(map);
792 }
793 #endif		/* !defined(NO_SWAPPING) */
794 
795 /*
796  * Attempt to acquire all of the necessary locks to launder a page and
797  * then call through the clustering layer to PUTPAGES.  Wait a short
798  * time for a vnode lock.
799  *
800  * Requires the page and object lock on entry, releases both before return.
801  * Returns 0 on success and an errno otherwise.
802  */
803 static int
804 vm_pageout_clean(vm_page_t m, int *numpagedout)
805 {
806 	struct vnode *vp;
807 	struct mount *mp;
808 	vm_object_t object;
809 	vm_pindex_t pindex;
810 	int error, lockmode;
811 
812 	vm_page_assert_locked(m);
813 	object = m->object;
814 	VM_OBJECT_ASSERT_WLOCKED(object);
815 	error = 0;
816 	vp = NULL;
817 	mp = NULL;
818 
819 	/*
820 	 * The object is already known NOT to be dead.   It
821 	 * is possible for the vget() to block the whole
822 	 * pageout daemon, but the new low-memory handling
823 	 * code should prevent it.
824 	 *
825 	 * We can't wait forever for the vnode lock, we might
826 	 * deadlock due to a vn_read() getting stuck in
827 	 * vm_wait while holding this vnode.  We skip the
828 	 * vnode if we can't get it in a reasonable amount
829 	 * of time.
830 	 */
831 	if (object->type == OBJT_VNODE) {
832 		vm_page_unlock(m);
833 		vp = object->handle;
834 		if (vp->v_type == VREG &&
835 		    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
836 			mp = NULL;
837 			error = EDEADLK;
838 			goto unlock_all;
839 		}
840 		KASSERT(mp != NULL,
841 		    ("vp %p with NULL v_mount", vp));
842 		vm_object_reference_locked(object);
843 		pindex = m->pindex;
844 		VM_OBJECT_WUNLOCK(object);
845 		lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
846 		    LK_SHARED : LK_EXCLUSIVE;
847 		if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
848 			vp = NULL;
849 			error = EDEADLK;
850 			goto unlock_mp;
851 		}
852 		VM_OBJECT_WLOCK(object);
853 		vm_page_lock(m);
854 		/*
855 		 * While the object and page were unlocked, the page
856 		 * may have been:
857 		 * (1) moved to a different queue,
858 		 * (2) reallocated to a different object,
859 		 * (3) reallocated to a different offset, or
860 		 * (4) cleaned.
861 		 */
862 		if (!vm_page_in_laundry(m) || m->object != object ||
863 		    m->pindex != pindex || m->dirty == 0) {
864 			vm_page_unlock(m);
865 			error = ENXIO;
866 			goto unlock_all;
867 		}
868 
869 		/*
870 		 * The page may have been busied or held while the object
871 		 * and page locks were released.
872 		 */
873 		if (vm_page_busied(m) || m->hold_count != 0) {
874 			vm_page_unlock(m);
875 			error = EBUSY;
876 			goto unlock_all;
877 		}
878 	}
879 
880 	/*
881 	 * If a page is dirty, then it is either being washed
882 	 * (but not yet cleaned) or it is still in the
883 	 * laundry.  If it is still in the laundry, then we
884 	 * start the cleaning operation.
885 	 */
886 	if ((*numpagedout = vm_pageout_cluster(m)) == 0)
887 		error = EIO;
888 
889 unlock_all:
890 	VM_OBJECT_WUNLOCK(object);
891 
892 unlock_mp:
893 	vm_page_lock_assert(m, MA_NOTOWNED);
894 	if (mp != NULL) {
895 		if (vp != NULL)
896 			vput(vp);
897 		vm_object_deallocate(object);
898 		vn_finished_write(mp);
899 	}
900 
901 	return (error);
902 }
903 
904 /*
905  * Attempt to launder the specified number of pages.
906  *
907  * Returns the number of pages successfully laundered.
908  */
909 static int
910 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
911 {
912 	struct vm_pagequeue *pq;
913 	vm_object_t object;
914 	vm_page_t m, next;
915 	int act_delta, error, maxscan, numpagedout, starting_target;
916 	int vnodes_skipped;
917 	bool pageout_ok, queue_locked;
918 
919 	starting_target = launder;
920 	vnodes_skipped = 0;
921 
922 	/*
923 	 * Scan the laundry queues for pages eligible to be laundered.  We stop
924 	 * once the target number of dirty pages have been laundered, or once
925 	 * we've reached the end of the queue.  A single iteration of this loop
926 	 * may cause more than one page to be laundered because of clustering.
927 	 *
928 	 * maxscan ensures that we don't re-examine requeued pages.  Any
929 	 * additional pages written as part of a cluster are subtracted from
930 	 * maxscan since they must be taken from the laundry queue.
931 	 *
932 	 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
933 	 * swap devices are configured.
934 	 */
935 	if (atomic_load_acq_int(&swapdev_enabled))
936 		pq = &vmd->vmd_pagequeues[PQ_UNSWAPPABLE];
937 	else
938 		pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
939 
940 scan:
941 	vm_pagequeue_lock(pq);
942 	maxscan = pq->pq_cnt;
943 	queue_locked = true;
944 	for (m = TAILQ_FIRST(&pq->pq_pl);
945 	    m != NULL && maxscan-- > 0 && launder > 0;
946 	    m = next) {
947 		vm_pagequeue_assert_locked(pq);
948 		KASSERT(queue_locked, ("unlocked laundry queue"));
949 		KASSERT(vm_page_in_laundry(m),
950 		    ("page %p has an inconsistent queue", m));
951 		next = TAILQ_NEXT(m, plinks.q);
952 		if ((m->flags & PG_MARKER) != 0)
953 			continue;
954 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
955 		    ("PG_FICTITIOUS page %p cannot be in laundry queue", m));
956 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
957 		    ("VPO_UNMANAGED page %p cannot be in laundry queue", m));
958 		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
959 			vm_page_unlock(m);
960 			continue;
961 		}
962 		object = m->object;
963 		if ((!VM_OBJECT_TRYWLOCK(object) &&
964 		    (!vm_pageout_fallback_object_lock(m, &next) ||
965 		    m->hold_count != 0)) || vm_page_busied(m)) {
966 			VM_OBJECT_WUNLOCK(object);
967 			vm_page_unlock(m);
968 			continue;
969 		}
970 
971 		/*
972 		 * Unlock the laundry queue, invalidating the 'next' pointer.
973 		 * Use a marker to remember our place in the laundry queue.
974 		 */
975 		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_laundry_marker,
976 		    plinks.q);
977 		vm_pagequeue_unlock(pq);
978 		queue_locked = false;
979 
980 		/*
981 		 * Invalid pages can be easily freed.  They cannot be
982 		 * mapped; vm_page_free() asserts this.
983 		 */
984 		if (m->valid == 0)
985 			goto free_page;
986 
987 		/*
988 		 * If the page has been referenced and the object is not dead,
989 		 * reactivate or requeue the page depending on whether the
990 		 * object is mapped.
991 		 */
992 		if ((m->aflags & PGA_REFERENCED) != 0) {
993 			vm_page_aflag_clear(m, PGA_REFERENCED);
994 			act_delta = 1;
995 		} else
996 			act_delta = 0;
997 		if (object->ref_count != 0)
998 			act_delta += pmap_ts_referenced(m);
999 		else {
1000 			KASSERT(!pmap_page_is_mapped(m),
1001 			    ("page %p is mapped", m));
1002 		}
1003 		if (act_delta != 0) {
1004 			if (object->ref_count != 0) {
1005 				VM_CNT_INC(v_reactivated);
1006 				vm_page_activate(m);
1007 
1008 				/*
1009 				 * Increase the activation count if the page
1010 				 * was referenced while in the laundry queue.
1011 				 * This makes it less likely that the page will
1012 				 * be returned prematurely to the inactive
1013 				 * queue.
1014  				 */
1015 				m->act_count += act_delta + ACT_ADVANCE;
1016 
1017 				/*
1018 				 * If this was a background laundering, count
1019 				 * activated pages towards our target.  The
1020 				 * purpose of background laundering is to ensure
1021 				 * that pages are eventually cycled through the
1022 				 * laundry queue, and an activation is a valid
1023 				 * way out.
1024 				 */
1025 				if (!in_shortfall)
1026 					launder--;
1027 				goto drop_page;
1028 			} else if ((object->flags & OBJ_DEAD) == 0)
1029 				goto requeue_page;
1030 		}
1031 
1032 		/*
1033 		 * If the page appears to be clean at the machine-independent
1034 		 * layer, then remove all of its mappings from the pmap in
1035 		 * anticipation of freeing it.  If, however, any of the page's
1036 		 * mappings allow write access, then the page may still be
1037 		 * modified until the last of those mappings are removed.
1038 		 */
1039 		if (object->ref_count != 0) {
1040 			vm_page_test_dirty(m);
1041 			if (m->dirty == 0)
1042 				pmap_remove_all(m);
1043 		}
1044 
1045 		/*
1046 		 * Clean pages are freed, and dirty pages are paged out unless
1047 		 * they belong to a dead object.  Requeueing dirty pages from
1048 		 * dead objects is pointless, as they are being paged out and
1049 		 * freed by the thread that destroyed the object.
1050 		 */
1051 		if (m->dirty == 0) {
1052 free_page:
1053 			vm_page_free(m);
1054 			VM_CNT_INC(v_dfree);
1055 		} else if ((object->flags & OBJ_DEAD) == 0) {
1056 			if (object->type != OBJT_SWAP &&
1057 			    object->type != OBJT_DEFAULT)
1058 				pageout_ok = true;
1059 			else if (disable_swap_pageouts)
1060 				pageout_ok = false;
1061 			else
1062 				pageout_ok = true;
1063 			if (!pageout_ok) {
1064 requeue_page:
1065 				vm_pagequeue_lock(pq);
1066 				queue_locked = true;
1067 				vm_page_requeue_locked(m);
1068 				goto drop_page;
1069 			}
1070 
1071 			/*
1072 			 * Form a cluster with adjacent, dirty pages from the
1073 			 * same object, and page out that entire cluster.
1074 			 *
1075 			 * The adjacent, dirty pages must also be in the
1076 			 * laundry.  However, their mappings are not checked
1077 			 * for new references.  Consequently, a recently
1078 			 * referenced page may be paged out.  However, that
1079 			 * page will not be prematurely reclaimed.  After page
1080 			 * out, the page will be placed in the inactive queue,
1081 			 * where any new references will be detected and the
1082 			 * page reactivated.
1083 			 */
1084 			error = vm_pageout_clean(m, &numpagedout);
1085 			if (error == 0) {
1086 				launder -= numpagedout;
1087 				maxscan -= numpagedout - 1;
1088 			} else if (error == EDEADLK) {
1089 				pageout_lock_miss++;
1090 				vnodes_skipped++;
1091 			}
1092 			goto relock_queue;
1093 		}
1094 drop_page:
1095 		vm_page_unlock(m);
1096 		VM_OBJECT_WUNLOCK(object);
1097 relock_queue:
1098 		if (!queue_locked) {
1099 			vm_pagequeue_lock(pq);
1100 			queue_locked = true;
1101 		}
1102 		next = TAILQ_NEXT(&vmd->vmd_laundry_marker, plinks.q);
1103 		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_laundry_marker, plinks.q);
1104 	}
1105 	vm_pagequeue_unlock(pq);
1106 
1107 	if (launder > 0 && pq == &vmd->vmd_pagequeues[PQ_UNSWAPPABLE]) {
1108 		pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1109 		goto scan;
1110 	}
1111 
1112 	/*
1113 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
1114 	 * and we didn't launder enough pages.
1115 	 */
1116 	if (vnodes_skipped > 0 && launder > 0)
1117 		(void)speedup_syncer();
1118 
1119 	return (starting_target - launder);
1120 }
1121 
1122 /*
1123  * Compute the integer square root.
1124  */
1125 static u_int
1126 isqrt(u_int num)
1127 {
1128 	u_int bit, root, tmp;
1129 
1130 	bit = 1u << ((NBBY * sizeof(u_int)) - 2);
1131 	while (bit > num)
1132 		bit >>= 2;
1133 	root = 0;
1134 	while (bit != 0) {
1135 		tmp = root + bit;
1136 		root >>= 1;
1137 		if (num >= tmp) {
1138 			num -= tmp;
1139 			root += bit;
1140 		}
1141 		bit >>= 2;
1142 	}
1143 	return (root);
1144 }
1145 
1146 /*
1147  * Perform the work of the laundry thread: periodically wake up and determine
1148  * whether any pages need to be laundered.  If so, determine the number of pages
1149  * that need to be laundered, and launder them.
1150  */
1151 static void
1152 vm_pageout_laundry_worker(void *arg)
1153 {
1154 	struct vm_domain *domain;
1155 	struct vm_pagequeue *pq;
1156 	uint64_t nclean, ndirty;
1157 	u_int last_launder, wakeups;
1158 	int domidx, last_target, launder, shortfall, shortfall_cycle, target;
1159 	bool in_shortfall;
1160 
1161 	domidx = (uintptr_t)arg;
1162 	domain = &vm_dom[domidx];
1163 	pq = &domain->vmd_pagequeues[PQ_LAUNDRY];
1164 	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1165 	vm_pageout_init_marker(&domain->vmd_laundry_marker, PQ_LAUNDRY);
1166 
1167 	shortfall = 0;
1168 	in_shortfall = false;
1169 	shortfall_cycle = 0;
1170 	target = 0;
1171 	last_launder = 0;
1172 
1173 	/*
1174 	 * Calls to these handlers are serialized by the swap syscall lock.
1175 	 */
1176 	(void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, domain,
1177 	    EVENTHANDLER_PRI_ANY);
1178 	(void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, domain,
1179 	    EVENTHANDLER_PRI_ANY);
1180 
1181 	/*
1182 	 * The pageout laundry worker is never done, so loop forever.
1183 	 */
1184 	for (;;) {
1185 		KASSERT(target >= 0, ("negative target %d", target));
1186 		KASSERT(shortfall_cycle >= 0,
1187 		    ("negative cycle %d", shortfall_cycle));
1188 		launder = 0;
1189 		wakeups = VM_CNT_FETCH(v_pdwakeups);
1190 
1191 		/*
1192 		 * First determine whether we need to launder pages to meet a
1193 		 * shortage of free pages.
1194 		 */
1195 		if (shortfall > 0) {
1196 			in_shortfall = true;
1197 			shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1198 			target = shortfall;
1199 		} else if (!in_shortfall)
1200 			goto trybackground;
1201 		else if (shortfall_cycle == 0 || vm_laundry_target() <= 0) {
1202 			/*
1203 			 * We recently entered shortfall and began laundering
1204 			 * pages.  If we have completed that laundering run
1205 			 * (and we are no longer in shortfall) or we have met
1206 			 * our laundry target through other activity, then we
1207 			 * can stop laundering pages.
1208 			 */
1209 			in_shortfall = false;
1210 			target = 0;
1211 			goto trybackground;
1212 		}
1213 		last_launder = wakeups;
1214 		launder = target / shortfall_cycle--;
1215 		goto dolaundry;
1216 
1217 		/*
1218 		 * There's no immediate need to launder any pages; see if we
1219 		 * meet the conditions to perform background laundering:
1220 		 *
1221 		 * 1. The ratio of dirty to clean inactive pages exceeds the
1222 		 *    background laundering threshold and the pagedaemon has
1223 		 *    been woken up to reclaim pages since our last
1224 		 *    laundering, or
1225 		 * 2. we haven't yet reached the target of the current
1226 		 *    background laundering run.
1227 		 *
1228 		 * The background laundering threshold is not a constant.
1229 		 * Instead, it is a slowly growing function of the number of
1230 		 * page daemon wakeups since the last laundering.  Thus, as the
1231 		 * ratio of dirty to clean inactive pages grows, the amount of
1232 		 * memory pressure required to trigger laundering decreases.
1233 		 */
1234 trybackground:
1235 		nclean = vm_cnt.v_inactive_count + vm_cnt.v_free_count;
1236 		ndirty = vm_cnt.v_laundry_count;
1237 		if (target == 0 && wakeups != last_launder &&
1238 		    ndirty * isqrt(wakeups - last_launder) >= nclean) {
1239 			target = vm_background_launder_target;
1240 		}
1241 
1242 		/*
1243 		 * We have a non-zero background laundering target.  If we've
1244 		 * laundered up to our maximum without observing a page daemon
1245 		 * wakeup, just stop.  This is a safety belt that ensures we
1246 		 * don't launder an excessive amount if memory pressure is low
1247 		 * and the ratio of dirty to clean pages is large.  Otherwise,
1248 		 * proceed at the background laundering rate.
1249 		 */
1250 		if (target > 0) {
1251 			if (wakeups != last_launder) {
1252 				last_launder = wakeups;
1253 				last_target = target;
1254 			} else if (last_target - target >=
1255 			    vm_background_launder_max * PAGE_SIZE / 1024) {
1256 				target = 0;
1257 			}
1258 			launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1259 			launder /= VM_LAUNDER_RATE;
1260 			if (launder > target)
1261 				launder = target;
1262 		}
1263 
1264 dolaundry:
1265 		if (launder > 0) {
1266 			/*
1267 			 * Because of I/O clustering, the number of laundered
1268 			 * pages could exceed "target" by the maximum size of
1269 			 * a cluster minus one.
1270 			 */
1271 			target -= min(vm_pageout_launder(domain, launder,
1272 			    in_shortfall), target);
1273 			pause("laundp", hz / VM_LAUNDER_RATE);
1274 		}
1275 
1276 		/*
1277 		 * If we're not currently laundering pages and the page daemon
1278 		 * hasn't posted a new request, sleep until the page daemon
1279 		 * kicks us.
1280 		 */
1281 		vm_pagequeue_lock(pq);
1282 		if (target == 0 && vm_laundry_request == VM_LAUNDRY_IDLE)
1283 			(void)mtx_sleep(&vm_laundry_request,
1284 			    vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1285 
1286 		/*
1287 		 * If the pagedaemon has indicated that it's in shortfall, start
1288 		 * a shortfall laundering unless we're already in the middle of
1289 		 * one.  This may preempt a background laundering.
1290 		 */
1291 		if (vm_laundry_request == VM_LAUNDRY_SHORTFALL &&
1292 		    (!in_shortfall || shortfall_cycle == 0)) {
1293 			shortfall = vm_laundry_target() + vm_pageout_deficit;
1294 			target = 0;
1295 		} else
1296 			shortfall = 0;
1297 
1298 		if (target == 0)
1299 			vm_laundry_request = VM_LAUNDRY_IDLE;
1300 		vm_pagequeue_unlock(pq);
1301 	}
1302 }
1303 
1304 /*
1305  *	vm_pageout_scan does the dirty work for the pageout daemon.
1306  *
1307  *	pass == 0: Update active LRU/deactivate pages
1308  *	pass >= 1: Free inactive pages
1309  *
1310  * Returns true if pass was zero or enough pages were freed by the inactive
1311  * queue scan to meet the target.
1312  */
1313 static bool
1314 vm_pageout_scan(struct vm_domain *vmd, int pass)
1315 {
1316 	vm_page_t m, next;
1317 	struct vm_pagequeue *pq;
1318 	vm_object_t object;
1319 	long min_scan;
1320 	int act_delta, addl_page_shortage, deficit, inactq_shortage, maxscan;
1321 	int page_shortage, scan_tick, scanned, starting_page_shortage;
1322 	boolean_t queue_locked;
1323 
1324 	/*
1325 	 * If we need to reclaim memory ask kernel caches to return
1326 	 * some.  We rate limit to avoid thrashing.
1327 	 */
1328 	if (vmd == &vm_dom[0] && pass > 0 &&
1329 	    (time_uptime - lowmem_uptime) >= lowmem_period) {
1330 		/*
1331 		 * Decrease registered cache sizes.
1332 		 */
1333 		SDT_PROBE0(vm, , , vm__lowmem_scan);
1334 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1335 		/*
1336 		 * We do this explicitly after the caches have been
1337 		 * drained above.
1338 		 */
1339 		uma_reclaim();
1340 		lowmem_uptime = time_uptime;
1341 	}
1342 
1343 	/*
1344 	 * The addl_page_shortage is the number of temporarily
1345 	 * stuck pages in the inactive queue.  In other words, the
1346 	 * number of pages from the inactive count that should be
1347 	 * discounted in setting the target for the active queue scan.
1348 	 */
1349 	addl_page_shortage = 0;
1350 
1351 	/*
1352 	 * Calculate the number of pages that we want to free.  This number
1353 	 * can be negative if many pages are freed between the wakeup call to
1354 	 * the page daemon and this calculation.
1355 	 */
1356 	if (pass > 0) {
1357 		deficit = atomic_readandclear_int(&vm_pageout_deficit);
1358 		page_shortage = vm_paging_target() + deficit;
1359 	} else
1360 		page_shortage = deficit = 0;
1361 	starting_page_shortage = page_shortage;
1362 
1363 	/*
1364 	 * Start scanning the inactive queue for pages that we can free.  The
1365 	 * scan will stop when we reach the target or we have scanned the
1366 	 * entire queue.  (Note that m->act_count is not used to make
1367 	 * decisions for the inactive queue, only for the active queue.)
1368 	 */
1369 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1370 	maxscan = pq->pq_cnt;
1371 	vm_pagequeue_lock(pq);
1372 	queue_locked = TRUE;
1373 	for (m = TAILQ_FIRST(&pq->pq_pl);
1374 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
1375 	     m = next) {
1376 		vm_pagequeue_assert_locked(pq);
1377 		KASSERT(queue_locked, ("unlocked inactive queue"));
1378 		KASSERT(vm_page_inactive(m), ("Inactive queue %p", m));
1379 
1380 		VM_CNT_INC(v_pdpages);
1381 		next = TAILQ_NEXT(m, plinks.q);
1382 
1383 		/*
1384 		 * skip marker pages
1385 		 */
1386 		if (m->flags & PG_MARKER)
1387 			continue;
1388 
1389 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1390 		    ("Fictitious page %p cannot be in inactive queue", m));
1391 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1392 		    ("Unmanaged page %p cannot be in inactive queue", m));
1393 
1394 		/*
1395 		 * The page or object lock acquisitions fail if the
1396 		 * page was removed from the queue or moved to a
1397 		 * different position within the queue.  In either
1398 		 * case, addl_page_shortage should not be incremented.
1399 		 */
1400 		if (!vm_pageout_page_lock(m, &next))
1401 			goto unlock_page;
1402 		else if (m->hold_count != 0) {
1403 			/*
1404 			 * Held pages are essentially stuck in the
1405 			 * queue.  So, they ought to be discounted
1406 			 * from the inactive count.  See the
1407 			 * calculation of inactq_shortage before the
1408 			 * loop over the active queue below.
1409 			 */
1410 			addl_page_shortage++;
1411 			goto unlock_page;
1412 		}
1413 		object = m->object;
1414 		if (!VM_OBJECT_TRYWLOCK(object)) {
1415 			if (!vm_pageout_fallback_object_lock(m, &next))
1416 				goto unlock_object;
1417 			else if (m->hold_count != 0) {
1418 				addl_page_shortage++;
1419 				goto unlock_object;
1420 			}
1421 		}
1422 		if (vm_page_busied(m)) {
1423 			/*
1424 			 * Don't mess with busy pages.  Leave them at
1425 			 * the front of the queue.  Most likely, they
1426 			 * are being paged out and will leave the
1427 			 * queue shortly after the scan finishes.  So,
1428 			 * they ought to be discounted from the
1429 			 * inactive count.
1430 			 */
1431 			addl_page_shortage++;
1432 unlock_object:
1433 			VM_OBJECT_WUNLOCK(object);
1434 unlock_page:
1435 			vm_page_unlock(m);
1436 			continue;
1437 		}
1438 		KASSERT(m->hold_count == 0, ("Held page %p", m));
1439 
1440 		/*
1441 		 * Dequeue the inactive page and unlock the inactive page
1442 		 * queue, invalidating the 'next' pointer.  Dequeueing the
1443 		 * page here avoids a later reacquisition (and release) of
1444 		 * the inactive page queue lock when vm_page_activate(),
1445 		 * vm_page_free(), or vm_page_launder() is called.  Use a
1446 		 * marker to remember our place in the inactive queue.
1447 		 */
1448 		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1449 		vm_page_dequeue_locked(m);
1450 		vm_pagequeue_unlock(pq);
1451 		queue_locked = FALSE;
1452 
1453 		/*
1454 		 * Invalid pages can be easily freed. They cannot be
1455 		 * mapped, vm_page_free() asserts this.
1456 		 */
1457 		if (m->valid == 0)
1458 			goto free_page;
1459 
1460 		/*
1461 		 * If the page has been referenced and the object is not dead,
1462 		 * reactivate or requeue the page depending on whether the
1463 		 * object is mapped.
1464 		 */
1465 		if ((m->aflags & PGA_REFERENCED) != 0) {
1466 			vm_page_aflag_clear(m, PGA_REFERENCED);
1467 			act_delta = 1;
1468 		} else
1469 			act_delta = 0;
1470 		if (object->ref_count != 0) {
1471 			act_delta += pmap_ts_referenced(m);
1472 		} else {
1473 			KASSERT(!pmap_page_is_mapped(m),
1474 			    ("vm_pageout_scan: page %p is mapped", m));
1475 		}
1476 		if (act_delta != 0) {
1477 			if (object->ref_count != 0) {
1478 				VM_CNT_INC(v_reactivated);
1479 				vm_page_activate(m);
1480 
1481 				/*
1482 				 * Increase the activation count if the page
1483 				 * was referenced while in the inactive queue.
1484 				 * This makes it less likely that the page will
1485 				 * be returned prematurely to the inactive
1486 				 * queue.
1487  				 */
1488 				m->act_count += act_delta + ACT_ADVANCE;
1489 				goto drop_page;
1490 			} else if ((object->flags & OBJ_DEAD) == 0) {
1491 				vm_pagequeue_lock(pq);
1492 				queue_locked = TRUE;
1493 				m->queue = PQ_INACTIVE;
1494 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
1495 				vm_pagequeue_cnt_inc(pq);
1496 				goto drop_page;
1497 			}
1498 		}
1499 
1500 		/*
1501 		 * If the page appears to be clean at the machine-independent
1502 		 * layer, then remove all of its mappings from the pmap in
1503 		 * anticipation of freeing it.  If, however, any of the page's
1504 		 * mappings allow write access, then the page may still be
1505 		 * modified until the last of those mappings are removed.
1506 		 */
1507 		if (object->ref_count != 0) {
1508 			vm_page_test_dirty(m);
1509 			if (m->dirty == 0)
1510 				pmap_remove_all(m);
1511 		}
1512 
1513 		/*
1514 		 * Clean pages can be freed, but dirty pages must be sent back
1515 		 * to the laundry, unless they belong to a dead object.
1516 		 * Requeueing dirty pages from dead objects is pointless, as
1517 		 * they are being paged out and freed by the thread that
1518 		 * destroyed the object.
1519 		 */
1520 		if (m->dirty == 0) {
1521 free_page:
1522 			vm_page_free(m);
1523 			VM_CNT_INC(v_dfree);
1524 			--page_shortage;
1525 		} else if ((object->flags & OBJ_DEAD) == 0)
1526 			vm_page_launder(m);
1527 drop_page:
1528 		vm_page_unlock(m);
1529 		VM_OBJECT_WUNLOCK(object);
1530 		if (!queue_locked) {
1531 			vm_pagequeue_lock(pq);
1532 			queue_locked = TRUE;
1533 		}
1534 		next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1535 		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1536 	}
1537 	vm_pagequeue_unlock(pq);
1538 
1539 	/*
1540 	 * Wake up the laundry thread so that it can perform any needed
1541 	 * laundering.  If we didn't meet our target, we're in shortfall and
1542 	 * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1543 	 * swap devices are configured, the laundry thread has no work to do, so
1544 	 * don't bother waking it up.
1545 	 */
1546 	if (vm_laundry_request == VM_LAUNDRY_IDLE &&
1547 	    starting_page_shortage > 0) {
1548 		pq = &vm_dom[0].vmd_pagequeues[PQ_LAUNDRY];
1549 		vm_pagequeue_lock(pq);
1550 		if (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled)) {
1551 			if (page_shortage > 0) {
1552 				vm_laundry_request = VM_LAUNDRY_SHORTFALL;
1553 				VM_CNT_INC(v_pdshortfalls);
1554 			} else if (vm_laundry_request != VM_LAUNDRY_SHORTFALL)
1555 				vm_laundry_request = VM_LAUNDRY_BACKGROUND;
1556 			wakeup(&vm_laundry_request);
1557 		}
1558 		vm_pagequeue_unlock(pq);
1559 	}
1560 
1561 #if !defined(NO_SWAPPING)
1562 	/*
1563 	 * Wakeup the swapout daemon if we didn't free the targeted number of
1564 	 * pages.
1565 	 */
1566 	if (vm_swap_enabled && page_shortage > 0)
1567 		vm_req_vmdaemon(VM_SWAP_NORMAL);
1568 #endif
1569 
1570 	/*
1571 	 * If the inactive queue scan fails repeatedly to meet its
1572 	 * target, kill the largest process.
1573 	 */
1574 	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1575 
1576 	/*
1577 	 * Compute the number of pages we want to try to move from the
1578 	 * active queue to either the inactive or laundry queue.
1579 	 *
1580 	 * When scanning active pages, we make clean pages count more heavily
1581 	 * towards the page shortage than dirty pages.  This is because dirty
1582 	 * pages must be laundered before they can be reused and thus have less
1583 	 * utility when attempting to quickly alleviate a shortage.  However,
1584 	 * this weighting also causes the scan to deactivate dirty pages more
1585 	 * more aggressively, improving the effectiveness of clustering and
1586 	 * ensuring that they can eventually be reused.
1587 	 */
1588 	inactq_shortage = vm_cnt.v_inactive_target - (vm_cnt.v_inactive_count +
1589 	    vm_cnt.v_laundry_count / act_scan_laundry_weight) +
1590 	    vm_paging_target() + deficit + addl_page_shortage;
1591 	page_shortage *= act_scan_laundry_weight;
1592 
1593 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1594 	vm_pagequeue_lock(pq);
1595 	maxscan = pq->pq_cnt;
1596 
1597 	/*
1598 	 * If we're just idle polling attempt to visit every
1599 	 * active page within 'update_period' seconds.
1600 	 */
1601 	scan_tick = ticks;
1602 	if (vm_pageout_update_period != 0) {
1603 		min_scan = pq->pq_cnt;
1604 		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1605 		min_scan /= hz * vm_pageout_update_period;
1606 	} else
1607 		min_scan = 0;
1608 	if (min_scan > 0 || (inactq_shortage > 0 && maxscan > 0))
1609 		vmd->vmd_last_active_scan = scan_tick;
1610 
1611 	/*
1612 	 * Scan the active queue for pages that can be deactivated.  Update
1613 	 * the per-page activity counter and use it to identify deactivation
1614 	 * candidates.  Held pages may be deactivated.
1615 	 */
1616 	for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned <
1617 	    min_scan || (inactq_shortage > 0 && scanned < maxscan)); m = next,
1618 	    scanned++) {
1619 		KASSERT(m->queue == PQ_ACTIVE,
1620 		    ("vm_pageout_scan: page %p isn't active", m));
1621 		next = TAILQ_NEXT(m, plinks.q);
1622 		if ((m->flags & PG_MARKER) != 0)
1623 			continue;
1624 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1625 		    ("Fictitious page %p cannot be in active queue", m));
1626 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1627 		    ("Unmanaged page %p cannot be in active queue", m));
1628 		if (!vm_pageout_page_lock(m, &next)) {
1629 			vm_page_unlock(m);
1630 			continue;
1631 		}
1632 
1633 		/*
1634 		 * The count for page daemon pages is updated after checking
1635 		 * the page for eligibility.
1636 		 */
1637 		VM_CNT_INC(v_pdpages);
1638 
1639 		/*
1640 		 * Check to see "how much" the page has been used.
1641 		 */
1642 		if ((m->aflags & PGA_REFERENCED) != 0) {
1643 			vm_page_aflag_clear(m, PGA_REFERENCED);
1644 			act_delta = 1;
1645 		} else
1646 			act_delta = 0;
1647 
1648 		/*
1649 		 * Perform an unsynchronized object ref count check.  While
1650 		 * the page lock ensures that the page is not reallocated to
1651 		 * another object, in particular, one with unmanaged mappings
1652 		 * that cannot support pmap_ts_referenced(), two races are,
1653 		 * nonetheless, possible:
1654 		 * 1) The count was transitioning to zero, but we saw a non-
1655 		 *    zero value.  pmap_ts_referenced() will return zero
1656 		 *    because the page is not mapped.
1657 		 * 2) The count was transitioning to one, but we saw zero.
1658 		 *    This race delays the detection of a new reference.  At
1659 		 *    worst, we will deactivate and reactivate the page.
1660 		 */
1661 		if (m->object->ref_count != 0)
1662 			act_delta += pmap_ts_referenced(m);
1663 
1664 		/*
1665 		 * Advance or decay the act_count based on recent usage.
1666 		 */
1667 		if (act_delta != 0) {
1668 			m->act_count += ACT_ADVANCE + act_delta;
1669 			if (m->act_count > ACT_MAX)
1670 				m->act_count = ACT_MAX;
1671 		} else
1672 			m->act_count -= min(m->act_count, ACT_DECLINE);
1673 
1674 		/*
1675 		 * Move this page to the tail of the active, inactive or laundry
1676 		 * queue depending on usage.
1677 		 */
1678 		if (m->act_count == 0) {
1679 			/* Dequeue to avoid later lock recursion. */
1680 			vm_page_dequeue_locked(m);
1681 
1682 			/*
1683 			 * When not short for inactive pages, let dirty pages go
1684 			 * through the inactive queue before moving to the
1685 			 * laundry queues.  This gives them some extra time to
1686 			 * be reactivated, potentially avoiding an expensive
1687 			 * pageout.  During a page shortage, the inactive queue
1688 			 * is necessarily small, so we may move dirty pages
1689 			 * directly to the laundry queue.
1690 			 */
1691 			if (inactq_shortage <= 0)
1692 				vm_page_deactivate(m);
1693 			else {
1694 				/*
1695 				 * Calling vm_page_test_dirty() here would
1696 				 * require acquisition of the object's write
1697 				 * lock.  However, during a page shortage,
1698 				 * directing dirty pages into the laundry
1699 				 * queue is only an optimization and not a
1700 				 * requirement.  Therefore, we simply rely on
1701 				 * the opportunistic updates to the page's
1702 				 * dirty field by the pmap.
1703 				 */
1704 				if (m->dirty == 0) {
1705 					vm_page_deactivate(m);
1706 					inactq_shortage -=
1707 					    act_scan_laundry_weight;
1708 				} else {
1709 					vm_page_launder(m);
1710 					inactq_shortage--;
1711 				}
1712 			}
1713 		} else
1714 			vm_page_requeue_locked(m);
1715 		vm_page_unlock(m);
1716 	}
1717 	vm_pagequeue_unlock(pq);
1718 #if !defined(NO_SWAPPING)
1719 	/*
1720 	 * Idle process swapout -- run once per second when we are reclaiming
1721 	 * pages.
1722 	 */
1723 	if (vm_swap_idle_enabled && pass > 0) {
1724 		static long lsec;
1725 		if (time_second != lsec) {
1726 			vm_req_vmdaemon(VM_SWAP_IDLE);
1727 			lsec = time_second;
1728 		}
1729 	}
1730 #endif
1731 	return (page_shortage <= 0);
1732 }
1733 
1734 static int vm_pageout_oom_vote;
1735 
1736 /*
1737  * The pagedaemon threads randlomly select one to perform the
1738  * OOM.  Trying to kill processes before all pagedaemons
1739  * failed to reach free target is premature.
1740  */
1741 static void
1742 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1743     int starting_page_shortage)
1744 {
1745 	int old_vote;
1746 
1747 	if (starting_page_shortage <= 0 || starting_page_shortage !=
1748 	    page_shortage)
1749 		vmd->vmd_oom_seq = 0;
1750 	else
1751 		vmd->vmd_oom_seq++;
1752 	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1753 		if (vmd->vmd_oom) {
1754 			vmd->vmd_oom = FALSE;
1755 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1756 		}
1757 		return;
1758 	}
1759 
1760 	/*
1761 	 * Do not follow the call sequence until OOM condition is
1762 	 * cleared.
1763 	 */
1764 	vmd->vmd_oom_seq = 0;
1765 
1766 	if (vmd->vmd_oom)
1767 		return;
1768 
1769 	vmd->vmd_oom = TRUE;
1770 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1771 	if (old_vote != vm_ndomains - 1)
1772 		return;
1773 
1774 	/*
1775 	 * The current pagedaemon thread is the last in the quorum to
1776 	 * start OOM.  Initiate the selection and signaling of the
1777 	 * victim.
1778 	 */
1779 	vm_pageout_oom(VM_OOM_MEM);
1780 
1781 	/*
1782 	 * After one round of OOM terror, recall our vote.  On the
1783 	 * next pass, current pagedaemon would vote again if the low
1784 	 * memory condition is still there, due to vmd_oom being
1785 	 * false.
1786 	 */
1787 	vmd->vmd_oom = FALSE;
1788 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1789 }
1790 
1791 /*
1792  * The OOM killer is the page daemon's action of last resort when
1793  * memory allocation requests have been stalled for a prolonged period
1794  * of time because it cannot reclaim memory.  This function computes
1795  * the approximate number of physical pages that could be reclaimed if
1796  * the specified address space is destroyed.
1797  *
1798  * Private, anonymous memory owned by the address space is the
1799  * principal resource that we expect to recover after an OOM kill.
1800  * Since the physical pages mapped by the address space's COW entries
1801  * are typically shared pages, they are unlikely to be released and so
1802  * they are not counted.
1803  *
1804  * To get to the point where the page daemon runs the OOM killer, its
1805  * efforts to write-back vnode-backed pages may have stalled.  This
1806  * could be caused by a memory allocation deadlock in the write path
1807  * that might be resolved by an OOM kill.  Therefore, physical pages
1808  * belonging to vnode-backed objects are counted, because they might
1809  * be freed without being written out first if the address space holds
1810  * the last reference to an unlinked vnode.
1811  *
1812  * Similarly, physical pages belonging to OBJT_PHYS objects are
1813  * counted because the address space might hold the last reference to
1814  * the object.
1815  */
1816 static long
1817 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1818 {
1819 	vm_map_t map;
1820 	vm_map_entry_t entry;
1821 	vm_object_t obj;
1822 	long res;
1823 
1824 	map = &vmspace->vm_map;
1825 	KASSERT(!map->system_map, ("system map"));
1826 	sx_assert(&map->lock, SA_LOCKED);
1827 	res = 0;
1828 	for (entry = map->header.next; entry != &map->header;
1829 	    entry = entry->next) {
1830 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1831 			continue;
1832 		obj = entry->object.vm_object;
1833 		if (obj == NULL)
1834 			continue;
1835 		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1836 		    obj->ref_count != 1)
1837 			continue;
1838 		switch (obj->type) {
1839 		case OBJT_DEFAULT:
1840 		case OBJT_SWAP:
1841 		case OBJT_PHYS:
1842 		case OBJT_VNODE:
1843 			res += obj->resident_page_count;
1844 			break;
1845 		}
1846 	}
1847 	return (res);
1848 }
1849 
1850 void
1851 vm_pageout_oom(int shortage)
1852 {
1853 	struct proc *p, *bigproc;
1854 	vm_offset_t size, bigsize;
1855 	struct thread *td;
1856 	struct vmspace *vm;
1857 	bool breakout;
1858 
1859 	/*
1860 	 * We keep the process bigproc locked once we find it to keep anyone
1861 	 * from messing with it; however, there is a possibility of
1862 	 * deadlock if process B is bigproc and one of its child processes
1863 	 * attempts to propagate a signal to B while we are waiting for A's
1864 	 * lock while walking this list.  To avoid this, we don't block on
1865 	 * the process lock but just skip a process if it is already locked.
1866 	 */
1867 	bigproc = NULL;
1868 	bigsize = 0;
1869 	sx_slock(&allproc_lock);
1870 	FOREACH_PROC_IN_SYSTEM(p) {
1871 		PROC_LOCK(p);
1872 
1873 		/*
1874 		 * If this is a system, protected or killed process, skip it.
1875 		 */
1876 		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1877 		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1878 		    p->p_pid == 1 || P_KILLED(p) ||
1879 		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1880 			PROC_UNLOCK(p);
1881 			continue;
1882 		}
1883 		/*
1884 		 * If the process is in a non-running type state,
1885 		 * don't touch it.  Check all the threads individually.
1886 		 */
1887 		breakout = false;
1888 		FOREACH_THREAD_IN_PROC(p, td) {
1889 			thread_lock(td);
1890 			if (!TD_ON_RUNQ(td) &&
1891 			    !TD_IS_RUNNING(td) &&
1892 			    !TD_IS_SLEEPING(td) &&
1893 			    !TD_IS_SUSPENDED(td) &&
1894 			    !TD_IS_SWAPPED(td)) {
1895 				thread_unlock(td);
1896 				breakout = true;
1897 				break;
1898 			}
1899 			thread_unlock(td);
1900 		}
1901 		if (breakout) {
1902 			PROC_UNLOCK(p);
1903 			continue;
1904 		}
1905 		/*
1906 		 * get the process size
1907 		 */
1908 		vm = vmspace_acquire_ref(p);
1909 		if (vm == NULL) {
1910 			PROC_UNLOCK(p);
1911 			continue;
1912 		}
1913 		_PHOLD_LITE(p);
1914 		PROC_UNLOCK(p);
1915 		sx_sunlock(&allproc_lock);
1916 		if (!vm_map_trylock_read(&vm->vm_map)) {
1917 			vmspace_free(vm);
1918 			sx_slock(&allproc_lock);
1919 			PRELE(p);
1920 			continue;
1921 		}
1922 		size = vmspace_swap_count(vm);
1923 		if (shortage == VM_OOM_MEM)
1924 			size += vm_pageout_oom_pagecount(vm);
1925 		vm_map_unlock_read(&vm->vm_map);
1926 		vmspace_free(vm);
1927 		sx_slock(&allproc_lock);
1928 
1929 		/*
1930 		 * If this process is bigger than the biggest one,
1931 		 * remember it.
1932 		 */
1933 		if (size > bigsize) {
1934 			if (bigproc != NULL)
1935 				PRELE(bigproc);
1936 			bigproc = p;
1937 			bigsize = size;
1938 		} else {
1939 			PRELE(p);
1940 		}
1941 	}
1942 	sx_sunlock(&allproc_lock);
1943 	if (bigproc != NULL) {
1944 		if (vm_panic_on_oom != 0)
1945 			panic("out of swap space");
1946 		PROC_LOCK(bigproc);
1947 		killproc(bigproc, "out of swap space");
1948 		sched_nice(bigproc, PRIO_MIN);
1949 		_PRELE(bigproc);
1950 		PROC_UNLOCK(bigproc);
1951 		wakeup(&vm_cnt.v_free_count);
1952 	}
1953 }
1954 
1955 static void
1956 vm_pageout_worker(void *arg)
1957 {
1958 	struct vm_domain *domain;
1959 	int domidx, pass;
1960 	bool target_met;
1961 
1962 	domidx = (uintptr_t)arg;
1963 	domain = &vm_dom[domidx];
1964 	pass = 0;
1965 	target_met = true;
1966 
1967 	/*
1968 	 * XXXKIB It could be useful to bind pageout daemon threads to
1969 	 * the cores belonging to the domain, from which vm_page_array
1970 	 * is allocated.
1971 	 */
1972 
1973 	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1974 	domain->vmd_last_active_scan = ticks;
1975 	vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1976 	vm_pageout_init_marker(&domain->vmd_inacthead, PQ_INACTIVE);
1977 	TAILQ_INSERT_HEAD(&domain->vmd_pagequeues[PQ_INACTIVE].pq_pl,
1978 	    &domain->vmd_inacthead, plinks.q);
1979 
1980 	/*
1981 	 * The pageout daemon worker is never done, so loop forever.
1982 	 */
1983 	while (TRUE) {
1984 		mtx_lock(&vm_page_queue_free_mtx);
1985 
1986 		/*
1987 		 * Generally, after a level >= 1 scan, if there are enough
1988 		 * free pages to wakeup the waiters, then they are already
1989 		 * awake.  A call to vm_page_free() during the scan awakened
1990 		 * them.  However, in the following case, this wakeup serves
1991 		 * to bound the amount of time that a thread might wait.
1992 		 * Suppose a thread's call to vm_page_alloc() fails, but
1993 		 * before that thread calls VM_WAIT, enough pages are freed by
1994 		 * other threads to alleviate the free page shortage.  The
1995 		 * thread will, nonetheless, wait until another page is freed
1996 		 * or this wakeup is performed.
1997 		 */
1998 		if (vm_pages_needed && !vm_page_count_min()) {
1999 			vm_pages_needed = false;
2000 			wakeup(&vm_cnt.v_free_count);
2001 		}
2002 
2003 		/*
2004 		 * Do not clear vm_pageout_wanted until we reach our free page
2005 		 * target.  Otherwise, we may be awakened over and over again,
2006 		 * wasting CPU time.
2007 		 */
2008 		if (vm_pageout_wanted && target_met)
2009 			vm_pageout_wanted = false;
2010 
2011 		/*
2012 		 * Might the page daemon receive a wakeup call?
2013 		 */
2014 		if (vm_pageout_wanted) {
2015 			/*
2016 			 * No.  Either vm_pageout_wanted was set by another
2017 			 * thread during the previous scan, which must have
2018 			 * been a level 0 scan, or vm_pageout_wanted was
2019 			 * already set and the scan failed to free enough
2020 			 * pages.  If we haven't yet performed a level >= 1
2021 			 * (page reclamation) scan, then increase the level
2022 			 * and scan again now.  Otherwise, sleep a bit and
2023 			 * try again later.
2024 			 */
2025 			mtx_unlock(&vm_page_queue_free_mtx);
2026 			if (pass >= 1)
2027 				pause("psleep", hz / VM_INACT_SCAN_RATE);
2028 			pass++;
2029 		} else {
2030 			/*
2031 			 * Yes.  Sleep until pages need to be reclaimed or
2032 			 * have their reference stats updated.
2033 			 */
2034 			if (mtx_sleep(&vm_pageout_wanted,
2035 			    &vm_page_queue_free_mtx, PDROP | PVM, "psleep",
2036 			    hz) == 0) {
2037 				VM_CNT_INC(v_pdwakeups);
2038 				pass = 1;
2039 			} else
2040 				pass = 0;
2041 		}
2042 
2043 		target_met = vm_pageout_scan(domain, pass);
2044 	}
2045 }
2046 
2047 /*
2048  *	vm_pageout_init initialises basic pageout daemon settings.
2049  */
2050 static void
2051 vm_pageout_init(void)
2052 {
2053 	/*
2054 	 * Initialize some paging parameters.
2055 	 */
2056 	vm_cnt.v_interrupt_free_min = 2;
2057 	if (vm_cnt.v_page_count < 2000)
2058 		vm_pageout_page_count = 8;
2059 
2060 	/*
2061 	 * v_free_reserved needs to include enough for the largest
2062 	 * swap pager structures plus enough for any pv_entry structs
2063 	 * when paging.
2064 	 */
2065 	if (vm_cnt.v_page_count > 1024)
2066 		vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200;
2067 	else
2068 		vm_cnt.v_free_min = 4;
2069 	vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
2070 	    vm_cnt.v_interrupt_free_min;
2071 	vm_cnt.v_free_reserved = vm_pageout_page_count +
2072 	    vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768);
2073 	vm_cnt.v_free_severe = vm_cnt.v_free_min / 2;
2074 	vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved;
2075 	vm_cnt.v_free_min += vm_cnt.v_free_reserved;
2076 	vm_cnt.v_free_severe += vm_cnt.v_free_reserved;
2077 	vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2;
2078 	if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3)
2079 		vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3;
2080 
2081 	/*
2082 	 * Set the default wakeup threshold to be 10% above the minimum
2083 	 * page limit.  This keeps the steady state out of shortfall.
2084 	 */
2085 	vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11;
2086 
2087 	/*
2088 	 * Set interval in seconds for active scan.  We want to visit each
2089 	 * page at least once every ten minutes.  This is to prevent worst
2090 	 * case paging behaviors with stale active LRU.
2091 	 */
2092 	if (vm_pageout_update_period == 0)
2093 		vm_pageout_update_period = 600;
2094 
2095 	/* XXX does not really belong here */
2096 	if (vm_page_max_wired == 0)
2097 		vm_page_max_wired = vm_cnt.v_free_count / 3;
2098 
2099 	/*
2100 	 * Target amount of memory to move out of the laundry queue during a
2101 	 * background laundering.  This is proportional to the amount of system
2102 	 * memory.
2103 	 */
2104 	vm_background_launder_target = (vm_cnt.v_free_target -
2105 	    vm_cnt.v_free_min) / 10;
2106 }
2107 
2108 /*
2109  *     vm_pageout is the high level pageout daemon.
2110  */
2111 static void
2112 vm_pageout(void)
2113 {
2114 	int error;
2115 #ifdef VM_NUMA_ALLOC
2116 	int i;
2117 #endif
2118 
2119 	swap_pager_swap_init();
2120 	error = kthread_add(vm_pageout_laundry_worker, NULL, curproc, NULL,
2121 	    0, 0, "laundry: dom0");
2122 	if (error != 0)
2123 		panic("starting laundry for domain 0, error %d", error);
2124 #ifdef VM_NUMA_ALLOC
2125 	for (i = 1; i < vm_ndomains; i++) {
2126 		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
2127 		    curproc, NULL, 0, 0, "dom%d", i);
2128 		if (error != 0) {
2129 			panic("starting pageout for domain %d, error %d\n",
2130 			    i, error);
2131 		}
2132 	}
2133 #endif
2134 	error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
2135 	    0, 0, "uma");
2136 	if (error != 0)
2137 		panic("starting uma_reclaim helper, error %d\n", error);
2138 	vm_pageout_worker((void *)(uintptr_t)0);
2139 }
2140 
2141 /*
2142  * Unless the free page queue lock is held by the caller, this function
2143  * should be regarded as advisory.  Specifically, the caller should
2144  * not msleep() on &vm_cnt.v_free_count following this function unless
2145  * the free page queue lock is held until the msleep() is performed.
2146  */
2147 void
2148 pagedaemon_wakeup(void)
2149 {
2150 
2151 	if (!vm_pageout_wanted && curthread->td_proc != pageproc) {
2152 		vm_pageout_wanted = true;
2153 		wakeup(&vm_pageout_wanted);
2154 	}
2155 }
2156 
2157 #if !defined(NO_SWAPPING)
2158 static void
2159 vm_req_vmdaemon(int req)
2160 {
2161 	static int lastrun = 0;
2162 
2163 	mtx_lock(&vm_daemon_mtx);
2164 	vm_pageout_req_swapout |= req;
2165 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
2166 		wakeup(&vm_daemon_needed);
2167 		lastrun = ticks;
2168 	}
2169 	mtx_unlock(&vm_daemon_mtx);
2170 }
2171 
2172 static void
2173 vm_daemon(void)
2174 {
2175 	struct rlimit rsslim;
2176 	struct proc *p;
2177 	struct thread *td;
2178 	struct vmspace *vm;
2179 	int breakout, swapout_flags, tryagain, attempts;
2180 #ifdef RACCT
2181 	uint64_t rsize, ravailable;
2182 #endif
2183 
2184 	while (TRUE) {
2185 		mtx_lock(&vm_daemon_mtx);
2186 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
2187 #ifdef RACCT
2188 		    racct_enable ? hz : 0
2189 #else
2190 		    0
2191 #endif
2192 		);
2193 		swapout_flags = vm_pageout_req_swapout;
2194 		vm_pageout_req_swapout = 0;
2195 		mtx_unlock(&vm_daemon_mtx);
2196 		if (swapout_flags)
2197 			swapout_procs(swapout_flags);
2198 
2199 		/*
2200 		 * scan the processes for exceeding their rlimits or if
2201 		 * process is swapped out -- deactivate pages
2202 		 */
2203 		tryagain = 0;
2204 		attempts = 0;
2205 again:
2206 		attempts++;
2207 		sx_slock(&allproc_lock);
2208 		FOREACH_PROC_IN_SYSTEM(p) {
2209 			vm_pindex_t limit, size;
2210 
2211 			/*
2212 			 * if this is a system process or if we have already
2213 			 * looked at this process, skip it.
2214 			 */
2215 			PROC_LOCK(p);
2216 			if (p->p_state != PRS_NORMAL ||
2217 			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
2218 				PROC_UNLOCK(p);
2219 				continue;
2220 			}
2221 			/*
2222 			 * if the process is in a non-running type state,
2223 			 * don't touch it.
2224 			 */
2225 			breakout = 0;
2226 			FOREACH_THREAD_IN_PROC(p, td) {
2227 				thread_lock(td);
2228 				if (!TD_ON_RUNQ(td) &&
2229 				    !TD_IS_RUNNING(td) &&
2230 				    !TD_IS_SLEEPING(td) &&
2231 				    !TD_IS_SUSPENDED(td)) {
2232 					thread_unlock(td);
2233 					breakout = 1;
2234 					break;
2235 				}
2236 				thread_unlock(td);
2237 			}
2238 			if (breakout) {
2239 				PROC_UNLOCK(p);
2240 				continue;
2241 			}
2242 			/*
2243 			 * get a limit
2244 			 */
2245 			lim_rlimit_proc(p, RLIMIT_RSS, &rsslim);
2246 			limit = OFF_TO_IDX(
2247 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
2248 
2249 			/*
2250 			 * let processes that are swapped out really be
2251 			 * swapped out set the limit to nothing (will force a
2252 			 * swap-out.)
2253 			 */
2254 			if ((p->p_flag & P_INMEM) == 0)
2255 				limit = 0;	/* XXX */
2256 			vm = vmspace_acquire_ref(p);
2257 			_PHOLD_LITE(p);
2258 			PROC_UNLOCK(p);
2259 			if (vm == NULL) {
2260 				PRELE(p);
2261 				continue;
2262 			}
2263 			sx_sunlock(&allproc_lock);
2264 
2265 			size = vmspace_resident_count(vm);
2266 			if (size >= limit) {
2267 				vm_pageout_map_deactivate_pages(
2268 				    &vm->vm_map, limit);
2269 				size = vmspace_resident_count(vm);
2270 			}
2271 #ifdef RACCT
2272 			if (racct_enable) {
2273 				rsize = IDX_TO_OFF(size);
2274 				PROC_LOCK(p);
2275 				if (p->p_state == PRS_NORMAL)
2276 					racct_set(p, RACCT_RSS, rsize);
2277 				ravailable = racct_get_available(p, RACCT_RSS);
2278 				PROC_UNLOCK(p);
2279 				if (rsize > ravailable) {
2280 					/*
2281 					 * Don't be overly aggressive; this
2282 					 * might be an innocent process,
2283 					 * and the limit could've been exceeded
2284 					 * by some memory hog.  Don't try
2285 					 * to deactivate more than 1/4th
2286 					 * of process' resident set size.
2287 					 */
2288 					if (attempts <= 8) {
2289 						if (ravailable < rsize -
2290 						    (rsize / 4)) {
2291 							ravailable = rsize -
2292 							    (rsize / 4);
2293 						}
2294 					}
2295 					vm_pageout_map_deactivate_pages(
2296 					    &vm->vm_map,
2297 					    OFF_TO_IDX(ravailable));
2298 					/* Update RSS usage after paging out. */
2299 					size = vmspace_resident_count(vm);
2300 					rsize = IDX_TO_OFF(size);
2301 					PROC_LOCK(p);
2302 					if (p->p_state == PRS_NORMAL)
2303 						racct_set(p, RACCT_RSS, rsize);
2304 					PROC_UNLOCK(p);
2305 					if (rsize > ravailable)
2306 						tryagain = 1;
2307 				}
2308 			}
2309 #endif
2310 			vmspace_free(vm);
2311 			sx_slock(&allproc_lock);
2312 			PRELE(p);
2313 		}
2314 		sx_sunlock(&allproc_lock);
2315 		if (tryagain != 0 && attempts <= 10)
2316 			goto again;
2317 	}
2318 }
2319 #endif			/* !defined(NO_SWAPPING) */
2320