1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 45 * 46 * 47 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 48 * All rights reserved. 49 * 50 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 51 * 52 * Permission to use, copy, modify and distribute this software and 53 * its documentation is hereby granted, provided that both the copyright 54 * notice and this permission notice appear in all copies of the 55 * software, derivative works or modified versions, and any portions 56 * thereof, and that both notices appear in supporting documentation. 57 * 58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 61 * 62 * Carnegie Mellon requests users of this software to return to 63 * 64 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 65 * School of Computer Science 66 * Carnegie Mellon University 67 * Pittsburgh PA 15213-3890 68 * 69 * any improvements or extensions that they make and grant Carnegie the 70 * rights to redistribute these changes. 71 */ 72 73 /* 74 * The proverbial page-out daemon. 75 */ 76 77 #include <sys/cdefs.h> 78 __FBSDID("$FreeBSD$"); 79 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/mutex.h> 88 #include <sys/proc.h> 89 #include <sys/kthread.h> 90 #include <sys/ktr.h> 91 #include <sys/mount.h> 92 #include <sys/racct.h> 93 #include <sys/resourcevar.h> 94 #include <sys/sched.h> 95 #include <sys/sdt.h> 96 #include <sys/signalvar.h> 97 #include <sys/smp.h> 98 #include <sys/time.h> 99 #include <sys/vnode.h> 100 #include <sys/vmmeter.h> 101 #include <sys/rwlock.h> 102 #include <sys/sx.h> 103 #include <sys/sysctl.h> 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_page.h> 109 #include <vm/vm_map.h> 110 #include <vm/vm_pageout.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_phys.h> 113 #include <vm/vm_pagequeue.h> 114 #include <vm/swap_pager.h> 115 #include <vm/vm_extern.h> 116 #include <vm/uma.h> 117 118 /* 119 * System initialization 120 */ 121 122 /* the kernel process "vm_pageout"*/ 123 static void vm_pageout(void); 124 static void vm_pageout_init(void); 125 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 126 static int vm_pageout_cluster(vm_page_t m); 127 static bool vm_pageout_scan(struct vm_domain *vmd, int pass, int shortage); 128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 129 int starting_page_shortage); 130 131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 132 NULL); 133 134 struct proc *pageproc; 135 136 static struct kproc_desc page_kp = { 137 "pagedaemon", 138 vm_pageout, 139 &pageproc 140 }; 141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 142 &page_kp); 143 144 SDT_PROVIDER_DEFINE(vm); 145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 146 147 /* Pagedaemon activity rates, in subdivisions of one second. */ 148 #define VM_LAUNDER_RATE 10 149 #define VM_INACT_SCAN_RATE 10 150 151 static int vm_pageout_oom_seq = 12; 152 153 static int vm_pageout_update_period; 154 static int disable_swap_pageouts; 155 static int lowmem_period = 10; 156 static time_t lowmem_uptime; 157 static int swapdev_enabled; 158 159 static int vm_panic_on_oom = 0; 160 161 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 162 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 163 "panic on out of memory instead of killing the largest process"); 164 165 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 166 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 167 "Maximum active LRU update period"); 168 169 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 170 "Low memory callback period"); 171 172 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 173 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages"); 174 175 static int pageout_lock_miss; 176 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 177 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout"); 178 179 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 180 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 181 "back-to-back calls to oom detector to start OOM"); 182 183 static int act_scan_laundry_weight = 3; 184 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 185 &act_scan_laundry_weight, 0, 186 "weight given to clean vs. dirty pages in active queue scans"); 187 188 static u_int vm_background_launder_rate = 4096; 189 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 190 &vm_background_launder_rate, 0, 191 "background laundering rate, in kilobytes per second"); 192 193 static u_int vm_background_launder_max = 20 * 1024; 194 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 195 &vm_background_launder_max, 0, "background laundering cap, in kilobytes"); 196 197 int vm_pageout_page_count = 32; 198 199 int vm_page_max_wired; /* XXX max # of wired pages system-wide */ 200 SYSCTL_INT(_vm, OID_AUTO, max_wired, 201 CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count"); 202 203 static u_int isqrt(u_int num); 204 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 205 bool in_shortfall); 206 static void vm_pageout_laundry_worker(void *arg); 207 208 struct scan_state { 209 struct vm_batchqueue bq; 210 struct vm_pagequeue *pq; 211 vm_page_t marker; 212 int maxscan; 213 int scanned; 214 }; 215 216 static void 217 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq, 218 vm_page_t marker, vm_page_t after, int maxscan) 219 { 220 221 vm_pagequeue_assert_locked(pq); 222 KASSERT((marker->aflags & PGA_ENQUEUED) == 0, 223 ("marker %p already enqueued", marker)); 224 225 if (after == NULL) 226 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q); 227 else 228 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q); 229 vm_page_aflag_set(marker, PGA_ENQUEUED); 230 231 vm_batchqueue_init(&ss->bq); 232 ss->pq = pq; 233 ss->marker = marker; 234 ss->maxscan = maxscan; 235 ss->scanned = 0; 236 vm_pagequeue_unlock(pq); 237 } 238 239 static void 240 vm_pageout_end_scan(struct scan_state *ss) 241 { 242 struct vm_pagequeue *pq; 243 244 pq = ss->pq; 245 vm_pagequeue_assert_locked(pq); 246 KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0, 247 ("marker %p not enqueued", ss->marker)); 248 249 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q); 250 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED); 251 VM_CNT_ADD(v_pdpages, ss->scanned); 252 } 253 254 /* 255 * Add a small number of queued pages to a batch queue for later processing 256 * without the corresponding queue lock held. The caller must have enqueued a 257 * marker page at the desired start point for the scan. Pages will be 258 * physically dequeued if the caller so requests. Otherwise, the returned 259 * batch may contain marker pages, and it is up to the caller to handle them. 260 * 261 * When processing the batch queue, vm_page_queue() must be used to 262 * determine whether the page has been logically dequeued by another thread. 263 * Once this check is performed, the page lock guarantees that the page will 264 * not be disassociated from the queue. 265 */ 266 static __always_inline void 267 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue) 268 { 269 struct vm_pagequeue *pq; 270 vm_page_t m, marker; 271 272 marker = ss->marker; 273 pq = ss->pq; 274 275 KASSERT((marker->aflags & PGA_ENQUEUED) != 0, 276 ("marker %p not enqueued", ss->marker)); 277 278 vm_pagequeue_lock(pq); 279 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL && 280 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE; 281 m = TAILQ_NEXT(m, plinks.q), ss->scanned++) { 282 if ((m->flags & PG_MARKER) == 0) { 283 KASSERT((m->aflags & PGA_ENQUEUED) != 0, 284 ("page %p not enqueued", m)); 285 KASSERT((m->flags & PG_FICTITIOUS) == 0, 286 ("Fictitious page %p cannot be in page queue", m)); 287 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 288 ("Unmanaged page %p cannot be in page queue", m)); 289 } else if (dequeue) 290 continue; 291 292 (void)vm_batchqueue_insert(&ss->bq, m); 293 if (dequeue) { 294 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 295 vm_page_aflag_clear(m, PGA_ENQUEUED); 296 } 297 } 298 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 299 if (__predict_true(m != NULL)) 300 TAILQ_INSERT_BEFORE(m, marker, plinks.q); 301 else 302 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q); 303 if (dequeue) 304 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt); 305 vm_pagequeue_unlock(pq); 306 } 307 308 /* Return the next page to be scanned, or NULL if the scan is complete. */ 309 static __always_inline vm_page_t 310 vm_pageout_next(struct scan_state *ss, const bool dequeue) 311 { 312 313 if (ss->bq.bq_cnt == 0) 314 vm_pageout_collect_batch(ss, dequeue); 315 return (vm_batchqueue_pop(&ss->bq)); 316 } 317 318 /* 319 * Scan for pages at adjacent offsets within the given page's object that are 320 * eligible for laundering, form a cluster of these pages and the given page, 321 * and launder that cluster. 322 */ 323 static int 324 vm_pageout_cluster(vm_page_t m) 325 { 326 vm_object_t object; 327 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; 328 vm_pindex_t pindex; 329 int ib, is, page_base, pageout_count; 330 331 vm_page_assert_locked(m); 332 object = m->object; 333 VM_OBJECT_ASSERT_WLOCKED(object); 334 pindex = m->pindex; 335 336 vm_page_assert_unbusied(m); 337 KASSERT(!vm_page_held(m), ("page %p is held", m)); 338 339 pmap_remove_write(m); 340 vm_page_unlock(m); 341 342 mc[vm_pageout_page_count] = pb = ps = m; 343 pageout_count = 1; 344 page_base = vm_pageout_page_count; 345 ib = 1; 346 is = 1; 347 348 /* 349 * We can cluster only if the page is not clean, busy, or held, and 350 * the page is in the laundry queue. 351 * 352 * During heavy mmap/modification loads the pageout 353 * daemon can really fragment the underlying file 354 * due to flushing pages out of order and not trying to 355 * align the clusters (which leaves sporadic out-of-order 356 * holes). To solve this problem we do the reverse scan 357 * first and attempt to align our cluster, then do a 358 * forward scan if room remains. 359 */ 360 more: 361 while (ib != 0 && pageout_count < vm_pageout_page_count) { 362 if (ib > pindex) { 363 ib = 0; 364 break; 365 } 366 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) { 367 ib = 0; 368 break; 369 } 370 vm_page_test_dirty(p); 371 if (p->dirty == 0) { 372 ib = 0; 373 break; 374 } 375 vm_page_lock(p); 376 if (vm_page_held(p) || !vm_page_in_laundry(p)) { 377 vm_page_unlock(p); 378 ib = 0; 379 break; 380 } 381 pmap_remove_write(p); 382 vm_page_unlock(p); 383 mc[--page_base] = pb = p; 384 ++pageout_count; 385 ++ib; 386 387 /* 388 * We are at an alignment boundary. Stop here, and switch 389 * directions. Do not clear ib. 390 */ 391 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 392 break; 393 } 394 while (pageout_count < vm_pageout_page_count && 395 pindex + is < object->size) { 396 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p)) 397 break; 398 vm_page_test_dirty(p); 399 if (p->dirty == 0) 400 break; 401 vm_page_lock(p); 402 if (vm_page_held(p) || !vm_page_in_laundry(p)) { 403 vm_page_unlock(p); 404 break; 405 } 406 pmap_remove_write(p); 407 vm_page_unlock(p); 408 mc[page_base + pageout_count] = ps = p; 409 ++pageout_count; 410 ++is; 411 } 412 413 /* 414 * If we exhausted our forward scan, continue with the reverse scan 415 * when possible, even past an alignment boundary. This catches 416 * boundary conditions. 417 */ 418 if (ib != 0 && pageout_count < vm_pageout_page_count) 419 goto more; 420 421 return (vm_pageout_flush(&mc[page_base], pageout_count, 422 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 423 } 424 425 /* 426 * vm_pageout_flush() - launder the given pages 427 * 428 * The given pages are laundered. Note that we setup for the start of 429 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 430 * reference count all in here rather then in the parent. If we want 431 * the parent to do more sophisticated things we may have to change 432 * the ordering. 433 * 434 * Returned runlen is the count of pages between mreq and first 435 * page after mreq with status VM_PAGER_AGAIN. 436 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 437 * for any page in runlen set. 438 */ 439 int 440 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 441 boolean_t *eio) 442 { 443 vm_object_t object = mc[0]->object; 444 int pageout_status[count]; 445 int numpagedout = 0; 446 int i, runlen; 447 448 VM_OBJECT_ASSERT_WLOCKED(object); 449 450 /* 451 * Initiate I/O. Mark the pages busy and verify that they're valid 452 * and read-only. 453 * 454 * We do not have to fixup the clean/dirty bits here... we can 455 * allow the pager to do it after the I/O completes. 456 * 457 * NOTE! mc[i]->dirty may be partial or fragmented due to an 458 * edge case with file fragments. 459 */ 460 for (i = 0; i < count; i++) { 461 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, 462 ("vm_pageout_flush: partially invalid page %p index %d/%d", 463 mc[i], i, count)); 464 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0, 465 ("vm_pageout_flush: writeable page %p", mc[i])); 466 vm_page_sbusy(mc[i]); 467 } 468 vm_object_pip_add(object, count); 469 470 vm_pager_put_pages(object, mc, count, flags, pageout_status); 471 472 runlen = count - mreq; 473 if (eio != NULL) 474 *eio = FALSE; 475 for (i = 0; i < count; i++) { 476 vm_page_t mt = mc[i]; 477 478 KASSERT(pageout_status[i] == VM_PAGER_PEND || 479 !pmap_page_is_write_mapped(mt), 480 ("vm_pageout_flush: page %p is not write protected", mt)); 481 switch (pageout_status[i]) { 482 case VM_PAGER_OK: 483 vm_page_lock(mt); 484 if (vm_page_in_laundry(mt)) 485 vm_page_deactivate_noreuse(mt); 486 vm_page_unlock(mt); 487 /* FALLTHROUGH */ 488 case VM_PAGER_PEND: 489 numpagedout++; 490 break; 491 case VM_PAGER_BAD: 492 /* 493 * The page is outside the object's range. We pretend 494 * that the page out worked and clean the page, so the 495 * changes will be lost if the page is reclaimed by 496 * the page daemon. 497 */ 498 vm_page_undirty(mt); 499 vm_page_lock(mt); 500 if (vm_page_in_laundry(mt)) 501 vm_page_deactivate_noreuse(mt); 502 vm_page_unlock(mt); 503 break; 504 case VM_PAGER_ERROR: 505 case VM_PAGER_FAIL: 506 /* 507 * If the page couldn't be paged out to swap because the 508 * pager wasn't able to find space, place the page in 509 * the PQ_UNSWAPPABLE holding queue. This is an 510 * optimization that prevents the page daemon from 511 * wasting CPU cycles on pages that cannot be reclaimed 512 * becase no swap device is configured. 513 * 514 * Otherwise, reactivate the page so that it doesn't 515 * clog the laundry and inactive queues. (We will try 516 * paging it out again later.) 517 */ 518 vm_page_lock(mt); 519 if (object->type == OBJT_SWAP && 520 pageout_status[i] == VM_PAGER_FAIL) { 521 vm_page_unswappable(mt); 522 numpagedout++; 523 } else 524 vm_page_activate(mt); 525 vm_page_unlock(mt); 526 if (eio != NULL && i >= mreq && i - mreq < runlen) 527 *eio = TRUE; 528 break; 529 case VM_PAGER_AGAIN: 530 if (i >= mreq && i - mreq < runlen) 531 runlen = i - mreq; 532 break; 533 } 534 535 /* 536 * If the operation is still going, leave the page busy to 537 * block all other accesses. Also, leave the paging in 538 * progress indicator set so that we don't attempt an object 539 * collapse. 540 */ 541 if (pageout_status[i] != VM_PAGER_PEND) { 542 vm_object_pip_wakeup(object); 543 vm_page_sunbusy(mt); 544 } 545 } 546 if (prunlen != NULL) 547 *prunlen = runlen; 548 return (numpagedout); 549 } 550 551 static void 552 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 553 { 554 555 atomic_store_rel_int(&swapdev_enabled, 1); 556 } 557 558 static void 559 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 560 { 561 562 if (swap_pager_nswapdev() == 1) 563 atomic_store_rel_int(&swapdev_enabled, 0); 564 } 565 566 /* 567 * Attempt to acquire all of the necessary locks to launder a page and 568 * then call through the clustering layer to PUTPAGES. Wait a short 569 * time for a vnode lock. 570 * 571 * Requires the page and object lock on entry, releases both before return. 572 * Returns 0 on success and an errno otherwise. 573 */ 574 static int 575 vm_pageout_clean(vm_page_t m, int *numpagedout) 576 { 577 struct vnode *vp; 578 struct mount *mp; 579 vm_object_t object; 580 vm_pindex_t pindex; 581 int error, lockmode; 582 583 vm_page_assert_locked(m); 584 object = m->object; 585 VM_OBJECT_ASSERT_WLOCKED(object); 586 error = 0; 587 vp = NULL; 588 mp = NULL; 589 590 /* 591 * The object is already known NOT to be dead. It 592 * is possible for the vget() to block the whole 593 * pageout daemon, but the new low-memory handling 594 * code should prevent it. 595 * 596 * We can't wait forever for the vnode lock, we might 597 * deadlock due to a vn_read() getting stuck in 598 * vm_wait while holding this vnode. We skip the 599 * vnode if we can't get it in a reasonable amount 600 * of time. 601 */ 602 if (object->type == OBJT_VNODE) { 603 vm_page_unlock(m); 604 vp = object->handle; 605 if (vp->v_type == VREG && 606 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 607 mp = NULL; 608 error = EDEADLK; 609 goto unlock_all; 610 } 611 KASSERT(mp != NULL, 612 ("vp %p with NULL v_mount", vp)); 613 vm_object_reference_locked(object); 614 pindex = m->pindex; 615 VM_OBJECT_WUNLOCK(object); 616 lockmode = MNT_SHARED_WRITES(vp->v_mount) ? 617 LK_SHARED : LK_EXCLUSIVE; 618 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) { 619 vp = NULL; 620 error = EDEADLK; 621 goto unlock_mp; 622 } 623 VM_OBJECT_WLOCK(object); 624 625 /* 626 * Ensure that the object and vnode were not disassociated 627 * while locks were dropped. 628 */ 629 if (vp->v_object != object) { 630 error = ENOENT; 631 goto unlock_all; 632 } 633 vm_page_lock(m); 634 635 /* 636 * While the object and page were unlocked, the page 637 * may have been: 638 * (1) moved to a different queue, 639 * (2) reallocated to a different object, 640 * (3) reallocated to a different offset, or 641 * (4) cleaned. 642 */ 643 if (!vm_page_in_laundry(m) || m->object != object || 644 m->pindex != pindex || m->dirty == 0) { 645 vm_page_unlock(m); 646 error = ENXIO; 647 goto unlock_all; 648 } 649 650 /* 651 * The page may have been busied or referenced while the object 652 * and page locks were released. 653 */ 654 if (vm_page_busied(m) || vm_page_held(m)) { 655 vm_page_unlock(m); 656 error = EBUSY; 657 goto unlock_all; 658 } 659 } 660 661 /* 662 * If a page is dirty, then it is either being washed 663 * (but not yet cleaned) or it is still in the 664 * laundry. If it is still in the laundry, then we 665 * start the cleaning operation. 666 */ 667 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 668 error = EIO; 669 670 unlock_all: 671 VM_OBJECT_WUNLOCK(object); 672 673 unlock_mp: 674 vm_page_lock_assert(m, MA_NOTOWNED); 675 if (mp != NULL) { 676 if (vp != NULL) 677 vput(vp); 678 vm_object_deallocate(object); 679 vn_finished_write(mp); 680 } 681 682 return (error); 683 } 684 685 /* 686 * Attempt to launder the specified number of pages. 687 * 688 * Returns the number of pages successfully laundered. 689 */ 690 static int 691 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 692 { 693 struct scan_state ss; 694 struct vm_pagequeue *pq; 695 struct mtx *mtx; 696 vm_object_t object; 697 vm_page_t m, marker; 698 int act_delta, error, numpagedout, queue, starting_target; 699 int vnodes_skipped; 700 bool obj_locked, pageout_ok; 701 702 mtx = NULL; 703 obj_locked = false; 704 object = NULL; 705 starting_target = launder; 706 vnodes_skipped = 0; 707 708 /* 709 * Scan the laundry queues for pages eligible to be laundered. We stop 710 * once the target number of dirty pages have been laundered, or once 711 * we've reached the end of the queue. A single iteration of this loop 712 * may cause more than one page to be laundered because of clustering. 713 * 714 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 715 * swap devices are configured. 716 */ 717 if (atomic_load_acq_int(&swapdev_enabled)) 718 queue = PQ_UNSWAPPABLE; 719 else 720 queue = PQ_LAUNDRY; 721 722 scan: 723 marker = &vmd->vmd_markers[queue]; 724 pq = &vmd->vmd_pagequeues[queue]; 725 vm_pagequeue_lock(pq); 726 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 727 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) { 728 if (__predict_false((m->flags & PG_MARKER) != 0)) 729 continue; 730 731 vm_page_change_lock(m, &mtx); 732 733 recheck: 734 /* 735 * The page may have been disassociated from the queue 736 * while locks were dropped. 737 */ 738 if (vm_page_queue(m) != queue) 739 continue; 740 741 /* 742 * A requeue was requested, so this page gets a second 743 * chance. 744 */ 745 if ((m->aflags & PGA_REQUEUE) != 0) { 746 vm_page_requeue(m); 747 continue; 748 } 749 750 /* 751 * Held pages are essentially stuck in the queue. 752 * 753 * Wired pages may not be freed. Complete their removal 754 * from the queue now to avoid needless revisits during 755 * future scans. 756 */ 757 if (m->hold_count != 0) 758 continue; 759 if (m->wire_count != 0) { 760 vm_page_dequeue_deferred(m); 761 continue; 762 } 763 764 if (object != m->object) { 765 if (obj_locked) { 766 VM_OBJECT_WUNLOCK(object); 767 obj_locked = false; 768 } 769 object = m->object; 770 } 771 if (!obj_locked) { 772 if (!VM_OBJECT_TRYWLOCK(object)) { 773 mtx_unlock(mtx); 774 /* Depends on type-stability. */ 775 VM_OBJECT_WLOCK(object); 776 obj_locked = true; 777 mtx_lock(mtx); 778 goto recheck; 779 } else 780 obj_locked = true; 781 } 782 783 if (vm_page_busied(m)) 784 continue; 785 786 /* 787 * Invalid pages can be easily freed. They cannot be 788 * mapped; vm_page_free() asserts this. 789 */ 790 if (m->valid == 0) 791 goto free_page; 792 793 /* 794 * If the page has been referenced and the object is not dead, 795 * reactivate or requeue the page depending on whether the 796 * object is mapped. 797 */ 798 if ((m->aflags & PGA_REFERENCED) != 0) { 799 vm_page_aflag_clear(m, PGA_REFERENCED); 800 act_delta = 1; 801 } else 802 act_delta = 0; 803 if (object->ref_count != 0) 804 act_delta += pmap_ts_referenced(m); 805 else { 806 KASSERT(!pmap_page_is_mapped(m), 807 ("page %p is mapped", m)); 808 } 809 if (act_delta != 0) { 810 if (object->ref_count != 0) { 811 VM_CNT_INC(v_reactivated); 812 vm_page_activate(m); 813 814 /* 815 * Increase the activation count if the page 816 * was referenced while in the laundry queue. 817 * This makes it less likely that the page will 818 * be returned prematurely to the inactive 819 * queue. 820 */ 821 m->act_count += act_delta + ACT_ADVANCE; 822 823 /* 824 * If this was a background laundering, count 825 * activated pages towards our target. The 826 * purpose of background laundering is to ensure 827 * that pages are eventually cycled through the 828 * laundry queue, and an activation is a valid 829 * way out. 830 */ 831 if (!in_shortfall) 832 launder--; 833 continue; 834 } else if ((object->flags & OBJ_DEAD) == 0) { 835 vm_page_requeue(m); 836 continue; 837 } 838 } 839 840 /* 841 * If the page appears to be clean at the machine-independent 842 * layer, then remove all of its mappings from the pmap in 843 * anticipation of freeing it. If, however, any of the page's 844 * mappings allow write access, then the page may still be 845 * modified until the last of those mappings are removed. 846 */ 847 if (object->ref_count != 0) { 848 vm_page_test_dirty(m); 849 if (m->dirty == 0) 850 pmap_remove_all(m); 851 } 852 853 /* 854 * Clean pages are freed, and dirty pages are paged out unless 855 * they belong to a dead object. Requeueing dirty pages from 856 * dead objects is pointless, as they are being paged out and 857 * freed by the thread that destroyed the object. 858 */ 859 if (m->dirty == 0) { 860 free_page: 861 vm_page_free(m); 862 VM_CNT_INC(v_dfree); 863 } else if ((object->flags & OBJ_DEAD) == 0) { 864 if (object->type != OBJT_SWAP && 865 object->type != OBJT_DEFAULT) 866 pageout_ok = true; 867 else if (disable_swap_pageouts) 868 pageout_ok = false; 869 else 870 pageout_ok = true; 871 if (!pageout_ok) { 872 vm_page_requeue(m); 873 continue; 874 } 875 876 /* 877 * Form a cluster with adjacent, dirty pages from the 878 * same object, and page out that entire cluster. 879 * 880 * The adjacent, dirty pages must also be in the 881 * laundry. However, their mappings are not checked 882 * for new references. Consequently, a recently 883 * referenced page may be paged out. However, that 884 * page will not be prematurely reclaimed. After page 885 * out, the page will be placed in the inactive queue, 886 * where any new references will be detected and the 887 * page reactivated. 888 */ 889 error = vm_pageout_clean(m, &numpagedout); 890 if (error == 0) { 891 launder -= numpagedout; 892 ss.scanned += numpagedout; 893 } else if (error == EDEADLK) { 894 pageout_lock_miss++; 895 vnodes_skipped++; 896 } 897 mtx = NULL; 898 obj_locked = false; 899 } 900 } 901 if (mtx != NULL) { 902 mtx_unlock(mtx); 903 mtx = NULL; 904 } 905 if (obj_locked) { 906 VM_OBJECT_WUNLOCK(object); 907 obj_locked = false; 908 } 909 vm_pagequeue_lock(pq); 910 vm_pageout_end_scan(&ss); 911 vm_pagequeue_unlock(pq); 912 913 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 914 queue = PQ_LAUNDRY; 915 goto scan; 916 } 917 918 /* 919 * Wakeup the sync daemon if we skipped a vnode in a writeable object 920 * and we didn't launder enough pages. 921 */ 922 if (vnodes_skipped > 0 && launder > 0) 923 (void)speedup_syncer(); 924 925 return (starting_target - launder); 926 } 927 928 /* 929 * Compute the integer square root. 930 */ 931 static u_int 932 isqrt(u_int num) 933 { 934 u_int bit, root, tmp; 935 936 bit = 1u << ((NBBY * sizeof(u_int)) - 2); 937 while (bit > num) 938 bit >>= 2; 939 root = 0; 940 while (bit != 0) { 941 tmp = root + bit; 942 root >>= 1; 943 if (num >= tmp) { 944 num -= tmp; 945 root += bit; 946 } 947 bit >>= 2; 948 } 949 return (root); 950 } 951 952 /* 953 * Perform the work of the laundry thread: periodically wake up and determine 954 * whether any pages need to be laundered. If so, determine the number of pages 955 * that need to be laundered, and launder them. 956 */ 957 static void 958 vm_pageout_laundry_worker(void *arg) 959 { 960 struct vm_domain *vmd; 961 struct vm_pagequeue *pq; 962 uint64_t nclean, ndirty, nfreed; 963 int domain, last_target, launder, shortfall, shortfall_cycle, target; 964 bool in_shortfall; 965 966 domain = (uintptr_t)arg; 967 vmd = VM_DOMAIN(domain); 968 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 969 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 970 971 shortfall = 0; 972 in_shortfall = false; 973 shortfall_cycle = 0; 974 target = 0; 975 nfreed = 0; 976 977 /* 978 * Calls to these handlers are serialized by the swap syscall lock. 979 */ 980 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 981 EVENTHANDLER_PRI_ANY); 982 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 983 EVENTHANDLER_PRI_ANY); 984 985 /* 986 * The pageout laundry worker is never done, so loop forever. 987 */ 988 for (;;) { 989 KASSERT(target >= 0, ("negative target %d", target)); 990 KASSERT(shortfall_cycle >= 0, 991 ("negative cycle %d", shortfall_cycle)); 992 launder = 0; 993 994 /* 995 * First determine whether we need to launder pages to meet a 996 * shortage of free pages. 997 */ 998 if (shortfall > 0) { 999 in_shortfall = true; 1000 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 1001 target = shortfall; 1002 } else if (!in_shortfall) 1003 goto trybackground; 1004 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 1005 /* 1006 * We recently entered shortfall and began laundering 1007 * pages. If we have completed that laundering run 1008 * (and we are no longer in shortfall) or we have met 1009 * our laundry target through other activity, then we 1010 * can stop laundering pages. 1011 */ 1012 in_shortfall = false; 1013 target = 0; 1014 goto trybackground; 1015 } 1016 launder = target / shortfall_cycle--; 1017 goto dolaundry; 1018 1019 /* 1020 * There's no immediate need to launder any pages; see if we 1021 * meet the conditions to perform background laundering: 1022 * 1023 * 1. The ratio of dirty to clean inactive pages exceeds the 1024 * background laundering threshold, or 1025 * 2. we haven't yet reached the target of the current 1026 * background laundering run. 1027 * 1028 * The background laundering threshold is not a constant. 1029 * Instead, it is a slowly growing function of the number of 1030 * clean pages freed by the page daemon since the last 1031 * background laundering. Thus, as the ratio of dirty to 1032 * clean inactive pages grows, the amount of memory pressure 1033 * required to trigger laundering decreases. We ensure 1034 * that the threshold is non-zero after an inactive queue 1035 * scan, even if that scan failed to free a single clean page. 1036 */ 1037 trybackground: 1038 nclean = vmd->vmd_free_count + 1039 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1040 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1041 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1042 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1043 target = vmd->vmd_background_launder_target; 1044 } 1045 1046 /* 1047 * We have a non-zero background laundering target. If we've 1048 * laundered up to our maximum without observing a page daemon 1049 * request, just stop. This is a safety belt that ensures we 1050 * don't launder an excessive amount if memory pressure is low 1051 * and the ratio of dirty to clean pages is large. Otherwise, 1052 * proceed at the background laundering rate. 1053 */ 1054 if (target > 0) { 1055 if (nfreed > 0) { 1056 nfreed = 0; 1057 last_target = target; 1058 } else if (last_target - target >= 1059 vm_background_launder_max * PAGE_SIZE / 1024) { 1060 target = 0; 1061 } 1062 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1063 launder /= VM_LAUNDER_RATE; 1064 if (launder > target) 1065 launder = target; 1066 } 1067 1068 dolaundry: 1069 if (launder > 0) { 1070 /* 1071 * Because of I/O clustering, the number of laundered 1072 * pages could exceed "target" by the maximum size of 1073 * a cluster minus one. 1074 */ 1075 target -= min(vm_pageout_launder(vmd, launder, 1076 in_shortfall), target); 1077 pause("laundp", hz / VM_LAUNDER_RATE); 1078 } 1079 1080 /* 1081 * If we're not currently laundering pages and the page daemon 1082 * hasn't posted a new request, sleep until the page daemon 1083 * kicks us. 1084 */ 1085 vm_pagequeue_lock(pq); 1086 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1087 (void)mtx_sleep(&vmd->vmd_laundry_request, 1088 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1089 1090 /* 1091 * If the pagedaemon has indicated that it's in shortfall, start 1092 * a shortfall laundering unless we're already in the middle of 1093 * one. This may preempt a background laundering. 1094 */ 1095 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1096 (!in_shortfall || shortfall_cycle == 0)) { 1097 shortfall = vm_laundry_target(vmd) + 1098 vmd->vmd_pageout_deficit; 1099 target = 0; 1100 } else 1101 shortfall = 0; 1102 1103 if (target == 0) 1104 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1105 nfreed += vmd->vmd_clean_pages_freed; 1106 vmd->vmd_clean_pages_freed = 0; 1107 vm_pagequeue_unlock(pq); 1108 } 1109 } 1110 1111 static int 1112 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m) 1113 { 1114 struct vm_domain *vmd; 1115 1116 if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0) 1117 return (0); 1118 vm_page_aflag_set(m, PGA_ENQUEUED); 1119 if ((m->aflags & PGA_REQUEUE_HEAD) != 0) { 1120 vmd = vm_pagequeue_domain(m); 1121 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 1122 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 1123 } else if ((m->aflags & PGA_REQUEUE) != 0) { 1124 TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q); 1125 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 1126 } else 1127 TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q); 1128 return (1); 1129 } 1130 1131 /* 1132 * Re-add stuck pages to the inactive queue. We will examine them again 1133 * during the next scan. If the queue state of a page has changed since 1134 * it was physically removed from the page queue in 1135 * vm_pageout_collect_batch(), don't do anything with that page. 1136 */ 1137 static void 1138 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq, 1139 vm_page_t m) 1140 { 1141 struct vm_pagequeue *pq; 1142 int delta; 1143 1144 delta = 0; 1145 pq = ss->pq; 1146 1147 if (m != NULL) { 1148 if (vm_batchqueue_insert(bq, m)) 1149 return; 1150 vm_pagequeue_lock(pq); 1151 delta += vm_pageout_reinsert_inactive_page(ss, m); 1152 } else 1153 vm_pagequeue_lock(pq); 1154 while ((m = vm_batchqueue_pop(bq)) != NULL) 1155 delta += vm_pageout_reinsert_inactive_page(ss, m); 1156 vm_pagequeue_cnt_add(pq, delta); 1157 vm_pagequeue_unlock(pq); 1158 vm_batchqueue_init(bq); 1159 } 1160 1161 /* 1162 * vm_pageout_scan does the dirty work for the pageout daemon. 1163 * 1164 * pass == 0: Update active LRU/deactivate pages 1165 * pass >= 1: Free inactive pages 1166 * 1167 * Returns true if pass was zero or enough pages were freed by the inactive 1168 * queue scan to meet the target. 1169 */ 1170 static bool 1171 vm_pageout_scan(struct vm_domain *vmd, int pass, int shortage) 1172 { 1173 struct scan_state ss; 1174 struct vm_batchqueue rq; 1175 struct mtx *mtx; 1176 vm_page_t m, marker; 1177 struct vm_pagequeue *pq; 1178 vm_object_t object; 1179 long min_scan; 1180 int act_delta, addl_page_shortage, deficit, inactq_shortage, max_scan; 1181 int page_shortage, scan_tick, starting_page_shortage; 1182 bool obj_locked; 1183 1184 /* 1185 * If we need to reclaim memory ask kernel caches to return 1186 * some. We rate limit to avoid thrashing. 1187 */ 1188 if (vmd == VM_DOMAIN(0) && pass > 0 && 1189 (time_uptime - lowmem_uptime) >= lowmem_period) { 1190 /* 1191 * Decrease registered cache sizes. 1192 */ 1193 SDT_PROBE0(vm, , , vm__lowmem_scan); 1194 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 1195 /* 1196 * We do this explicitly after the caches have been 1197 * drained above. 1198 */ 1199 uma_reclaim(); 1200 lowmem_uptime = time_uptime; 1201 } 1202 1203 /* 1204 * The addl_page_shortage is an estimate of the number of temporarily 1205 * stuck pages in the inactive queue. In other words, the 1206 * number of pages from the inactive count that should be 1207 * discounted in setting the target for the active queue scan. 1208 */ 1209 addl_page_shortage = 0; 1210 1211 /* 1212 * Calculate the number of pages that we want to free. This number 1213 * can be negative if many pages are freed between the wakeup call to 1214 * the page daemon and this calculation. 1215 */ 1216 if (pass > 0) { 1217 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1218 page_shortage = shortage + deficit; 1219 } else 1220 page_shortage = deficit = 0; 1221 starting_page_shortage = page_shortage; 1222 1223 mtx = NULL; 1224 obj_locked = false; 1225 object = NULL; 1226 vm_batchqueue_init(&rq); 1227 1228 /* 1229 * Start scanning the inactive queue for pages that we can free. The 1230 * scan will stop when we reach the target or we have scanned the 1231 * entire queue. (Note that m->act_count is not used to make 1232 * decisions for the inactive queue, only for the active queue.) 1233 */ 1234 marker = &vmd->vmd_markers[PQ_INACTIVE]; 1235 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1236 vm_pagequeue_lock(pq); 1237 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 1238 while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) { 1239 KASSERT((m->flags & PG_MARKER) == 0, 1240 ("marker page %p was dequeued", m)); 1241 1242 vm_page_change_lock(m, &mtx); 1243 1244 recheck: 1245 /* 1246 * The page may have been disassociated from the queue 1247 * while locks were dropped. 1248 */ 1249 if (vm_page_queue(m) != PQ_INACTIVE) { 1250 addl_page_shortage++; 1251 continue; 1252 } 1253 1254 /* 1255 * The page was re-enqueued after the page queue lock was 1256 * dropped, or a requeue was requested. This page gets a second 1257 * chance. 1258 */ 1259 if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE | 1260 PGA_REQUEUE_HEAD)) != 0) 1261 goto reinsert; 1262 1263 /* 1264 * Held pages are essentially stuck in the queue. So, 1265 * they ought to be discounted from the inactive count. 1266 * See the calculation of inactq_shortage before the 1267 * loop over the active queue below. 1268 * 1269 * Wired pages may not be freed. Complete their removal 1270 * from the queue now to avoid needless revisits during 1271 * future scans. 1272 */ 1273 if (m->hold_count != 0) { 1274 addl_page_shortage++; 1275 goto reinsert; 1276 } 1277 if (m->wire_count != 0) { 1278 vm_page_dequeue_deferred(m); 1279 continue; 1280 } 1281 1282 if (object != m->object) { 1283 if (obj_locked) { 1284 VM_OBJECT_WUNLOCK(object); 1285 obj_locked = false; 1286 } 1287 object = m->object; 1288 } 1289 if (!obj_locked) { 1290 if (!VM_OBJECT_TRYWLOCK(object)) { 1291 mtx_unlock(mtx); 1292 /* Depends on type-stability. */ 1293 VM_OBJECT_WLOCK(object); 1294 obj_locked = true; 1295 mtx_lock(mtx); 1296 goto recheck; 1297 } else 1298 obj_locked = true; 1299 } 1300 1301 if (vm_page_busied(m)) { 1302 /* 1303 * Don't mess with busy pages. Leave them at 1304 * the front of the queue. Most likely, they 1305 * are being paged out and will leave the 1306 * queue shortly after the scan finishes. So, 1307 * they ought to be discounted from the 1308 * inactive count. 1309 */ 1310 addl_page_shortage++; 1311 goto reinsert; 1312 } 1313 1314 /* 1315 * Invalid pages can be easily freed. They cannot be 1316 * mapped, vm_page_free() asserts this. 1317 */ 1318 if (m->valid == 0) 1319 goto free_page; 1320 1321 /* 1322 * If the page has been referenced and the object is not dead, 1323 * reactivate or requeue the page depending on whether the 1324 * object is mapped. 1325 */ 1326 if ((m->aflags & PGA_REFERENCED) != 0) { 1327 vm_page_aflag_clear(m, PGA_REFERENCED); 1328 act_delta = 1; 1329 } else 1330 act_delta = 0; 1331 if (object->ref_count != 0) { 1332 act_delta += pmap_ts_referenced(m); 1333 } else { 1334 KASSERT(!pmap_page_is_mapped(m), 1335 ("vm_pageout_scan: page %p is mapped", m)); 1336 } 1337 if (act_delta != 0) { 1338 if (object->ref_count != 0) { 1339 VM_CNT_INC(v_reactivated); 1340 vm_page_activate(m); 1341 1342 /* 1343 * Increase the activation count if the page 1344 * was referenced while in the inactive queue. 1345 * This makes it less likely that the page will 1346 * be returned prematurely to the inactive 1347 * queue. 1348 */ 1349 m->act_count += act_delta + ACT_ADVANCE; 1350 continue; 1351 } else if ((object->flags & OBJ_DEAD) == 0) { 1352 vm_page_aflag_set(m, PGA_REQUEUE); 1353 goto reinsert; 1354 } 1355 } 1356 1357 /* 1358 * If the page appears to be clean at the machine-independent 1359 * layer, then remove all of its mappings from the pmap in 1360 * anticipation of freeing it. If, however, any of the page's 1361 * mappings allow write access, then the page may still be 1362 * modified until the last of those mappings are removed. 1363 */ 1364 if (object->ref_count != 0) { 1365 vm_page_test_dirty(m); 1366 if (m->dirty == 0) 1367 pmap_remove_all(m); 1368 } 1369 1370 /* 1371 * Clean pages can be freed, but dirty pages must be sent back 1372 * to the laundry, unless they belong to a dead object. 1373 * Requeueing dirty pages from dead objects is pointless, as 1374 * they are being paged out and freed by the thread that 1375 * destroyed the object. 1376 */ 1377 if (m->dirty == 0) { 1378 free_page: 1379 /* 1380 * Because we dequeued the page and have already 1381 * checked for concurrent dequeue and enqueue 1382 * requests, we can safely disassociate the page 1383 * from the inactive queue. 1384 */ 1385 KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0, 1386 ("page %p has queue state", m)); 1387 m->queue = PQ_NONE; 1388 vm_page_free(m); 1389 page_shortage--; 1390 } else if ((object->flags & OBJ_DEAD) == 0) 1391 vm_page_launder(m); 1392 continue; 1393 reinsert: 1394 vm_pageout_reinsert_inactive(&ss, &rq, m); 1395 } 1396 if (mtx != NULL) { 1397 mtx_unlock(mtx); 1398 mtx = NULL; 1399 } 1400 if (obj_locked) { 1401 VM_OBJECT_WUNLOCK(object); 1402 obj_locked = false; 1403 } 1404 vm_pageout_reinsert_inactive(&ss, &rq, NULL); 1405 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL); 1406 vm_pagequeue_lock(pq); 1407 vm_pageout_end_scan(&ss); 1408 vm_pagequeue_unlock(pq); 1409 1410 VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage); 1411 1412 /* 1413 * Wake up the laundry thread so that it can perform any needed 1414 * laundering. If we didn't meet our target, we're in shortfall and 1415 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1416 * swap devices are configured, the laundry thread has no work to do, so 1417 * don't bother waking it up. 1418 * 1419 * The laundry thread uses the number of inactive queue scans elapsed 1420 * since the last laundering to determine whether to launder again, so 1421 * keep count. 1422 */ 1423 if (starting_page_shortage > 0) { 1424 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1425 vm_pagequeue_lock(pq); 1426 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1427 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1428 if (page_shortage > 0) { 1429 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1430 VM_CNT_INC(v_pdshortfalls); 1431 } else if (vmd->vmd_laundry_request != 1432 VM_LAUNDRY_SHORTFALL) 1433 vmd->vmd_laundry_request = 1434 VM_LAUNDRY_BACKGROUND; 1435 wakeup(&vmd->vmd_laundry_request); 1436 } 1437 vmd->vmd_clean_pages_freed += 1438 starting_page_shortage - page_shortage; 1439 vm_pagequeue_unlock(pq); 1440 } 1441 1442 /* 1443 * Wakeup the swapout daemon if we didn't free the targeted number of 1444 * pages. 1445 */ 1446 if (page_shortage > 0) 1447 vm_swapout_run(); 1448 1449 /* 1450 * If the inactive queue scan fails repeatedly to meet its 1451 * target, kill the largest process. 1452 */ 1453 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1454 1455 /* 1456 * Compute the number of pages we want to try to move from the 1457 * active queue to either the inactive or laundry queue. 1458 * 1459 * When scanning active pages, we make clean pages count more heavily 1460 * towards the page shortage than dirty pages. This is because dirty 1461 * pages must be laundered before they can be reused and thus have less 1462 * utility when attempting to quickly alleviate a shortage. However, 1463 * this weighting also causes the scan to deactivate dirty pages more 1464 * more aggressively, improving the effectiveness of clustering and 1465 * ensuring that they can eventually be reused. 1466 */ 1467 inactq_shortage = vmd->vmd_inactive_target - (pq->pq_cnt + 1468 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight) + 1469 vm_paging_target(vmd) + deficit + addl_page_shortage; 1470 inactq_shortage *= act_scan_laundry_weight; 1471 1472 marker = &vmd->vmd_markers[PQ_ACTIVE]; 1473 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1474 vm_pagequeue_lock(pq); 1475 1476 /* 1477 * If we're just idle polling attempt to visit every 1478 * active page within 'update_period' seconds. 1479 */ 1480 scan_tick = ticks; 1481 if (vm_pageout_update_period != 0) { 1482 min_scan = pq->pq_cnt; 1483 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1484 min_scan /= hz * vm_pageout_update_period; 1485 } else 1486 min_scan = 0; 1487 if (min_scan > 0 || (inactq_shortage > 0 && pq->pq_cnt > 0)) 1488 vmd->vmd_last_active_scan = scan_tick; 1489 1490 /* 1491 * Scan the active queue for pages that can be deactivated. Update 1492 * the per-page activity counter and use it to identify deactivation 1493 * candidates. Held pages may be deactivated. 1494 * 1495 * To avoid requeuing each page that remains in the active queue, we 1496 * implement the CLOCK algorithm. To maintain consistency in the 1497 * generic page queue code, pages are inserted at the tail of the 1498 * active queue. We thus use two hands, represented by marker pages: 1499 * scans begin at the first hand, which precedes the second hand in 1500 * the queue. When the two hands meet, they are moved back to the 1501 * head and tail of the queue, respectively, and scanning resumes. 1502 */ 1503 max_scan = inactq_shortage > 0 ? pq->pq_cnt : min_scan; 1504 act_scan: 1505 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan); 1506 while ((m = vm_pageout_next(&ss, false)) != NULL) { 1507 if (__predict_false(m == &vmd->vmd_clock[1])) { 1508 vm_pagequeue_lock(pq); 1509 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1510 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q); 1511 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0], 1512 plinks.q); 1513 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1], 1514 plinks.q); 1515 max_scan -= ss.scanned; 1516 vm_pageout_end_scan(&ss); 1517 goto act_scan; 1518 } 1519 if (__predict_false((m->flags & PG_MARKER) != 0)) 1520 continue; 1521 1522 vm_page_change_lock(m, &mtx); 1523 1524 /* 1525 * The page may have been disassociated from the queue 1526 * while locks were dropped. 1527 */ 1528 if (vm_page_queue(m) != PQ_ACTIVE) 1529 continue; 1530 1531 /* 1532 * Wired pages are dequeued lazily. 1533 */ 1534 if (m->wire_count != 0) { 1535 vm_page_dequeue_deferred(m); 1536 continue; 1537 } 1538 1539 /* 1540 * Check to see "how much" the page has been used. 1541 */ 1542 if ((m->aflags & PGA_REFERENCED) != 0) { 1543 vm_page_aflag_clear(m, PGA_REFERENCED); 1544 act_delta = 1; 1545 } else 1546 act_delta = 0; 1547 1548 /* 1549 * Perform an unsynchronized object ref count check. While 1550 * the page lock ensures that the page is not reallocated to 1551 * another object, in particular, one with unmanaged mappings 1552 * that cannot support pmap_ts_referenced(), two races are, 1553 * nonetheless, possible: 1554 * 1) The count was transitioning to zero, but we saw a non- 1555 * zero value. pmap_ts_referenced() will return zero 1556 * because the page is not mapped. 1557 * 2) The count was transitioning to one, but we saw zero. 1558 * This race delays the detection of a new reference. At 1559 * worst, we will deactivate and reactivate the page. 1560 */ 1561 if (m->object->ref_count != 0) 1562 act_delta += pmap_ts_referenced(m); 1563 1564 /* 1565 * Advance or decay the act_count based on recent usage. 1566 */ 1567 if (act_delta != 0) { 1568 m->act_count += ACT_ADVANCE + act_delta; 1569 if (m->act_count > ACT_MAX) 1570 m->act_count = ACT_MAX; 1571 } else 1572 m->act_count -= min(m->act_count, ACT_DECLINE); 1573 1574 if (m->act_count == 0) { 1575 /* 1576 * When not short for inactive pages, let dirty pages go 1577 * through the inactive queue before moving to the 1578 * laundry queues. This gives them some extra time to 1579 * be reactivated, potentially avoiding an expensive 1580 * pageout. During a page shortage, the inactive queue 1581 * is necessarily small, so we may move dirty pages 1582 * directly to the laundry queue. 1583 */ 1584 if (inactq_shortage <= 0) 1585 vm_page_deactivate(m); 1586 else { 1587 /* 1588 * Calling vm_page_test_dirty() here would 1589 * require acquisition of the object's write 1590 * lock. However, during a page shortage, 1591 * directing dirty pages into the laundry 1592 * queue is only an optimization and not a 1593 * requirement. Therefore, we simply rely on 1594 * the opportunistic updates to the page's 1595 * dirty field by the pmap. 1596 */ 1597 if (m->dirty == 0) { 1598 vm_page_deactivate(m); 1599 inactq_shortage -= 1600 act_scan_laundry_weight; 1601 } else { 1602 vm_page_launder(m); 1603 inactq_shortage--; 1604 } 1605 } 1606 } 1607 } 1608 if (mtx != NULL) { 1609 mtx_unlock(mtx); 1610 mtx = NULL; 1611 } 1612 vm_pagequeue_lock(pq); 1613 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1614 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q); 1615 vm_pageout_end_scan(&ss); 1616 vm_pagequeue_unlock(pq); 1617 1618 if (pass > 0) 1619 vm_swapout_run_idle(); 1620 return (page_shortage <= 0); 1621 } 1622 1623 static int vm_pageout_oom_vote; 1624 1625 /* 1626 * The pagedaemon threads randlomly select one to perform the 1627 * OOM. Trying to kill processes before all pagedaemons 1628 * failed to reach free target is premature. 1629 */ 1630 static void 1631 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1632 int starting_page_shortage) 1633 { 1634 int old_vote; 1635 1636 if (starting_page_shortage <= 0 || starting_page_shortage != 1637 page_shortage) 1638 vmd->vmd_oom_seq = 0; 1639 else 1640 vmd->vmd_oom_seq++; 1641 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1642 if (vmd->vmd_oom) { 1643 vmd->vmd_oom = FALSE; 1644 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1645 } 1646 return; 1647 } 1648 1649 /* 1650 * Do not follow the call sequence until OOM condition is 1651 * cleared. 1652 */ 1653 vmd->vmd_oom_seq = 0; 1654 1655 if (vmd->vmd_oom) 1656 return; 1657 1658 vmd->vmd_oom = TRUE; 1659 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1660 if (old_vote != vm_ndomains - 1) 1661 return; 1662 1663 /* 1664 * The current pagedaemon thread is the last in the quorum to 1665 * start OOM. Initiate the selection and signaling of the 1666 * victim. 1667 */ 1668 vm_pageout_oom(VM_OOM_MEM); 1669 1670 /* 1671 * After one round of OOM terror, recall our vote. On the 1672 * next pass, current pagedaemon would vote again if the low 1673 * memory condition is still there, due to vmd_oom being 1674 * false. 1675 */ 1676 vmd->vmd_oom = FALSE; 1677 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1678 } 1679 1680 /* 1681 * The OOM killer is the page daemon's action of last resort when 1682 * memory allocation requests have been stalled for a prolonged period 1683 * of time because it cannot reclaim memory. This function computes 1684 * the approximate number of physical pages that could be reclaimed if 1685 * the specified address space is destroyed. 1686 * 1687 * Private, anonymous memory owned by the address space is the 1688 * principal resource that we expect to recover after an OOM kill. 1689 * Since the physical pages mapped by the address space's COW entries 1690 * are typically shared pages, they are unlikely to be released and so 1691 * they are not counted. 1692 * 1693 * To get to the point where the page daemon runs the OOM killer, its 1694 * efforts to write-back vnode-backed pages may have stalled. This 1695 * could be caused by a memory allocation deadlock in the write path 1696 * that might be resolved by an OOM kill. Therefore, physical pages 1697 * belonging to vnode-backed objects are counted, because they might 1698 * be freed without being written out first if the address space holds 1699 * the last reference to an unlinked vnode. 1700 * 1701 * Similarly, physical pages belonging to OBJT_PHYS objects are 1702 * counted because the address space might hold the last reference to 1703 * the object. 1704 */ 1705 static long 1706 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1707 { 1708 vm_map_t map; 1709 vm_map_entry_t entry; 1710 vm_object_t obj; 1711 long res; 1712 1713 map = &vmspace->vm_map; 1714 KASSERT(!map->system_map, ("system map")); 1715 sx_assert(&map->lock, SA_LOCKED); 1716 res = 0; 1717 for (entry = map->header.next; entry != &map->header; 1718 entry = entry->next) { 1719 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1720 continue; 1721 obj = entry->object.vm_object; 1722 if (obj == NULL) 1723 continue; 1724 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1725 obj->ref_count != 1) 1726 continue; 1727 switch (obj->type) { 1728 case OBJT_DEFAULT: 1729 case OBJT_SWAP: 1730 case OBJT_PHYS: 1731 case OBJT_VNODE: 1732 res += obj->resident_page_count; 1733 break; 1734 } 1735 } 1736 return (res); 1737 } 1738 1739 void 1740 vm_pageout_oom(int shortage) 1741 { 1742 struct proc *p, *bigproc; 1743 vm_offset_t size, bigsize; 1744 struct thread *td; 1745 struct vmspace *vm; 1746 bool breakout; 1747 1748 /* 1749 * We keep the process bigproc locked once we find it to keep anyone 1750 * from messing with it; however, there is a possibility of 1751 * deadlock if process B is bigproc and one of its child processes 1752 * attempts to propagate a signal to B while we are waiting for A's 1753 * lock while walking this list. To avoid this, we don't block on 1754 * the process lock but just skip a process if it is already locked. 1755 */ 1756 bigproc = NULL; 1757 bigsize = 0; 1758 sx_slock(&allproc_lock); 1759 FOREACH_PROC_IN_SYSTEM(p) { 1760 PROC_LOCK(p); 1761 1762 /* 1763 * If this is a system, protected or killed process, skip it. 1764 */ 1765 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1766 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1767 p->p_pid == 1 || P_KILLED(p) || 1768 (p->p_pid < 48 && swap_pager_avail != 0)) { 1769 PROC_UNLOCK(p); 1770 continue; 1771 } 1772 /* 1773 * If the process is in a non-running type state, 1774 * don't touch it. Check all the threads individually. 1775 */ 1776 breakout = false; 1777 FOREACH_THREAD_IN_PROC(p, td) { 1778 thread_lock(td); 1779 if (!TD_ON_RUNQ(td) && 1780 !TD_IS_RUNNING(td) && 1781 !TD_IS_SLEEPING(td) && 1782 !TD_IS_SUSPENDED(td) && 1783 !TD_IS_SWAPPED(td)) { 1784 thread_unlock(td); 1785 breakout = true; 1786 break; 1787 } 1788 thread_unlock(td); 1789 } 1790 if (breakout) { 1791 PROC_UNLOCK(p); 1792 continue; 1793 } 1794 /* 1795 * get the process size 1796 */ 1797 vm = vmspace_acquire_ref(p); 1798 if (vm == NULL) { 1799 PROC_UNLOCK(p); 1800 continue; 1801 } 1802 _PHOLD_LITE(p); 1803 PROC_UNLOCK(p); 1804 sx_sunlock(&allproc_lock); 1805 if (!vm_map_trylock_read(&vm->vm_map)) { 1806 vmspace_free(vm); 1807 sx_slock(&allproc_lock); 1808 PRELE(p); 1809 continue; 1810 } 1811 size = vmspace_swap_count(vm); 1812 if (shortage == VM_OOM_MEM) 1813 size += vm_pageout_oom_pagecount(vm); 1814 vm_map_unlock_read(&vm->vm_map); 1815 vmspace_free(vm); 1816 sx_slock(&allproc_lock); 1817 1818 /* 1819 * If this process is bigger than the biggest one, 1820 * remember it. 1821 */ 1822 if (size > bigsize) { 1823 if (bigproc != NULL) 1824 PRELE(bigproc); 1825 bigproc = p; 1826 bigsize = size; 1827 } else { 1828 PRELE(p); 1829 } 1830 } 1831 sx_sunlock(&allproc_lock); 1832 if (bigproc != NULL) { 1833 if (vm_panic_on_oom != 0) 1834 panic("out of swap space"); 1835 PROC_LOCK(bigproc); 1836 killproc(bigproc, "out of swap space"); 1837 sched_nice(bigproc, PRIO_MIN); 1838 _PRELE(bigproc); 1839 PROC_UNLOCK(bigproc); 1840 } 1841 } 1842 1843 static void 1844 vm_pageout_worker(void *arg) 1845 { 1846 struct vm_domain *vmd; 1847 int domain, pass, shortage; 1848 bool target_met; 1849 1850 domain = (uintptr_t)arg; 1851 vmd = VM_DOMAIN(domain); 1852 pass = 0; 1853 shortage = 0; 1854 target_met = true; 1855 1856 /* 1857 * XXXKIB It could be useful to bind pageout daemon threads to 1858 * the cores belonging to the domain, from which vm_page_array 1859 * is allocated. 1860 */ 1861 1862 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 1863 vmd->vmd_last_active_scan = ticks; 1864 1865 /* 1866 * The pageout daemon worker is never done, so loop forever. 1867 */ 1868 while (TRUE) { 1869 vm_domain_pageout_lock(vmd); 1870 /* 1871 * We need to clear wanted before we check the limits. This 1872 * prevents races with wakers who will check wanted after they 1873 * reach the limit. 1874 */ 1875 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 1876 1877 /* 1878 * Might the page daemon need to run again? 1879 */ 1880 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 1881 /* 1882 * Yes, the scan failed to free enough pages. If 1883 * we have performed a level >= 1 (page reclamation) 1884 * scan, then sleep a bit and try again. 1885 */ 1886 vm_domain_pageout_unlock(vmd); 1887 if (pass > 1) 1888 pause("pwait", hz / VM_INACT_SCAN_RATE); 1889 } else { 1890 /* 1891 * No, sleep until the next wakeup or until pages 1892 * need to have their reference stats updated. 1893 */ 1894 if (mtx_sleep(&vmd->vmd_pageout_wanted, 1895 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 1896 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 1897 VM_CNT_INC(v_pdwakeups); 1898 } 1899 /* Prevent spurious wakeups by ensuring that wanted is set. */ 1900 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 1901 1902 /* 1903 * Use the controller to calculate how many pages to free in 1904 * this interval. 1905 */ 1906 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 1907 if (shortage && pass == 0) 1908 pass = 1; 1909 1910 target_met = vm_pageout_scan(vmd, pass, shortage); 1911 /* 1912 * If the target was not met we must increase the pass to 1913 * more aggressively reclaim. 1914 */ 1915 if (!target_met) 1916 pass++; 1917 } 1918 } 1919 1920 /* 1921 * vm_pageout_init initialises basic pageout daemon settings. 1922 */ 1923 static void 1924 vm_pageout_init_domain(int domain) 1925 { 1926 struct vm_domain *vmd; 1927 struct sysctl_oid *oid; 1928 1929 vmd = VM_DOMAIN(domain); 1930 vmd->vmd_interrupt_free_min = 2; 1931 1932 /* 1933 * v_free_reserved needs to include enough for the largest 1934 * swap pager structures plus enough for any pv_entry structs 1935 * when paging. 1936 */ 1937 if (vmd->vmd_page_count > 1024) 1938 vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200; 1939 else 1940 vmd->vmd_free_min = 4; 1941 vmd->vmd_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE + 1942 vmd->vmd_interrupt_free_min; 1943 vmd->vmd_free_reserved = vm_pageout_page_count + 1944 vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768); 1945 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 1946 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 1947 vmd->vmd_free_min += vmd->vmd_free_reserved; 1948 vmd->vmd_free_severe += vmd->vmd_free_reserved; 1949 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 1950 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 1951 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 1952 1953 /* 1954 * Set the default wakeup threshold to be 10% below the paging 1955 * target. This keeps the steady state out of shortfall. 1956 */ 1957 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 1958 1959 /* 1960 * Target amount of memory to move out of the laundry queue during a 1961 * background laundering. This is proportional to the amount of system 1962 * memory. 1963 */ 1964 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 1965 vmd->vmd_free_min) / 10; 1966 1967 /* Initialize the pageout daemon pid controller. */ 1968 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 1969 vmd->vmd_free_target, PIDCTRL_BOUND, 1970 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 1971 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 1972 "pidctrl", CTLFLAG_RD, NULL, ""); 1973 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 1974 } 1975 1976 static void 1977 vm_pageout_init(void) 1978 { 1979 u_int freecount; 1980 int i; 1981 1982 /* 1983 * Initialize some paging parameters. 1984 */ 1985 if (vm_cnt.v_page_count < 2000) 1986 vm_pageout_page_count = 8; 1987 1988 freecount = 0; 1989 for (i = 0; i < vm_ndomains; i++) { 1990 struct vm_domain *vmd; 1991 1992 vm_pageout_init_domain(i); 1993 vmd = VM_DOMAIN(i); 1994 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 1995 vm_cnt.v_free_target += vmd->vmd_free_target; 1996 vm_cnt.v_free_min += vmd->vmd_free_min; 1997 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 1998 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 1999 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 2000 vm_cnt.v_free_severe += vmd->vmd_free_severe; 2001 freecount += vmd->vmd_free_count; 2002 } 2003 2004 /* 2005 * Set interval in seconds for active scan. We want to visit each 2006 * page at least once every ten minutes. This is to prevent worst 2007 * case paging behaviors with stale active LRU. 2008 */ 2009 if (vm_pageout_update_period == 0) 2010 vm_pageout_update_period = 600; 2011 2012 if (vm_page_max_wired == 0) 2013 vm_page_max_wired = freecount / 3; 2014 } 2015 2016 /* 2017 * vm_pageout is the high level pageout daemon. 2018 */ 2019 static void 2020 vm_pageout(void) 2021 { 2022 int error; 2023 int i; 2024 2025 swap_pager_swap_init(); 2026 snprintf(curthread->td_name, sizeof(curthread->td_name), "dom0"); 2027 error = kthread_add(vm_pageout_laundry_worker, NULL, curproc, NULL, 2028 0, 0, "laundry: dom0"); 2029 if (error != 0) 2030 panic("starting laundry for domain 0, error %d", error); 2031 for (i = 1; i < vm_ndomains; i++) { 2032 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i, 2033 curproc, NULL, 0, 0, "dom%d", i); 2034 if (error != 0) { 2035 panic("starting pageout for domain %d, error %d\n", 2036 i, error); 2037 } 2038 error = kthread_add(vm_pageout_laundry_worker, 2039 (void *)(uintptr_t)i, curproc, NULL, 0, 0, 2040 "laundry: dom%d", i); 2041 if (error != 0) 2042 panic("starting laundry for domain %d, error %d", 2043 i, error); 2044 } 2045 error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL, 2046 0, 0, "uma"); 2047 if (error != 0) 2048 panic("starting uma_reclaim helper, error %d\n", error); 2049 vm_pageout_worker((void *)(uintptr_t)0); 2050 } 2051 2052 /* 2053 * Perform an advisory wakeup of the page daemon. 2054 */ 2055 void 2056 pagedaemon_wakeup(int domain) 2057 { 2058 struct vm_domain *vmd; 2059 2060 vmd = VM_DOMAIN(domain); 2061 vm_domain_pageout_assert_unlocked(vmd); 2062 if (curproc == pageproc) 2063 return; 2064 2065 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 2066 vm_domain_pageout_lock(vmd); 2067 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2068 wakeup(&vmd->vmd_pageout_wanted); 2069 vm_domain_pageout_unlock(vmd); 2070 } 2071 } 2072