xref: /freebsd/sys/vm/vm_pageout.c (revision d0ba1baed3f6e4936a0c1b89c25f6c59168ef6de)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72 
73 /*
74  *	The proverbial page-out daemon.
75  */
76 
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79 
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104 
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117 
118 /*
119  * System initialization
120  */
121 
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static bool vm_pageout_scan(struct vm_domain *vmd, int pass, int shortage);
128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
129     int starting_page_shortage);
130 
131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
132     NULL);
133 
134 struct proc *pageproc;
135 
136 static struct kproc_desc page_kp = {
137 	"pagedaemon",
138 	vm_pageout,
139 	&pageproc
140 };
141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
142     &page_kp);
143 
144 SDT_PROVIDER_DEFINE(vm);
145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
146 
147 /* Pagedaemon activity rates, in subdivisions of one second. */
148 #define	VM_LAUNDER_RATE		10
149 #define	VM_INACT_SCAN_RATE	10
150 
151 static int vm_pageout_oom_seq = 12;
152 
153 static int vm_pageout_update_period;
154 static int disable_swap_pageouts;
155 static int lowmem_period = 10;
156 static time_t lowmem_uptime;
157 static int swapdev_enabled;
158 
159 static int vm_panic_on_oom = 0;
160 
161 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
162 	CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
163 	"panic on out of memory instead of killing the largest process");
164 
165 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
166 	CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
167 	"Maximum active LRU update period");
168 
169 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
170 	"Low memory callback period");
171 
172 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
173 	CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
174 
175 static int pageout_lock_miss;
176 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
177 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
178 
179 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
180 	CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
181 	"back-to-back calls to oom detector to start OOM");
182 
183 static int act_scan_laundry_weight = 3;
184 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
185     &act_scan_laundry_weight, 0,
186     "weight given to clean vs. dirty pages in active queue scans");
187 
188 static u_int vm_background_launder_rate = 4096;
189 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
190     &vm_background_launder_rate, 0,
191     "background laundering rate, in kilobytes per second");
192 
193 static u_int vm_background_launder_max = 20 * 1024;
194 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
195     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
196 
197 int vm_pageout_page_count = 32;
198 
199 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
200 SYSCTL_INT(_vm, OID_AUTO, max_wired,
201 	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
202 
203 static u_int isqrt(u_int num);
204 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
205     bool in_shortfall);
206 static void vm_pageout_laundry_worker(void *arg);
207 
208 struct scan_state {
209 	struct vm_batchqueue bq;
210 	struct vm_pagequeue *pq;
211 	vm_page_t	marker;
212 	int		maxscan;
213 	int		scanned;
214 };
215 
216 static void
217 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
218     vm_page_t marker, vm_page_t after, int maxscan)
219 {
220 
221 	vm_pagequeue_assert_locked(pq);
222 	KASSERT((marker->aflags & PGA_ENQUEUED) == 0,
223 	    ("marker %p already enqueued", marker));
224 
225 	if (after == NULL)
226 		TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
227 	else
228 		TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
229 	vm_page_aflag_set(marker, PGA_ENQUEUED);
230 
231 	vm_batchqueue_init(&ss->bq);
232 	ss->pq = pq;
233 	ss->marker = marker;
234 	ss->maxscan = maxscan;
235 	ss->scanned = 0;
236 	vm_pagequeue_unlock(pq);
237 }
238 
239 static void
240 vm_pageout_end_scan(struct scan_state *ss)
241 {
242 	struct vm_pagequeue *pq;
243 
244 	pq = ss->pq;
245 	vm_pagequeue_assert_locked(pq);
246 	KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0,
247 	    ("marker %p not enqueued", ss->marker));
248 
249 	TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
250 	vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
251 	VM_CNT_ADD(v_pdpages, ss->scanned);
252 }
253 
254 /*
255  * Add a small number of queued pages to a batch queue for later processing
256  * without the corresponding queue lock held.  The caller must have enqueued a
257  * marker page at the desired start point for the scan.  Pages will be
258  * physically dequeued if the caller so requests.  Otherwise, the returned
259  * batch may contain marker pages, and it is up to the caller to handle them.
260  *
261  * When processing the batch queue, vm_page_queue() must be used to
262  * determine whether the page has been logically dequeued by another thread.
263  * Once this check is performed, the page lock guarantees that the page will
264  * not be disassociated from the queue.
265  */
266 static __always_inline void
267 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
268 {
269 	struct vm_pagequeue *pq;
270 	vm_page_t m, marker;
271 
272 	marker = ss->marker;
273 	pq = ss->pq;
274 
275 	KASSERT((marker->aflags & PGA_ENQUEUED) != 0,
276 	    ("marker %p not enqueued", ss->marker));
277 
278 	vm_pagequeue_lock(pq);
279 	for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
280 	    ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
281 	    m = TAILQ_NEXT(m, plinks.q), ss->scanned++) {
282 		if ((m->flags & PG_MARKER) == 0) {
283 			KASSERT((m->aflags & PGA_ENQUEUED) != 0,
284 			    ("page %p not enqueued", m));
285 			KASSERT((m->flags & PG_FICTITIOUS) == 0,
286 			    ("Fictitious page %p cannot be in page queue", m));
287 			KASSERT((m->oflags & VPO_UNMANAGED) == 0,
288 			    ("Unmanaged page %p cannot be in page queue", m));
289 		} else if (dequeue)
290 			continue;
291 
292 		(void)vm_batchqueue_insert(&ss->bq, m);
293 		if (dequeue) {
294 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
295 			vm_page_aflag_clear(m, PGA_ENQUEUED);
296 		}
297 	}
298 	TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
299 	if (__predict_true(m != NULL))
300 		TAILQ_INSERT_BEFORE(m, marker, plinks.q);
301 	else
302 		TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
303 	if (dequeue)
304 		vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
305 	vm_pagequeue_unlock(pq);
306 }
307 
308 /* Return the next page to be scanned, or NULL if the scan is complete. */
309 static __always_inline vm_page_t
310 vm_pageout_next(struct scan_state *ss, const bool dequeue)
311 {
312 
313 	if (ss->bq.bq_cnt == 0)
314 		vm_pageout_collect_batch(ss, dequeue);
315 	return (vm_batchqueue_pop(&ss->bq));
316 }
317 
318 /*
319  * Scan for pages at adjacent offsets within the given page's object that are
320  * eligible for laundering, form a cluster of these pages and the given page,
321  * and launder that cluster.
322  */
323 static int
324 vm_pageout_cluster(vm_page_t m)
325 {
326 	vm_object_t object;
327 	vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
328 	vm_pindex_t pindex;
329 	int ib, is, page_base, pageout_count;
330 
331 	vm_page_assert_locked(m);
332 	object = m->object;
333 	VM_OBJECT_ASSERT_WLOCKED(object);
334 	pindex = m->pindex;
335 
336 	vm_page_assert_unbusied(m);
337 	KASSERT(!vm_page_held(m), ("page %p is held", m));
338 
339 	pmap_remove_write(m);
340 	vm_page_unlock(m);
341 
342 	mc[vm_pageout_page_count] = pb = ps = m;
343 	pageout_count = 1;
344 	page_base = vm_pageout_page_count;
345 	ib = 1;
346 	is = 1;
347 
348 	/*
349 	 * We can cluster only if the page is not clean, busy, or held, and
350 	 * the page is in the laundry queue.
351 	 *
352 	 * During heavy mmap/modification loads the pageout
353 	 * daemon can really fragment the underlying file
354 	 * due to flushing pages out of order and not trying to
355 	 * align the clusters (which leaves sporadic out-of-order
356 	 * holes).  To solve this problem we do the reverse scan
357 	 * first and attempt to align our cluster, then do a
358 	 * forward scan if room remains.
359 	 */
360 more:
361 	while (ib != 0 && pageout_count < vm_pageout_page_count) {
362 		if (ib > pindex) {
363 			ib = 0;
364 			break;
365 		}
366 		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
367 			ib = 0;
368 			break;
369 		}
370 		vm_page_test_dirty(p);
371 		if (p->dirty == 0) {
372 			ib = 0;
373 			break;
374 		}
375 		vm_page_lock(p);
376 		if (vm_page_held(p) || !vm_page_in_laundry(p)) {
377 			vm_page_unlock(p);
378 			ib = 0;
379 			break;
380 		}
381 		pmap_remove_write(p);
382 		vm_page_unlock(p);
383 		mc[--page_base] = pb = p;
384 		++pageout_count;
385 		++ib;
386 
387 		/*
388 		 * We are at an alignment boundary.  Stop here, and switch
389 		 * directions.  Do not clear ib.
390 		 */
391 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
392 			break;
393 	}
394 	while (pageout_count < vm_pageout_page_count &&
395 	    pindex + is < object->size) {
396 		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
397 			break;
398 		vm_page_test_dirty(p);
399 		if (p->dirty == 0)
400 			break;
401 		vm_page_lock(p);
402 		if (vm_page_held(p) || !vm_page_in_laundry(p)) {
403 			vm_page_unlock(p);
404 			break;
405 		}
406 		pmap_remove_write(p);
407 		vm_page_unlock(p);
408 		mc[page_base + pageout_count] = ps = p;
409 		++pageout_count;
410 		++is;
411 	}
412 
413 	/*
414 	 * If we exhausted our forward scan, continue with the reverse scan
415 	 * when possible, even past an alignment boundary.  This catches
416 	 * boundary conditions.
417 	 */
418 	if (ib != 0 && pageout_count < vm_pageout_page_count)
419 		goto more;
420 
421 	return (vm_pageout_flush(&mc[page_base], pageout_count,
422 	    VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
423 }
424 
425 /*
426  * vm_pageout_flush() - launder the given pages
427  *
428  *	The given pages are laundered.  Note that we setup for the start of
429  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
430  *	reference count all in here rather then in the parent.  If we want
431  *	the parent to do more sophisticated things we may have to change
432  *	the ordering.
433  *
434  *	Returned runlen is the count of pages between mreq and first
435  *	page after mreq with status VM_PAGER_AGAIN.
436  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
437  *	for any page in runlen set.
438  */
439 int
440 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
441     boolean_t *eio)
442 {
443 	vm_object_t object = mc[0]->object;
444 	int pageout_status[count];
445 	int numpagedout = 0;
446 	int i, runlen;
447 
448 	VM_OBJECT_ASSERT_WLOCKED(object);
449 
450 	/*
451 	 * Initiate I/O.  Mark the pages busy and verify that they're valid
452 	 * and read-only.
453 	 *
454 	 * We do not have to fixup the clean/dirty bits here... we can
455 	 * allow the pager to do it after the I/O completes.
456 	 *
457 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
458 	 * edge case with file fragments.
459 	 */
460 	for (i = 0; i < count; i++) {
461 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
462 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
463 			mc[i], i, count));
464 		KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0,
465 		    ("vm_pageout_flush: writeable page %p", mc[i]));
466 		vm_page_sbusy(mc[i]);
467 	}
468 	vm_object_pip_add(object, count);
469 
470 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
471 
472 	runlen = count - mreq;
473 	if (eio != NULL)
474 		*eio = FALSE;
475 	for (i = 0; i < count; i++) {
476 		vm_page_t mt = mc[i];
477 
478 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
479 		    !pmap_page_is_write_mapped(mt),
480 		    ("vm_pageout_flush: page %p is not write protected", mt));
481 		switch (pageout_status[i]) {
482 		case VM_PAGER_OK:
483 			vm_page_lock(mt);
484 			if (vm_page_in_laundry(mt))
485 				vm_page_deactivate_noreuse(mt);
486 			vm_page_unlock(mt);
487 			/* FALLTHROUGH */
488 		case VM_PAGER_PEND:
489 			numpagedout++;
490 			break;
491 		case VM_PAGER_BAD:
492 			/*
493 			 * The page is outside the object's range.  We pretend
494 			 * that the page out worked and clean the page, so the
495 			 * changes will be lost if the page is reclaimed by
496 			 * the page daemon.
497 			 */
498 			vm_page_undirty(mt);
499 			vm_page_lock(mt);
500 			if (vm_page_in_laundry(mt))
501 				vm_page_deactivate_noreuse(mt);
502 			vm_page_unlock(mt);
503 			break;
504 		case VM_PAGER_ERROR:
505 		case VM_PAGER_FAIL:
506 			/*
507 			 * If the page couldn't be paged out to swap because the
508 			 * pager wasn't able to find space, place the page in
509 			 * the PQ_UNSWAPPABLE holding queue.  This is an
510 			 * optimization that prevents the page daemon from
511 			 * wasting CPU cycles on pages that cannot be reclaimed
512 			 * becase no swap device is configured.
513 			 *
514 			 * Otherwise, reactivate the page so that it doesn't
515 			 * clog the laundry and inactive queues.  (We will try
516 			 * paging it out again later.)
517 			 */
518 			vm_page_lock(mt);
519 			if (object->type == OBJT_SWAP &&
520 			    pageout_status[i] == VM_PAGER_FAIL) {
521 				vm_page_unswappable(mt);
522 				numpagedout++;
523 			} else
524 				vm_page_activate(mt);
525 			vm_page_unlock(mt);
526 			if (eio != NULL && i >= mreq && i - mreq < runlen)
527 				*eio = TRUE;
528 			break;
529 		case VM_PAGER_AGAIN:
530 			if (i >= mreq && i - mreq < runlen)
531 				runlen = i - mreq;
532 			break;
533 		}
534 
535 		/*
536 		 * If the operation is still going, leave the page busy to
537 		 * block all other accesses. Also, leave the paging in
538 		 * progress indicator set so that we don't attempt an object
539 		 * collapse.
540 		 */
541 		if (pageout_status[i] != VM_PAGER_PEND) {
542 			vm_object_pip_wakeup(object);
543 			vm_page_sunbusy(mt);
544 		}
545 	}
546 	if (prunlen != NULL)
547 		*prunlen = runlen;
548 	return (numpagedout);
549 }
550 
551 static void
552 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
553 {
554 
555 	atomic_store_rel_int(&swapdev_enabled, 1);
556 }
557 
558 static void
559 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
560 {
561 
562 	if (swap_pager_nswapdev() == 1)
563 		atomic_store_rel_int(&swapdev_enabled, 0);
564 }
565 
566 /*
567  * Attempt to acquire all of the necessary locks to launder a page and
568  * then call through the clustering layer to PUTPAGES.  Wait a short
569  * time for a vnode lock.
570  *
571  * Requires the page and object lock on entry, releases both before return.
572  * Returns 0 on success and an errno otherwise.
573  */
574 static int
575 vm_pageout_clean(vm_page_t m, int *numpagedout)
576 {
577 	struct vnode *vp;
578 	struct mount *mp;
579 	vm_object_t object;
580 	vm_pindex_t pindex;
581 	int error, lockmode;
582 
583 	vm_page_assert_locked(m);
584 	object = m->object;
585 	VM_OBJECT_ASSERT_WLOCKED(object);
586 	error = 0;
587 	vp = NULL;
588 	mp = NULL;
589 
590 	/*
591 	 * The object is already known NOT to be dead.   It
592 	 * is possible for the vget() to block the whole
593 	 * pageout daemon, but the new low-memory handling
594 	 * code should prevent it.
595 	 *
596 	 * We can't wait forever for the vnode lock, we might
597 	 * deadlock due to a vn_read() getting stuck in
598 	 * vm_wait while holding this vnode.  We skip the
599 	 * vnode if we can't get it in a reasonable amount
600 	 * of time.
601 	 */
602 	if (object->type == OBJT_VNODE) {
603 		vm_page_unlock(m);
604 		vp = object->handle;
605 		if (vp->v_type == VREG &&
606 		    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
607 			mp = NULL;
608 			error = EDEADLK;
609 			goto unlock_all;
610 		}
611 		KASSERT(mp != NULL,
612 		    ("vp %p with NULL v_mount", vp));
613 		vm_object_reference_locked(object);
614 		pindex = m->pindex;
615 		VM_OBJECT_WUNLOCK(object);
616 		lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
617 		    LK_SHARED : LK_EXCLUSIVE;
618 		if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
619 			vp = NULL;
620 			error = EDEADLK;
621 			goto unlock_mp;
622 		}
623 		VM_OBJECT_WLOCK(object);
624 
625 		/*
626 		 * Ensure that the object and vnode were not disassociated
627 		 * while locks were dropped.
628 		 */
629 		if (vp->v_object != object) {
630 			error = ENOENT;
631 			goto unlock_all;
632 		}
633 		vm_page_lock(m);
634 
635 		/*
636 		 * While the object and page were unlocked, the page
637 		 * may have been:
638 		 * (1) moved to a different queue,
639 		 * (2) reallocated to a different object,
640 		 * (3) reallocated to a different offset, or
641 		 * (4) cleaned.
642 		 */
643 		if (!vm_page_in_laundry(m) || m->object != object ||
644 		    m->pindex != pindex || m->dirty == 0) {
645 			vm_page_unlock(m);
646 			error = ENXIO;
647 			goto unlock_all;
648 		}
649 
650 		/*
651 		 * The page may have been busied or referenced while the object
652 		 * and page locks were released.
653 		 */
654 		if (vm_page_busied(m) || vm_page_held(m)) {
655 			vm_page_unlock(m);
656 			error = EBUSY;
657 			goto unlock_all;
658 		}
659 	}
660 
661 	/*
662 	 * If a page is dirty, then it is either being washed
663 	 * (but not yet cleaned) or it is still in the
664 	 * laundry.  If it is still in the laundry, then we
665 	 * start the cleaning operation.
666 	 */
667 	if ((*numpagedout = vm_pageout_cluster(m)) == 0)
668 		error = EIO;
669 
670 unlock_all:
671 	VM_OBJECT_WUNLOCK(object);
672 
673 unlock_mp:
674 	vm_page_lock_assert(m, MA_NOTOWNED);
675 	if (mp != NULL) {
676 		if (vp != NULL)
677 			vput(vp);
678 		vm_object_deallocate(object);
679 		vn_finished_write(mp);
680 	}
681 
682 	return (error);
683 }
684 
685 /*
686  * Attempt to launder the specified number of pages.
687  *
688  * Returns the number of pages successfully laundered.
689  */
690 static int
691 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
692 {
693 	struct scan_state ss;
694 	struct vm_pagequeue *pq;
695 	struct mtx *mtx;
696 	vm_object_t object;
697 	vm_page_t m, marker;
698 	int act_delta, error, numpagedout, queue, starting_target;
699 	int vnodes_skipped;
700 	bool obj_locked, pageout_ok;
701 
702 	mtx = NULL;
703 	obj_locked = false;
704 	object = NULL;
705 	starting_target = launder;
706 	vnodes_skipped = 0;
707 
708 	/*
709 	 * Scan the laundry queues for pages eligible to be laundered.  We stop
710 	 * once the target number of dirty pages have been laundered, or once
711 	 * we've reached the end of the queue.  A single iteration of this loop
712 	 * may cause more than one page to be laundered because of clustering.
713 	 *
714 	 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
715 	 * swap devices are configured.
716 	 */
717 	if (atomic_load_acq_int(&swapdev_enabled))
718 		queue = PQ_UNSWAPPABLE;
719 	else
720 		queue = PQ_LAUNDRY;
721 
722 scan:
723 	marker = &vmd->vmd_markers[queue];
724 	pq = &vmd->vmd_pagequeues[queue];
725 	vm_pagequeue_lock(pq);
726 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
727 	while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
728 		if (__predict_false((m->flags & PG_MARKER) != 0))
729 			continue;
730 
731 		vm_page_change_lock(m, &mtx);
732 
733 recheck:
734 		/*
735 		 * The page may have been disassociated from the queue
736 		 * while locks were dropped.
737 		 */
738 		if (vm_page_queue(m) != queue)
739 			continue;
740 
741 		/*
742 		 * A requeue was requested, so this page gets a second
743 		 * chance.
744 		 */
745 		if ((m->aflags & PGA_REQUEUE) != 0) {
746 			vm_page_requeue(m);
747 			continue;
748 		}
749 
750 		/*
751 		 * Held pages are essentially stuck in the queue.
752 		 *
753 		 * Wired pages may not be freed.  Complete their removal
754 		 * from the queue now to avoid needless revisits during
755 		 * future scans.
756 		 */
757 		if (m->hold_count != 0)
758 			continue;
759 		if (m->wire_count != 0) {
760 			vm_page_dequeue_deferred(m);
761 			continue;
762 		}
763 
764 		if (object != m->object) {
765 			if (obj_locked) {
766 				VM_OBJECT_WUNLOCK(object);
767 				obj_locked = false;
768 			}
769 			object = m->object;
770 		}
771 		if (!obj_locked) {
772 			if (!VM_OBJECT_TRYWLOCK(object)) {
773 				mtx_unlock(mtx);
774 				/* Depends on type-stability. */
775 				VM_OBJECT_WLOCK(object);
776 				obj_locked = true;
777 				mtx_lock(mtx);
778 				goto recheck;
779 			} else
780 				obj_locked = true;
781 		}
782 
783 		if (vm_page_busied(m))
784 			continue;
785 
786 		/*
787 		 * Invalid pages can be easily freed.  They cannot be
788 		 * mapped; vm_page_free() asserts this.
789 		 */
790 		if (m->valid == 0)
791 			goto free_page;
792 
793 		/*
794 		 * If the page has been referenced and the object is not dead,
795 		 * reactivate or requeue the page depending on whether the
796 		 * object is mapped.
797 		 */
798 		if ((m->aflags & PGA_REFERENCED) != 0) {
799 			vm_page_aflag_clear(m, PGA_REFERENCED);
800 			act_delta = 1;
801 		} else
802 			act_delta = 0;
803 		if (object->ref_count != 0)
804 			act_delta += pmap_ts_referenced(m);
805 		else {
806 			KASSERT(!pmap_page_is_mapped(m),
807 			    ("page %p is mapped", m));
808 		}
809 		if (act_delta != 0) {
810 			if (object->ref_count != 0) {
811 				VM_CNT_INC(v_reactivated);
812 				vm_page_activate(m);
813 
814 				/*
815 				 * Increase the activation count if the page
816 				 * was referenced while in the laundry queue.
817 				 * This makes it less likely that the page will
818 				 * be returned prematurely to the inactive
819 				 * queue.
820  				 */
821 				m->act_count += act_delta + ACT_ADVANCE;
822 
823 				/*
824 				 * If this was a background laundering, count
825 				 * activated pages towards our target.  The
826 				 * purpose of background laundering is to ensure
827 				 * that pages are eventually cycled through the
828 				 * laundry queue, and an activation is a valid
829 				 * way out.
830 				 */
831 				if (!in_shortfall)
832 					launder--;
833 				continue;
834 			} else if ((object->flags & OBJ_DEAD) == 0) {
835 				vm_page_requeue(m);
836 				continue;
837 			}
838 		}
839 
840 		/*
841 		 * If the page appears to be clean at the machine-independent
842 		 * layer, then remove all of its mappings from the pmap in
843 		 * anticipation of freeing it.  If, however, any of the page's
844 		 * mappings allow write access, then the page may still be
845 		 * modified until the last of those mappings are removed.
846 		 */
847 		if (object->ref_count != 0) {
848 			vm_page_test_dirty(m);
849 			if (m->dirty == 0)
850 				pmap_remove_all(m);
851 		}
852 
853 		/*
854 		 * Clean pages are freed, and dirty pages are paged out unless
855 		 * they belong to a dead object.  Requeueing dirty pages from
856 		 * dead objects is pointless, as they are being paged out and
857 		 * freed by the thread that destroyed the object.
858 		 */
859 		if (m->dirty == 0) {
860 free_page:
861 			vm_page_free(m);
862 			VM_CNT_INC(v_dfree);
863 		} else if ((object->flags & OBJ_DEAD) == 0) {
864 			if (object->type != OBJT_SWAP &&
865 			    object->type != OBJT_DEFAULT)
866 				pageout_ok = true;
867 			else if (disable_swap_pageouts)
868 				pageout_ok = false;
869 			else
870 				pageout_ok = true;
871 			if (!pageout_ok) {
872 				vm_page_requeue(m);
873 				continue;
874 			}
875 
876 			/*
877 			 * Form a cluster with adjacent, dirty pages from the
878 			 * same object, and page out that entire cluster.
879 			 *
880 			 * The adjacent, dirty pages must also be in the
881 			 * laundry.  However, their mappings are not checked
882 			 * for new references.  Consequently, a recently
883 			 * referenced page may be paged out.  However, that
884 			 * page will not be prematurely reclaimed.  After page
885 			 * out, the page will be placed in the inactive queue,
886 			 * where any new references will be detected and the
887 			 * page reactivated.
888 			 */
889 			error = vm_pageout_clean(m, &numpagedout);
890 			if (error == 0) {
891 				launder -= numpagedout;
892 				ss.scanned += numpagedout;
893 			} else if (error == EDEADLK) {
894 				pageout_lock_miss++;
895 				vnodes_skipped++;
896 			}
897 			mtx = NULL;
898 			obj_locked = false;
899 		}
900 	}
901 	if (mtx != NULL) {
902 		mtx_unlock(mtx);
903 		mtx = NULL;
904 	}
905 	if (obj_locked) {
906 		VM_OBJECT_WUNLOCK(object);
907 		obj_locked = false;
908 	}
909 	vm_pagequeue_lock(pq);
910 	vm_pageout_end_scan(&ss);
911 	vm_pagequeue_unlock(pq);
912 
913 	if (launder > 0 && queue == PQ_UNSWAPPABLE) {
914 		queue = PQ_LAUNDRY;
915 		goto scan;
916 	}
917 
918 	/*
919 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
920 	 * and we didn't launder enough pages.
921 	 */
922 	if (vnodes_skipped > 0 && launder > 0)
923 		(void)speedup_syncer();
924 
925 	return (starting_target - launder);
926 }
927 
928 /*
929  * Compute the integer square root.
930  */
931 static u_int
932 isqrt(u_int num)
933 {
934 	u_int bit, root, tmp;
935 
936 	bit = 1u << ((NBBY * sizeof(u_int)) - 2);
937 	while (bit > num)
938 		bit >>= 2;
939 	root = 0;
940 	while (bit != 0) {
941 		tmp = root + bit;
942 		root >>= 1;
943 		if (num >= tmp) {
944 			num -= tmp;
945 			root += bit;
946 		}
947 		bit >>= 2;
948 	}
949 	return (root);
950 }
951 
952 /*
953  * Perform the work of the laundry thread: periodically wake up and determine
954  * whether any pages need to be laundered.  If so, determine the number of pages
955  * that need to be laundered, and launder them.
956  */
957 static void
958 vm_pageout_laundry_worker(void *arg)
959 {
960 	struct vm_domain *vmd;
961 	struct vm_pagequeue *pq;
962 	uint64_t nclean, ndirty, nfreed;
963 	int domain, last_target, launder, shortfall, shortfall_cycle, target;
964 	bool in_shortfall;
965 
966 	domain = (uintptr_t)arg;
967 	vmd = VM_DOMAIN(domain);
968 	pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
969 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
970 
971 	shortfall = 0;
972 	in_shortfall = false;
973 	shortfall_cycle = 0;
974 	target = 0;
975 	nfreed = 0;
976 
977 	/*
978 	 * Calls to these handlers are serialized by the swap syscall lock.
979 	 */
980 	(void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
981 	    EVENTHANDLER_PRI_ANY);
982 	(void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
983 	    EVENTHANDLER_PRI_ANY);
984 
985 	/*
986 	 * The pageout laundry worker is never done, so loop forever.
987 	 */
988 	for (;;) {
989 		KASSERT(target >= 0, ("negative target %d", target));
990 		KASSERT(shortfall_cycle >= 0,
991 		    ("negative cycle %d", shortfall_cycle));
992 		launder = 0;
993 
994 		/*
995 		 * First determine whether we need to launder pages to meet a
996 		 * shortage of free pages.
997 		 */
998 		if (shortfall > 0) {
999 			in_shortfall = true;
1000 			shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1001 			target = shortfall;
1002 		} else if (!in_shortfall)
1003 			goto trybackground;
1004 		else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1005 			/*
1006 			 * We recently entered shortfall and began laundering
1007 			 * pages.  If we have completed that laundering run
1008 			 * (and we are no longer in shortfall) or we have met
1009 			 * our laundry target through other activity, then we
1010 			 * can stop laundering pages.
1011 			 */
1012 			in_shortfall = false;
1013 			target = 0;
1014 			goto trybackground;
1015 		}
1016 		launder = target / shortfall_cycle--;
1017 		goto dolaundry;
1018 
1019 		/*
1020 		 * There's no immediate need to launder any pages; see if we
1021 		 * meet the conditions to perform background laundering:
1022 		 *
1023 		 * 1. The ratio of dirty to clean inactive pages exceeds the
1024 		 *    background laundering threshold, or
1025 		 * 2. we haven't yet reached the target of the current
1026 		 *    background laundering run.
1027 		 *
1028 		 * The background laundering threshold is not a constant.
1029 		 * Instead, it is a slowly growing function of the number of
1030 		 * clean pages freed by the page daemon since the last
1031 		 * background laundering.  Thus, as the ratio of dirty to
1032 		 * clean inactive pages grows, the amount of memory pressure
1033 		 * required to trigger laundering decreases.  We ensure
1034 		 * that the threshold is non-zero after an inactive queue
1035 		 * scan, even if that scan failed to free a single clean page.
1036 		 */
1037 trybackground:
1038 		nclean = vmd->vmd_free_count +
1039 		    vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1040 		ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1041 		if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1042 		    vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1043 			target = vmd->vmd_background_launder_target;
1044 		}
1045 
1046 		/*
1047 		 * We have a non-zero background laundering target.  If we've
1048 		 * laundered up to our maximum without observing a page daemon
1049 		 * request, just stop.  This is a safety belt that ensures we
1050 		 * don't launder an excessive amount if memory pressure is low
1051 		 * and the ratio of dirty to clean pages is large.  Otherwise,
1052 		 * proceed at the background laundering rate.
1053 		 */
1054 		if (target > 0) {
1055 			if (nfreed > 0) {
1056 				nfreed = 0;
1057 				last_target = target;
1058 			} else if (last_target - target >=
1059 			    vm_background_launder_max * PAGE_SIZE / 1024) {
1060 				target = 0;
1061 			}
1062 			launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1063 			launder /= VM_LAUNDER_RATE;
1064 			if (launder > target)
1065 				launder = target;
1066 		}
1067 
1068 dolaundry:
1069 		if (launder > 0) {
1070 			/*
1071 			 * Because of I/O clustering, the number of laundered
1072 			 * pages could exceed "target" by the maximum size of
1073 			 * a cluster minus one.
1074 			 */
1075 			target -= min(vm_pageout_launder(vmd, launder,
1076 			    in_shortfall), target);
1077 			pause("laundp", hz / VM_LAUNDER_RATE);
1078 		}
1079 
1080 		/*
1081 		 * If we're not currently laundering pages and the page daemon
1082 		 * hasn't posted a new request, sleep until the page daemon
1083 		 * kicks us.
1084 		 */
1085 		vm_pagequeue_lock(pq);
1086 		if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1087 			(void)mtx_sleep(&vmd->vmd_laundry_request,
1088 			    vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1089 
1090 		/*
1091 		 * If the pagedaemon has indicated that it's in shortfall, start
1092 		 * a shortfall laundering unless we're already in the middle of
1093 		 * one.  This may preempt a background laundering.
1094 		 */
1095 		if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1096 		    (!in_shortfall || shortfall_cycle == 0)) {
1097 			shortfall = vm_laundry_target(vmd) +
1098 			    vmd->vmd_pageout_deficit;
1099 			target = 0;
1100 		} else
1101 			shortfall = 0;
1102 
1103 		if (target == 0)
1104 			vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1105 		nfreed += vmd->vmd_clean_pages_freed;
1106 		vmd->vmd_clean_pages_freed = 0;
1107 		vm_pagequeue_unlock(pq);
1108 	}
1109 }
1110 
1111 static int
1112 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m)
1113 {
1114 	struct vm_domain *vmd;
1115 
1116 	if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0)
1117 		return (0);
1118 	vm_page_aflag_set(m, PGA_ENQUEUED);
1119 	if ((m->aflags & PGA_REQUEUE_HEAD) != 0) {
1120 		vmd = vm_pagequeue_domain(m);
1121 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
1122 		vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1123 	} else if ((m->aflags & PGA_REQUEUE) != 0) {
1124 		TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q);
1125 		vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1126 	} else
1127 		TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q);
1128 	return (1);
1129 }
1130 
1131 /*
1132  * Re-add stuck pages to the inactive queue.  We will examine them again
1133  * during the next scan.  If the queue state of a page has changed since
1134  * it was physically removed from the page queue in
1135  * vm_pageout_collect_batch(), don't do anything with that page.
1136  */
1137 static void
1138 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1139     vm_page_t m)
1140 {
1141 	struct vm_pagequeue *pq;
1142 	int delta;
1143 
1144 	delta = 0;
1145 	pq = ss->pq;
1146 
1147 	if (m != NULL) {
1148 		if (vm_batchqueue_insert(bq, m))
1149 			return;
1150 		vm_pagequeue_lock(pq);
1151 		delta += vm_pageout_reinsert_inactive_page(ss, m);
1152 	} else
1153 		vm_pagequeue_lock(pq);
1154 	while ((m = vm_batchqueue_pop(bq)) != NULL)
1155 		delta += vm_pageout_reinsert_inactive_page(ss, m);
1156 	vm_pagequeue_cnt_add(pq, delta);
1157 	vm_pagequeue_unlock(pq);
1158 	vm_batchqueue_init(bq);
1159 }
1160 
1161 /*
1162  *	vm_pageout_scan does the dirty work for the pageout daemon.
1163  *
1164  *	pass == 0: Update active LRU/deactivate pages
1165  *	pass >= 1: Free inactive pages
1166  *
1167  * Returns true if pass was zero or enough pages were freed by the inactive
1168  * queue scan to meet the target.
1169  */
1170 static bool
1171 vm_pageout_scan(struct vm_domain *vmd, int pass, int shortage)
1172 {
1173 	struct scan_state ss;
1174 	struct vm_batchqueue rq;
1175 	struct mtx *mtx;
1176 	vm_page_t m, marker;
1177 	struct vm_pagequeue *pq;
1178 	vm_object_t object;
1179 	long min_scan;
1180 	int act_delta, addl_page_shortage, deficit, inactq_shortage, max_scan;
1181 	int page_shortage, scan_tick, starting_page_shortage;
1182 	bool obj_locked;
1183 
1184 	/*
1185 	 * If we need to reclaim memory ask kernel caches to return
1186 	 * some.  We rate limit to avoid thrashing.
1187 	 */
1188 	if (vmd == VM_DOMAIN(0) && pass > 0 &&
1189 	    (time_uptime - lowmem_uptime) >= lowmem_period) {
1190 		/*
1191 		 * Decrease registered cache sizes.
1192 		 */
1193 		SDT_PROBE0(vm, , , vm__lowmem_scan);
1194 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1195 		/*
1196 		 * We do this explicitly after the caches have been
1197 		 * drained above.
1198 		 */
1199 		uma_reclaim();
1200 		lowmem_uptime = time_uptime;
1201 	}
1202 
1203 	/*
1204 	 * The addl_page_shortage is an estimate of the number of temporarily
1205 	 * stuck pages in the inactive queue.  In other words, the
1206 	 * number of pages from the inactive count that should be
1207 	 * discounted in setting the target for the active queue scan.
1208 	 */
1209 	addl_page_shortage = 0;
1210 
1211 	/*
1212 	 * Calculate the number of pages that we want to free.  This number
1213 	 * can be negative if many pages are freed between the wakeup call to
1214 	 * the page daemon and this calculation.
1215 	 */
1216 	if (pass > 0) {
1217 		deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1218 		page_shortage = shortage + deficit;
1219 	} else
1220 		page_shortage = deficit = 0;
1221 	starting_page_shortage = page_shortage;
1222 
1223 	mtx = NULL;
1224 	obj_locked = false;
1225 	object = NULL;
1226 	vm_batchqueue_init(&rq);
1227 
1228 	/*
1229 	 * Start scanning the inactive queue for pages that we can free.  The
1230 	 * scan will stop when we reach the target or we have scanned the
1231 	 * entire queue.  (Note that m->act_count is not used to make
1232 	 * decisions for the inactive queue, only for the active queue.)
1233 	 */
1234 	marker = &vmd->vmd_markers[PQ_INACTIVE];
1235 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1236 	vm_pagequeue_lock(pq);
1237 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1238 	while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1239 		KASSERT((m->flags & PG_MARKER) == 0,
1240 		    ("marker page %p was dequeued", m));
1241 
1242 		vm_page_change_lock(m, &mtx);
1243 
1244 recheck:
1245 		/*
1246 		 * The page may have been disassociated from the queue
1247 		 * while locks were dropped.
1248 		 */
1249 		if (vm_page_queue(m) != PQ_INACTIVE) {
1250 			addl_page_shortage++;
1251 			continue;
1252 		}
1253 
1254 		/*
1255 		 * The page was re-enqueued after the page queue lock was
1256 		 * dropped, or a requeue was requested.  This page gets a second
1257 		 * chance.
1258 		 */
1259 		if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE |
1260 		    PGA_REQUEUE_HEAD)) != 0)
1261 			goto reinsert;
1262 
1263 		/*
1264 		 * Held pages are essentially stuck in the queue.  So,
1265 		 * they ought to be discounted from the inactive count.
1266 		 * See the calculation of inactq_shortage before the
1267 		 * loop over the active queue below.
1268 		 *
1269 		 * Wired pages may not be freed.  Complete their removal
1270 		 * from the queue now to avoid needless revisits during
1271 		 * future scans.
1272 		 */
1273 		if (m->hold_count != 0) {
1274 			addl_page_shortage++;
1275 			goto reinsert;
1276 		}
1277 		if (m->wire_count != 0) {
1278 			vm_page_dequeue_deferred(m);
1279 			continue;
1280 		}
1281 
1282 		if (object != m->object) {
1283 			if (obj_locked) {
1284 				VM_OBJECT_WUNLOCK(object);
1285 				obj_locked = false;
1286 			}
1287 			object = m->object;
1288 		}
1289 		if (!obj_locked) {
1290 			if (!VM_OBJECT_TRYWLOCK(object)) {
1291 				mtx_unlock(mtx);
1292 				/* Depends on type-stability. */
1293 				VM_OBJECT_WLOCK(object);
1294 				obj_locked = true;
1295 				mtx_lock(mtx);
1296 				goto recheck;
1297 			} else
1298 				obj_locked = true;
1299 		}
1300 
1301 		if (vm_page_busied(m)) {
1302 			/*
1303 			 * Don't mess with busy pages.  Leave them at
1304 			 * the front of the queue.  Most likely, they
1305 			 * are being paged out and will leave the
1306 			 * queue shortly after the scan finishes.  So,
1307 			 * they ought to be discounted from the
1308 			 * inactive count.
1309 			 */
1310 			addl_page_shortage++;
1311 			goto reinsert;
1312 		}
1313 
1314 		/*
1315 		 * Invalid pages can be easily freed. They cannot be
1316 		 * mapped, vm_page_free() asserts this.
1317 		 */
1318 		if (m->valid == 0)
1319 			goto free_page;
1320 
1321 		/*
1322 		 * If the page has been referenced and the object is not dead,
1323 		 * reactivate or requeue the page depending on whether the
1324 		 * object is mapped.
1325 		 */
1326 		if ((m->aflags & PGA_REFERENCED) != 0) {
1327 			vm_page_aflag_clear(m, PGA_REFERENCED);
1328 			act_delta = 1;
1329 		} else
1330 			act_delta = 0;
1331 		if (object->ref_count != 0) {
1332 			act_delta += pmap_ts_referenced(m);
1333 		} else {
1334 			KASSERT(!pmap_page_is_mapped(m),
1335 			    ("vm_pageout_scan: page %p is mapped", m));
1336 		}
1337 		if (act_delta != 0) {
1338 			if (object->ref_count != 0) {
1339 				VM_CNT_INC(v_reactivated);
1340 				vm_page_activate(m);
1341 
1342 				/*
1343 				 * Increase the activation count if the page
1344 				 * was referenced while in the inactive queue.
1345 				 * This makes it less likely that the page will
1346 				 * be returned prematurely to the inactive
1347 				 * queue.
1348  				 */
1349 				m->act_count += act_delta + ACT_ADVANCE;
1350 				continue;
1351 			} else if ((object->flags & OBJ_DEAD) == 0) {
1352 				vm_page_aflag_set(m, PGA_REQUEUE);
1353 				goto reinsert;
1354 			}
1355 		}
1356 
1357 		/*
1358 		 * If the page appears to be clean at the machine-independent
1359 		 * layer, then remove all of its mappings from the pmap in
1360 		 * anticipation of freeing it.  If, however, any of the page's
1361 		 * mappings allow write access, then the page may still be
1362 		 * modified until the last of those mappings are removed.
1363 		 */
1364 		if (object->ref_count != 0) {
1365 			vm_page_test_dirty(m);
1366 			if (m->dirty == 0)
1367 				pmap_remove_all(m);
1368 		}
1369 
1370 		/*
1371 		 * Clean pages can be freed, but dirty pages must be sent back
1372 		 * to the laundry, unless they belong to a dead object.
1373 		 * Requeueing dirty pages from dead objects is pointless, as
1374 		 * they are being paged out and freed by the thread that
1375 		 * destroyed the object.
1376 		 */
1377 		if (m->dirty == 0) {
1378 free_page:
1379 			/*
1380 			 * Because we dequeued the page and have already
1381 			 * checked for concurrent dequeue and enqueue
1382 			 * requests, we can safely disassociate the page
1383 			 * from the inactive queue.
1384 			 */
1385 			KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0,
1386 			    ("page %p has queue state", m));
1387 			m->queue = PQ_NONE;
1388 			vm_page_free(m);
1389 			page_shortage--;
1390 		} else if ((object->flags & OBJ_DEAD) == 0)
1391 			vm_page_launder(m);
1392 		continue;
1393 reinsert:
1394 		vm_pageout_reinsert_inactive(&ss, &rq, m);
1395 	}
1396 	if (mtx != NULL) {
1397 		mtx_unlock(mtx);
1398 		mtx = NULL;
1399 	}
1400 	if (obj_locked) {
1401 		VM_OBJECT_WUNLOCK(object);
1402 		obj_locked = false;
1403 	}
1404 	vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1405 	vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1406 	vm_pagequeue_lock(pq);
1407 	vm_pageout_end_scan(&ss);
1408 	vm_pagequeue_unlock(pq);
1409 
1410 	VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1411 
1412 	/*
1413 	 * Wake up the laundry thread so that it can perform any needed
1414 	 * laundering.  If we didn't meet our target, we're in shortfall and
1415 	 * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1416 	 * swap devices are configured, the laundry thread has no work to do, so
1417 	 * don't bother waking it up.
1418 	 *
1419 	 * The laundry thread uses the number of inactive queue scans elapsed
1420 	 * since the last laundering to determine whether to launder again, so
1421 	 * keep count.
1422 	 */
1423 	if (starting_page_shortage > 0) {
1424 		pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1425 		vm_pagequeue_lock(pq);
1426 		if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1427 		    (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1428 			if (page_shortage > 0) {
1429 				vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1430 				VM_CNT_INC(v_pdshortfalls);
1431 			} else if (vmd->vmd_laundry_request !=
1432 			    VM_LAUNDRY_SHORTFALL)
1433 				vmd->vmd_laundry_request =
1434 				    VM_LAUNDRY_BACKGROUND;
1435 			wakeup(&vmd->vmd_laundry_request);
1436 		}
1437 		vmd->vmd_clean_pages_freed +=
1438 		    starting_page_shortage - page_shortage;
1439 		vm_pagequeue_unlock(pq);
1440 	}
1441 
1442 	/*
1443 	 * Wakeup the swapout daemon if we didn't free the targeted number of
1444 	 * pages.
1445 	 */
1446 	if (page_shortage > 0)
1447 		vm_swapout_run();
1448 
1449 	/*
1450 	 * If the inactive queue scan fails repeatedly to meet its
1451 	 * target, kill the largest process.
1452 	 */
1453 	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1454 
1455 	/*
1456 	 * Compute the number of pages we want to try to move from the
1457 	 * active queue to either the inactive or laundry queue.
1458 	 *
1459 	 * When scanning active pages, we make clean pages count more heavily
1460 	 * towards the page shortage than dirty pages.  This is because dirty
1461 	 * pages must be laundered before they can be reused and thus have less
1462 	 * utility when attempting to quickly alleviate a shortage.  However,
1463 	 * this weighting also causes the scan to deactivate dirty pages more
1464 	 * more aggressively, improving the effectiveness of clustering and
1465 	 * ensuring that they can eventually be reused.
1466 	 */
1467 	inactq_shortage = vmd->vmd_inactive_target - (pq->pq_cnt +
1468 	    vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight) +
1469 	    vm_paging_target(vmd) + deficit + addl_page_shortage;
1470 	inactq_shortage *= act_scan_laundry_weight;
1471 
1472 	marker = &vmd->vmd_markers[PQ_ACTIVE];
1473 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1474 	vm_pagequeue_lock(pq);
1475 
1476 	/*
1477 	 * If we're just idle polling attempt to visit every
1478 	 * active page within 'update_period' seconds.
1479 	 */
1480 	scan_tick = ticks;
1481 	if (vm_pageout_update_period != 0) {
1482 		min_scan = pq->pq_cnt;
1483 		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1484 		min_scan /= hz * vm_pageout_update_period;
1485 	} else
1486 		min_scan = 0;
1487 	if (min_scan > 0 || (inactq_shortage > 0 && pq->pq_cnt > 0))
1488 		vmd->vmd_last_active_scan = scan_tick;
1489 
1490 	/*
1491 	 * Scan the active queue for pages that can be deactivated.  Update
1492 	 * the per-page activity counter and use it to identify deactivation
1493 	 * candidates.  Held pages may be deactivated.
1494 	 *
1495 	 * To avoid requeuing each page that remains in the active queue, we
1496 	 * implement the CLOCK algorithm.  To maintain consistency in the
1497 	 * generic page queue code, pages are inserted at the tail of the
1498 	 * active queue.  We thus use two hands, represented by marker pages:
1499 	 * scans begin at the first hand, which precedes the second hand in
1500 	 * the queue.  When the two hands meet, they are moved back to the
1501 	 * head and tail of the queue, respectively, and scanning resumes.
1502 	 */
1503 	max_scan = inactq_shortage > 0 ? pq->pq_cnt : min_scan;
1504 act_scan:
1505 	vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1506 	while ((m = vm_pageout_next(&ss, false)) != NULL) {
1507 		if (__predict_false(m == &vmd->vmd_clock[1])) {
1508 			vm_pagequeue_lock(pq);
1509 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1510 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1511 			TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1512 			    plinks.q);
1513 			TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1514 			    plinks.q);
1515 			max_scan -= ss.scanned;
1516 			vm_pageout_end_scan(&ss);
1517 			goto act_scan;
1518 		}
1519 		if (__predict_false((m->flags & PG_MARKER) != 0))
1520 			continue;
1521 
1522 		vm_page_change_lock(m, &mtx);
1523 
1524 		/*
1525 		 * The page may have been disassociated from the queue
1526 		 * while locks were dropped.
1527 		 */
1528 		if (vm_page_queue(m) != PQ_ACTIVE)
1529 			continue;
1530 
1531 		/*
1532 		 * Wired pages are dequeued lazily.
1533 		 */
1534 		if (m->wire_count != 0) {
1535 			vm_page_dequeue_deferred(m);
1536 			continue;
1537 		}
1538 
1539 		/*
1540 		 * Check to see "how much" the page has been used.
1541 		 */
1542 		if ((m->aflags & PGA_REFERENCED) != 0) {
1543 			vm_page_aflag_clear(m, PGA_REFERENCED);
1544 			act_delta = 1;
1545 		} else
1546 			act_delta = 0;
1547 
1548 		/*
1549 		 * Perform an unsynchronized object ref count check.  While
1550 		 * the page lock ensures that the page is not reallocated to
1551 		 * another object, in particular, one with unmanaged mappings
1552 		 * that cannot support pmap_ts_referenced(), two races are,
1553 		 * nonetheless, possible:
1554 		 * 1) The count was transitioning to zero, but we saw a non-
1555 		 *    zero value.  pmap_ts_referenced() will return zero
1556 		 *    because the page is not mapped.
1557 		 * 2) The count was transitioning to one, but we saw zero.
1558 		 *    This race delays the detection of a new reference.  At
1559 		 *    worst, we will deactivate and reactivate the page.
1560 		 */
1561 		if (m->object->ref_count != 0)
1562 			act_delta += pmap_ts_referenced(m);
1563 
1564 		/*
1565 		 * Advance or decay the act_count based on recent usage.
1566 		 */
1567 		if (act_delta != 0) {
1568 			m->act_count += ACT_ADVANCE + act_delta;
1569 			if (m->act_count > ACT_MAX)
1570 				m->act_count = ACT_MAX;
1571 		} else
1572 			m->act_count -= min(m->act_count, ACT_DECLINE);
1573 
1574 		if (m->act_count == 0) {
1575 			/*
1576 			 * When not short for inactive pages, let dirty pages go
1577 			 * through the inactive queue before moving to the
1578 			 * laundry queues.  This gives them some extra time to
1579 			 * be reactivated, potentially avoiding an expensive
1580 			 * pageout.  During a page shortage, the inactive queue
1581 			 * is necessarily small, so we may move dirty pages
1582 			 * directly to the laundry queue.
1583 			 */
1584 			if (inactq_shortage <= 0)
1585 				vm_page_deactivate(m);
1586 			else {
1587 				/*
1588 				 * Calling vm_page_test_dirty() here would
1589 				 * require acquisition of the object's write
1590 				 * lock.  However, during a page shortage,
1591 				 * directing dirty pages into the laundry
1592 				 * queue is only an optimization and not a
1593 				 * requirement.  Therefore, we simply rely on
1594 				 * the opportunistic updates to the page's
1595 				 * dirty field by the pmap.
1596 				 */
1597 				if (m->dirty == 0) {
1598 					vm_page_deactivate(m);
1599 					inactq_shortage -=
1600 					    act_scan_laundry_weight;
1601 				} else {
1602 					vm_page_launder(m);
1603 					inactq_shortage--;
1604 				}
1605 			}
1606 		}
1607 	}
1608 	if (mtx != NULL) {
1609 		mtx_unlock(mtx);
1610 		mtx = NULL;
1611 	}
1612 	vm_pagequeue_lock(pq);
1613 	TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1614 	TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1615 	vm_pageout_end_scan(&ss);
1616 	vm_pagequeue_unlock(pq);
1617 
1618 	if (pass > 0)
1619 		vm_swapout_run_idle();
1620 	return (page_shortage <= 0);
1621 }
1622 
1623 static int vm_pageout_oom_vote;
1624 
1625 /*
1626  * The pagedaemon threads randlomly select one to perform the
1627  * OOM.  Trying to kill processes before all pagedaemons
1628  * failed to reach free target is premature.
1629  */
1630 static void
1631 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1632     int starting_page_shortage)
1633 {
1634 	int old_vote;
1635 
1636 	if (starting_page_shortage <= 0 || starting_page_shortage !=
1637 	    page_shortage)
1638 		vmd->vmd_oom_seq = 0;
1639 	else
1640 		vmd->vmd_oom_seq++;
1641 	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1642 		if (vmd->vmd_oom) {
1643 			vmd->vmd_oom = FALSE;
1644 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1645 		}
1646 		return;
1647 	}
1648 
1649 	/*
1650 	 * Do not follow the call sequence until OOM condition is
1651 	 * cleared.
1652 	 */
1653 	vmd->vmd_oom_seq = 0;
1654 
1655 	if (vmd->vmd_oom)
1656 		return;
1657 
1658 	vmd->vmd_oom = TRUE;
1659 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1660 	if (old_vote != vm_ndomains - 1)
1661 		return;
1662 
1663 	/*
1664 	 * The current pagedaemon thread is the last in the quorum to
1665 	 * start OOM.  Initiate the selection and signaling of the
1666 	 * victim.
1667 	 */
1668 	vm_pageout_oom(VM_OOM_MEM);
1669 
1670 	/*
1671 	 * After one round of OOM terror, recall our vote.  On the
1672 	 * next pass, current pagedaemon would vote again if the low
1673 	 * memory condition is still there, due to vmd_oom being
1674 	 * false.
1675 	 */
1676 	vmd->vmd_oom = FALSE;
1677 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1678 }
1679 
1680 /*
1681  * The OOM killer is the page daemon's action of last resort when
1682  * memory allocation requests have been stalled for a prolonged period
1683  * of time because it cannot reclaim memory.  This function computes
1684  * the approximate number of physical pages that could be reclaimed if
1685  * the specified address space is destroyed.
1686  *
1687  * Private, anonymous memory owned by the address space is the
1688  * principal resource that we expect to recover after an OOM kill.
1689  * Since the physical pages mapped by the address space's COW entries
1690  * are typically shared pages, they are unlikely to be released and so
1691  * they are not counted.
1692  *
1693  * To get to the point where the page daemon runs the OOM killer, its
1694  * efforts to write-back vnode-backed pages may have stalled.  This
1695  * could be caused by a memory allocation deadlock in the write path
1696  * that might be resolved by an OOM kill.  Therefore, physical pages
1697  * belonging to vnode-backed objects are counted, because they might
1698  * be freed without being written out first if the address space holds
1699  * the last reference to an unlinked vnode.
1700  *
1701  * Similarly, physical pages belonging to OBJT_PHYS objects are
1702  * counted because the address space might hold the last reference to
1703  * the object.
1704  */
1705 static long
1706 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1707 {
1708 	vm_map_t map;
1709 	vm_map_entry_t entry;
1710 	vm_object_t obj;
1711 	long res;
1712 
1713 	map = &vmspace->vm_map;
1714 	KASSERT(!map->system_map, ("system map"));
1715 	sx_assert(&map->lock, SA_LOCKED);
1716 	res = 0;
1717 	for (entry = map->header.next; entry != &map->header;
1718 	    entry = entry->next) {
1719 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1720 			continue;
1721 		obj = entry->object.vm_object;
1722 		if (obj == NULL)
1723 			continue;
1724 		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1725 		    obj->ref_count != 1)
1726 			continue;
1727 		switch (obj->type) {
1728 		case OBJT_DEFAULT:
1729 		case OBJT_SWAP:
1730 		case OBJT_PHYS:
1731 		case OBJT_VNODE:
1732 			res += obj->resident_page_count;
1733 			break;
1734 		}
1735 	}
1736 	return (res);
1737 }
1738 
1739 void
1740 vm_pageout_oom(int shortage)
1741 {
1742 	struct proc *p, *bigproc;
1743 	vm_offset_t size, bigsize;
1744 	struct thread *td;
1745 	struct vmspace *vm;
1746 	bool breakout;
1747 
1748 	/*
1749 	 * We keep the process bigproc locked once we find it to keep anyone
1750 	 * from messing with it; however, there is a possibility of
1751 	 * deadlock if process B is bigproc and one of its child processes
1752 	 * attempts to propagate a signal to B while we are waiting for A's
1753 	 * lock while walking this list.  To avoid this, we don't block on
1754 	 * the process lock but just skip a process if it is already locked.
1755 	 */
1756 	bigproc = NULL;
1757 	bigsize = 0;
1758 	sx_slock(&allproc_lock);
1759 	FOREACH_PROC_IN_SYSTEM(p) {
1760 		PROC_LOCK(p);
1761 
1762 		/*
1763 		 * If this is a system, protected or killed process, skip it.
1764 		 */
1765 		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1766 		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1767 		    p->p_pid == 1 || P_KILLED(p) ||
1768 		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1769 			PROC_UNLOCK(p);
1770 			continue;
1771 		}
1772 		/*
1773 		 * If the process is in a non-running type state,
1774 		 * don't touch it.  Check all the threads individually.
1775 		 */
1776 		breakout = false;
1777 		FOREACH_THREAD_IN_PROC(p, td) {
1778 			thread_lock(td);
1779 			if (!TD_ON_RUNQ(td) &&
1780 			    !TD_IS_RUNNING(td) &&
1781 			    !TD_IS_SLEEPING(td) &&
1782 			    !TD_IS_SUSPENDED(td) &&
1783 			    !TD_IS_SWAPPED(td)) {
1784 				thread_unlock(td);
1785 				breakout = true;
1786 				break;
1787 			}
1788 			thread_unlock(td);
1789 		}
1790 		if (breakout) {
1791 			PROC_UNLOCK(p);
1792 			continue;
1793 		}
1794 		/*
1795 		 * get the process size
1796 		 */
1797 		vm = vmspace_acquire_ref(p);
1798 		if (vm == NULL) {
1799 			PROC_UNLOCK(p);
1800 			continue;
1801 		}
1802 		_PHOLD_LITE(p);
1803 		PROC_UNLOCK(p);
1804 		sx_sunlock(&allproc_lock);
1805 		if (!vm_map_trylock_read(&vm->vm_map)) {
1806 			vmspace_free(vm);
1807 			sx_slock(&allproc_lock);
1808 			PRELE(p);
1809 			continue;
1810 		}
1811 		size = vmspace_swap_count(vm);
1812 		if (shortage == VM_OOM_MEM)
1813 			size += vm_pageout_oom_pagecount(vm);
1814 		vm_map_unlock_read(&vm->vm_map);
1815 		vmspace_free(vm);
1816 		sx_slock(&allproc_lock);
1817 
1818 		/*
1819 		 * If this process is bigger than the biggest one,
1820 		 * remember it.
1821 		 */
1822 		if (size > bigsize) {
1823 			if (bigproc != NULL)
1824 				PRELE(bigproc);
1825 			bigproc = p;
1826 			bigsize = size;
1827 		} else {
1828 			PRELE(p);
1829 		}
1830 	}
1831 	sx_sunlock(&allproc_lock);
1832 	if (bigproc != NULL) {
1833 		if (vm_panic_on_oom != 0)
1834 			panic("out of swap space");
1835 		PROC_LOCK(bigproc);
1836 		killproc(bigproc, "out of swap space");
1837 		sched_nice(bigproc, PRIO_MIN);
1838 		_PRELE(bigproc);
1839 		PROC_UNLOCK(bigproc);
1840 	}
1841 }
1842 
1843 static void
1844 vm_pageout_worker(void *arg)
1845 {
1846 	struct vm_domain *vmd;
1847 	int domain, pass, shortage;
1848 	bool target_met;
1849 
1850 	domain = (uintptr_t)arg;
1851 	vmd = VM_DOMAIN(domain);
1852 	pass = 0;
1853 	shortage = 0;
1854 	target_met = true;
1855 
1856 	/*
1857 	 * XXXKIB It could be useful to bind pageout daemon threads to
1858 	 * the cores belonging to the domain, from which vm_page_array
1859 	 * is allocated.
1860 	 */
1861 
1862 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1863 	vmd->vmd_last_active_scan = ticks;
1864 
1865 	/*
1866 	 * The pageout daemon worker is never done, so loop forever.
1867 	 */
1868 	while (TRUE) {
1869 		vm_domain_pageout_lock(vmd);
1870 		/*
1871 		 * We need to clear wanted before we check the limits.  This
1872 		 * prevents races with wakers who will check wanted after they
1873 		 * reach the limit.
1874 		 */
1875 		atomic_store_int(&vmd->vmd_pageout_wanted, 0);
1876 
1877 		/*
1878 		 * Might the page daemon need to run again?
1879 		 */
1880 		if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
1881 			/*
1882 			 * Yes, the scan failed to free enough pages.  If
1883 			 * we have performed a level >= 1 (page reclamation)
1884 			 * scan, then sleep a bit and try again.
1885 			 */
1886 			vm_domain_pageout_unlock(vmd);
1887 			if (pass > 1)
1888 				pause("pwait", hz / VM_INACT_SCAN_RATE);
1889 		} else {
1890 			/*
1891 			 * No, sleep until the next wakeup or until pages
1892 			 * need to have their reference stats updated.
1893 			 */
1894 			if (mtx_sleep(&vmd->vmd_pageout_wanted,
1895 			    vm_domain_pageout_lockptr(vmd), PDROP | PVM,
1896 			    "psleep", hz / VM_INACT_SCAN_RATE) == 0)
1897 				VM_CNT_INC(v_pdwakeups);
1898 		}
1899 		/* Prevent spurious wakeups by ensuring that wanted is set. */
1900 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
1901 
1902 		/*
1903 		 * Use the controller to calculate how many pages to free in
1904 		 * this interval.
1905 		 */
1906 		shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
1907 		if (shortage && pass == 0)
1908 			pass = 1;
1909 
1910 		target_met = vm_pageout_scan(vmd, pass, shortage);
1911 		/*
1912 		 * If the target was not met we must increase the pass to
1913 		 * more aggressively reclaim.
1914 		 */
1915 		if (!target_met)
1916 			pass++;
1917 	}
1918 }
1919 
1920 /*
1921  *	vm_pageout_init initialises basic pageout daemon settings.
1922  */
1923 static void
1924 vm_pageout_init_domain(int domain)
1925 {
1926 	struct vm_domain *vmd;
1927 	struct sysctl_oid *oid;
1928 
1929 	vmd = VM_DOMAIN(domain);
1930 	vmd->vmd_interrupt_free_min = 2;
1931 
1932 	/*
1933 	 * v_free_reserved needs to include enough for the largest
1934 	 * swap pager structures plus enough for any pv_entry structs
1935 	 * when paging.
1936 	 */
1937 	if (vmd->vmd_page_count > 1024)
1938 		vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200;
1939 	else
1940 		vmd->vmd_free_min = 4;
1941 	vmd->vmd_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1942 	    vmd->vmd_interrupt_free_min;
1943 	vmd->vmd_free_reserved = vm_pageout_page_count +
1944 	    vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768);
1945 	vmd->vmd_free_severe = vmd->vmd_free_min / 2;
1946 	vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
1947 	vmd->vmd_free_min += vmd->vmd_free_reserved;
1948 	vmd->vmd_free_severe += vmd->vmd_free_reserved;
1949 	vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
1950 	if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
1951 		vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
1952 
1953 	/*
1954 	 * Set the default wakeup threshold to be 10% below the paging
1955 	 * target.  This keeps the steady state out of shortfall.
1956 	 */
1957 	vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
1958 
1959 	/*
1960 	 * Target amount of memory to move out of the laundry queue during a
1961 	 * background laundering.  This is proportional to the amount of system
1962 	 * memory.
1963 	 */
1964 	vmd->vmd_background_launder_target = (vmd->vmd_free_target -
1965 	    vmd->vmd_free_min) / 10;
1966 
1967 	/* Initialize the pageout daemon pid controller. */
1968 	pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
1969 	    vmd->vmd_free_target, PIDCTRL_BOUND,
1970 	    PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
1971 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
1972 	    "pidctrl", CTLFLAG_RD, NULL, "");
1973 	pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
1974 }
1975 
1976 static void
1977 vm_pageout_init(void)
1978 {
1979 	u_int freecount;
1980 	int i;
1981 
1982 	/*
1983 	 * Initialize some paging parameters.
1984 	 */
1985 	if (vm_cnt.v_page_count < 2000)
1986 		vm_pageout_page_count = 8;
1987 
1988 	freecount = 0;
1989 	for (i = 0; i < vm_ndomains; i++) {
1990 		struct vm_domain *vmd;
1991 
1992 		vm_pageout_init_domain(i);
1993 		vmd = VM_DOMAIN(i);
1994 		vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
1995 		vm_cnt.v_free_target += vmd->vmd_free_target;
1996 		vm_cnt.v_free_min += vmd->vmd_free_min;
1997 		vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
1998 		vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
1999 		vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2000 		vm_cnt.v_free_severe += vmd->vmd_free_severe;
2001 		freecount += vmd->vmd_free_count;
2002 	}
2003 
2004 	/*
2005 	 * Set interval in seconds for active scan.  We want to visit each
2006 	 * page at least once every ten minutes.  This is to prevent worst
2007 	 * case paging behaviors with stale active LRU.
2008 	 */
2009 	if (vm_pageout_update_period == 0)
2010 		vm_pageout_update_period = 600;
2011 
2012 	if (vm_page_max_wired == 0)
2013 		vm_page_max_wired = freecount / 3;
2014 }
2015 
2016 /*
2017  *     vm_pageout is the high level pageout daemon.
2018  */
2019 static void
2020 vm_pageout(void)
2021 {
2022 	int error;
2023 	int i;
2024 
2025 	swap_pager_swap_init();
2026 	snprintf(curthread->td_name, sizeof(curthread->td_name), "dom0");
2027 	error = kthread_add(vm_pageout_laundry_worker, NULL, curproc, NULL,
2028 	    0, 0, "laundry: dom0");
2029 	if (error != 0)
2030 		panic("starting laundry for domain 0, error %d", error);
2031 	for (i = 1; i < vm_ndomains; i++) {
2032 		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
2033 		    curproc, NULL, 0, 0, "dom%d", i);
2034 		if (error != 0) {
2035 			panic("starting pageout for domain %d, error %d\n",
2036 			    i, error);
2037 		}
2038 		error = kthread_add(vm_pageout_laundry_worker,
2039 		    (void *)(uintptr_t)i, curproc, NULL, 0, 0,
2040 		    "laundry: dom%d", i);
2041 		if (error != 0)
2042 			panic("starting laundry for domain %d, error %d",
2043 			    i, error);
2044 	}
2045 	error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
2046 	    0, 0, "uma");
2047 	if (error != 0)
2048 		panic("starting uma_reclaim helper, error %d\n", error);
2049 	vm_pageout_worker((void *)(uintptr_t)0);
2050 }
2051 
2052 /*
2053  * Perform an advisory wakeup of the page daemon.
2054  */
2055 void
2056 pagedaemon_wakeup(int domain)
2057 {
2058 	struct vm_domain *vmd;
2059 
2060 	vmd = VM_DOMAIN(domain);
2061 	vm_domain_pageout_assert_unlocked(vmd);
2062 	if (curproc == pageproc)
2063 		return;
2064 
2065 	if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2066 		vm_domain_pageout_lock(vmd);
2067 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2068 		wakeup(&vmd->vmd_pageout_wanted);
2069 		vm_domain_pageout_unlock(vmd);
2070 	}
2071 }
2072