1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * Copyright (c) 2005 Yahoo! Technologies Norway AS 9 * All rights reserved. 10 * 11 * This code is derived from software contributed to Berkeley by 12 * The Mach Operating System project at Carnegie-Mellon University. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 43 * 44 * 45 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 46 * All rights reserved. 47 * 48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 49 * 50 * Permission to use, copy, modify and distribute this software and 51 * its documentation is hereby granted, provided that both the copyright 52 * notice and this permission notice appear in all copies of the 53 * software, derivative works or modified versions, and any portions 54 * thereof, and that both notices appear in supporting documentation. 55 * 56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 57 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 59 * 60 * Carnegie Mellon requests users of this software to return to 61 * 62 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 63 * School of Computer Science 64 * Carnegie Mellon University 65 * Pittsburgh PA 15213-3890 66 * 67 * any improvements or extensions that they make and grant Carnegie the 68 * rights to redistribute these changes. 69 */ 70 71 /* 72 * The proverbial page-out daemon. 73 */ 74 75 #include <sys/cdefs.h> 76 __FBSDID("$FreeBSD$"); 77 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/eventhandler.h> 84 #include <sys/lock.h> 85 #include <sys/mutex.h> 86 #include <sys/proc.h> 87 #include <sys/kthread.h> 88 #include <sys/ktr.h> 89 #include <sys/mount.h> 90 #include <sys/racct.h> 91 #include <sys/resourcevar.h> 92 #include <sys/sched.h> 93 #include <sys/sdt.h> 94 #include <sys/signalvar.h> 95 #include <sys/smp.h> 96 #include <sys/time.h> 97 #include <sys/vnode.h> 98 #include <sys/vmmeter.h> 99 #include <sys/rwlock.h> 100 #include <sys/sx.h> 101 #include <sys/sysctl.h> 102 103 #include <vm/vm.h> 104 #include <vm/vm_param.h> 105 #include <vm/vm_object.h> 106 #include <vm/vm_page.h> 107 #include <vm/vm_map.h> 108 #include <vm/vm_pageout.h> 109 #include <vm/vm_pager.h> 110 #include <vm/vm_phys.h> 111 #include <vm/swap_pager.h> 112 #include <vm/vm_extern.h> 113 #include <vm/uma.h> 114 115 /* 116 * System initialization 117 */ 118 119 /* the kernel process "vm_pageout"*/ 120 static void vm_pageout(void); 121 static void vm_pageout_init(void); 122 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 123 static int vm_pageout_cluster(vm_page_t m); 124 static bool vm_pageout_scan(struct vm_domain *vmd, int pass); 125 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 126 int starting_page_shortage); 127 128 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 129 NULL); 130 131 struct proc *pageproc; 132 133 static struct kproc_desc page_kp = { 134 "pagedaemon", 135 vm_pageout, 136 &pageproc 137 }; 138 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 139 &page_kp); 140 141 SDT_PROVIDER_DEFINE(vm); 142 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 143 144 /* Pagedaemon activity rates, in subdivisions of one second. */ 145 #define VM_LAUNDER_RATE 10 146 #define VM_INACT_SCAN_RATE 2 147 148 int vm_pageout_deficit; /* Estimated number of pages deficit */ 149 u_int vm_pageout_wakeup_thresh; 150 static int vm_pageout_oom_seq = 12; 151 bool vm_pageout_wanted; /* Event on which pageout daemon sleeps */ 152 bool vm_pages_needed; /* Are threads waiting for free pages? */ 153 154 /* Pending request for dirty page laundering. */ 155 static enum { 156 VM_LAUNDRY_IDLE, 157 VM_LAUNDRY_BACKGROUND, 158 VM_LAUNDRY_SHORTFALL 159 } vm_laundry_request = VM_LAUNDRY_IDLE; 160 161 static int vm_pageout_update_period; 162 static int disable_swap_pageouts; 163 static int lowmem_period = 10; 164 static time_t lowmem_uptime; 165 static int swapdev_enabled; 166 167 static int vm_panic_on_oom = 0; 168 169 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 170 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 171 "panic on out of memory instead of killing the largest process"); 172 173 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh, 174 CTLFLAG_RWTUN, &vm_pageout_wakeup_thresh, 0, 175 "free page threshold for waking up the pageout daemon"); 176 177 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 178 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 179 "Maximum active LRU update period"); 180 181 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 182 "Low memory callback period"); 183 184 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 185 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages"); 186 187 static int pageout_lock_miss; 188 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 189 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout"); 190 191 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 192 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 193 "back-to-back calls to oom detector to start OOM"); 194 195 static int act_scan_laundry_weight = 3; 196 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 197 &act_scan_laundry_weight, 0, 198 "weight given to clean vs. dirty pages in active queue scans"); 199 200 static u_int vm_background_launder_target; 201 SYSCTL_UINT(_vm, OID_AUTO, background_launder_target, CTLFLAG_RWTUN, 202 &vm_background_launder_target, 0, 203 "background laundering target, in pages"); 204 205 static u_int vm_background_launder_rate = 4096; 206 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 207 &vm_background_launder_rate, 0, 208 "background laundering rate, in kilobytes per second"); 209 210 static u_int vm_background_launder_max = 20 * 1024; 211 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 212 &vm_background_launder_max, 0, "background laundering cap, in kilobytes"); 213 214 int vm_pageout_page_count = 32; 215 216 int vm_page_max_wired; /* XXX max # of wired pages system-wide */ 217 SYSCTL_INT(_vm, OID_AUTO, max_wired, 218 CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count"); 219 220 static u_int isqrt(u_int num); 221 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *); 222 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 223 bool in_shortfall); 224 static void vm_pageout_laundry_worker(void *arg); 225 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *); 226 227 /* 228 * Initialize a dummy page for marking the caller's place in the specified 229 * paging queue. In principle, this function only needs to set the flag 230 * PG_MARKER. Nonetheless, it write busies and initializes the hold count 231 * to one as safety precautions. 232 */ 233 static void 234 vm_pageout_init_marker(vm_page_t marker, u_short queue) 235 { 236 237 bzero(marker, sizeof(*marker)); 238 marker->flags = PG_MARKER; 239 marker->busy_lock = VPB_SINGLE_EXCLUSIVER; 240 marker->queue = queue; 241 marker->hold_count = 1; 242 } 243 244 /* 245 * vm_pageout_fallback_object_lock: 246 * 247 * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is 248 * known to have failed and page queue must be either PQ_ACTIVE or 249 * PQ_INACTIVE. To avoid lock order violation, unlock the page queue 250 * while locking the vm object. Use marker page to detect page queue 251 * changes and maintain notion of next page on page queue. Return 252 * TRUE if no changes were detected, FALSE otherwise. vm object is 253 * locked on return. 254 * 255 * This function depends on both the lock portion of struct vm_object 256 * and normal struct vm_page being type stable. 257 */ 258 static boolean_t 259 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next) 260 { 261 struct vm_page marker; 262 struct vm_pagequeue *pq; 263 boolean_t unchanged; 264 u_short queue; 265 vm_object_t object; 266 267 queue = m->queue; 268 vm_pageout_init_marker(&marker, queue); 269 pq = vm_page_pagequeue(m); 270 object = m->object; 271 272 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q); 273 vm_pagequeue_unlock(pq); 274 vm_page_unlock(m); 275 VM_OBJECT_WLOCK(object); 276 vm_page_lock(m); 277 vm_pagequeue_lock(pq); 278 279 /* 280 * The page's object might have changed, and/or the page might 281 * have moved from its original position in the queue. If the 282 * page's object has changed, then the caller should abandon 283 * processing the page because the wrong object lock was 284 * acquired. Use the marker's plinks.q, not the page's, to 285 * determine if the page has been moved. The state of the 286 * page's plinks.q can be indeterminate; whereas, the marker's 287 * plinks.q must be valid. 288 */ 289 *next = TAILQ_NEXT(&marker, plinks.q); 290 unchanged = m->object == object && 291 m == TAILQ_PREV(&marker, pglist, plinks.q); 292 KASSERT(!unchanged || m->queue == queue, 293 ("page %p queue %d %d", m, queue, m->queue)); 294 TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q); 295 return (unchanged); 296 } 297 298 /* 299 * Lock the page while holding the page queue lock. Use marker page 300 * to detect page queue changes and maintain notion of next page on 301 * page queue. Return TRUE if no changes were detected, FALSE 302 * otherwise. The page is locked on return. The page queue lock might 303 * be dropped and reacquired. 304 * 305 * This function depends on normal struct vm_page being type stable. 306 */ 307 static boolean_t 308 vm_pageout_page_lock(vm_page_t m, vm_page_t *next) 309 { 310 struct vm_page marker; 311 struct vm_pagequeue *pq; 312 boolean_t unchanged; 313 u_short queue; 314 315 vm_page_lock_assert(m, MA_NOTOWNED); 316 if (vm_page_trylock(m)) 317 return (TRUE); 318 319 queue = m->queue; 320 vm_pageout_init_marker(&marker, queue); 321 pq = vm_page_pagequeue(m); 322 323 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q); 324 vm_pagequeue_unlock(pq); 325 vm_page_lock(m); 326 vm_pagequeue_lock(pq); 327 328 /* Page queue might have changed. */ 329 *next = TAILQ_NEXT(&marker, plinks.q); 330 unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q); 331 KASSERT(!unchanged || m->queue == queue, 332 ("page %p queue %d %d", m, queue, m->queue)); 333 TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q); 334 return (unchanged); 335 } 336 337 /* 338 * Scan for pages at adjacent offsets within the given page's object that are 339 * eligible for laundering, form a cluster of these pages and the given page, 340 * and launder that cluster. 341 */ 342 static int 343 vm_pageout_cluster(vm_page_t m) 344 { 345 vm_object_t object; 346 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; 347 vm_pindex_t pindex; 348 int ib, is, page_base, pageout_count; 349 350 vm_page_assert_locked(m); 351 object = m->object; 352 VM_OBJECT_ASSERT_WLOCKED(object); 353 pindex = m->pindex; 354 355 /* 356 * We can't clean the page if it is busy or held. 357 */ 358 vm_page_assert_unbusied(m); 359 KASSERT(m->hold_count == 0, ("page %p is held", m)); 360 361 pmap_remove_write(m); 362 vm_page_unlock(m); 363 364 mc[vm_pageout_page_count] = pb = ps = m; 365 pageout_count = 1; 366 page_base = vm_pageout_page_count; 367 ib = 1; 368 is = 1; 369 370 /* 371 * We can cluster only if the page is not clean, busy, or held, and 372 * the page is in the laundry queue. 373 * 374 * During heavy mmap/modification loads the pageout 375 * daemon can really fragment the underlying file 376 * due to flushing pages out of order and not trying to 377 * align the clusters (which leaves sporadic out-of-order 378 * holes). To solve this problem we do the reverse scan 379 * first and attempt to align our cluster, then do a 380 * forward scan if room remains. 381 */ 382 more: 383 while (ib != 0 && pageout_count < vm_pageout_page_count) { 384 if (ib > pindex) { 385 ib = 0; 386 break; 387 } 388 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) { 389 ib = 0; 390 break; 391 } 392 vm_page_test_dirty(p); 393 if (p->dirty == 0) { 394 ib = 0; 395 break; 396 } 397 vm_page_lock(p); 398 if (!vm_page_in_laundry(p) || 399 p->hold_count != 0) { /* may be undergoing I/O */ 400 vm_page_unlock(p); 401 ib = 0; 402 break; 403 } 404 pmap_remove_write(p); 405 vm_page_unlock(p); 406 mc[--page_base] = pb = p; 407 ++pageout_count; 408 ++ib; 409 410 /* 411 * We are at an alignment boundary. Stop here, and switch 412 * directions. Do not clear ib. 413 */ 414 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 415 break; 416 } 417 while (pageout_count < vm_pageout_page_count && 418 pindex + is < object->size) { 419 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p)) 420 break; 421 vm_page_test_dirty(p); 422 if (p->dirty == 0) 423 break; 424 vm_page_lock(p); 425 if (!vm_page_in_laundry(p) || 426 p->hold_count != 0) { /* may be undergoing I/O */ 427 vm_page_unlock(p); 428 break; 429 } 430 pmap_remove_write(p); 431 vm_page_unlock(p); 432 mc[page_base + pageout_count] = ps = p; 433 ++pageout_count; 434 ++is; 435 } 436 437 /* 438 * If we exhausted our forward scan, continue with the reverse scan 439 * when possible, even past an alignment boundary. This catches 440 * boundary conditions. 441 */ 442 if (ib != 0 && pageout_count < vm_pageout_page_count) 443 goto more; 444 445 return (vm_pageout_flush(&mc[page_base], pageout_count, 446 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 447 } 448 449 /* 450 * vm_pageout_flush() - launder the given pages 451 * 452 * The given pages are laundered. Note that we setup for the start of 453 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 454 * reference count all in here rather then in the parent. If we want 455 * the parent to do more sophisticated things we may have to change 456 * the ordering. 457 * 458 * Returned runlen is the count of pages between mreq and first 459 * page after mreq with status VM_PAGER_AGAIN. 460 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 461 * for any page in runlen set. 462 */ 463 int 464 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 465 boolean_t *eio) 466 { 467 vm_object_t object = mc[0]->object; 468 int pageout_status[count]; 469 int numpagedout = 0; 470 int i, runlen; 471 472 VM_OBJECT_ASSERT_WLOCKED(object); 473 474 /* 475 * Initiate I/O. Mark the pages busy and verify that they're valid 476 * and read-only. 477 * 478 * We do not have to fixup the clean/dirty bits here... we can 479 * allow the pager to do it after the I/O completes. 480 * 481 * NOTE! mc[i]->dirty may be partial or fragmented due to an 482 * edge case with file fragments. 483 */ 484 for (i = 0; i < count; i++) { 485 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, 486 ("vm_pageout_flush: partially invalid page %p index %d/%d", 487 mc[i], i, count)); 488 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0, 489 ("vm_pageout_flush: writeable page %p", mc[i])); 490 vm_page_sbusy(mc[i]); 491 } 492 vm_object_pip_add(object, count); 493 494 vm_pager_put_pages(object, mc, count, flags, pageout_status); 495 496 runlen = count - mreq; 497 if (eio != NULL) 498 *eio = FALSE; 499 for (i = 0; i < count; i++) { 500 vm_page_t mt = mc[i]; 501 502 KASSERT(pageout_status[i] == VM_PAGER_PEND || 503 !pmap_page_is_write_mapped(mt), 504 ("vm_pageout_flush: page %p is not write protected", mt)); 505 switch (pageout_status[i]) { 506 case VM_PAGER_OK: 507 vm_page_lock(mt); 508 if (vm_page_in_laundry(mt)) 509 vm_page_deactivate_noreuse(mt); 510 vm_page_unlock(mt); 511 /* FALLTHROUGH */ 512 case VM_PAGER_PEND: 513 numpagedout++; 514 break; 515 case VM_PAGER_BAD: 516 /* 517 * The page is outside the object's range. We pretend 518 * that the page out worked and clean the page, so the 519 * changes will be lost if the page is reclaimed by 520 * the page daemon. 521 */ 522 vm_page_undirty(mt); 523 vm_page_lock(mt); 524 if (vm_page_in_laundry(mt)) 525 vm_page_deactivate_noreuse(mt); 526 vm_page_unlock(mt); 527 break; 528 case VM_PAGER_ERROR: 529 case VM_PAGER_FAIL: 530 /* 531 * If the page couldn't be paged out to swap because the 532 * pager wasn't able to find space, place the page in 533 * the PQ_UNSWAPPABLE holding queue. This is an 534 * optimization that prevents the page daemon from 535 * wasting CPU cycles on pages that cannot be reclaimed 536 * becase no swap device is configured. 537 * 538 * Otherwise, reactivate the page so that it doesn't 539 * clog the laundry and inactive queues. (We will try 540 * paging it out again later.) 541 */ 542 vm_page_lock(mt); 543 if (object->type == OBJT_SWAP && 544 pageout_status[i] == VM_PAGER_FAIL) { 545 vm_page_unswappable(mt); 546 numpagedout++; 547 } else 548 vm_page_activate(mt); 549 vm_page_unlock(mt); 550 if (eio != NULL && i >= mreq && i - mreq < runlen) 551 *eio = TRUE; 552 break; 553 case VM_PAGER_AGAIN: 554 if (i >= mreq && i - mreq < runlen) 555 runlen = i - mreq; 556 break; 557 } 558 559 /* 560 * If the operation is still going, leave the page busy to 561 * block all other accesses. Also, leave the paging in 562 * progress indicator set so that we don't attempt an object 563 * collapse. 564 */ 565 if (pageout_status[i] != VM_PAGER_PEND) { 566 vm_object_pip_wakeup(object); 567 vm_page_sunbusy(mt); 568 } 569 } 570 if (prunlen != NULL) 571 *prunlen = runlen; 572 return (numpagedout); 573 } 574 575 static void 576 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 577 { 578 579 atomic_store_rel_int(&swapdev_enabled, 1); 580 } 581 582 static void 583 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 584 { 585 586 if (swap_pager_nswapdev() == 1) 587 atomic_store_rel_int(&swapdev_enabled, 0); 588 } 589 590 /* 591 * Attempt to acquire all of the necessary locks to launder a page and 592 * then call through the clustering layer to PUTPAGES. Wait a short 593 * time for a vnode lock. 594 * 595 * Requires the page and object lock on entry, releases both before return. 596 * Returns 0 on success and an errno otherwise. 597 */ 598 static int 599 vm_pageout_clean(vm_page_t m, int *numpagedout) 600 { 601 struct vnode *vp; 602 struct mount *mp; 603 vm_object_t object; 604 vm_pindex_t pindex; 605 int error, lockmode; 606 607 vm_page_assert_locked(m); 608 object = m->object; 609 VM_OBJECT_ASSERT_WLOCKED(object); 610 error = 0; 611 vp = NULL; 612 mp = NULL; 613 614 /* 615 * The object is already known NOT to be dead. It 616 * is possible for the vget() to block the whole 617 * pageout daemon, but the new low-memory handling 618 * code should prevent it. 619 * 620 * We can't wait forever for the vnode lock, we might 621 * deadlock due to a vn_read() getting stuck in 622 * vm_wait while holding this vnode. We skip the 623 * vnode if we can't get it in a reasonable amount 624 * of time. 625 */ 626 if (object->type == OBJT_VNODE) { 627 vm_page_unlock(m); 628 vp = object->handle; 629 if (vp->v_type == VREG && 630 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 631 mp = NULL; 632 error = EDEADLK; 633 goto unlock_all; 634 } 635 KASSERT(mp != NULL, 636 ("vp %p with NULL v_mount", vp)); 637 vm_object_reference_locked(object); 638 pindex = m->pindex; 639 VM_OBJECT_WUNLOCK(object); 640 lockmode = MNT_SHARED_WRITES(vp->v_mount) ? 641 LK_SHARED : LK_EXCLUSIVE; 642 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) { 643 vp = NULL; 644 error = EDEADLK; 645 goto unlock_mp; 646 } 647 VM_OBJECT_WLOCK(object); 648 vm_page_lock(m); 649 /* 650 * While the object and page were unlocked, the page 651 * may have been: 652 * (1) moved to a different queue, 653 * (2) reallocated to a different object, 654 * (3) reallocated to a different offset, or 655 * (4) cleaned. 656 */ 657 if (!vm_page_in_laundry(m) || m->object != object || 658 m->pindex != pindex || m->dirty == 0) { 659 vm_page_unlock(m); 660 error = ENXIO; 661 goto unlock_all; 662 } 663 664 /* 665 * The page may have been busied or held while the object 666 * and page locks were released. 667 */ 668 if (vm_page_busied(m) || m->hold_count != 0) { 669 vm_page_unlock(m); 670 error = EBUSY; 671 goto unlock_all; 672 } 673 } 674 675 /* 676 * If a page is dirty, then it is either being washed 677 * (but not yet cleaned) or it is still in the 678 * laundry. If it is still in the laundry, then we 679 * start the cleaning operation. 680 */ 681 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 682 error = EIO; 683 684 unlock_all: 685 VM_OBJECT_WUNLOCK(object); 686 687 unlock_mp: 688 vm_page_lock_assert(m, MA_NOTOWNED); 689 if (mp != NULL) { 690 if (vp != NULL) 691 vput(vp); 692 vm_object_deallocate(object); 693 vn_finished_write(mp); 694 } 695 696 return (error); 697 } 698 699 /* 700 * Attempt to launder the specified number of pages. 701 * 702 * Returns the number of pages successfully laundered. 703 */ 704 static int 705 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 706 { 707 struct vm_pagequeue *pq; 708 vm_object_t object; 709 vm_page_t m, next; 710 int act_delta, error, maxscan, numpagedout, starting_target; 711 int vnodes_skipped; 712 bool pageout_ok, queue_locked; 713 714 starting_target = launder; 715 vnodes_skipped = 0; 716 717 /* 718 * Scan the laundry queues for pages eligible to be laundered. We stop 719 * once the target number of dirty pages have been laundered, or once 720 * we've reached the end of the queue. A single iteration of this loop 721 * may cause more than one page to be laundered because of clustering. 722 * 723 * maxscan ensures that we don't re-examine requeued pages. Any 724 * additional pages written as part of a cluster are subtracted from 725 * maxscan since they must be taken from the laundry queue. 726 * 727 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 728 * swap devices are configured. 729 */ 730 if (atomic_load_acq_int(&swapdev_enabled)) 731 pq = &vmd->vmd_pagequeues[PQ_UNSWAPPABLE]; 732 else 733 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 734 735 scan: 736 vm_pagequeue_lock(pq); 737 maxscan = pq->pq_cnt; 738 queue_locked = true; 739 for (m = TAILQ_FIRST(&pq->pq_pl); 740 m != NULL && maxscan-- > 0 && launder > 0; 741 m = next) { 742 vm_pagequeue_assert_locked(pq); 743 KASSERT(queue_locked, ("unlocked laundry queue")); 744 KASSERT(vm_page_in_laundry(m), 745 ("page %p has an inconsistent queue", m)); 746 next = TAILQ_NEXT(m, plinks.q); 747 if ((m->flags & PG_MARKER) != 0) 748 continue; 749 KASSERT((m->flags & PG_FICTITIOUS) == 0, 750 ("PG_FICTITIOUS page %p cannot be in laundry queue", m)); 751 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 752 ("VPO_UNMANAGED page %p cannot be in laundry queue", m)); 753 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) { 754 vm_page_unlock(m); 755 continue; 756 } 757 object = m->object; 758 if ((!VM_OBJECT_TRYWLOCK(object) && 759 (!vm_pageout_fallback_object_lock(m, &next) || 760 m->hold_count != 0)) || vm_page_busied(m)) { 761 VM_OBJECT_WUNLOCK(object); 762 vm_page_unlock(m); 763 continue; 764 } 765 766 /* 767 * Unlock the laundry queue, invalidating the 'next' pointer. 768 * Use a marker to remember our place in the laundry queue. 769 */ 770 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_laundry_marker, 771 plinks.q); 772 vm_pagequeue_unlock(pq); 773 queue_locked = false; 774 775 /* 776 * Invalid pages can be easily freed. They cannot be 777 * mapped; vm_page_free() asserts this. 778 */ 779 if (m->valid == 0) 780 goto free_page; 781 782 /* 783 * If the page has been referenced and the object is not dead, 784 * reactivate or requeue the page depending on whether the 785 * object is mapped. 786 */ 787 if ((m->aflags & PGA_REFERENCED) != 0) { 788 vm_page_aflag_clear(m, PGA_REFERENCED); 789 act_delta = 1; 790 } else 791 act_delta = 0; 792 if (object->ref_count != 0) 793 act_delta += pmap_ts_referenced(m); 794 else { 795 KASSERT(!pmap_page_is_mapped(m), 796 ("page %p is mapped", m)); 797 } 798 if (act_delta != 0) { 799 if (object->ref_count != 0) { 800 VM_CNT_INC(v_reactivated); 801 vm_page_activate(m); 802 803 /* 804 * Increase the activation count if the page 805 * was referenced while in the laundry queue. 806 * This makes it less likely that the page will 807 * be returned prematurely to the inactive 808 * queue. 809 */ 810 m->act_count += act_delta + ACT_ADVANCE; 811 812 /* 813 * If this was a background laundering, count 814 * activated pages towards our target. The 815 * purpose of background laundering is to ensure 816 * that pages are eventually cycled through the 817 * laundry queue, and an activation is a valid 818 * way out. 819 */ 820 if (!in_shortfall) 821 launder--; 822 goto drop_page; 823 } else if ((object->flags & OBJ_DEAD) == 0) 824 goto requeue_page; 825 } 826 827 /* 828 * If the page appears to be clean at the machine-independent 829 * layer, then remove all of its mappings from the pmap in 830 * anticipation of freeing it. If, however, any of the page's 831 * mappings allow write access, then the page may still be 832 * modified until the last of those mappings are removed. 833 */ 834 if (object->ref_count != 0) { 835 vm_page_test_dirty(m); 836 if (m->dirty == 0) 837 pmap_remove_all(m); 838 } 839 840 /* 841 * Clean pages are freed, and dirty pages are paged out unless 842 * they belong to a dead object. Requeueing dirty pages from 843 * dead objects is pointless, as they are being paged out and 844 * freed by the thread that destroyed the object. 845 */ 846 if (m->dirty == 0) { 847 free_page: 848 vm_page_free(m); 849 VM_CNT_INC(v_dfree); 850 } else if ((object->flags & OBJ_DEAD) == 0) { 851 if (object->type != OBJT_SWAP && 852 object->type != OBJT_DEFAULT) 853 pageout_ok = true; 854 else if (disable_swap_pageouts) 855 pageout_ok = false; 856 else 857 pageout_ok = true; 858 if (!pageout_ok) { 859 requeue_page: 860 vm_pagequeue_lock(pq); 861 queue_locked = true; 862 vm_page_requeue_locked(m); 863 goto drop_page; 864 } 865 866 /* 867 * Form a cluster with adjacent, dirty pages from the 868 * same object, and page out that entire cluster. 869 * 870 * The adjacent, dirty pages must also be in the 871 * laundry. However, their mappings are not checked 872 * for new references. Consequently, a recently 873 * referenced page may be paged out. However, that 874 * page will not be prematurely reclaimed. After page 875 * out, the page will be placed in the inactive queue, 876 * where any new references will be detected and the 877 * page reactivated. 878 */ 879 error = vm_pageout_clean(m, &numpagedout); 880 if (error == 0) { 881 launder -= numpagedout; 882 maxscan -= numpagedout - 1; 883 } else if (error == EDEADLK) { 884 pageout_lock_miss++; 885 vnodes_skipped++; 886 } 887 goto relock_queue; 888 } 889 drop_page: 890 vm_page_unlock(m); 891 VM_OBJECT_WUNLOCK(object); 892 relock_queue: 893 if (!queue_locked) { 894 vm_pagequeue_lock(pq); 895 queue_locked = true; 896 } 897 next = TAILQ_NEXT(&vmd->vmd_laundry_marker, plinks.q); 898 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_laundry_marker, plinks.q); 899 } 900 vm_pagequeue_unlock(pq); 901 902 if (launder > 0 && pq == &vmd->vmd_pagequeues[PQ_UNSWAPPABLE]) { 903 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 904 goto scan; 905 } 906 907 /* 908 * Wakeup the sync daemon if we skipped a vnode in a writeable object 909 * and we didn't launder enough pages. 910 */ 911 if (vnodes_skipped > 0 && launder > 0) 912 (void)speedup_syncer(); 913 914 return (starting_target - launder); 915 } 916 917 /* 918 * Compute the integer square root. 919 */ 920 static u_int 921 isqrt(u_int num) 922 { 923 u_int bit, root, tmp; 924 925 bit = 1u << ((NBBY * sizeof(u_int)) - 2); 926 while (bit > num) 927 bit >>= 2; 928 root = 0; 929 while (bit != 0) { 930 tmp = root + bit; 931 root >>= 1; 932 if (num >= tmp) { 933 num -= tmp; 934 root += bit; 935 } 936 bit >>= 2; 937 } 938 return (root); 939 } 940 941 /* 942 * Perform the work of the laundry thread: periodically wake up and determine 943 * whether any pages need to be laundered. If so, determine the number of pages 944 * that need to be laundered, and launder them. 945 */ 946 static void 947 vm_pageout_laundry_worker(void *arg) 948 { 949 struct vm_domain *domain; 950 struct vm_pagequeue *pq; 951 uint64_t nclean, ndirty; 952 u_int last_launder, wakeups; 953 int domidx, last_target, launder, shortfall, shortfall_cycle, target; 954 bool in_shortfall; 955 956 domidx = (uintptr_t)arg; 957 domain = &vm_dom[domidx]; 958 pq = &domain->vmd_pagequeues[PQ_LAUNDRY]; 959 KASSERT(domain->vmd_segs != 0, ("domain without segments")); 960 vm_pageout_init_marker(&domain->vmd_laundry_marker, PQ_LAUNDRY); 961 962 shortfall = 0; 963 in_shortfall = false; 964 shortfall_cycle = 0; 965 target = 0; 966 last_launder = 0; 967 968 /* 969 * Calls to these handlers are serialized by the swap syscall lock. 970 */ 971 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, domain, 972 EVENTHANDLER_PRI_ANY); 973 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, domain, 974 EVENTHANDLER_PRI_ANY); 975 976 /* 977 * The pageout laundry worker is never done, so loop forever. 978 */ 979 for (;;) { 980 KASSERT(target >= 0, ("negative target %d", target)); 981 KASSERT(shortfall_cycle >= 0, 982 ("negative cycle %d", shortfall_cycle)); 983 launder = 0; 984 wakeups = VM_CNT_FETCH(v_pdwakeups); 985 986 /* 987 * First determine whether we need to launder pages to meet a 988 * shortage of free pages. 989 */ 990 if (shortfall > 0) { 991 in_shortfall = true; 992 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 993 target = shortfall; 994 } else if (!in_shortfall) 995 goto trybackground; 996 else if (shortfall_cycle == 0 || vm_laundry_target() <= 0) { 997 /* 998 * We recently entered shortfall and began laundering 999 * pages. If we have completed that laundering run 1000 * (and we are no longer in shortfall) or we have met 1001 * our laundry target through other activity, then we 1002 * can stop laundering pages. 1003 */ 1004 in_shortfall = false; 1005 target = 0; 1006 goto trybackground; 1007 } 1008 last_launder = wakeups; 1009 launder = target / shortfall_cycle--; 1010 goto dolaundry; 1011 1012 /* 1013 * There's no immediate need to launder any pages; see if we 1014 * meet the conditions to perform background laundering: 1015 * 1016 * 1. The ratio of dirty to clean inactive pages exceeds the 1017 * background laundering threshold and the pagedaemon has 1018 * been woken up to reclaim pages since our last 1019 * laundering, or 1020 * 2. we haven't yet reached the target of the current 1021 * background laundering run. 1022 * 1023 * The background laundering threshold is not a constant. 1024 * Instead, it is a slowly growing function of the number of 1025 * page daemon wakeups since the last laundering. Thus, as the 1026 * ratio of dirty to clean inactive pages grows, the amount of 1027 * memory pressure required to trigger laundering decreases. 1028 */ 1029 trybackground: 1030 nclean = vm_cnt.v_inactive_count + vm_cnt.v_free_count; 1031 ndirty = vm_cnt.v_laundry_count; 1032 if (target == 0 && wakeups != last_launder && 1033 ndirty * isqrt(wakeups - last_launder) >= nclean) { 1034 target = vm_background_launder_target; 1035 } 1036 1037 /* 1038 * We have a non-zero background laundering target. If we've 1039 * laundered up to our maximum without observing a page daemon 1040 * wakeup, just stop. This is a safety belt that ensures we 1041 * don't launder an excessive amount if memory pressure is low 1042 * and the ratio of dirty to clean pages is large. Otherwise, 1043 * proceed at the background laundering rate. 1044 */ 1045 if (target > 0) { 1046 if (wakeups != last_launder) { 1047 last_launder = wakeups; 1048 last_target = target; 1049 } else if (last_target - target >= 1050 vm_background_launder_max * PAGE_SIZE / 1024) { 1051 target = 0; 1052 } 1053 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1054 launder /= VM_LAUNDER_RATE; 1055 if (launder > target) 1056 launder = target; 1057 } 1058 1059 dolaundry: 1060 if (launder > 0) { 1061 /* 1062 * Because of I/O clustering, the number of laundered 1063 * pages could exceed "target" by the maximum size of 1064 * a cluster minus one. 1065 */ 1066 target -= min(vm_pageout_launder(domain, launder, 1067 in_shortfall), target); 1068 pause("laundp", hz / VM_LAUNDER_RATE); 1069 } 1070 1071 /* 1072 * If we're not currently laundering pages and the page daemon 1073 * hasn't posted a new request, sleep until the page daemon 1074 * kicks us. 1075 */ 1076 vm_pagequeue_lock(pq); 1077 if (target == 0 && vm_laundry_request == VM_LAUNDRY_IDLE) 1078 (void)mtx_sleep(&vm_laundry_request, 1079 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1080 1081 /* 1082 * If the pagedaemon has indicated that it's in shortfall, start 1083 * a shortfall laundering unless we're already in the middle of 1084 * one. This may preempt a background laundering. 1085 */ 1086 if (vm_laundry_request == VM_LAUNDRY_SHORTFALL && 1087 (!in_shortfall || shortfall_cycle == 0)) { 1088 shortfall = vm_laundry_target() + vm_pageout_deficit; 1089 target = 0; 1090 } else 1091 shortfall = 0; 1092 1093 if (target == 0) 1094 vm_laundry_request = VM_LAUNDRY_IDLE; 1095 vm_pagequeue_unlock(pq); 1096 } 1097 } 1098 1099 /* 1100 * vm_pageout_scan does the dirty work for the pageout daemon. 1101 * 1102 * pass == 0: Update active LRU/deactivate pages 1103 * pass >= 1: Free inactive pages 1104 * 1105 * Returns true if pass was zero or enough pages were freed by the inactive 1106 * queue scan to meet the target. 1107 */ 1108 static bool 1109 vm_pageout_scan(struct vm_domain *vmd, int pass) 1110 { 1111 vm_page_t m, next; 1112 struct vm_pagequeue *pq; 1113 vm_object_t object; 1114 long min_scan; 1115 int act_delta, addl_page_shortage, deficit, inactq_shortage, maxscan; 1116 int page_shortage, scan_tick, scanned, starting_page_shortage; 1117 boolean_t queue_locked; 1118 1119 /* 1120 * If we need to reclaim memory ask kernel caches to return 1121 * some. We rate limit to avoid thrashing. 1122 */ 1123 if (vmd == &vm_dom[0] && pass > 0 && 1124 (time_uptime - lowmem_uptime) >= lowmem_period) { 1125 /* 1126 * Decrease registered cache sizes. 1127 */ 1128 SDT_PROBE0(vm, , , vm__lowmem_scan); 1129 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 1130 /* 1131 * We do this explicitly after the caches have been 1132 * drained above. 1133 */ 1134 uma_reclaim(); 1135 lowmem_uptime = time_uptime; 1136 } 1137 1138 /* 1139 * The addl_page_shortage is the number of temporarily 1140 * stuck pages in the inactive queue. In other words, the 1141 * number of pages from the inactive count that should be 1142 * discounted in setting the target for the active queue scan. 1143 */ 1144 addl_page_shortage = 0; 1145 1146 /* 1147 * Calculate the number of pages that we want to free. This number 1148 * can be negative if many pages are freed between the wakeup call to 1149 * the page daemon and this calculation. 1150 */ 1151 if (pass > 0) { 1152 deficit = atomic_readandclear_int(&vm_pageout_deficit); 1153 page_shortage = vm_paging_target() + deficit; 1154 } else 1155 page_shortage = deficit = 0; 1156 starting_page_shortage = page_shortage; 1157 1158 /* 1159 * Start scanning the inactive queue for pages that we can free. The 1160 * scan will stop when we reach the target or we have scanned the 1161 * entire queue. (Note that m->act_count is not used to make 1162 * decisions for the inactive queue, only for the active queue.) 1163 */ 1164 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1165 maxscan = pq->pq_cnt; 1166 vm_pagequeue_lock(pq); 1167 queue_locked = TRUE; 1168 for (m = TAILQ_FIRST(&pq->pq_pl); 1169 m != NULL && maxscan-- > 0 && page_shortage > 0; 1170 m = next) { 1171 vm_pagequeue_assert_locked(pq); 1172 KASSERT(queue_locked, ("unlocked inactive queue")); 1173 KASSERT(vm_page_inactive(m), ("Inactive queue %p", m)); 1174 1175 VM_CNT_INC(v_pdpages); 1176 next = TAILQ_NEXT(m, plinks.q); 1177 1178 /* 1179 * skip marker pages 1180 */ 1181 if (m->flags & PG_MARKER) 1182 continue; 1183 1184 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1185 ("Fictitious page %p cannot be in inactive queue", m)); 1186 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1187 ("Unmanaged page %p cannot be in inactive queue", m)); 1188 1189 /* 1190 * The page or object lock acquisitions fail if the 1191 * page was removed from the queue or moved to a 1192 * different position within the queue. In either 1193 * case, addl_page_shortage should not be incremented. 1194 */ 1195 if (!vm_pageout_page_lock(m, &next)) 1196 goto unlock_page; 1197 else if (m->hold_count != 0) { 1198 /* 1199 * Held pages are essentially stuck in the 1200 * queue. So, they ought to be discounted 1201 * from the inactive count. See the 1202 * calculation of inactq_shortage before the 1203 * loop over the active queue below. 1204 */ 1205 addl_page_shortage++; 1206 goto unlock_page; 1207 } 1208 object = m->object; 1209 if (!VM_OBJECT_TRYWLOCK(object)) { 1210 if (!vm_pageout_fallback_object_lock(m, &next)) 1211 goto unlock_object; 1212 else if (m->hold_count != 0) { 1213 addl_page_shortage++; 1214 goto unlock_object; 1215 } 1216 } 1217 if (vm_page_busied(m)) { 1218 /* 1219 * Don't mess with busy pages. Leave them at 1220 * the front of the queue. Most likely, they 1221 * are being paged out and will leave the 1222 * queue shortly after the scan finishes. So, 1223 * they ought to be discounted from the 1224 * inactive count. 1225 */ 1226 addl_page_shortage++; 1227 unlock_object: 1228 VM_OBJECT_WUNLOCK(object); 1229 unlock_page: 1230 vm_page_unlock(m); 1231 continue; 1232 } 1233 KASSERT(m->hold_count == 0, ("Held page %p", m)); 1234 1235 /* 1236 * Dequeue the inactive page and unlock the inactive page 1237 * queue, invalidating the 'next' pointer. Dequeueing the 1238 * page here avoids a later reacquisition (and release) of 1239 * the inactive page queue lock when vm_page_activate(), 1240 * vm_page_free(), or vm_page_launder() is called. Use a 1241 * marker to remember our place in the inactive queue. 1242 */ 1243 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q); 1244 vm_page_dequeue_locked(m); 1245 vm_pagequeue_unlock(pq); 1246 queue_locked = FALSE; 1247 1248 /* 1249 * Invalid pages can be easily freed. They cannot be 1250 * mapped, vm_page_free() asserts this. 1251 */ 1252 if (m->valid == 0) 1253 goto free_page; 1254 1255 /* 1256 * If the page has been referenced and the object is not dead, 1257 * reactivate or requeue the page depending on whether the 1258 * object is mapped. 1259 */ 1260 if ((m->aflags & PGA_REFERENCED) != 0) { 1261 vm_page_aflag_clear(m, PGA_REFERENCED); 1262 act_delta = 1; 1263 } else 1264 act_delta = 0; 1265 if (object->ref_count != 0) { 1266 act_delta += pmap_ts_referenced(m); 1267 } else { 1268 KASSERT(!pmap_page_is_mapped(m), 1269 ("vm_pageout_scan: page %p is mapped", m)); 1270 } 1271 if (act_delta != 0) { 1272 if (object->ref_count != 0) { 1273 VM_CNT_INC(v_reactivated); 1274 vm_page_activate(m); 1275 1276 /* 1277 * Increase the activation count if the page 1278 * was referenced while in the inactive queue. 1279 * This makes it less likely that the page will 1280 * be returned prematurely to the inactive 1281 * queue. 1282 */ 1283 m->act_count += act_delta + ACT_ADVANCE; 1284 goto drop_page; 1285 } else if ((object->flags & OBJ_DEAD) == 0) { 1286 vm_pagequeue_lock(pq); 1287 queue_locked = TRUE; 1288 m->queue = PQ_INACTIVE; 1289 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 1290 vm_pagequeue_cnt_inc(pq); 1291 goto drop_page; 1292 } 1293 } 1294 1295 /* 1296 * If the page appears to be clean at the machine-independent 1297 * layer, then remove all of its mappings from the pmap in 1298 * anticipation of freeing it. If, however, any of the page's 1299 * mappings allow write access, then the page may still be 1300 * modified until the last of those mappings are removed. 1301 */ 1302 if (object->ref_count != 0) { 1303 vm_page_test_dirty(m); 1304 if (m->dirty == 0) 1305 pmap_remove_all(m); 1306 } 1307 1308 /* 1309 * Clean pages can be freed, but dirty pages must be sent back 1310 * to the laundry, unless they belong to a dead object. 1311 * Requeueing dirty pages from dead objects is pointless, as 1312 * they are being paged out and freed by the thread that 1313 * destroyed the object. 1314 */ 1315 if (m->dirty == 0) { 1316 free_page: 1317 vm_page_free(m); 1318 VM_CNT_INC(v_dfree); 1319 --page_shortage; 1320 } else if ((object->flags & OBJ_DEAD) == 0) 1321 vm_page_launder(m); 1322 drop_page: 1323 vm_page_unlock(m); 1324 VM_OBJECT_WUNLOCK(object); 1325 if (!queue_locked) { 1326 vm_pagequeue_lock(pq); 1327 queue_locked = TRUE; 1328 } 1329 next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q); 1330 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q); 1331 } 1332 vm_pagequeue_unlock(pq); 1333 1334 /* 1335 * Wake up the laundry thread so that it can perform any needed 1336 * laundering. If we didn't meet our target, we're in shortfall and 1337 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1338 * swap devices are configured, the laundry thread has no work to do, so 1339 * don't bother waking it up. 1340 */ 1341 if (vm_laundry_request == VM_LAUNDRY_IDLE && 1342 starting_page_shortage > 0) { 1343 pq = &vm_dom[0].vmd_pagequeues[PQ_LAUNDRY]; 1344 vm_pagequeue_lock(pq); 1345 if (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled)) { 1346 if (page_shortage > 0) { 1347 vm_laundry_request = VM_LAUNDRY_SHORTFALL; 1348 VM_CNT_INC(v_pdshortfalls); 1349 } else if (vm_laundry_request != VM_LAUNDRY_SHORTFALL) 1350 vm_laundry_request = VM_LAUNDRY_BACKGROUND; 1351 wakeup(&vm_laundry_request); 1352 } 1353 vm_pagequeue_unlock(pq); 1354 } 1355 1356 /* 1357 * Wakeup the swapout daemon if we didn't free the targeted number of 1358 * pages. 1359 */ 1360 if (page_shortage > 0) 1361 vm_swapout_run(); 1362 1363 /* 1364 * If the inactive queue scan fails repeatedly to meet its 1365 * target, kill the largest process. 1366 */ 1367 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1368 1369 /* 1370 * Compute the number of pages we want to try to move from the 1371 * active queue to either the inactive or laundry queue. 1372 * 1373 * When scanning active pages, we make clean pages count more heavily 1374 * towards the page shortage than dirty pages. This is because dirty 1375 * pages must be laundered before they can be reused and thus have less 1376 * utility when attempting to quickly alleviate a shortage. However, 1377 * this weighting also causes the scan to deactivate dirty pages more 1378 * more aggressively, improving the effectiveness of clustering and 1379 * ensuring that they can eventually be reused. 1380 */ 1381 inactq_shortage = vm_cnt.v_inactive_target - (vm_cnt.v_inactive_count + 1382 vm_cnt.v_laundry_count / act_scan_laundry_weight) + 1383 vm_paging_target() + deficit + addl_page_shortage; 1384 page_shortage *= act_scan_laundry_weight; 1385 1386 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1387 vm_pagequeue_lock(pq); 1388 maxscan = pq->pq_cnt; 1389 1390 /* 1391 * If we're just idle polling attempt to visit every 1392 * active page within 'update_period' seconds. 1393 */ 1394 scan_tick = ticks; 1395 if (vm_pageout_update_period != 0) { 1396 min_scan = pq->pq_cnt; 1397 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1398 min_scan /= hz * vm_pageout_update_period; 1399 } else 1400 min_scan = 0; 1401 if (min_scan > 0 || (inactq_shortage > 0 && maxscan > 0)) 1402 vmd->vmd_last_active_scan = scan_tick; 1403 1404 /* 1405 * Scan the active queue for pages that can be deactivated. Update 1406 * the per-page activity counter and use it to identify deactivation 1407 * candidates. Held pages may be deactivated. 1408 */ 1409 for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned < 1410 min_scan || (inactq_shortage > 0 && scanned < maxscan)); m = next, 1411 scanned++) { 1412 KASSERT(m->queue == PQ_ACTIVE, 1413 ("vm_pageout_scan: page %p isn't active", m)); 1414 next = TAILQ_NEXT(m, plinks.q); 1415 if ((m->flags & PG_MARKER) != 0) 1416 continue; 1417 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1418 ("Fictitious page %p cannot be in active queue", m)); 1419 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1420 ("Unmanaged page %p cannot be in active queue", m)); 1421 if (!vm_pageout_page_lock(m, &next)) { 1422 vm_page_unlock(m); 1423 continue; 1424 } 1425 1426 /* 1427 * The count for page daemon pages is updated after checking 1428 * the page for eligibility. 1429 */ 1430 VM_CNT_INC(v_pdpages); 1431 1432 /* 1433 * Check to see "how much" the page has been used. 1434 */ 1435 if ((m->aflags & PGA_REFERENCED) != 0) { 1436 vm_page_aflag_clear(m, PGA_REFERENCED); 1437 act_delta = 1; 1438 } else 1439 act_delta = 0; 1440 1441 /* 1442 * Perform an unsynchronized object ref count check. While 1443 * the page lock ensures that the page is not reallocated to 1444 * another object, in particular, one with unmanaged mappings 1445 * that cannot support pmap_ts_referenced(), two races are, 1446 * nonetheless, possible: 1447 * 1) The count was transitioning to zero, but we saw a non- 1448 * zero value. pmap_ts_referenced() will return zero 1449 * because the page is not mapped. 1450 * 2) The count was transitioning to one, but we saw zero. 1451 * This race delays the detection of a new reference. At 1452 * worst, we will deactivate and reactivate the page. 1453 */ 1454 if (m->object->ref_count != 0) 1455 act_delta += pmap_ts_referenced(m); 1456 1457 /* 1458 * Advance or decay the act_count based on recent usage. 1459 */ 1460 if (act_delta != 0) { 1461 m->act_count += ACT_ADVANCE + act_delta; 1462 if (m->act_count > ACT_MAX) 1463 m->act_count = ACT_MAX; 1464 } else 1465 m->act_count -= min(m->act_count, ACT_DECLINE); 1466 1467 /* 1468 * Move this page to the tail of the active, inactive or laundry 1469 * queue depending on usage. 1470 */ 1471 if (m->act_count == 0) { 1472 /* Dequeue to avoid later lock recursion. */ 1473 vm_page_dequeue_locked(m); 1474 1475 /* 1476 * When not short for inactive pages, let dirty pages go 1477 * through the inactive queue before moving to the 1478 * laundry queues. This gives them some extra time to 1479 * be reactivated, potentially avoiding an expensive 1480 * pageout. During a page shortage, the inactive queue 1481 * is necessarily small, so we may move dirty pages 1482 * directly to the laundry queue. 1483 */ 1484 if (inactq_shortage <= 0) 1485 vm_page_deactivate(m); 1486 else { 1487 /* 1488 * Calling vm_page_test_dirty() here would 1489 * require acquisition of the object's write 1490 * lock. However, during a page shortage, 1491 * directing dirty pages into the laundry 1492 * queue is only an optimization and not a 1493 * requirement. Therefore, we simply rely on 1494 * the opportunistic updates to the page's 1495 * dirty field by the pmap. 1496 */ 1497 if (m->dirty == 0) { 1498 vm_page_deactivate(m); 1499 inactq_shortage -= 1500 act_scan_laundry_weight; 1501 } else { 1502 vm_page_launder(m); 1503 inactq_shortage--; 1504 } 1505 } 1506 } else 1507 vm_page_requeue_locked(m); 1508 vm_page_unlock(m); 1509 } 1510 vm_pagequeue_unlock(pq); 1511 if (pass > 0) 1512 vm_swapout_run_idle(); 1513 return (page_shortage <= 0); 1514 } 1515 1516 static int vm_pageout_oom_vote; 1517 1518 /* 1519 * The pagedaemon threads randlomly select one to perform the 1520 * OOM. Trying to kill processes before all pagedaemons 1521 * failed to reach free target is premature. 1522 */ 1523 static void 1524 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1525 int starting_page_shortage) 1526 { 1527 int old_vote; 1528 1529 if (starting_page_shortage <= 0 || starting_page_shortage != 1530 page_shortage) 1531 vmd->vmd_oom_seq = 0; 1532 else 1533 vmd->vmd_oom_seq++; 1534 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1535 if (vmd->vmd_oom) { 1536 vmd->vmd_oom = FALSE; 1537 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1538 } 1539 return; 1540 } 1541 1542 /* 1543 * Do not follow the call sequence until OOM condition is 1544 * cleared. 1545 */ 1546 vmd->vmd_oom_seq = 0; 1547 1548 if (vmd->vmd_oom) 1549 return; 1550 1551 vmd->vmd_oom = TRUE; 1552 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1553 if (old_vote != vm_ndomains - 1) 1554 return; 1555 1556 /* 1557 * The current pagedaemon thread is the last in the quorum to 1558 * start OOM. Initiate the selection and signaling of the 1559 * victim. 1560 */ 1561 vm_pageout_oom(VM_OOM_MEM); 1562 1563 /* 1564 * After one round of OOM terror, recall our vote. On the 1565 * next pass, current pagedaemon would vote again if the low 1566 * memory condition is still there, due to vmd_oom being 1567 * false. 1568 */ 1569 vmd->vmd_oom = FALSE; 1570 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1571 } 1572 1573 /* 1574 * The OOM killer is the page daemon's action of last resort when 1575 * memory allocation requests have been stalled for a prolonged period 1576 * of time because it cannot reclaim memory. This function computes 1577 * the approximate number of physical pages that could be reclaimed if 1578 * the specified address space is destroyed. 1579 * 1580 * Private, anonymous memory owned by the address space is the 1581 * principal resource that we expect to recover after an OOM kill. 1582 * Since the physical pages mapped by the address space's COW entries 1583 * are typically shared pages, they are unlikely to be released and so 1584 * they are not counted. 1585 * 1586 * To get to the point where the page daemon runs the OOM killer, its 1587 * efforts to write-back vnode-backed pages may have stalled. This 1588 * could be caused by a memory allocation deadlock in the write path 1589 * that might be resolved by an OOM kill. Therefore, physical pages 1590 * belonging to vnode-backed objects are counted, because they might 1591 * be freed without being written out first if the address space holds 1592 * the last reference to an unlinked vnode. 1593 * 1594 * Similarly, physical pages belonging to OBJT_PHYS objects are 1595 * counted because the address space might hold the last reference to 1596 * the object. 1597 */ 1598 static long 1599 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1600 { 1601 vm_map_t map; 1602 vm_map_entry_t entry; 1603 vm_object_t obj; 1604 long res; 1605 1606 map = &vmspace->vm_map; 1607 KASSERT(!map->system_map, ("system map")); 1608 sx_assert(&map->lock, SA_LOCKED); 1609 res = 0; 1610 for (entry = map->header.next; entry != &map->header; 1611 entry = entry->next) { 1612 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1613 continue; 1614 obj = entry->object.vm_object; 1615 if (obj == NULL) 1616 continue; 1617 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1618 obj->ref_count != 1) 1619 continue; 1620 switch (obj->type) { 1621 case OBJT_DEFAULT: 1622 case OBJT_SWAP: 1623 case OBJT_PHYS: 1624 case OBJT_VNODE: 1625 res += obj->resident_page_count; 1626 break; 1627 } 1628 } 1629 return (res); 1630 } 1631 1632 void 1633 vm_pageout_oom(int shortage) 1634 { 1635 struct proc *p, *bigproc; 1636 vm_offset_t size, bigsize; 1637 struct thread *td; 1638 struct vmspace *vm; 1639 bool breakout; 1640 1641 /* 1642 * We keep the process bigproc locked once we find it to keep anyone 1643 * from messing with it; however, there is a possibility of 1644 * deadlock if process B is bigproc and one of its child processes 1645 * attempts to propagate a signal to B while we are waiting for A's 1646 * lock while walking this list. To avoid this, we don't block on 1647 * the process lock but just skip a process if it is already locked. 1648 */ 1649 bigproc = NULL; 1650 bigsize = 0; 1651 sx_slock(&allproc_lock); 1652 FOREACH_PROC_IN_SYSTEM(p) { 1653 PROC_LOCK(p); 1654 1655 /* 1656 * If this is a system, protected or killed process, skip it. 1657 */ 1658 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1659 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1660 p->p_pid == 1 || P_KILLED(p) || 1661 (p->p_pid < 48 && swap_pager_avail != 0)) { 1662 PROC_UNLOCK(p); 1663 continue; 1664 } 1665 /* 1666 * If the process is in a non-running type state, 1667 * don't touch it. Check all the threads individually. 1668 */ 1669 breakout = false; 1670 FOREACH_THREAD_IN_PROC(p, td) { 1671 thread_lock(td); 1672 if (!TD_ON_RUNQ(td) && 1673 !TD_IS_RUNNING(td) && 1674 !TD_IS_SLEEPING(td) && 1675 !TD_IS_SUSPENDED(td) && 1676 !TD_IS_SWAPPED(td)) { 1677 thread_unlock(td); 1678 breakout = true; 1679 break; 1680 } 1681 thread_unlock(td); 1682 } 1683 if (breakout) { 1684 PROC_UNLOCK(p); 1685 continue; 1686 } 1687 /* 1688 * get the process size 1689 */ 1690 vm = vmspace_acquire_ref(p); 1691 if (vm == NULL) { 1692 PROC_UNLOCK(p); 1693 continue; 1694 } 1695 _PHOLD_LITE(p); 1696 PROC_UNLOCK(p); 1697 sx_sunlock(&allproc_lock); 1698 if (!vm_map_trylock_read(&vm->vm_map)) { 1699 vmspace_free(vm); 1700 sx_slock(&allproc_lock); 1701 PRELE(p); 1702 continue; 1703 } 1704 size = vmspace_swap_count(vm); 1705 if (shortage == VM_OOM_MEM) 1706 size += vm_pageout_oom_pagecount(vm); 1707 vm_map_unlock_read(&vm->vm_map); 1708 vmspace_free(vm); 1709 sx_slock(&allproc_lock); 1710 1711 /* 1712 * If this process is bigger than the biggest one, 1713 * remember it. 1714 */ 1715 if (size > bigsize) { 1716 if (bigproc != NULL) 1717 PRELE(bigproc); 1718 bigproc = p; 1719 bigsize = size; 1720 } else { 1721 PRELE(p); 1722 } 1723 } 1724 sx_sunlock(&allproc_lock); 1725 if (bigproc != NULL) { 1726 if (vm_panic_on_oom != 0) 1727 panic("out of swap space"); 1728 PROC_LOCK(bigproc); 1729 killproc(bigproc, "out of swap space"); 1730 sched_nice(bigproc, PRIO_MIN); 1731 _PRELE(bigproc); 1732 PROC_UNLOCK(bigproc); 1733 wakeup(&vm_cnt.v_free_count); 1734 } 1735 } 1736 1737 static void 1738 vm_pageout_worker(void *arg) 1739 { 1740 struct vm_domain *domain; 1741 int domidx, pass; 1742 bool target_met; 1743 1744 domidx = (uintptr_t)arg; 1745 domain = &vm_dom[domidx]; 1746 pass = 0; 1747 target_met = true; 1748 1749 /* 1750 * XXXKIB It could be useful to bind pageout daemon threads to 1751 * the cores belonging to the domain, from which vm_page_array 1752 * is allocated. 1753 */ 1754 1755 KASSERT(domain->vmd_segs != 0, ("domain without segments")); 1756 domain->vmd_last_active_scan = ticks; 1757 vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE); 1758 vm_pageout_init_marker(&domain->vmd_inacthead, PQ_INACTIVE); 1759 TAILQ_INSERT_HEAD(&domain->vmd_pagequeues[PQ_INACTIVE].pq_pl, 1760 &domain->vmd_inacthead, plinks.q); 1761 1762 /* 1763 * The pageout daemon worker is never done, so loop forever. 1764 */ 1765 while (TRUE) { 1766 mtx_lock(&vm_page_queue_free_mtx); 1767 1768 /* 1769 * Generally, after a level >= 1 scan, if there are enough 1770 * free pages to wakeup the waiters, then they are already 1771 * awake. A call to vm_page_free() during the scan awakened 1772 * them. However, in the following case, this wakeup serves 1773 * to bound the amount of time that a thread might wait. 1774 * Suppose a thread's call to vm_page_alloc() fails, but 1775 * before that thread calls VM_WAIT, enough pages are freed by 1776 * other threads to alleviate the free page shortage. The 1777 * thread will, nonetheless, wait until another page is freed 1778 * or this wakeup is performed. 1779 */ 1780 if (vm_pages_needed && !vm_page_count_min()) { 1781 vm_pages_needed = false; 1782 wakeup(&vm_cnt.v_free_count); 1783 } 1784 1785 /* 1786 * Do not clear vm_pageout_wanted until we reach our free page 1787 * target. Otherwise, we may be awakened over and over again, 1788 * wasting CPU time. 1789 */ 1790 if (vm_pageout_wanted && target_met) 1791 vm_pageout_wanted = false; 1792 1793 /* 1794 * Might the page daemon receive a wakeup call? 1795 */ 1796 if (vm_pageout_wanted) { 1797 /* 1798 * No. Either vm_pageout_wanted was set by another 1799 * thread during the previous scan, which must have 1800 * been a level 0 scan, or vm_pageout_wanted was 1801 * already set and the scan failed to free enough 1802 * pages. If we haven't yet performed a level >= 1 1803 * (page reclamation) scan, then increase the level 1804 * and scan again now. Otherwise, sleep a bit and 1805 * try again later. 1806 */ 1807 mtx_unlock(&vm_page_queue_free_mtx); 1808 if (pass >= 1) 1809 pause("psleep", hz / VM_INACT_SCAN_RATE); 1810 pass++; 1811 } else { 1812 /* 1813 * Yes. Sleep until pages need to be reclaimed or 1814 * have their reference stats updated. 1815 */ 1816 if (mtx_sleep(&vm_pageout_wanted, 1817 &vm_page_queue_free_mtx, PDROP | PVM, "psleep", 1818 hz) == 0) { 1819 VM_CNT_INC(v_pdwakeups); 1820 pass = 1; 1821 } else 1822 pass = 0; 1823 } 1824 1825 target_met = vm_pageout_scan(domain, pass); 1826 } 1827 } 1828 1829 /* 1830 * vm_pageout_init initialises basic pageout daemon settings. 1831 */ 1832 static void 1833 vm_pageout_init(void) 1834 { 1835 /* 1836 * Initialize some paging parameters. 1837 */ 1838 vm_cnt.v_interrupt_free_min = 2; 1839 if (vm_cnt.v_page_count < 2000) 1840 vm_pageout_page_count = 8; 1841 1842 /* 1843 * v_free_reserved needs to include enough for the largest 1844 * swap pager structures plus enough for any pv_entry structs 1845 * when paging. 1846 */ 1847 if (vm_cnt.v_page_count > 1024) 1848 vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200; 1849 else 1850 vm_cnt.v_free_min = 4; 1851 vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE + 1852 vm_cnt.v_interrupt_free_min; 1853 vm_cnt.v_free_reserved = vm_pageout_page_count + 1854 vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768); 1855 vm_cnt.v_free_severe = vm_cnt.v_free_min / 2; 1856 vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved; 1857 vm_cnt.v_free_min += vm_cnt.v_free_reserved; 1858 vm_cnt.v_free_severe += vm_cnt.v_free_reserved; 1859 vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2; 1860 if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3) 1861 vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3; 1862 1863 /* 1864 * Set the default wakeup threshold to be 10% above the minimum 1865 * page limit. This keeps the steady state out of shortfall. 1866 */ 1867 vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11; 1868 1869 /* 1870 * Set interval in seconds for active scan. We want to visit each 1871 * page at least once every ten minutes. This is to prevent worst 1872 * case paging behaviors with stale active LRU. 1873 */ 1874 if (vm_pageout_update_period == 0) 1875 vm_pageout_update_period = 600; 1876 1877 /* XXX does not really belong here */ 1878 if (vm_page_max_wired == 0) 1879 vm_page_max_wired = vm_cnt.v_free_count / 3; 1880 1881 /* 1882 * Target amount of memory to move out of the laundry queue during a 1883 * background laundering. This is proportional to the amount of system 1884 * memory. 1885 */ 1886 vm_background_launder_target = (vm_cnt.v_free_target - 1887 vm_cnt.v_free_min) / 10; 1888 } 1889 1890 /* 1891 * vm_pageout is the high level pageout daemon. 1892 */ 1893 static void 1894 vm_pageout(void) 1895 { 1896 int error; 1897 #ifdef VM_NUMA_ALLOC 1898 int i; 1899 #endif 1900 1901 swap_pager_swap_init(); 1902 error = kthread_add(vm_pageout_laundry_worker, NULL, curproc, NULL, 1903 0, 0, "laundry: dom0"); 1904 if (error != 0) 1905 panic("starting laundry for domain 0, error %d", error); 1906 #ifdef VM_NUMA_ALLOC 1907 for (i = 1; i < vm_ndomains; i++) { 1908 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i, 1909 curproc, NULL, 0, 0, "dom%d", i); 1910 if (error != 0) { 1911 panic("starting pageout for domain %d, error %d\n", 1912 i, error); 1913 } 1914 } 1915 #endif 1916 error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL, 1917 0, 0, "uma"); 1918 if (error != 0) 1919 panic("starting uma_reclaim helper, error %d\n", error); 1920 vm_pageout_worker((void *)(uintptr_t)0); 1921 } 1922 1923 /* 1924 * Unless the free page queue lock is held by the caller, this function 1925 * should be regarded as advisory. Specifically, the caller should 1926 * not msleep() on &vm_cnt.v_free_count following this function unless 1927 * the free page queue lock is held until the msleep() is performed. 1928 */ 1929 void 1930 pagedaemon_wakeup(void) 1931 { 1932 1933 if (!vm_pageout_wanted && curthread->td_proc != pageproc) { 1934 vm_pageout_wanted = true; 1935 wakeup(&vm_pageout_wanted); 1936 } 1937 } 1938