1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 45 * 46 * 47 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 48 * All rights reserved. 49 * 50 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 51 * 52 * Permission to use, copy, modify and distribute this software and 53 * its documentation is hereby granted, provided that both the copyright 54 * notice and this permission notice appear in all copies of the 55 * software, derivative works or modified versions, and any portions 56 * thereof, and that both notices appear in supporting documentation. 57 * 58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 61 * 62 * Carnegie Mellon requests users of this software to return to 63 * 64 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 65 * School of Computer Science 66 * Carnegie Mellon University 67 * Pittsburgh PA 15213-3890 68 * 69 * any improvements or extensions that they make and grant Carnegie the 70 * rights to redistribute these changes. 71 */ 72 73 /* 74 * The proverbial page-out daemon. 75 */ 76 77 #include <sys/cdefs.h> 78 __FBSDID("$FreeBSD$"); 79 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/blockcount.h> 86 #include <sys/eventhandler.h> 87 #include <sys/lock.h> 88 #include <sys/mutex.h> 89 #include <sys/proc.h> 90 #include <sys/kthread.h> 91 #include <sys/ktr.h> 92 #include <sys/mount.h> 93 #include <sys/racct.h> 94 #include <sys/resourcevar.h> 95 #include <sys/sched.h> 96 #include <sys/sdt.h> 97 #include <sys/signalvar.h> 98 #include <sys/smp.h> 99 #include <sys/time.h> 100 #include <sys/vnode.h> 101 #include <sys/vmmeter.h> 102 #include <sys/rwlock.h> 103 #include <sys/sx.h> 104 #include <sys/sysctl.h> 105 106 #include <vm/vm.h> 107 #include <vm/vm_param.h> 108 #include <vm/vm_object.h> 109 #include <vm/vm_page.h> 110 #include <vm/vm_map.h> 111 #include <vm/vm_pageout.h> 112 #include <vm/vm_pager.h> 113 #include <vm/vm_phys.h> 114 #include <vm/vm_pagequeue.h> 115 #include <vm/swap_pager.h> 116 #include <vm/vm_extern.h> 117 #include <vm/uma.h> 118 119 /* 120 * System initialization 121 */ 122 123 /* the kernel process "vm_pageout"*/ 124 static void vm_pageout(void); 125 static void vm_pageout_init(void); 126 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 127 static int vm_pageout_cluster(vm_page_t m); 128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 129 int starting_page_shortage); 130 131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 132 NULL); 133 134 struct proc *pageproc; 135 136 static struct kproc_desc page_kp = { 137 "pagedaemon", 138 vm_pageout, 139 &pageproc 140 }; 141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 142 &page_kp); 143 144 SDT_PROVIDER_DEFINE(vm); 145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 146 147 /* Pagedaemon activity rates, in subdivisions of one second. */ 148 #define VM_LAUNDER_RATE 10 149 #define VM_INACT_SCAN_RATE 10 150 151 static int swapdev_enabled; 152 int vm_pageout_page_count = 32; 153 154 static int vm_panic_on_oom = 0; 155 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 156 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 157 "Panic on the given number of out-of-memory errors instead of " 158 "killing the largest process"); 159 160 static int vm_pageout_update_period; 161 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 162 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 163 "Maximum active LRU update period"); 164 165 static int pageout_cpus_per_thread = 16; 166 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN, 167 &pageout_cpus_per_thread, 0, 168 "Number of CPUs per pagedaemon worker thread"); 169 170 static int lowmem_period = 10; 171 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 172 "Low memory callback period"); 173 174 static int disable_swap_pageouts; 175 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 176 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, 177 "Disallow swapout of dirty pages"); 178 179 static int pageout_lock_miss; 180 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 181 CTLFLAG_RD, &pageout_lock_miss, 0, 182 "vget() lock misses during pageout"); 183 184 static int vm_pageout_oom_seq = 12; 185 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 186 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 187 "back-to-back calls to oom detector to start OOM"); 188 189 static int act_scan_laundry_weight = 3; 190 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 191 &act_scan_laundry_weight, 0, 192 "weight given to clean vs. dirty pages in active queue scans"); 193 194 static u_int vm_background_launder_rate = 4096; 195 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 196 &vm_background_launder_rate, 0, 197 "background laundering rate, in kilobytes per second"); 198 199 static u_int vm_background_launder_max = 20 * 1024; 200 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 201 &vm_background_launder_max, 0, 202 "background laundering cap, in kilobytes"); 203 204 u_long vm_page_max_user_wired; 205 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW, 206 &vm_page_max_user_wired, 0, 207 "system-wide limit to user-wired page count"); 208 209 static u_int isqrt(u_int num); 210 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 211 bool in_shortfall); 212 static void vm_pageout_laundry_worker(void *arg); 213 214 struct scan_state { 215 struct vm_batchqueue bq; 216 struct vm_pagequeue *pq; 217 vm_page_t marker; 218 int maxscan; 219 int scanned; 220 }; 221 222 static void 223 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq, 224 vm_page_t marker, vm_page_t after, int maxscan) 225 { 226 227 vm_pagequeue_assert_locked(pq); 228 KASSERT((marker->a.flags & PGA_ENQUEUED) == 0, 229 ("marker %p already enqueued", marker)); 230 231 if (after == NULL) 232 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q); 233 else 234 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q); 235 vm_page_aflag_set(marker, PGA_ENQUEUED); 236 237 vm_batchqueue_init(&ss->bq); 238 ss->pq = pq; 239 ss->marker = marker; 240 ss->maxscan = maxscan; 241 ss->scanned = 0; 242 vm_pagequeue_unlock(pq); 243 } 244 245 static void 246 vm_pageout_end_scan(struct scan_state *ss) 247 { 248 struct vm_pagequeue *pq; 249 250 pq = ss->pq; 251 vm_pagequeue_assert_locked(pq); 252 KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0, 253 ("marker %p not enqueued", ss->marker)); 254 255 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q); 256 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED); 257 pq->pq_pdpages += ss->scanned; 258 } 259 260 /* 261 * Add a small number of queued pages to a batch queue for later processing 262 * without the corresponding queue lock held. The caller must have enqueued a 263 * marker page at the desired start point for the scan. Pages will be 264 * physically dequeued if the caller so requests. Otherwise, the returned 265 * batch may contain marker pages, and it is up to the caller to handle them. 266 * 267 * When processing the batch queue, vm_pageout_defer() must be used to 268 * determine whether the page has been logically dequeued since the batch was 269 * collected. 270 */ 271 static __always_inline void 272 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue) 273 { 274 struct vm_pagequeue *pq; 275 vm_page_t m, marker, n; 276 277 marker = ss->marker; 278 pq = ss->pq; 279 280 KASSERT((marker->a.flags & PGA_ENQUEUED) != 0, 281 ("marker %p not enqueued", ss->marker)); 282 283 vm_pagequeue_lock(pq); 284 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL && 285 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE; 286 m = n, ss->scanned++) { 287 n = TAILQ_NEXT(m, plinks.q); 288 if ((m->flags & PG_MARKER) == 0) { 289 KASSERT((m->a.flags & PGA_ENQUEUED) != 0, 290 ("page %p not enqueued", m)); 291 KASSERT((m->flags & PG_FICTITIOUS) == 0, 292 ("Fictitious page %p cannot be in page queue", m)); 293 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 294 ("Unmanaged page %p cannot be in page queue", m)); 295 } else if (dequeue) 296 continue; 297 298 (void)vm_batchqueue_insert(&ss->bq, m); 299 if (dequeue) { 300 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 301 vm_page_aflag_clear(m, PGA_ENQUEUED); 302 } 303 } 304 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 305 if (__predict_true(m != NULL)) 306 TAILQ_INSERT_BEFORE(m, marker, plinks.q); 307 else 308 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q); 309 if (dequeue) 310 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt); 311 vm_pagequeue_unlock(pq); 312 } 313 314 /* 315 * Return the next page to be scanned, or NULL if the scan is complete. 316 */ 317 static __always_inline vm_page_t 318 vm_pageout_next(struct scan_state *ss, const bool dequeue) 319 { 320 321 if (ss->bq.bq_cnt == 0) 322 vm_pageout_collect_batch(ss, dequeue); 323 return (vm_batchqueue_pop(&ss->bq)); 324 } 325 326 /* 327 * Determine whether processing of a page should be deferred and ensure that any 328 * outstanding queue operations are processed. 329 */ 330 static __always_inline bool 331 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued) 332 { 333 vm_page_astate_t as; 334 335 as = vm_page_astate_load(m); 336 if (__predict_false(as.queue != queue || 337 ((as.flags & PGA_ENQUEUED) != 0) != enqueued)) 338 return (true); 339 if ((as.flags & PGA_QUEUE_OP_MASK) != 0) { 340 vm_page_pqbatch_submit(m, queue); 341 return (true); 342 } 343 return (false); 344 } 345 346 /* 347 * Scan for pages at adjacent offsets within the given page's object that are 348 * eligible for laundering, form a cluster of these pages and the given page, 349 * and launder that cluster. 350 */ 351 static int 352 vm_pageout_cluster(vm_page_t m) 353 { 354 vm_object_t object; 355 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; 356 vm_pindex_t pindex; 357 int ib, is, page_base, pageout_count; 358 359 object = m->object; 360 VM_OBJECT_ASSERT_WLOCKED(object); 361 pindex = m->pindex; 362 363 vm_page_assert_xbusied(m); 364 365 mc[vm_pageout_page_count] = pb = ps = m; 366 pageout_count = 1; 367 page_base = vm_pageout_page_count; 368 ib = 1; 369 is = 1; 370 371 /* 372 * We can cluster only if the page is not clean, busy, or held, and 373 * the page is in the laundry queue. 374 * 375 * During heavy mmap/modification loads the pageout 376 * daemon can really fragment the underlying file 377 * due to flushing pages out of order and not trying to 378 * align the clusters (which leaves sporadic out-of-order 379 * holes). To solve this problem we do the reverse scan 380 * first and attempt to align our cluster, then do a 381 * forward scan if room remains. 382 */ 383 more: 384 while (ib != 0 && pageout_count < vm_pageout_page_count) { 385 if (ib > pindex) { 386 ib = 0; 387 break; 388 } 389 if ((p = vm_page_prev(pb)) == NULL || 390 vm_page_tryxbusy(p) == 0) { 391 ib = 0; 392 break; 393 } 394 if (vm_page_wired(p)) { 395 ib = 0; 396 vm_page_xunbusy(p); 397 break; 398 } 399 vm_page_test_dirty(p); 400 if (p->dirty == 0) { 401 ib = 0; 402 vm_page_xunbusy(p); 403 break; 404 } 405 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) { 406 vm_page_xunbusy(p); 407 ib = 0; 408 break; 409 } 410 mc[--page_base] = pb = p; 411 ++pageout_count; 412 ++ib; 413 414 /* 415 * We are at an alignment boundary. Stop here, and switch 416 * directions. Do not clear ib. 417 */ 418 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 419 break; 420 } 421 while (pageout_count < vm_pageout_page_count && 422 pindex + is < object->size) { 423 if ((p = vm_page_next(ps)) == NULL || 424 vm_page_tryxbusy(p) == 0) 425 break; 426 if (vm_page_wired(p)) { 427 vm_page_xunbusy(p); 428 break; 429 } 430 vm_page_test_dirty(p); 431 if (p->dirty == 0) { 432 vm_page_xunbusy(p); 433 break; 434 } 435 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) { 436 vm_page_xunbusy(p); 437 break; 438 } 439 mc[page_base + pageout_count] = ps = p; 440 ++pageout_count; 441 ++is; 442 } 443 444 /* 445 * If we exhausted our forward scan, continue with the reverse scan 446 * when possible, even past an alignment boundary. This catches 447 * boundary conditions. 448 */ 449 if (ib != 0 && pageout_count < vm_pageout_page_count) 450 goto more; 451 452 return (vm_pageout_flush(&mc[page_base], pageout_count, 453 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 454 } 455 456 /* 457 * vm_pageout_flush() - launder the given pages 458 * 459 * The given pages are laundered. Note that we setup for the start of 460 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 461 * reference count all in here rather then in the parent. If we want 462 * the parent to do more sophisticated things we may have to change 463 * the ordering. 464 * 465 * Returned runlen is the count of pages between mreq and first 466 * page after mreq with status VM_PAGER_AGAIN. 467 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 468 * for any page in runlen set. 469 */ 470 int 471 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 472 boolean_t *eio) 473 { 474 vm_object_t object = mc[0]->object; 475 int pageout_status[count]; 476 int numpagedout = 0; 477 int i, runlen; 478 479 VM_OBJECT_ASSERT_WLOCKED(object); 480 481 /* 482 * Initiate I/O. Mark the pages shared busy and verify that they're 483 * valid and read-only. 484 * 485 * We do not have to fixup the clean/dirty bits here... we can 486 * allow the pager to do it after the I/O completes. 487 * 488 * NOTE! mc[i]->dirty may be partial or fragmented due to an 489 * edge case with file fragments. 490 */ 491 for (i = 0; i < count; i++) { 492 KASSERT(vm_page_all_valid(mc[i]), 493 ("vm_pageout_flush: partially invalid page %p index %d/%d", 494 mc[i], i, count)); 495 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0, 496 ("vm_pageout_flush: writeable page %p", mc[i])); 497 vm_page_busy_downgrade(mc[i]); 498 } 499 vm_object_pip_add(object, count); 500 501 vm_pager_put_pages(object, mc, count, flags, pageout_status); 502 503 runlen = count - mreq; 504 if (eio != NULL) 505 *eio = FALSE; 506 for (i = 0; i < count; i++) { 507 vm_page_t mt = mc[i]; 508 509 KASSERT(pageout_status[i] == VM_PAGER_PEND || 510 !pmap_page_is_write_mapped(mt), 511 ("vm_pageout_flush: page %p is not write protected", mt)); 512 switch (pageout_status[i]) { 513 case VM_PAGER_OK: 514 /* 515 * The page may have moved since laundering started, in 516 * which case it should be left alone. 517 */ 518 if (vm_page_in_laundry(mt)) 519 vm_page_deactivate_noreuse(mt); 520 /* FALLTHROUGH */ 521 case VM_PAGER_PEND: 522 numpagedout++; 523 break; 524 case VM_PAGER_BAD: 525 /* 526 * The page is outside the object's range. We pretend 527 * that the page out worked and clean the page, so the 528 * changes will be lost if the page is reclaimed by 529 * the page daemon. 530 */ 531 vm_page_undirty(mt); 532 if (vm_page_in_laundry(mt)) 533 vm_page_deactivate_noreuse(mt); 534 break; 535 case VM_PAGER_ERROR: 536 case VM_PAGER_FAIL: 537 /* 538 * If the page couldn't be paged out to swap because the 539 * pager wasn't able to find space, place the page in 540 * the PQ_UNSWAPPABLE holding queue. This is an 541 * optimization that prevents the page daemon from 542 * wasting CPU cycles on pages that cannot be reclaimed 543 * because no swap device is configured. 544 * 545 * Otherwise, reactivate the page so that it doesn't 546 * clog the laundry and inactive queues. (We will try 547 * paging it out again later.) 548 */ 549 if ((object->flags & OBJ_SWAP) != 0 && 550 pageout_status[i] == VM_PAGER_FAIL) { 551 vm_page_unswappable(mt); 552 numpagedout++; 553 } else 554 vm_page_activate(mt); 555 if (eio != NULL && i >= mreq && i - mreq < runlen) 556 *eio = TRUE; 557 break; 558 case VM_PAGER_AGAIN: 559 if (i >= mreq && i - mreq < runlen) 560 runlen = i - mreq; 561 break; 562 } 563 564 /* 565 * If the operation is still going, leave the page busy to 566 * block all other accesses. Also, leave the paging in 567 * progress indicator set so that we don't attempt an object 568 * collapse. 569 */ 570 if (pageout_status[i] != VM_PAGER_PEND) { 571 vm_object_pip_wakeup(object); 572 vm_page_sunbusy(mt); 573 } 574 } 575 if (prunlen != NULL) 576 *prunlen = runlen; 577 return (numpagedout); 578 } 579 580 static void 581 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 582 { 583 584 atomic_store_rel_int(&swapdev_enabled, 1); 585 } 586 587 static void 588 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 589 { 590 591 if (swap_pager_nswapdev() == 1) 592 atomic_store_rel_int(&swapdev_enabled, 0); 593 } 594 595 /* 596 * Attempt to acquire all of the necessary locks to launder a page and 597 * then call through the clustering layer to PUTPAGES. Wait a short 598 * time for a vnode lock. 599 * 600 * Requires the page and object lock on entry, releases both before return. 601 * Returns 0 on success and an errno otherwise. 602 */ 603 static int 604 vm_pageout_clean(vm_page_t m, int *numpagedout) 605 { 606 struct vnode *vp; 607 struct mount *mp; 608 vm_object_t object; 609 vm_pindex_t pindex; 610 int error; 611 612 object = m->object; 613 VM_OBJECT_ASSERT_WLOCKED(object); 614 error = 0; 615 vp = NULL; 616 mp = NULL; 617 618 /* 619 * The object is already known NOT to be dead. It 620 * is possible for the vget() to block the whole 621 * pageout daemon, but the new low-memory handling 622 * code should prevent it. 623 * 624 * We can't wait forever for the vnode lock, we might 625 * deadlock due to a vn_read() getting stuck in 626 * vm_wait while holding this vnode. We skip the 627 * vnode if we can't get it in a reasonable amount 628 * of time. 629 */ 630 if (object->type == OBJT_VNODE) { 631 vm_page_xunbusy(m); 632 vp = object->handle; 633 if (vp->v_type == VREG && 634 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 635 mp = NULL; 636 error = EDEADLK; 637 goto unlock_all; 638 } 639 KASSERT(mp != NULL, 640 ("vp %p with NULL v_mount", vp)); 641 vm_object_reference_locked(object); 642 pindex = m->pindex; 643 VM_OBJECT_WUNLOCK(object); 644 if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) { 645 vp = NULL; 646 error = EDEADLK; 647 goto unlock_mp; 648 } 649 VM_OBJECT_WLOCK(object); 650 651 /* 652 * Ensure that the object and vnode were not disassociated 653 * while locks were dropped. 654 */ 655 if (vp->v_object != object) { 656 error = ENOENT; 657 goto unlock_all; 658 } 659 660 /* 661 * While the object was unlocked, the page may have been: 662 * (1) moved to a different queue, 663 * (2) reallocated to a different object, 664 * (3) reallocated to a different offset, or 665 * (4) cleaned. 666 */ 667 if (!vm_page_in_laundry(m) || m->object != object || 668 m->pindex != pindex || m->dirty == 0) { 669 error = ENXIO; 670 goto unlock_all; 671 } 672 673 /* 674 * The page may have been busied while the object lock was 675 * released. 676 */ 677 if (vm_page_tryxbusy(m) == 0) { 678 error = EBUSY; 679 goto unlock_all; 680 } 681 } 682 683 /* 684 * Remove all writeable mappings, failing if the page is wired. 685 */ 686 if (!vm_page_try_remove_write(m)) { 687 vm_page_xunbusy(m); 688 error = EBUSY; 689 goto unlock_all; 690 } 691 692 /* 693 * If a page is dirty, then it is either being washed 694 * (but not yet cleaned) or it is still in the 695 * laundry. If it is still in the laundry, then we 696 * start the cleaning operation. 697 */ 698 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 699 error = EIO; 700 701 unlock_all: 702 VM_OBJECT_WUNLOCK(object); 703 704 unlock_mp: 705 if (mp != NULL) { 706 if (vp != NULL) 707 vput(vp); 708 vm_object_deallocate(object); 709 vn_finished_write(mp); 710 } 711 712 return (error); 713 } 714 715 /* 716 * Attempt to launder the specified number of pages. 717 * 718 * Returns the number of pages successfully laundered. 719 */ 720 static int 721 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 722 { 723 struct scan_state ss; 724 struct vm_pagequeue *pq; 725 vm_object_t object; 726 vm_page_t m, marker; 727 vm_page_astate_t new, old; 728 int act_delta, error, numpagedout, queue, refs, starting_target; 729 int vnodes_skipped; 730 bool pageout_ok; 731 732 object = NULL; 733 starting_target = launder; 734 vnodes_skipped = 0; 735 736 /* 737 * Scan the laundry queues for pages eligible to be laundered. We stop 738 * once the target number of dirty pages have been laundered, or once 739 * we've reached the end of the queue. A single iteration of this loop 740 * may cause more than one page to be laundered because of clustering. 741 * 742 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 743 * swap devices are configured. 744 */ 745 if (atomic_load_acq_int(&swapdev_enabled)) 746 queue = PQ_UNSWAPPABLE; 747 else 748 queue = PQ_LAUNDRY; 749 750 scan: 751 marker = &vmd->vmd_markers[queue]; 752 pq = &vmd->vmd_pagequeues[queue]; 753 vm_pagequeue_lock(pq); 754 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 755 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) { 756 if (__predict_false((m->flags & PG_MARKER) != 0)) 757 continue; 758 759 /* 760 * Don't touch a page that was removed from the queue after the 761 * page queue lock was released. Otherwise, ensure that any 762 * pending queue operations, such as dequeues for wired pages, 763 * are handled. 764 */ 765 if (vm_pageout_defer(m, queue, true)) 766 continue; 767 768 /* 769 * Lock the page's object. 770 */ 771 if (object == NULL || object != m->object) { 772 if (object != NULL) 773 VM_OBJECT_WUNLOCK(object); 774 object = atomic_load_ptr(&m->object); 775 if (__predict_false(object == NULL)) 776 /* The page is being freed by another thread. */ 777 continue; 778 779 /* Depends on type-stability. */ 780 VM_OBJECT_WLOCK(object); 781 if (__predict_false(m->object != object)) { 782 VM_OBJECT_WUNLOCK(object); 783 object = NULL; 784 continue; 785 } 786 } 787 788 if (vm_page_tryxbusy(m) == 0) 789 continue; 790 791 /* 792 * Check for wirings now that we hold the object lock and have 793 * exclusively busied the page. If the page is mapped, it may 794 * still be wired by pmap lookups. The call to 795 * vm_page_try_remove_all() below atomically checks for such 796 * wirings and removes mappings. If the page is unmapped, the 797 * wire count is guaranteed not to increase after this check. 798 */ 799 if (__predict_false(vm_page_wired(m))) 800 goto skip_page; 801 802 /* 803 * Invalid pages can be easily freed. They cannot be 804 * mapped; vm_page_free() asserts this. 805 */ 806 if (vm_page_none_valid(m)) 807 goto free_page; 808 809 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 810 811 for (old = vm_page_astate_load(m);;) { 812 /* 813 * Check to see if the page has been removed from the 814 * queue since the first such check. Leave it alone if 815 * so, discarding any references collected by 816 * pmap_ts_referenced(). 817 */ 818 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) 819 goto skip_page; 820 821 new = old; 822 act_delta = refs; 823 if ((old.flags & PGA_REFERENCED) != 0) { 824 new.flags &= ~PGA_REFERENCED; 825 act_delta++; 826 } 827 if (act_delta == 0) { 828 ; 829 } else if (object->ref_count != 0) { 830 /* 831 * Increase the activation count if the page was 832 * referenced while in the laundry queue. This 833 * makes it less likely that the page will be 834 * returned prematurely to the laundry queue. 835 */ 836 new.act_count += ACT_ADVANCE + 837 act_delta; 838 if (new.act_count > ACT_MAX) 839 new.act_count = ACT_MAX; 840 841 new.flags &= ~PGA_QUEUE_OP_MASK; 842 new.flags |= PGA_REQUEUE; 843 new.queue = PQ_ACTIVE; 844 if (!vm_page_pqstate_commit(m, &old, new)) 845 continue; 846 847 /* 848 * If this was a background laundering, count 849 * activated pages towards our target. The 850 * purpose of background laundering is to ensure 851 * that pages are eventually cycled through the 852 * laundry queue, and an activation is a valid 853 * way out. 854 */ 855 if (!in_shortfall) 856 launder--; 857 VM_CNT_INC(v_reactivated); 858 goto skip_page; 859 } else if ((object->flags & OBJ_DEAD) == 0) { 860 new.flags |= PGA_REQUEUE; 861 if (!vm_page_pqstate_commit(m, &old, new)) 862 continue; 863 goto skip_page; 864 } 865 break; 866 } 867 868 /* 869 * If the page appears to be clean at the machine-independent 870 * layer, then remove all of its mappings from the pmap in 871 * anticipation of freeing it. If, however, any of the page's 872 * mappings allow write access, then the page may still be 873 * modified until the last of those mappings are removed. 874 */ 875 if (object->ref_count != 0) { 876 vm_page_test_dirty(m); 877 if (m->dirty == 0 && !vm_page_try_remove_all(m)) 878 goto skip_page; 879 } 880 881 /* 882 * Clean pages are freed, and dirty pages are paged out unless 883 * they belong to a dead object. Requeueing dirty pages from 884 * dead objects is pointless, as they are being paged out and 885 * freed by the thread that destroyed the object. 886 */ 887 if (m->dirty == 0) { 888 free_page: 889 /* 890 * Now we are guaranteed that no other threads are 891 * manipulating the page, check for a last-second 892 * reference. 893 */ 894 if (vm_pageout_defer(m, queue, true)) 895 goto skip_page; 896 vm_page_free(m); 897 VM_CNT_INC(v_dfree); 898 } else if ((object->flags & OBJ_DEAD) == 0) { 899 if ((object->flags & OBJ_SWAP) != 0) 900 pageout_ok = disable_swap_pageouts == 0; 901 else 902 pageout_ok = true; 903 if (!pageout_ok) { 904 vm_page_launder(m); 905 goto skip_page; 906 } 907 908 /* 909 * Form a cluster with adjacent, dirty pages from the 910 * same object, and page out that entire cluster. 911 * 912 * The adjacent, dirty pages must also be in the 913 * laundry. However, their mappings are not checked 914 * for new references. Consequently, a recently 915 * referenced page may be paged out. However, that 916 * page will not be prematurely reclaimed. After page 917 * out, the page will be placed in the inactive queue, 918 * where any new references will be detected and the 919 * page reactivated. 920 */ 921 error = vm_pageout_clean(m, &numpagedout); 922 if (error == 0) { 923 launder -= numpagedout; 924 ss.scanned += numpagedout; 925 } else if (error == EDEADLK) { 926 pageout_lock_miss++; 927 vnodes_skipped++; 928 } 929 object = NULL; 930 } else { 931 skip_page: 932 vm_page_xunbusy(m); 933 } 934 } 935 if (object != NULL) { 936 VM_OBJECT_WUNLOCK(object); 937 object = NULL; 938 } 939 vm_pagequeue_lock(pq); 940 vm_pageout_end_scan(&ss); 941 vm_pagequeue_unlock(pq); 942 943 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 944 queue = PQ_LAUNDRY; 945 goto scan; 946 } 947 948 /* 949 * Wakeup the sync daemon if we skipped a vnode in a writeable object 950 * and we didn't launder enough pages. 951 */ 952 if (vnodes_skipped > 0 && launder > 0) 953 (void)speedup_syncer(); 954 955 return (starting_target - launder); 956 } 957 958 /* 959 * Compute the integer square root. 960 */ 961 static u_int 962 isqrt(u_int num) 963 { 964 u_int bit, root, tmp; 965 966 bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0; 967 root = 0; 968 while (bit != 0) { 969 tmp = root + bit; 970 root >>= 1; 971 if (num >= tmp) { 972 num -= tmp; 973 root += bit; 974 } 975 bit >>= 2; 976 } 977 return (root); 978 } 979 980 /* 981 * Perform the work of the laundry thread: periodically wake up and determine 982 * whether any pages need to be laundered. If so, determine the number of pages 983 * that need to be laundered, and launder them. 984 */ 985 static void 986 vm_pageout_laundry_worker(void *arg) 987 { 988 struct vm_domain *vmd; 989 struct vm_pagequeue *pq; 990 uint64_t nclean, ndirty, nfreed; 991 int domain, last_target, launder, shortfall, shortfall_cycle, target; 992 bool in_shortfall; 993 994 domain = (uintptr_t)arg; 995 vmd = VM_DOMAIN(domain); 996 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 997 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 998 999 shortfall = 0; 1000 in_shortfall = false; 1001 shortfall_cycle = 0; 1002 last_target = target = 0; 1003 nfreed = 0; 1004 1005 /* 1006 * Calls to these handlers are serialized by the swap syscall lock. 1007 */ 1008 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 1009 EVENTHANDLER_PRI_ANY); 1010 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 1011 EVENTHANDLER_PRI_ANY); 1012 1013 /* 1014 * The pageout laundry worker is never done, so loop forever. 1015 */ 1016 for (;;) { 1017 KASSERT(target >= 0, ("negative target %d", target)); 1018 KASSERT(shortfall_cycle >= 0, 1019 ("negative cycle %d", shortfall_cycle)); 1020 launder = 0; 1021 1022 /* 1023 * First determine whether we need to launder pages to meet a 1024 * shortage of free pages. 1025 */ 1026 if (shortfall > 0) { 1027 in_shortfall = true; 1028 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 1029 target = shortfall; 1030 } else if (!in_shortfall) 1031 goto trybackground; 1032 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 1033 /* 1034 * We recently entered shortfall and began laundering 1035 * pages. If we have completed that laundering run 1036 * (and we are no longer in shortfall) or we have met 1037 * our laundry target through other activity, then we 1038 * can stop laundering pages. 1039 */ 1040 in_shortfall = false; 1041 target = 0; 1042 goto trybackground; 1043 } 1044 launder = target / shortfall_cycle--; 1045 goto dolaundry; 1046 1047 /* 1048 * There's no immediate need to launder any pages; see if we 1049 * meet the conditions to perform background laundering: 1050 * 1051 * 1. The ratio of dirty to clean inactive pages exceeds the 1052 * background laundering threshold, or 1053 * 2. we haven't yet reached the target of the current 1054 * background laundering run. 1055 * 1056 * The background laundering threshold is not a constant. 1057 * Instead, it is a slowly growing function of the number of 1058 * clean pages freed by the page daemon since the last 1059 * background laundering. Thus, as the ratio of dirty to 1060 * clean inactive pages grows, the amount of memory pressure 1061 * required to trigger laundering decreases. We ensure 1062 * that the threshold is non-zero after an inactive queue 1063 * scan, even if that scan failed to free a single clean page. 1064 */ 1065 trybackground: 1066 nclean = vmd->vmd_free_count + 1067 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1068 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1069 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1070 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1071 target = vmd->vmd_background_launder_target; 1072 } 1073 1074 /* 1075 * We have a non-zero background laundering target. If we've 1076 * laundered up to our maximum without observing a page daemon 1077 * request, just stop. This is a safety belt that ensures we 1078 * don't launder an excessive amount if memory pressure is low 1079 * and the ratio of dirty to clean pages is large. Otherwise, 1080 * proceed at the background laundering rate. 1081 */ 1082 if (target > 0) { 1083 if (nfreed > 0) { 1084 nfreed = 0; 1085 last_target = target; 1086 } else if (last_target - target >= 1087 vm_background_launder_max * PAGE_SIZE / 1024) { 1088 target = 0; 1089 } 1090 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1091 launder /= VM_LAUNDER_RATE; 1092 if (launder > target) 1093 launder = target; 1094 } 1095 1096 dolaundry: 1097 if (launder > 0) { 1098 /* 1099 * Because of I/O clustering, the number of laundered 1100 * pages could exceed "target" by the maximum size of 1101 * a cluster minus one. 1102 */ 1103 target -= min(vm_pageout_launder(vmd, launder, 1104 in_shortfall), target); 1105 pause("laundp", hz / VM_LAUNDER_RATE); 1106 } 1107 1108 /* 1109 * If we're not currently laundering pages and the page daemon 1110 * hasn't posted a new request, sleep until the page daemon 1111 * kicks us. 1112 */ 1113 vm_pagequeue_lock(pq); 1114 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1115 (void)mtx_sleep(&vmd->vmd_laundry_request, 1116 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1117 1118 /* 1119 * If the pagedaemon has indicated that it's in shortfall, start 1120 * a shortfall laundering unless we're already in the middle of 1121 * one. This may preempt a background laundering. 1122 */ 1123 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1124 (!in_shortfall || shortfall_cycle == 0)) { 1125 shortfall = vm_laundry_target(vmd) + 1126 vmd->vmd_pageout_deficit; 1127 target = 0; 1128 } else 1129 shortfall = 0; 1130 1131 if (target == 0) 1132 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1133 nfreed += vmd->vmd_clean_pages_freed; 1134 vmd->vmd_clean_pages_freed = 0; 1135 vm_pagequeue_unlock(pq); 1136 } 1137 } 1138 1139 /* 1140 * Compute the number of pages we want to try to move from the 1141 * active queue to either the inactive or laundry queue. 1142 * 1143 * When scanning active pages during a shortage, we make clean pages 1144 * count more heavily towards the page shortage than dirty pages. 1145 * This is because dirty pages must be laundered before they can be 1146 * reused and thus have less utility when attempting to quickly 1147 * alleviate a free page shortage. However, this weighting also 1148 * causes the scan to deactivate dirty pages more aggressively, 1149 * improving the effectiveness of clustering. 1150 */ 1151 static int 1152 vm_pageout_active_target(struct vm_domain *vmd) 1153 { 1154 int shortage; 1155 1156 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) - 1157 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt + 1158 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight); 1159 shortage *= act_scan_laundry_weight; 1160 return (shortage); 1161 } 1162 1163 /* 1164 * Scan the active queue. If there is no shortage of inactive pages, scan a 1165 * small portion of the queue in order to maintain quasi-LRU. 1166 */ 1167 static void 1168 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage) 1169 { 1170 struct scan_state ss; 1171 vm_object_t object; 1172 vm_page_t m, marker; 1173 struct vm_pagequeue *pq; 1174 vm_page_astate_t old, new; 1175 long min_scan; 1176 int act_delta, max_scan, ps_delta, refs, scan_tick; 1177 uint8_t nqueue; 1178 1179 marker = &vmd->vmd_markers[PQ_ACTIVE]; 1180 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1181 vm_pagequeue_lock(pq); 1182 1183 /* 1184 * If we're just idle polling attempt to visit every 1185 * active page within 'update_period' seconds. 1186 */ 1187 scan_tick = ticks; 1188 if (vm_pageout_update_period != 0) { 1189 min_scan = pq->pq_cnt; 1190 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1191 min_scan /= hz * vm_pageout_update_period; 1192 } else 1193 min_scan = 0; 1194 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0)) 1195 vmd->vmd_last_active_scan = scan_tick; 1196 1197 /* 1198 * Scan the active queue for pages that can be deactivated. Update 1199 * the per-page activity counter and use it to identify deactivation 1200 * candidates. Held pages may be deactivated. 1201 * 1202 * To avoid requeuing each page that remains in the active queue, we 1203 * implement the CLOCK algorithm. To keep the implementation of the 1204 * enqueue operation consistent for all page queues, we use two hands, 1205 * represented by marker pages. Scans begin at the first hand, which 1206 * precedes the second hand in the queue. When the two hands meet, 1207 * they are moved back to the head and tail of the queue, respectively, 1208 * and scanning resumes. 1209 */ 1210 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan; 1211 act_scan: 1212 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan); 1213 while ((m = vm_pageout_next(&ss, false)) != NULL) { 1214 if (__predict_false(m == &vmd->vmd_clock[1])) { 1215 vm_pagequeue_lock(pq); 1216 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1217 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q); 1218 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0], 1219 plinks.q); 1220 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1], 1221 plinks.q); 1222 max_scan -= ss.scanned; 1223 vm_pageout_end_scan(&ss); 1224 goto act_scan; 1225 } 1226 if (__predict_false((m->flags & PG_MARKER) != 0)) 1227 continue; 1228 1229 /* 1230 * Don't touch a page that was removed from the queue after the 1231 * page queue lock was released. Otherwise, ensure that any 1232 * pending queue operations, such as dequeues for wired pages, 1233 * are handled. 1234 */ 1235 if (vm_pageout_defer(m, PQ_ACTIVE, true)) 1236 continue; 1237 1238 /* 1239 * A page's object pointer may be set to NULL before 1240 * the object lock is acquired. 1241 */ 1242 object = atomic_load_ptr(&m->object); 1243 if (__predict_false(object == NULL)) 1244 /* 1245 * The page has been removed from its object. 1246 */ 1247 continue; 1248 1249 /* Deferred free of swap space. */ 1250 if ((m->a.flags & PGA_SWAP_FREE) != 0 && 1251 VM_OBJECT_TRYWLOCK(object)) { 1252 if (m->object == object) 1253 vm_pager_page_unswapped(m); 1254 VM_OBJECT_WUNLOCK(object); 1255 } 1256 1257 /* 1258 * Check to see "how much" the page has been used. 1259 * 1260 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1261 * that a reference from a concurrently destroyed mapping is 1262 * observed here and now. 1263 * 1264 * Perform an unsynchronized object ref count check. While 1265 * the page lock ensures that the page is not reallocated to 1266 * another object, in particular, one with unmanaged mappings 1267 * that cannot support pmap_ts_referenced(), two races are, 1268 * nonetheless, possible: 1269 * 1) The count was transitioning to zero, but we saw a non- 1270 * zero value. pmap_ts_referenced() will return zero 1271 * because the page is not mapped. 1272 * 2) The count was transitioning to one, but we saw zero. 1273 * This race delays the detection of a new reference. At 1274 * worst, we will deactivate and reactivate the page. 1275 */ 1276 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 1277 1278 old = vm_page_astate_load(m); 1279 do { 1280 /* 1281 * Check to see if the page has been removed from the 1282 * queue since the first such check. Leave it alone if 1283 * so, discarding any references collected by 1284 * pmap_ts_referenced(). 1285 */ 1286 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) { 1287 ps_delta = 0; 1288 break; 1289 } 1290 1291 /* 1292 * Advance or decay the act_count based on recent usage. 1293 */ 1294 new = old; 1295 act_delta = refs; 1296 if ((old.flags & PGA_REFERENCED) != 0) { 1297 new.flags &= ~PGA_REFERENCED; 1298 act_delta++; 1299 } 1300 if (act_delta != 0) { 1301 new.act_count += ACT_ADVANCE + act_delta; 1302 if (new.act_count > ACT_MAX) 1303 new.act_count = ACT_MAX; 1304 } else { 1305 new.act_count -= min(new.act_count, 1306 ACT_DECLINE); 1307 } 1308 1309 if (new.act_count > 0) { 1310 /* 1311 * Adjust the activation count and keep the page 1312 * in the active queue. The count might be left 1313 * unchanged if it is saturated. The page may 1314 * have been moved to a different queue since we 1315 * started the scan, in which case we move it 1316 * back. 1317 */ 1318 ps_delta = 0; 1319 if (old.queue != PQ_ACTIVE) { 1320 new.flags &= ~PGA_QUEUE_OP_MASK; 1321 new.flags |= PGA_REQUEUE; 1322 new.queue = PQ_ACTIVE; 1323 } 1324 } else { 1325 /* 1326 * When not short for inactive pages, let dirty 1327 * pages go through the inactive queue before 1328 * moving to the laundry queue. This gives them 1329 * some extra time to be reactivated, 1330 * potentially avoiding an expensive pageout. 1331 * However, during a page shortage, the inactive 1332 * queue is necessarily small, and so dirty 1333 * pages would only spend a trivial amount of 1334 * time in the inactive queue. Therefore, we 1335 * might as well place them directly in the 1336 * laundry queue to reduce queuing overhead. 1337 * 1338 * Calling vm_page_test_dirty() here would 1339 * require acquisition of the object's write 1340 * lock. However, during a page shortage, 1341 * directing dirty pages into the laundry queue 1342 * is only an optimization and not a 1343 * requirement. Therefore, we simply rely on 1344 * the opportunistic updates to the page's dirty 1345 * field by the pmap. 1346 */ 1347 if (page_shortage <= 0) { 1348 nqueue = PQ_INACTIVE; 1349 ps_delta = 0; 1350 } else if (m->dirty == 0) { 1351 nqueue = PQ_INACTIVE; 1352 ps_delta = act_scan_laundry_weight; 1353 } else { 1354 nqueue = PQ_LAUNDRY; 1355 ps_delta = 1; 1356 } 1357 1358 new.flags &= ~PGA_QUEUE_OP_MASK; 1359 new.flags |= PGA_REQUEUE; 1360 new.queue = nqueue; 1361 } 1362 } while (!vm_page_pqstate_commit(m, &old, new)); 1363 1364 page_shortage -= ps_delta; 1365 } 1366 vm_pagequeue_lock(pq); 1367 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1368 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q); 1369 vm_pageout_end_scan(&ss); 1370 vm_pagequeue_unlock(pq); 1371 } 1372 1373 static int 1374 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker, 1375 vm_page_t m) 1376 { 1377 vm_page_astate_t as; 1378 1379 vm_pagequeue_assert_locked(pq); 1380 1381 as = vm_page_astate_load(m); 1382 if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0) 1383 return (0); 1384 vm_page_aflag_set(m, PGA_ENQUEUED); 1385 TAILQ_INSERT_BEFORE(marker, m, plinks.q); 1386 return (1); 1387 } 1388 1389 /* 1390 * Re-add stuck pages to the inactive queue. We will examine them again 1391 * during the next scan. If the queue state of a page has changed since 1392 * it was physically removed from the page queue in 1393 * vm_pageout_collect_batch(), don't do anything with that page. 1394 */ 1395 static void 1396 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq, 1397 vm_page_t m) 1398 { 1399 struct vm_pagequeue *pq; 1400 vm_page_t marker; 1401 int delta; 1402 1403 delta = 0; 1404 marker = ss->marker; 1405 pq = ss->pq; 1406 1407 if (m != NULL) { 1408 if (vm_batchqueue_insert(bq, m)) 1409 return; 1410 vm_pagequeue_lock(pq); 1411 delta += vm_pageout_reinsert_inactive_page(pq, marker, m); 1412 } else 1413 vm_pagequeue_lock(pq); 1414 while ((m = vm_batchqueue_pop(bq)) != NULL) 1415 delta += vm_pageout_reinsert_inactive_page(pq, marker, m); 1416 vm_pagequeue_cnt_add(pq, delta); 1417 vm_pagequeue_unlock(pq); 1418 vm_batchqueue_init(bq); 1419 } 1420 1421 static void 1422 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage) 1423 { 1424 struct timeval start, end; 1425 struct scan_state ss; 1426 struct vm_batchqueue rq; 1427 struct vm_page marker_page; 1428 vm_page_t m, marker; 1429 struct vm_pagequeue *pq; 1430 vm_object_t object; 1431 vm_page_astate_t old, new; 1432 int act_delta, addl_page_shortage, starting_page_shortage, refs; 1433 1434 object = NULL; 1435 vm_batchqueue_init(&rq); 1436 getmicrouptime(&start); 1437 1438 /* 1439 * The addl_page_shortage is an estimate of the number of temporarily 1440 * stuck pages in the inactive queue. In other words, the 1441 * number of pages from the inactive count that should be 1442 * discounted in setting the target for the active queue scan. 1443 */ 1444 addl_page_shortage = 0; 1445 1446 /* 1447 * Start scanning the inactive queue for pages that we can free. The 1448 * scan will stop when we reach the target or we have scanned the 1449 * entire queue. (Note that m->a.act_count is not used to make 1450 * decisions for the inactive queue, only for the active queue.) 1451 */ 1452 starting_page_shortage = page_shortage; 1453 marker = &marker_page; 1454 vm_page_init_marker(marker, PQ_INACTIVE, 0); 1455 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1456 vm_pagequeue_lock(pq); 1457 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 1458 while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) { 1459 KASSERT((m->flags & PG_MARKER) == 0, 1460 ("marker page %p was dequeued", m)); 1461 1462 /* 1463 * Don't touch a page that was removed from the queue after the 1464 * page queue lock was released. Otherwise, ensure that any 1465 * pending queue operations, such as dequeues for wired pages, 1466 * are handled. 1467 */ 1468 if (vm_pageout_defer(m, PQ_INACTIVE, false)) 1469 continue; 1470 1471 /* 1472 * Lock the page's object. 1473 */ 1474 if (object == NULL || object != m->object) { 1475 if (object != NULL) 1476 VM_OBJECT_WUNLOCK(object); 1477 object = atomic_load_ptr(&m->object); 1478 if (__predict_false(object == NULL)) 1479 /* The page is being freed by another thread. */ 1480 continue; 1481 1482 /* Depends on type-stability. */ 1483 VM_OBJECT_WLOCK(object); 1484 if (__predict_false(m->object != object)) { 1485 VM_OBJECT_WUNLOCK(object); 1486 object = NULL; 1487 goto reinsert; 1488 } 1489 } 1490 1491 if (vm_page_tryxbusy(m) == 0) { 1492 /* 1493 * Don't mess with busy pages. Leave them at 1494 * the front of the queue. Most likely, they 1495 * are being paged out and will leave the 1496 * queue shortly after the scan finishes. So, 1497 * they ought to be discounted from the 1498 * inactive count. 1499 */ 1500 addl_page_shortage++; 1501 goto reinsert; 1502 } 1503 1504 /* Deferred free of swap space. */ 1505 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1506 vm_pager_page_unswapped(m); 1507 1508 /* 1509 * Check for wirings now that we hold the object lock and have 1510 * exclusively busied the page. If the page is mapped, it may 1511 * still be wired by pmap lookups. The call to 1512 * vm_page_try_remove_all() below atomically checks for such 1513 * wirings and removes mappings. If the page is unmapped, the 1514 * wire count is guaranteed not to increase after this check. 1515 */ 1516 if (__predict_false(vm_page_wired(m))) 1517 goto skip_page; 1518 1519 /* 1520 * Invalid pages can be easily freed. They cannot be 1521 * mapped, vm_page_free() asserts this. 1522 */ 1523 if (vm_page_none_valid(m)) 1524 goto free_page; 1525 1526 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 1527 1528 for (old = vm_page_astate_load(m);;) { 1529 /* 1530 * Check to see if the page has been removed from the 1531 * queue since the first such check. Leave it alone if 1532 * so, discarding any references collected by 1533 * pmap_ts_referenced(). 1534 */ 1535 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) 1536 goto skip_page; 1537 1538 new = old; 1539 act_delta = refs; 1540 if ((old.flags & PGA_REFERENCED) != 0) { 1541 new.flags &= ~PGA_REFERENCED; 1542 act_delta++; 1543 } 1544 if (act_delta == 0) { 1545 ; 1546 } else if (object->ref_count != 0) { 1547 /* 1548 * Increase the activation count if the 1549 * page was referenced while in the 1550 * inactive queue. This makes it less 1551 * likely that the page will be returned 1552 * prematurely to the inactive queue. 1553 */ 1554 new.act_count += ACT_ADVANCE + 1555 act_delta; 1556 if (new.act_count > ACT_MAX) 1557 new.act_count = ACT_MAX; 1558 1559 new.flags &= ~PGA_QUEUE_OP_MASK; 1560 new.flags |= PGA_REQUEUE; 1561 new.queue = PQ_ACTIVE; 1562 if (!vm_page_pqstate_commit(m, &old, new)) 1563 continue; 1564 1565 VM_CNT_INC(v_reactivated); 1566 goto skip_page; 1567 } else if ((object->flags & OBJ_DEAD) == 0) { 1568 new.queue = PQ_INACTIVE; 1569 new.flags |= PGA_REQUEUE; 1570 if (!vm_page_pqstate_commit(m, &old, new)) 1571 continue; 1572 goto skip_page; 1573 } 1574 break; 1575 } 1576 1577 /* 1578 * If the page appears to be clean at the machine-independent 1579 * layer, then remove all of its mappings from the pmap in 1580 * anticipation of freeing it. If, however, any of the page's 1581 * mappings allow write access, then the page may still be 1582 * modified until the last of those mappings are removed. 1583 */ 1584 if (object->ref_count != 0) { 1585 vm_page_test_dirty(m); 1586 if (m->dirty == 0 && !vm_page_try_remove_all(m)) 1587 goto skip_page; 1588 } 1589 1590 /* 1591 * Clean pages can be freed, but dirty pages must be sent back 1592 * to the laundry, unless they belong to a dead object. 1593 * Requeueing dirty pages from dead objects is pointless, as 1594 * they are being paged out and freed by the thread that 1595 * destroyed the object. 1596 */ 1597 if (m->dirty == 0) { 1598 free_page: 1599 /* 1600 * Now we are guaranteed that no other threads are 1601 * manipulating the page, check for a last-second 1602 * reference that would save it from doom. 1603 */ 1604 if (vm_pageout_defer(m, PQ_INACTIVE, false)) 1605 goto skip_page; 1606 1607 /* 1608 * Because we dequeued the page and have already checked 1609 * for pending dequeue and enqueue requests, we can 1610 * safely disassociate the page from the inactive queue 1611 * without holding the queue lock. 1612 */ 1613 m->a.queue = PQ_NONE; 1614 vm_page_free(m); 1615 page_shortage--; 1616 continue; 1617 } 1618 if ((object->flags & OBJ_DEAD) == 0) 1619 vm_page_launder(m); 1620 skip_page: 1621 vm_page_xunbusy(m); 1622 continue; 1623 reinsert: 1624 vm_pageout_reinsert_inactive(&ss, &rq, m); 1625 } 1626 if (object != NULL) 1627 VM_OBJECT_WUNLOCK(object); 1628 vm_pageout_reinsert_inactive(&ss, &rq, NULL); 1629 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL); 1630 vm_pagequeue_lock(pq); 1631 vm_pageout_end_scan(&ss); 1632 vm_pagequeue_unlock(pq); 1633 1634 /* 1635 * Record the remaining shortage and the progress and rate it was made. 1636 */ 1637 atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage); 1638 getmicrouptime(&end); 1639 timevalsub(&end, &start); 1640 atomic_add_int(&vmd->vmd_inactive_us, 1641 end.tv_sec * 1000000 + end.tv_usec); 1642 atomic_add_int(&vmd->vmd_inactive_freed, 1643 starting_page_shortage - page_shortage); 1644 } 1645 1646 /* 1647 * Dispatch a number of inactive threads according to load and collect the 1648 * results to present a coherent view of paging activity on this domain. 1649 */ 1650 static int 1651 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage) 1652 { 1653 u_int freed, pps, slop, threads, us; 1654 1655 vmd->vmd_inactive_shortage = shortage; 1656 slop = 0; 1657 1658 /* 1659 * If we have more work than we can do in a quarter of our interval, we 1660 * fire off multiple threads to process it. 1661 */ 1662 threads = vmd->vmd_inactive_threads; 1663 if (threads > 1 && vmd->vmd_inactive_pps != 0 && 1664 shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) { 1665 vmd->vmd_inactive_shortage /= threads; 1666 slop = shortage % threads; 1667 vm_domain_pageout_lock(vmd); 1668 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1); 1669 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1); 1670 wakeup(&vmd->vmd_inactive_shortage); 1671 vm_domain_pageout_unlock(vmd); 1672 } 1673 1674 /* Run the local thread scan. */ 1675 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop); 1676 1677 /* 1678 * Block until helper threads report results and then accumulate 1679 * totals. 1680 */ 1681 blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM); 1682 freed = atomic_readandclear_int(&vmd->vmd_inactive_freed); 1683 VM_CNT_ADD(v_dfree, freed); 1684 1685 /* 1686 * Calculate the per-thread paging rate with an exponential decay of 1687 * prior results. Careful to avoid integer rounding errors with large 1688 * us values. 1689 */ 1690 us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1); 1691 if (us > 1000000) 1692 /* Keep rounding to tenths */ 1693 pps = (freed * 10) / ((us * 10) / 1000000); 1694 else 1695 pps = (1000000 / us) * freed; 1696 vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2); 1697 1698 return (shortage - freed); 1699 } 1700 1701 /* 1702 * Attempt to reclaim the requested number of pages from the inactive queue. 1703 * Returns true if the shortage was addressed. 1704 */ 1705 static int 1706 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage) 1707 { 1708 struct vm_pagequeue *pq; 1709 u_int addl_page_shortage, deficit, page_shortage; 1710 u_int starting_page_shortage; 1711 1712 /* 1713 * vmd_pageout_deficit counts the number of pages requested in 1714 * allocations that failed because of a free page shortage. We assume 1715 * that the allocations will be reattempted and thus include the deficit 1716 * in our scan target. 1717 */ 1718 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1719 starting_page_shortage = shortage + deficit; 1720 1721 /* 1722 * Run the inactive scan on as many threads as is necessary. 1723 */ 1724 page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage); 1725 addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage); 1726 1727 /* 1728 * Wake up the laundry thread so that it can perform any needed 1729 * laundering. If we didn't meet our target, we're in shortfall and 1730 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1731 * swap devices are configured, the laundry thread has no work to do, so 1732 * don't bother waking it up. 1733 * 1734 * The laundry thread uses the number of inactive queue scans elapsed 1735 * since the last laundering to determine whether to launder again, so 1736 * keep count. 1737 */ 1738 if (starting_page_shortage > 0) { 1739 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1740 vm_pagequeue_lock(pq); 1741 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1742 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1743 if (page_shortage > 0) { 1744 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1745 VM_CNT_INC(v_pdshortfalls); 1746 } else if (vmd->vmd_laundry_request != 1747 VM_LAUNDRY_SHORTFALL) 1748 vmd->vmd_laundry_request = 1749 VM_LAUNDRY_BACKGROUND; 1750 wakeup(&vmd->vmd_laundry_request); 1751 } 1752 vmd->vmd_clean_pages_freed += 1753 starting_page_shortage - page_shortage; 1754 vm_pagequeue_unlock(pq); 1755 } 1756 1757 /* 1758 * Wakeup the swapout daemon if we didn't free the targeted number of 1759 * pages. 1760 */ 1761 if (page_shortage > 0) 1762 vm_swapout_run(); 1763 1764 /* 1765 * If the inactive queue scan fails repeatedly to meet its 1766 * target, kill the largest process. 1767 */ 1768 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1769 1770 /* 1771 * Reclaim pages by swapping out idle processes, if configured to do so. 1772 */ 1773 vm_swapout_run_idle(); 1774 1775 /* 1776 * See the description of addl_page_shortage above. 1777 */ 1778 *addl_shortage = addl_page_shortage + deficit; 1779 1780 return (page_shortage <= 0); 1781 } 1782 1783 static int vm_pageout_oom_vote; 1784 1785 /* 1786 * The pagedaemon threads randlomly select one to perform the 1787 * OOM. Trying to kill processes before all pagedaemons 1788 * failed to reach free target is premature. 1789 */ 1790 static void 1791 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1792 int starting_page_shortage) 1793 { 1794 int old_vote; 1795 1796 if (starting_page_shortage <= 0 || starting_page_shortage != 1797 page_shortage) 1798 vmd->vmd_oom_seq = 0; 1799 else 1800 vmd->vmd_oom_seq++; 1801 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1802 if (vmd->vmd_oom) { 1803 vmd->vmd_oom = FALSE; 1804 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1805 } 1806 return; 1807 } 1808 1809 /* 1810 * Do not follow the call sequence until OOM condition is 1811 * cleared. 1812 */ 1813 vmd->vmd_oom_seq = 0; 1814 1815 if (vmd->vmd_oom) 1816 return; 1817 1818 vmd->vmd_oom = TRUE; 1819 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1820 if (old_vote != vm_ndomains - 1) 1821 return; 1822 1823 /* 1824 * The current pagedaemon thread is the last in the quorum to 1825 * start OOM. Initiate the selection and signaling of the 1826 * victim. 1827 */ 1828 vm_pageout_oom(VM_OOM_MEM); 1829 1830 /* 1831 * After one round of OOM terror, recall our vote. On the 1832 * next pass, current pagedaemon would vote again if the low 1833 * memory condition is still there, due to vmd_oom being 1834 * false. 1835 */ 1836 vmd->vmd_oom = FALSE; 1837 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1838 } 1839 1840 /* 1841 * The OOM killer is the page daemon's action of last resort when 1842 * memory allocation requests have been stalled for a prolonged period 1843 * of time because it cannot reclaim memory. This function computes 1844 * the approximate number of physical pages that could be reclaimed if 1845 * the specified address space is destroyed. 1846 * 1847 * Private, anonymous memory owned by the address space is the 1848 * principal resource that we expect to recover after an OOM kill. 1849 * Since the physical pages mapped by the address space's COW entries 1850 * are typically shared pages, they are unlikely to be released and so 1851 * they are not counted. 1852 * 1853 * To get to the point where the page daemon runs the OOM killer, its 1854 * efforts to write-back vnode-backed pages may have stalled. This 1855 * could be caused by a memory allocation deadlock in the write path 1856 * that might be resolved by an OOM kill. Therefore, physical pages 1857 * belonging to vnode-backed objects are counted, because they might 1858 * be freed without being written out first if the address space holds 1859 * the last reference to an unlinked vnode. 1860 * 1861 * Similarly, physical pages belonging to OBJT_PHYS objects are 1862 * counted because the address space might hold the last reference to 1863 * the object. 1864 */ 1865 static long 1866 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1867 { 1868 vm_map_t map; 1869 vm_map_entry_t entry; 1870 vm_object_t obj; 1871 long res; 1872 1873 map = &vmspace->vm_map; 1874 KASSERT(!map->system_map, ("system map")); 1875 sx_assert(&map->lock, SA_LOCKED); 1876 res = 0; 1877 VM_MAP_ENTRY_FOREACH(entry, map) { 1878 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1879 continue; 1880 obj = entry->object.vm_object; 1881 if (obj == NULL) 1882 continue; 1883 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1884 obj->ref_count != 1) 1885 continue; 1886 if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE || 1887 (obj->flags & OBJ_SWAP) != 0) 1888 res += obj->resident_page_count; 1889 } 1890 return (res); 1891 } 1892 1893 static int vm_oom_ratelim_last; 1894 static int vm_oom_pf_secs = 10; 1895 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0, 1896 ""); 1897 static struct mtx vm_oom_ratelim_mtx; 1898 1899 void 1900 vm_pageout_oom(int shortage) 1901 { 1902 const char *reason; 1903 struct proc *p, *bigproc; 1904 vm_offset_t size, bigsize; 1905 struct thread *td; 1906 struct vmspace *vm; 1907 int now; 1908 bool breakout; 1909 1910 /* 1911 * For OOM requests originating from vm_fault(), there is a high 1912 * chance that a single large process faults simultaneously in 1913 * several threads. Also, on an active system running many 1914 * processes of middle-size, like buildworld, all of them 1915 * could fault almost simultaneously as well. 1916 * 1917 * To avoid killing too many processes, rate-limit OOMs 1918 * initiated by vm_fault() time-outs on the waits for free 1919 * pages. 1920 */ 1921 mtx_lock(&vm_oom_ratelim_mtx); 1922 now = ticks; 1923 if (shortage == VM_OOM_MEM_PF && 1924 (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) { 1925 mtx_unlock(&vm_oom_ratelim_mtx); 1926 return; 1927 } 1928 vm_oom_ratelim_last = now; 1929 mtx_unlock(&vm_oom_ratelim_mtx); 1930 1931 /* 1932 * We keep the process bigproc locked once we find it to keep anyone 1933 * from messing with it; however, there is a possibility of 1934 * deadlock if process B is bigproc and one of its child processes 1935 * attempts to propagate a signal to B while we are waiting for A's 1936 * lock while walking this list. To avoid this, we don't block on 1937 * the process lock but just skip a process if it is already locked. 1938 */ 1939 bigproc = NULL; 1940 bigsize = 0; 1941 sx_slock(&allproc_lock); 1942 FOREACH_PROC_IN_SYSTEM(p) { 1943 PROC_LOCK(p); 1944 1945 /* 1946 * If this is a system, protected or killed process, skip it. 1947 */ 1948 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1949 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1950 p->p_pid == 1 || P_KILLED(p) || 1951 (p->p_pid < 48 && swap_pager_avail != 0)) { 1952 PROC_UNLOCK(p); 1953 continue; 1954 } 1955 /* 1956 * If the process is in a non-running type state, 1957 * don't touch it. Check all the threads individually. 1958 */ 1959 breakout = false; 1960 FOREACH_THREAD_IN_PROC(p, td) { 1961 thread_lock(td); 1962 if (!TD_ON_RUNQ(td) && 1963 !TD_IS_RUNNING(td) && 1964 !TD_IS_SLEEPING(td) && 1965 !TD_IS_SUSPENDED(td) && 1966 !TD_IS_SWAPPED(td)) { 1967 thread_unlock(td); 1968 breakout = true; 1969 break; 1970 } 1971 thread_unlock(td); 1972 } 1973 if (breakout) { 1974 PROC_UNLOCK(p); 1975 continue; 1976 } 1977 /* 1978 * get the process size 1979 */ 1980 vm = vmspace_acquire_ref(p); 1981 if (vm == NULL) { 1982 PROC_UNLOCK(p); 1983 continue; 1984 } 1985 _PHOLD_LITE(p); 1986 PROC_UNLOCK(p); 1987 sx_sunlock(&allproc_lock); 1988 if (!vm_map_trylock_read(&vm->vm_map)) { 1989 vmspace_free(vm); 1990 sx_slock(&allproc_lock); 1991 PRELE(p); 1992 continue; 1993 } 1994 size = vmspace_swap_count(vm); 1995 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF) 1996 size += vm_pageout_oom_pagecount(vm); 1997 vm_map_unlock_read(&vm->vm_map); 1998 vmspace_free(vm); 1999 sx_slock(&allproc_lock); 2000 2001 /* 2002 * If this process is bigger than the biggest one, 2003 * remember it. 2004 */ 2005 if (size > bigsize) { 2006 if (bigproc != NULL) 2007 PRELE(bigproc); 2008 bigproc = p; 2009 bigsize = size; 2010 } else { 2011 PRELE(p); 2012 } 2013 } 2014 sx_sunlock(&allproc_lock); 2015 2016 if (bigproc != NULL) { 2017 switch (shortage) { 2018 case VM_OOM_MEM: 2019 reason = "failed to reclaim memory"; 2020 break; 2021 case VM_OOM_MEM_PF: 2022 reason = "a thread waited too long to allocate a page"; 2023 break; 2024 case VM_OOM_SWAPZ: 2025 reason = "out of swap space"; 2026 break; 2027 default: 2028 panic("unknown OOM reason %d", shortage); 2029 } 2030 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0) 2031 panic("%s", reason); 2032 PROC_LOCK(bigproc); 2033 killproc(bigproc, reason); 2034 sched_nice(bigproc, PRIO_MIN); 2035 _PRELE(bigproc); 2036 PROC_UNLOCK(bigproc); 2037 } 2038 } 2039 2040 /* 2041 * Signal a free page shortage to subsystems that have registered an event 2042 * handler. Reclaim memory from UMA in the event of a severe shortage. 2043 * Return true if the free page count should be re-evaluated. 2044 */ 2045 static bool 2046 vm_pageout_lowmem(void) 2047 { 2048 static int lowmem_ticks = 0; 2049 int last; 2050 bool ret; 2051 2052 ret = false; 2053 2054 last = atomic_load_int(&lowmem_ticks); 2055 while ((u_int)(ticks - last) / hz >= lowmem_period) { 2056 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0) 2057 continue; 2058 2059 /* 2060 * Decrease registered cache sizes. 2061 */ 2062 SDT_PROBE0(vm, , , vm__lowmem_scan); 2063 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 2064 2065 /* 2066 * We do this explicitly after the caches have been 2067 * drained above. 2068 */ 2069 uma_reclaim(UMA_RECLAIM_TRIM); 2070 ret = true; 2071 break; 2072 } 2073 2074 /* 2075 * Kick off an asynchronous reclaim of cached memory if one of the 2076 * page daemons is failing to keep up with demand. Use the "severe" 2077 * threshold instead of "min" to ensure that we do not blow away the 2078 * caches if a subset of the NUMA domains are depleted by kernel memory 2079 * allocations; the domainset iterators automatically skip domains 2080 * below the "min" threshold on the first pass. 2081 * 2082 * UMA reclaim worker has its own rate-limiting mechanism, so don't 2083 * worry about kicking it too often. 2084 */ 2085 if (vm_page_count_severe()) 2086 uma_reclaim_wakeup(); 2087 2088 return (ret); 2089 } 2090 2091 static void 2092 vm_pageout_worker(void *arg) 2093 { 2094 struct vm_domain *vmd; 2095 u_int ofree; 2096 int addl_shortage, domain, shortage; 2097 bool target_met; 2098 2099 domain = (uintptr_t)arg; 2100 vmd = VM_DOMAIN(domain); 2101 shortage = 0; 2102 target_met = true; 2103 2104 /* 2105 * XXXKIB It could be useful to bind pageout daemon threads to 2106 * the cores belonging to the domain, from which vm_page_array 2107 * is allocated. 2108 */ 2109 2110 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 2111 vmd->vmd_last_active_scan = ticks; 2112 2113 /* 2114 * The pageout daemon worker is never done, so loop forever. 2115 */ 2116 while (TRUE) { 2117 vm_domain_pageout_lock(vmd); 2118 2119 /* 2120 * We need to clear wanted before we check the limits. This 2121 * prevents races with wakers who will check wanted after they 2122 * reach the limit. 2123 */ 2124 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 2125 2126 /* 2127 * Might the page daemon need to run again? 2128 */ 2129 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 2130 /* 2131 * Yes. If the scan failed to produce enough free 2132 * pages, sleep uninterruptibly for some time in the 2133 * hope that the laundry thread will clean some pages. 2134 */ 2135 vm_domain_pageout_unlock(vmd); 2136 if (!target_met) 2137 pause("pwait", hz / VM_INACT_SCAN_RATE); 2138 } else { 2139 /* 2140 * No, sleep until the next wakeup or until pages 2141 * need to have their reference stats updated. 2142 */ 2143 if (mtx_sleep(&vmd->vmd_pageout_wanted, 2144 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 2145 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 2146 VM_CNT_INC(v_pdwakeups); 2147 } 2148 2149 /* Prevent spurious wakeups by ensuring that wanted is set. */ 2150 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2151 2152 /* 2153 * Use the controller to calculate how many pages to free in 2154 * this interval, and scan the inactive queue. If the lowmem 2155 * handlers appear to have freed up some pages, subtract the 2156 * difference from the inactive queue scan target. 2157 */ 2158 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 2159 if (shortage > 0) { 2160 ofree = vmd->vmd_free_count; 2161 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree) 2162 shortage -= min(vmd->vmd_free_count - ofree, 2163 (u_int)shortage); 2164 target_met = vm_pageout_inactive(vmd, shortage, 2165 &addl_shortage); 2166 } else 2167 addl_shortage = 0; 2168 2169 /* 2170 * Scan the active queue. A positive value for shortage 2171 * indicates that we must aggressively deactivate pages to avoid 2172 * a shortfall. 2173 */ 2174 shortage = vm_pageout_active_target(vmd) + addl_shortage; 2175 vm_pageout_scan_active(vmd, shortage); 2176 } 2177 } 2178 2179 /* 2180 * vm_pageout_helper runs additional pageout daemons in times of high paging 2181 * activity. 2182 */ 2183 static void 2184 vm_pageout_helper(void *arg) 2185 { 2186 struct vm_domain *vmd; 2187 int domain; 2188 2189 domain = (uintptr_t)arg; 2190 vmd = VM_DOMAIN(domain); 2191 2192 vm_domain_pageout_lock(vmd); 2193 for (;;) { 2194 msleep(&vmd->vmd_inactive_shortage, 2195 vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0); 2196 blockcount_release(&vmd->vmd_inactive_starting, 1); 2197 2198 vm_domain_pageout_unlock(vmd); 2199 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage); 2200 vm_domain_pageout_lock(vmd); 2201 2202 /* 2203 * Release the running count while the pageout lock is held to 2204 * prevent wakeup races. 2205 */ 2206 blockcount_release(&vmd->vmd_inactive_running, 1); 2207 } 2208 } 2209 2210 static int 2211 get_pageout_threads_per_domain(const struct vm_domain *vmd) 2212 { 2213 unsigned total_pageout_threads, eligible_cpus, domain_cpus; 2214 2215 if (VM_DOMAIN_EMPTY(vmd->vmd_domain)) 2216 return (0); 2217 2218 /* 2219 * Semi-arbitrarily constrain pagedaemon threads to less than half the 2220 * total number of CPUs in the system as an upper limit. 2221 */ 2222 if (pageout_cpus_per_thread < 2) 2223 pageout_cpus_per_thread = 2; 2224 else if (pageout_cpus_per_thread > mp_ncpus) 2225 pageout_cpus_per_thread = mp_ncpus; 2226 2227 total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread); 2228 domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]); 2229 2230 /* Pagedaemons are not run in empty domains. */ 2231 eligible_cpus = mp_ncpus; 2232 for (unsigned i = 0; i < vm_ndomains; i++) 2233 if (VM_DOMAIN_EMPTY(i)) 2234 eligible_cpus -= CPU_COUNT(&cpuset_domain[i]); 2235 2236 /* 2237 * Assign a portion of the total pageout threads to this domain 2238 * corresponding to the fraction of pagedaemon-eligible CPUs in the 2239 * domain. In asymmetric NUMA systems, domains with more CPUs may be 2240 * allocated more threads than domains with fewer CPUs. 2241 */ 2242 return (howmany(total_pageout_threads * domain_cpus, eligible_cpus)); 2243 } 2244 2245 /* 2246 * Initialize basic pageout daemon settings. See the comment above the 2247 * definition of vm_domain for some explanation of how these thresholds are 2248 * used. 2249 */ 2250 static void 2251 vm_pageout_init_domain(int domain) 2252 { 2253 struct vm_domain *vmd; 2254 struct sysctl_oid *oid; 2255 2256 vmd = VM_DOMAIN(domain); 2257 vmd->vmd_interrupt_free_min = 2; 2258 2259 /* 2260 * v_free_reserved needs to include enough for the largest 2261 * swap pager structures plus enough for any pv_entry structs 2262 * when paging. 2263 */ 2264 vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE + 2265 vmd->vmd_interrupt_free_min; 2266 vmd->vmd_free_reserved = vm_pageout_page_count + 2267 vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768; 2268 vmd->vmd_free_min = vmd->vmd_page_count / 200; 2269 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 2270 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 2271 vmd->vmd_free_min += vmd->vmd_free_reserved; 2272 vmd->vmd_free_severe += vmd->vmd_free_reserved; 2273 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 2274 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 2275 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 2276 2277 /* 2278 * Set the default wakeup threshold to be 10% below the paging 2279 * target. This keeps the steady state out of shortfall. 2280 */ 2281 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 2282 2283 /* 2284 * Target amount of memory to move out of the laundry queue during a 2285 * background laundering. This is proportional to the amount of system 2286 * memory. 2287 */ 2288 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 2289 vmd->vmd_free_min) / 10; 2290 2291 /* Initialize the pageout daemon pid controller. */ 2292 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 2293 vmd->vmd_free_target, PIDCTRL_BOUND, 2294 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 2295 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 2296 "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2297 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 2298 2299 vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd); 2300 } 2301 2302 static void 2303 vm_pageout_init(void) 2304 { 2305 u_long freecount; 2306 int i; 2307 2308 /* 2309 * Initialize some paging parameters. 2310 */ 2311 if (vm_cnt.v_page_count < 2000) 2312 vm_pageout_page_count = 8; 2313 2314 freecount = 0; 2315 for (i = 0; i < vm_ndomains; i++) { 2316 struct vm_domain *vmd; 2317 2318 vm_pageout_init_domain(i); 2319 vmd = VM_DOMAIN(i); 2320 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 2321 vm_cnt.v_free_target += vmd->vmd_free_target; 2322 vm_cnt.v_free_min += vmd->vmd_free_min; 2323 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 2324 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 2325 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 2326 vm_cnt.v_free_severe += vmd->vmd_free_severe; 2327 freecount += vmd->vmd_free_count; 2328 } 2329 2330 /* 2331 * Set interval in seconds for active scan. We want to visit each 2332 * page at least once every ten minutes. This is to prevent worst 2333 * case paging behaviors with stale active LRU. 2334 */ 2335 if (vm_pageout_update_period == 0) 2336 vm_pageout_update_period = 600; 2337 2338 /* 2339 * Set the maximum number of user-wired virtual pages. Historically the 2340 * main source of such pages was mlock(2) and mlockall(2). Hypervisors 2341 * may also request user-wired memory. 2342 */ 2343 if (vm_page_max_user_wired == 0) 2344 vm_page_max_user_wired = 4 * freecount / 5; 2345 } 2346 2347 /* 2348 * vm_pageout is the high level pageout daemon. 2349 */ 2350 static void 2351 vm_pageout(void) 2352 { 2353 struct proc *p; 2354 struct thread *td; 2355 int error, first, i, j, pageout_threads; 2356 2357 p = curproc; 2358 td = curthread; 2359 2360 mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF); 2361 swap_pager_swap_init(); 2362 for (first = -1, i = 0; i < vm_ndomains; i++) { 2363 if (VM_DOMAIN_EMPTY(i)) { 2364 if (bootverbose) 2365 printf("domain %d empty; skipping pageout\n", 2366 i); 2367 continue; 2368 } 2369 if (first == -1) 2370 first = i; 2371 else { 2372 error = kthread_add(vm_pageout_worker, 2373 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i); 2374 if (error != 0) 2375 panic("starting pageout for domain %d: %d\n", 2376 i, error); 2377 } 2378 pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads; 2379 for (j = 0; j < pageout_threads - 1; j++) { 2380 error = kthread_add(vm_pageout_helper, 2381 (void *)(uintptr_t)i, p, NULL, 0, 0, 2382 "dom%d helper%d", i, j); 2383 if (error != 0) 2384 panic("starting pageout helper %d for domain " 2385 "%d: %d\n", j, i, error); 2386 } 2387 error = kthread_add(vm_pageout_laundry_worker, 2388 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i); 2389 if (error != 0) 2390 panic("starting laundry for domain %d: %d", i, error); 2391 } 2392 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma"); 2393 if (error != 0) 2394 panic("starting uma_reclaim helper, error %d\n", error); 2395 2396 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first); 2397 vm_pageout_worker((void *)(uintptr_t)first); 2398 } 2399 2400 /* 2401 * Perform an advisory wakeup of the page daemon. 2402 */ 2403 void 2404 pagedaemon_wakeup(int domain) 2405 { 2406 struct vm_domain *vmd; 2407 2408 vmd = VM_DOMAIN(domain); 2409 vm_domain_pageout_assert_unlocked(vmd); 2410 if (curproc == pageproc) 2411 return; 2412 2413 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 2414 vm_domain_pageout_lock(vmd); 2415 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2416 wakeup(&vmd->vmd_pageout_wanted); 2417 vm_domain_pageout_unlock(vmd); 2418 } 2419 } 2420