xref: /freebsd/sys/vm/vm_pageout.c (revision c4eb8f475a00040ffa2e99fdce5b56bbfc2cd00d)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/signalvar.h>
92 #include <sys/vnode.h>
93 #include <sys/vmmeter.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96 
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/uma.h>
107 
108 /*
109  * System initialization
110  */
111 
112 /* the kernel process "vm_pageout"*/
113 static void vm_pageout(void);
114 static int vm_pageout_clean(vm_page_t);
115 static void vm_pageout_scan(int pass);
116 
117 struct proc *pageproc;
118 
119 static struct kproc_desc page_kp = {
120 	"pagedaemon",
121 	vm_pageout,
122 	&pageproc
123 };
124 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125     &page_kp);
126 
127 #if !defined(NO_SWAPPING)
128 /* the kernel process "vm_daemon"*/
129 static void vm_daemon(void);
130 static struct	proc *vmproc;
131 
132 static struct kproc_desc vm_kp = {
133 	"vmdaemon",
134 	vm_daemon,
135 	&vmproc
136 };
137 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138 #endif
139 
140 
141 int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142 int vm_pageout_deficit;		/* Estimated number of pages deficit */
143 int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144 
145 #if !defined(NO_SWAPPING)
146 static int vm_pageout_req_swapout;	/* XXX */
147 static int vm_daemon_needed;
148 static struct mtx vm_daemon_mtx;
149 /* Allow for use by vm_pageout before vm_daemon is initialized. */
150 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151 #endif
152 static int vm_max_launder = 32;
153 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154 static int vm_pageout_full_stats_interval = 0;
155 static int vm_pageout_algorithm=0;
156 static int defer_swap_pageouts=0;
157 static int disable_swap_pageouts=0;
158 
159 #if defined(NO_SWAPPING)
160 static int vm_swap_enabled=0;
161 static int vm_swap_idle_enabled=0;
162 #else
163 static int vm_swap_enabled=1;
164 static int vm_swap_idle_enabled=0;
165 #endif
166 
167 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169 
170 SYSCTL_INT(_vm, OID_AUTO, max_launder,
171 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175 
176 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178 
179 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181 
182 #if defined(NO_SWAPPING)
183 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184 	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187 #else
188 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192 #endif
193 
194 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196 
197 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199 
200 static int pageout_lock_miss;
201 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203 
204 #define VM_PAGEOUT_PAGE_COUNT 16
205 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206 
207 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
208 SYSCTL_INT(_vm, OID_AUTO, max_wired,
209 	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210 
211 #if !defined(NO_SWAPPING)
212 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214 static void vm_req_vmdaemon(int req);
215 #endif
216 static void vm_pageout_page_stats(void);
217 
218 static void
219 vm_pageout_init_marker(vm_page_t marker, u_short queue)
220 {
221 
222 	bzero(marker, sizeof(*marker));
223 	marker->flags = PG_FICTITIOUS | PG_MARKER;
224 	marker->oflags = VPO_BUSY;
225 	marker->queue = queue;
226 	marker->wire_count = 1;
227 }
228 
229 /*
230  * vm_pageout_fallback_object_lock:
231  *
232  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
233  * known to have failed and page queue must be either PQ_ACTIVE or
234  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
235  * while locking the vm object.  Use marker page to detect page queue
236  * changes and maintain notion of next page on page queue.  Return
237  * TRUE if no changes were detected, FALSE otherwise.  vm object is
238  * locked on return.
239  *
240  * This function depends on both the lock portion of struct vm_object
241  * and normal struct vm_page being type stable.
242  */
243 boolean_t
244 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
245 {
246 	struct vm_page marker;
247 	boolean_t unchanged;
248 	u_short queue;
249 	vm_object_t object;
250 
251 	queue = m->queue;
252 	vm_pageout_init_marker(&marker, queue);
253 	object = m->object;
254 
255 	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
256 			   m, &marker, pageq);
257 	vm_page_unlock_queues();
258 	vm_page_unlock(m);
259 	VM_OBJECT_LOCK(object);
260 	vm_page_lock(m);
261 	vm_page_lock_queues();
262 
263 	/* Page queue might have changed. */
264 	*next = TAILQ_NEXT(&marker, pageq);
265 	unchanged = (m->queue == queue &&
266 		     m->object == object &&
267 		     &marker == TAILQ_NEXT(m, pageq));
268 	TAILQ_REMOVE(&vm_page_queues[queue].pl,
269 		     &marker, pageq);
270 	return (unchanged);
271 }
272 
273 /*
274  * Lock the page while holding the page queue lock.  Use marker page
275  * to detect page queue changes and maintain notion of next page on
276  * page queue.  Return TRUE if no changes were detected, FALSE
277  * otherwise.  The page is locked on return. The page queue lock might
278  * be dropped and reacquired.
279  *
280  * This function depends on normal struct vm_page being type stable.
281  */
282 boolean_t
283 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
284 {
285 	struct vm_page marker;
286 	boolean_t unchanged;
287 	u_short queue;
288 
289 	vm_page_lock_assert(m, MA_NOTOWNED);
290 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
291 
292 	if (vm_page_trylock(m))
293 		return (TRUE);
294 
295 	queue = m->queue;
296 	vm_pageout_init_marker(&marker, queue);
297 
298 	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
299 	vm_page_unlock_queues();
300 	vm_page_lock(m);
301 	vm_page_lock_queues();
302 
303 	/* Page queue might have changed. */
304 	*next = TAILQ_NEXT(&marker, pageq);
305 	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
306 	TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
307 	return (unchanged);
308 }
309 
310 /*
311  * vm_pageout_clean:
312  *
313  * Clean the page and remove it from the laundry.
314  *
315  * We set the busy bit to cause potential page faults on this page to
316  * block.  Note the careful timing, however, the busy bit isn't set till
317  * late and we cannot do anything that will mess with the page.
318  */
319 static int
320 vm_pageout_clean(vm_page_t m)
321 {
322 	vm_object_t object;
323 	vm_page_t mc[2*vm_pageout_page_count];
324 	int pageout_count;
325 	int ib, is, page_base;
326 	vm_pindex_t pindex = m->pindex;
327 
328 	vm_page_lock_assert(m, MA_NOTOWNED);
329 	vm_page_lock(m);
330 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
331 
332 	/*
333 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
334 	 * with the new swapper, but we could have serious problems paging
335 	 * out other object types if there is insufficient memory.
336 	 *
337 	 * Unfortunately, checking free memory here is far too late, so the
338 	 * check has been moved up a procedural level.
339 	 */
340 
341 	/*
342 	 * Can't clean the page if it's busy or held.
343 	 */
344 	if ((m->hold_count != 0) ||
345 	    ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
346 		vm_page_unlock(m);
347 		return 0;
348 	}
349 
350 	mc[vm_pageout_page_count] = m;
351 	pageout_count = 1;
352 	page_base = vm_pageout_page_count;
353 	ib = 1;
354 	is = 1;
355 
356 	/*
357 	 * Scan object for clusterable pages.
358 	 *
359 	 * We can cluster ONLY if: ->> the page is NOT
360 	 * clean, wired, busy, held, or mapped into a
361 	 * buffer, and one of the following:
362 	 * 1) The page is inactive, or a seldom used
363 	 *    active page.
364 	 * -or-
365 	 * 2) we force the issue.
366 	 *
367 	 * During heavy mmap/modification loads the pageout
368 	 * daemon can really fragment the underlying file
369 	 * due to flushing pages out of order and not trying
370 	 * align the clusters (which leave sporatic out-of-order
371 	 * holes).  To solve this problem we do the reverse scan
372 	 * first and attempt to align our cluster, then do a
373 	 * forward scan if room remains.
374 	 */
375 	object = m->object;
376 more:
377 	while (ib && pageout_count < vm_pageout_page_count) {
378 		vm_page_t p;
379 
380 		if (ib > pindex) {
381 			ib = 0;
382 			break;
383 		}
384 
385 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
386 			ib = 0;
387 			break;
388 		}
389 		if ((p->oflags & VPO_BUSY) || p->busy) {
390 			ib = 0;
391 			break;
392 		}
393 		vm_page_lock(p);
394 		vm_page_lock_queues();
395 		vm_page_test_dirty(p);
396 		if (p->dirty == 0 ||
397 		    p->queue != PQ_INACTIVE ||
398 		    p->hold_count != 0) {	/* may be undergoing I/O */
399 			vm_page_unlock(p);
400 			vm_page_unlock_queues();
401 			ib = 0;
402 			break;
403 		}
404 		vm_page_unlock_queues();
405 		vm_page_unlock(p);
406 		mc[--page_base] = p;
407 		++pageout_count;
408 		++ib;
409 		/*
410 		 * alignment boundry, stop here and switch directions.  Do
411 		 * not clear ib.
412 		 */
413 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
414 			break;
415 	}
416 
417 	while (pageout_count < vm_pageout_page_count &&
418 	    pindex + is < object->size) {
419 		vm_page_t p;
420 
421 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
422 			break;
423 		if ((p->oflags & VPO_BUSY) || p->busy) {
424 			break;
425 		}
426 		vm_page_lock(p);
427 		vm_page_lock_queues();
428 		vm_page_test_dirty(p);
429 		if (p->dirty == 0 ||
430 		    p->queue != PQ_INACTIVE ||
431 		    p->hold_count != 0) {	/* may be undergoing I/O */
432 			vm_page_unlock_queues();
433 			vm_page_unlock(p);
434 			break;
435 		}
436 		vm_page_unlock_queues();
437 		vm_page_unlock(p);
438 		mc[page_base + pageout_count] = p;
439 		++pageout_count;
440 		++is;
441 	}
442 
443 	/*
444 	 * If we exhausted our forward scan, continue with the reverse scan
445 	 * when possible, even past a page boundry.  This catches boundry
446 	 * conditions.
447 	 */
448 	if (ib && pageout_count < vm_pageout_page_count)
449 		goto more;
450 
451 	vm_page_unlock(m);
452 	/*
453 	 * we allow reads during pageouts...
454 	 */
455 	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
456 }
457 
458 /*
459  * vm_pageout_flush() - launder the given pages
460  *
461  *	The given pages are laundered.  Note that we setup for the start of
462  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
463  *	reference count all in here rather then in the parent.  If we want
464  *	the parent to do more sophisticated things we may have to change
465  *	the ordering.
466  */
467 int
468 vm_pageout_flush(vm_page_t *mc, int count, int flags)
469 {
470 	vm_object_t object = mc[0]->object;
471 	int pageout_status[count];
472 	int numpagedout = 0;
473 	int i;
474 
475 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
476 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
477 
478 	/*
479 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
480 	 * mark the pages read-only.
481 	 *
482 	 * We do not have to fixup the clean/dirty bits here... we can
483 	 * allow the pager to do it after the I/O completes.
484 	 *
485 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
486 	 * edge case with file fragments.
487 	 */
488 	for (i = 0; i < count; i++) {
489 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
490 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
491 			mc[i], i, count));
492 		vm_page_io_start(mc[i]);
493 		pmap_remove_write(mc[i]);
494 	}
495 	vm_object_pip_add(object, count);
496 
497 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
498 
499 	for (i = 0; i < count; i++) {
500 		vm_page_t mt = mc[i];
501 
502 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
503 		    (mt->flags & PG_WRITEABLE) == 0,
504 		    ("vm_pageout_flush: page %p is not write protected", mt));
505 		switch (pageout_status[i]) {
506 		case VM_PAGER_OK:
507 		case VM_PAGER_PEND:
508 			numpagedout++;
509 			break;
510 		case VM_PAGER_BAD:
511 			/*
512 			 * Page outside of range of object. Right now we
513 			 * essentially lose the changes by pretending it
514 			 * worked.
515 			 */
516 			vm_page_undirty(mt);
517 			break;
518 		case VM_PAGER_ERROR:
519 		case VM_PAGER_FAIL:
520 			/*
521 			 * If page couldn't be paged out, then reactivate the
522 			 * page so it doesn't clog the inactive list.  (We
523 			 * will try paging out it again later).
524 			 */
525 			vm_page_lock(mt);
526 			vm_page_activate(mt);
527 			vm_page_unlock(mt);
528 			break;
529 		case VM_PAGER_AGAIN:
530 			break;
531 		}
532 
533 		/*
534 		 * If the operation is still going, leave the page busy to
535 		 * block all other accesses. Also, leave the paging in
536 		 * progress indicator set so that we don't attempt an object
537 		 * collapse.
538 		 */
539 		if (pageout_status[i] != VM_PAGER_PEND) {
540 			vm_object_pip_wakeup(object);
541 			vm_page_io_finish(mt);
542 			if (vm_page_count_severe()) {
543 				vm_page_lock(mt);
544 				vm_page_try_to_cache(mt);
545 				vm_page_unlock(mt);
546 			}
547 		}
548 	}
549 	return (numpagedout);
550 }
551 
552 #if !defined(NO_SWAPPING)
553 /*
554  *	vm_pageout_object_deactivate_pages
555  *
556  *	deactivate enough pages to satisfy the inactive target
557  *	requirements or if vm_page_proc_limit is set, then
558  *	deactivate all of the pages in the object and its
559  *	backing_objects.
560  *
561  *	The object and map must be locked.
562  */
563 static void
564 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
565 	pmap_t pmap;
566 	vm_object_t first_object;
567 	long desired;
568 {
569 	vm_object_t backing_object, object;
570 	vm_page_t p, next;
571 	int actcount, remove_mode;
572 
573 	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
574 	if (first_object->type == OBJT_DEVICE ||
575 	    first_object->type == OBJT_SG)
576 		return;
577 	for (object = first_object;; object = backing_object) {
578 		if (pmap_resident_count(pmap) <= desired)
579 			goto unlock_return;
580 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
581 		if (object->type == OBJT_PHYS || object->paging_in_progress)
582 			goto unlock_return;
583 
584 		remove_mode = 0;
585 		if (object->shadow_count > 1)
586 			remove_mode = 1;
587 		/*
588 		 * scan the objects entire memory queue
589 		 */
590 		p = TAILQ_FIRST(&object->memq);
591 		while (p != NULL) {
592 			if (pmap_resident_count(pmap) <= desired)
593 				goto unlock_return;
594 			next = TAILQ_NEXT(p, listq);
595 			if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
596 				p = next;
597 				continue;
598 			}
599 			vm_page_lock(p);
600 			vm_page_lock_queues();
601 			cnt.v_pdpages++;
602 			if (p->wire_count != 0 ||
603 			    p->hold_count != 0 ||
604 			    !pmap_page_exists_quick(pmap, p)) {
605 				vm_page_unlock_queues();
606 				vm_page_unlock(p);
607 				p = next;
608 				continue;
609 			}
610 			actcount = pmap_ts_referenced(p);
611 			if (actcount) {
612 				vm_page_flag_set(p, PG_REFERENCED);
613 			} else if (p->flags & PG_REFERENCED) {
614 				actcount = 1;
615 			}
616 			if ((p->queue != PQ_ACTIVE) &&
617 				(p->flags & PG_REFERENCED)) {
618 				vm_page_activate(p);
619 				p->act_count += actcount;
620 				vm_page_flag_clear(p, PG_REFERENCED);
621 			} else if (p->queue == PQ_ACTIVE) {
622 				if ((p->flags & PG_REFERENCED) == 0) {
623 					p->act_count -= min(p->act_count, ACT_DECLINE);
624 					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
625 						pmap_remove_all(p);
626 						vm_page_deactivate(p);
627 					} else {
628 						vm_page_requeue(p);
629 					}
630 				} else {
631 					vm_page_activate(p);
632 					vm_page_flag_clear(p, PG_REFERENCED);
633 					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
634 						p->act_count += ACT_ADVANCE;
635 					vm_page_requeue(p);
636 				}
637 			} else if (p->queue == PQ_INACTIVE) {
638 				pmap_remove_all(p);
639 			}
640 			vm_page_unlock_queues();
641 			vm_page_unlock(p);
642 			p = next;
643 		}
644 		if ((backing_object = object->backing_object) == NULL)
645 			goto unlock_return;
646 		VM_OBJECT_LOCK(backing_object);
647 		if (object != first_object)
648 			VM_OBJECT_UNLOCK(object);
649 	}
650 unlock_return:
651 	if (object != first_object)
652 		VM_OBJECT_UNLOCK(object);
653 }
654 
655 /*
656  * deactivate some number of pages in a map, try to do it fairly, but
657  * that is really hard to do.
658  */
659 static void
660 vm_pageout_map_deactivate_pages(map, desired)
661 	vm_map_t map;
662 	long desired;
663 {
664 	vm_map_entry_t tmpe;
665 	vm_object_t obj, bigobj;
666 	int nothingwired;
667 
668 	if (!vm_map_trylock(map))
669 		return;
670 
671 	bigobj = NULL;
672 	nothingwired = TRUE;
673 
674 	/*
675 	 * first, search out the biggest object, and try to free pages from
676 	 * that.
677 	 */
678 	tmpe = map->header.next;
679 	while (tmpe != &map->header) {
680 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
681 			obj = tmpe->object.vm_object;
682 			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
683 				if (obj->shadow_count <= 1 &&
684 				    (bigobj == NULL ||
685 				     bigobj->resident_page_count < obj->resident_page_count)) {
686 					if (bigobj != NULL)
687 						VM_OBJECT_UNLOCK(bigobj);
688 					bigobj = obj;
689 				} else
690 					VM_OBJECT_UNLOCK(obj);
691 			}
692 		}
693 		if (tmpe->wired_count > 0)
694 			nothingwired = FALSE;
695 		tmpe = tmpe->next;
696 	}
697 
698 	if (bigobj != NULL) {
699 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
700 		VM_OBJECT_UNLOCK(bigobj);
701 	}
702 	/*
703 	 * Next, hunt around for other pages to deactivate.  We actually
704 	 * do this search sort of wrong -- .text first is not the best idea.
705 	 */
706 	tmpe = map->header.next;
707 	while (tmpe != &map->header) {
708 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
709 			break;
710 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
711 			obj = tmpe->object.vm_object;
712 			if (obj != NULL) {
713 				VM_OBJECT_LOCK(obj);
714 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
715 				VM_OBJECT_UNLOCK(obj);
716 			}
717 		}
718 		tmpe = tmpe->next;
719 	}
720 
721 	/*
722 	 * Remove all mappings if a process is swapped out, this will free page
723 	 * table pages.
724 	 */
725 	if (desired == 0 && nothingwired) {
726 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
727 		    vm_map_max(map));
728 	}
729 	vm_map_unlock(map);
730 }
731 #endif		/* !defined(NO_SWAPPING) */
732 
733 /*
734  *	vm_pageout_scan does the dirty work for the pageout daemon.
735  */
736 static void
737 vm_pageout_scan(int pass)
738 {
739 	vm_page_t m, next;
740 	struct vm_page marker;
741 	int page_shortage, maxscan, pcount;
742 	int addl_page_shortage, addl_page_shortage_init;
743 	vm_object_t object;
744 	int actcount;
745 	int vnodes_skipped = 0;
746 	int maxlaunder;
747 
748 	/*
749 	 * Decrease registered cache sizes.
750 	 */
751 	EVENTHANDLER_INVOKE(vm_lowmem, 0);
752 	/*
753 	 * We do this explicitly after the caches have been drained above.
754 	 */
755 	uma_reclaim();
756 
757 	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
758 
759 	/*
760 	 * Calculate the number of pages we want to either free or move
761 	 * to the cache.
762 	 */
763 	page_shortage = vm_paging_target() + addl_page_shortage_init;
764 
765 	vm_pageout_init_marker(&marker, PQ_INACTIVE);
766 
767 	/*
768 	 * Start scanning the inactive queue for pages we can move to the
769 	 * cache or free.  The scan will stop when the target is reached or
770 	 * we have scanned the entire inactive queue.  Note that m->act_count
771 	 * is not used to form decisions for the inactive queue, only for the
772 	 * active queue.
773 	 *
774 	 * maxlaunder limits the number of dirty pages we flush per scan.
775 	 * For most systems a smaller value (16 or 32) is more robust under
776 	 * extreme memory and disk pressure because any unnecessary writes
777 	 * to disk can result in extreme performance degredation.  However,
778 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
779 	 * used) will die horribly with limited laundering.  If the pageout
780 	 * daemon cannot clean enough pages in the first pass, we let it go
781 	 * all out in succeeding passes.
782 	 */
783 	if ((maxlaunder = vm_max_launder) <= 1)
784 		maxlaunder = 1;
785 	if (pass)
786 		maxlaunder = 10000;
787 	vm_page_lock_queues();
788 rescan0:
789 	addl_page_shortage = addl_page_shortage_init;
790 	maxscan = cnt.v_inactive_count;
791 
792 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
793 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
794 	     m = next) {
795 
796 		cnt.v_pdpages++;
797 
798 		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
799 			goto rescan0;
800 		}
801 
802 		next = TAILQ_NEXT(m, pageq);
803 
804 		/*
805 		 * skip marker pages
806 		 */
807 		if (m->flags & PG_MARKER)
808 			continue;
809 
810 		/*
811 		 * Lock the page.
812 		 */
813 		if (!vm_pageout_page_lock(m, &next)) {
814 			vm_page_unlock(m);
815 			addl_page_shortage++;
816 			continue;
817 		}
818 
819 		/*
820 		 * A held page may be undergoing I/O, so skip it.
821 		 */
822 		if (m->hold_count || (object = m->object) == NULL) {
823 			vm_page_unlock(m);
824 			vm_page_requeue(m);
825 			addl_page_shortage++;
826 			continue;
827 		}
828 
829 		/*
830 		 * Don't mess with busy pages, keep in the front of the
831 		 * queue, most likely are being paged out.
832 		 */
833 		if (!VM_OBJECT_TRYLOCK(object) &&
834 		    (!vm_pageout_fallback_object_lock(m, &next) ||
835 			m->hold_count != 0)) {
836 			VM_OBJECT_UNLOCK(object);
837 			vm_page_unlock(m);
838 			addl_page_shortage++;
839 			continue;
840 		}
841 		if (m->busy || (m->oflags & VPO_BUSY)) {
842 			vm_page_unlock(m);
843 			VM_OBJECT_UNLOCK(object);
844 			addl_page_shortage++;
845 			continue;
846 		}
847 
848 		/*
849 		 * If the object is not being used, we ignore previous
850 		 * references.
851 		 */
852 		if (object->ref_count == 0) {
853 			vm_page_flag_clear(m, PG_REFERENCED);
854 			KASSERT(!pmap_page_is_mapped(m),
855 			    ("vm_pageout_scan: page %p is mapped", m));
856 
857 		/*
858 		 * Otherwise, if the page has been referenced while in the
859 		 * inactive queue, we bump the "activation count" upwards,
860 		 * making it less likely that the page will be added back to
861 		 * the inactive queue prematurely again.  Here we check the
862 		 * page tables (or emulated bits, if any), given the upper
863 		 * level VM system not knowing anything about existing
864 		 * references.
865 		 */
866 		} else if (((m->flags & PG_REFERENCED) == 0) &&
867 			(actcount = pmap_ts_referenced(m))) {
868 			vm_page_activate(m);
869 			VM_OBJECT_UNLOCK(object);
870 			m->act_count += (actcount + ACT_ADVANCE);
871 			vm_page_unlock(m);
872 			continue;
873 		}
874 
875 		/*
876 		 * If the upper level VM system knows about any page
877 		 * references, we activate the page.  We also set the
878 		 * "activation count" higher than normal so that we will less
879 		 * likely place pages back onto the inactive queue again.
880 		 */
881 		if ((m->flags & PG_REFERENCED) != 0) {
882 			vm_page_flag_clear(m, PG_REFERENCED);
883 			actcount = pmap_ts_referenced(m);
884 			vm_page_activate(m);
885 			VM_OBJECT_UNLOCK(object);
886 			m->act_count += (actcount + ACT_ADVANCE + 1);
887 			vm_page_unlock(m);
888 			continue;
889 		}
890 
891 		/*
892 		 * If the upper level VM system does not believe that the page
893 		 * is fully dirty, but it is mapped for write access, then we
894 		 * consult the pmap to see if the page's dirty status should
895 		 * be updated.
896 		 */
897 		if (m->dirty != VM_PAGE_BITS_ALL &&
898 		    (m->flags & PG_WRITEABLE) != 0) {
899 			/*
900 			 * Avoid a race condition: Unless write access is
901 			 * removed from the page, another processor could
902 			 * modify it before all access is removed by the call
903 			 * to vm_page_cache() below.  If vm_page_cache() finds
904 			 * that the page has been modified when it removes all
905 			 * access, it panics because it cannot cache dirty
906 			 * pages.  In principle, we could eliminate just write
907 			 * access here rather than all access.  In the expected
908 			 * case, when there are no last instant modifications
909 			 * to the page, removing all access will be cheaper
910 			 * overall.
911 			 */
912 			if (pmap_is_modified(m))
913 				vm_page_dirty(m);
914 			else if (m->dirty == 0)
915 				pmap_remove_all(m);
916 		}
917 
918 		if (m->valid == 0) {
919 			/*
920 			 * Invalid pages can be easily freed
921 			 */
922 			vm_page_free(m);
923 			cnt.v_dfree++;
924 			--page_shortage;
925 		} else if (m->dirty == 0) {
926 			/*
927 			 * Clean pages can be placed onto the cache queue.
928 			 * This effectively frees them.
929 			 */
930 			vm_page_cache(m);
931 			--page_shortage;
932 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
933 			/*
934 			 * Dirty pages need to be paged out, but flushing
935 			 * a page is extremely expensive verses freeing
936 			 * a clean page.  Rather then artificially limiting
937 			 * the number of pages we can flush, we instead give
938 			 * dirty pages extra priority on the inactive queue
939 			 * by forcing them to be cycled through the queue
940 			 * twice before being flushed, after which the
941 			 * (now clean) page will cycle through once more
942 			 * before being freed.  This significantly extends
943 			 * the thrash point for a heavily loaded machine.
944 			 */
945 			vm_page_flag_set(m, PG_WINATCFLS);
946 			vm_page_requeue(m);
947 		} else if (maxlaunder > 0) {
948 			/*
949 			 * We always want to try to flush some dirty pages if
950 			 * we encounter them, to keep the system stable.
951 			 * Normally this number is small, but under extreme
952 			 * pressure where there are insufficient clean pages
953 			 * on the inactive queue, we may have to go all out.
954 			 */
955 			int swap_pageouts_ok, vfslocked = 0;
956 			struct vnode *vp = NULL;
957 			struct mount *mp = NULL;
958 
959 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
960 				swap_pageouts_ok = 1;
961 			} else {
962 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
963 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
964 				vm_page_count_min());
965 
966 			}
967 
968 			/*
969 			 * We don't bother paging objects that are "dead".
970 			 * Those objects are in a "rundown" state.
971 			 */
972 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
973 				vm_page_unlock(m);
974 				VM_OBJECT_UNLOCK(object);
975 				vm_page_requeue(m);
976 				continue;
977 			}
978 
979 			/*
980 			 * Following operations may unlock
981 			 * vm_page_queue_mtx, invalidating the 'next'
982 			 * pointer.  To prevent an inordinate number
983 			 * of restarts we use our marker to remember
984 			 * our place.
985 			 *
986 			 */
987 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
988 					   m, &marker, pageq);
989 			/*
990 			 * The object is already known NOT to be dead.   It
991 			 * is possible for the vget() to block the whole
992 			 * pageout daemon, but the new low-memory handling
993 			 * code should prevent it.
994 			 *
995 			 * The previous code skipped locked vnodes and, worse,
996 			 * reordered pages in the queue.  This results in
997 			 * completely non-deterministic operation and, on a
998 			 * busy system, can lead to extremely non-optimal
999 			 * pageouts.  For example, it can cause clean pages
1000 			 * to be freed and dirty pages to be moved to the end
1001 			 * of the queue.  Since dirty pages are also moved to
1002 			 * the end of the queue once-cleaned, this gives
1003 			 * way too large a weighting to defering the freeing
1004 			 * of dirty pages.
1005 			 *
1006 			 * We can't wait forever for the vnode lock, we might
1007 			 * deadlock due to a vn_read() getting stuck in
1008 			 * vm_wait while holding this vnode.  We skip the
1009 			 * vnode if we can't get it in a reasonable amount
1010 			 * of time.
1011 			 */
1012 			if (object->type == OBJT_VNODE) {
1013 				vm_page_unlock_queues();
1014 				vm_page_unlock(m);
1015 				vp = object->handle;
1016 				if (vp->v_type == VREG &&
1017 				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1018 					mp = NULL;
1019 					++pageout_lock_miss;
1020 					if (object->flags & OBJ_MIGHTBEDIRTY)
1021 						vnodes_skipped++;
1022 					vm_page_lock_queues();
1023 					goto unlock_and_continue;
1024 				}
1025 				KASSERT(mp != NULL,
1026 				    ("vp %p with NULL v_mount", vp));
1027 				vm_object_reference_locked(object);
1028 				VM_OBJECT_UNLOCK(object);
1029 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1030 				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1031 				    curthread)) {
1032 					VM_OBJECT_LOCK(object);
1033 					vm_page_lock_queues();
1034 					++pageout_lock_miss;
1035 					if (object->flags & OBJ_MIGHTBEDIRTY)
1036 						vnodes_skipped++;
1037 					vp = NULL;
1038 					goto unlock_and_continue;
1039 				}
1040 				VM_OBJECT_LOCK(object);
1041 				vm_page_lock(m);
1042 				vm_page_lock_queues();
1043 				/*
1044 				 * The page might have been moved to another
1045 				 * queue during potential blocking in vget()
1046 				 * above.  The page might have been freed and
1047 				 * reused for another vnode.
1048 				 */
1049 				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
1050 				    m->object != object ||
1051 				    TAILQ_NEXT(m, pageq) != &marker) {
1052 					vm_page_unlock(m);
1053 					if (object->flags & OBJ_MIGHTBEDIRTY)
1054 						vnodes_skipped++;
1055 					goto unlock_and_continue;
1056 				}
1057 
1058 				/*
1059 				 * The page may have been busied during the
1060 				 * blocking in vget().  We don't move the
1061 				 * page back onto the end of the queue so that
1062 				 * statistics are more correct if we don't.
1063 				 */
1064 				if (m->busy || (m->oflags & VPO_BUSY)) {
1065 					vm_page_unlock(m);
1066 					goto unlock_and_continue;
1067 				}
1068 
1069 				/*
1070 				 * If the page has become held it might
1071 				 * be undergoing I/O, so skip it
1072 				 */
1073 				if (m->hold_count) {
1074 					vm_page_unlock(m);
1075 					vm_page_requeue(m);
1076 					if (object->flags & OBJ_MIGHTBEDIRTY)
1077 						vnodes_skipped++;
1078 					goto unlock_and_continue;
1079 				}
1080 			}
1081 			vm_page_unlock(m);
1082 
1083 			/*
1084 			 * If a page is dirty, then it is either being washed
1085 			 * (but not yet cleaned) or it is still in the
1086 			 * laundry.  If it is still in the laundry, then we
1087 			 * start the cleaning operation.
1088 			 *
1089 			 * decrement page_shortage on success to account for
1090 			 * the (future) cleaned page.  Otherwise we could wind
1091 			 * up laundering or cleaning too many pages.
1092 			 */
1093 			vm_page_unlock_queues();
1094 			if (vm_pageout_clean(m) != 0) {
1095 				--page_shortage;
1096 				--maxlaunder;
1097 			}
1098 			vm_page_lock_queues();
1099 unlock_and_continue:
1100 			vm_page_lock_assert(m, MA_NOTOWNED);
1101 			VM_OBJECT_UNLOCK(object);
1102 			if (mp != NULL) {
1103 				vm_page_unlock_queues();
1104 				if (vp != NULL)
1105 					vput(vp);
1106 				VFS_UNLOCK_GIANT(vfslocked);
1107 				vm_object_deallocate(object);
1108 				vn_finished_write(mp);
1109 				vm_page_lock_queues();
1110 			}
1111 			next = TAILQ_NEXT(&marker, pageq);
1112 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1113 				     &marker, pageq);
1114 			vm_page_lock_assert(m, MA_NOTOWNED);
1115 			continue;
1116 		}
1117 		vm_page_unlock(m);
1118 		VM_OBJECT_UNLOCK(object);
1119 	}
1120 
1121 	/*
1122 	 * Compute the number of pages we want to try to move from the
1123 	 * active queue to the inactive queue.
1124 	 */
1125 	page_shortage = vm_paging_target() +
1126 		cnt.v_inactive_target - cnt.v_inactive_count;
1127 	page_shortage += addl_page_shortage;
1128 
1129 	/*
1130 	 * Scan the active queue for things we can deactivate. We nominally
1131 	 * track the per-page activity counter and use it to locate
1132 	 * deactivation candidates.
1133 	 */
1134 	pcount = cnt.v_active_count;
1135 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1136 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1137 
1138 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1139 
1140 		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1141 		    ("vm_pageout_scan: page %p isn't active", m));
1142 
1143 		next = TAILQ_NEXT(m, pageq);
1144 		object = m->object;
1145 		if ((m->flags & PG_MARKER) != 0) {
1146 			m = next;
1147 			continue;
1148 		}
1149 		if (!vm_pageout_page_lock(m, &next) ||
1150 		    (object = m->object) == NULL) {
1151 			vm_page_unlock(m);
1152 			m = next;
1153 			continue;
1154 		}
1155 		if (!VM_OBJECT_TRYLOCK(object) &&
1156 		    !vm_pageout_fallback_object_lock(m, &next)) {
1157 			VM_OBJECT_UNLOCK(object);
1158 			vm_page_unlock(m);
1159 			m = next;
1160 			continue;
1161 		}
1162 
1163 		/*
1164 		 * Don't deactivate pages that are busy.
1165 		 */
1166 		if ((m->busy != 0) ||
1167 		    (m->oflags & VPO_BUSY) ||
1168 		    (m->hold_count != 0)) {
1169 			vm_page_unlock(m);
1170 			VM_OBJECT_UNLOCK(object);
1171 			vm_page_requeue(m);
1172 			m = next;
1173 			continue;
1174 		}
1175 
1176 		/*
1177 		 * The count for pagedaemon pages is done after checking the
1178 		 * page for eligibility...
1179 		 */
1180 		cnt.v_pdpages++;
1181 
1182 		/*
1183 		 * Check to see "how much" the page has been used.
1184 		 */
1185 		actcount = 0;
1186 		if (object->ref_count != 0) {
1187 			if (m->flags & PG_REFERENCED) {
1188 				actcount += 1;
1189 			}
1190 			actcount += pmap_ts_referenced(m);
1191 			if (actcount) {
1192 				m->act_count += ACT_ADVANCE + actcount;
1193 				if (m->act_count > ACT_MAX)
1194 					m->act_count = ACT_MAX;
1195 			}
1196 		}
1197 
1198 		/*
1199 		 * Since we have "tested" this bit, we need to clear it now.
1200 		 */
1201 		vm_page_flag_clear(m, PG_REFERENCED);
1202 
1203 		/*
1204 		 * Only if an object is currently being used, do we use the
1205 		 * page activation count stats.
1206 		 */
1207 		if (actcount && (object->ref_count != 0)) {
1208 			vm_page_requeue(m);
1209 		} else {
1210 			m->act_count -= min(m->act_count, ACT_DECLINE);
1211 			if (vm_pageout_algorithm ||
1212 			    object->ref_count == 0 ||
1213 			    m->act_count == 0) {
1214 				page_shortage--;
1215 				if (object->ref_count == 0) {
1216 					KASSERT(!pmap_page_is_mapped(m),
1217 				    ("vm_pageout_scan: page %p is mapped", m));
1218 					if (m->dirty == 0)
1219 						vm_page_cache(m);
1220 					else
1221 						vm_page_deactivate(m);
1222 				} else {
1223 					vm_page_deactivate(m);
1224 				}
1225 			} else {
1226 				vm_page_requeue(m);
1227 			}
1228 		}
1229 		vm_page_unlock(m);
1230 		VM_OBJECT_UNLOCK(object);
1231 		m = next;
1232 	}
1233 	vm_page_unlock_queues();
1234 #if !defined(NO_SWAPPING)
1235 	/*
1236 	 * Idle process swapout -- run once per second.
1237 	 */
1238 	if (vm_swap_idle_enabled) {
1239 		static long lsec;
1240 		if (time_second != lsec) {
1241 			vm_req_vmdaemon(VM_SWAP_IDLE);
1242 			lsec = time_second;
1243 		}
1244 	}
1245 #endif
1246 
1247 	/*
1248 	 * If we didn't get enough free pages, and we have skipped a vnode
1249 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1250 	 * if we did not get enough free pages.
1251 	 */
1252 	if (vm_paging_target() > 0) {
1253 		if (vnodes_skipped && vm_page_count_min())
1254 			(void) speedup_syncer();
1255 #if !defined(NO_SWAPPING)
1256 		if (vm_swap_enabled && vm_page_count_target())
1257 			vm_req_vmdaemon(VM_SWAP_NORMAL);
1258 #endif
1259 	}
1260 
1261 	/*
1262 	 * If we are critically low on one of RAM or swap and low on
1263 	 * the other, kill the largest process.  However, we avoid
1264 	 * doing this on the first pass in order to give ourselves a
1265 	 * chance to flush out dirty vnode-backed pages and to allow
1266 	 * active pages to be moved to the inactive queue and reclaimed.
1267 	 */
1268 	if (pass != 0 &&
1269 	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1270 	     (swap_pager_full && vm_paging_target() > 0)))
1271 		vm_pageout_oom(VM_OOM_MEM);
1272 }
1273 
1274 
1275 void
1276 vm_pageout_oom(int shortage)
1277 {
1278 	struct proc *p, *bigproc;
1279 	vm_offset_t size, bigsize;
1280 	struct thread *td;
1281 	struct vmspace *vm;
1282 
1283 	/*
1284 	 * We keep the process bigproc locked once we find it to keep anyone
1285 	 * from messing with it; however, there is a possibility of
1286 	 * deadlock if process B is bigproc and one of it's child processes
1287 	 * attempts to propagate a signal to B while we are waiting for A's
1288 	 * lock while walking this list.  To avoid this, we don't block on
1289 	 * the process lock but just skip a process if it is already locked.
1290 	 */
1291 	bigproc = NULL;
1292 	bigsize = 0;
1293 	sx_slock(&allproc_lock);
1294 	FOREACH_PROC_IN_SYSTEM(p) {
1295 		int breakout;
1296 
1297 		if (PROC_TRYLOCK(p) == 0)
1298 			continue;
1299 		/*
1300 		 * If this is a system, protected or killed process, skip it.
1301 		 */
1302 		if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1303 		    (p->p_pid == 1) || P_KILLED(p) ||
1304 		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1305 			PROC_UNLOCK(p);
1306 			continue;
1307 		}
1308 		/*
1309 		 * If the process is in a non-running type state,
1310 		 * don't touch it.  Check all the threads individually.
1311 		 */
1312 		breakout = 0;
1313 		FOREACH_THREAD_IN_PROC(p, td) {
1314 			thread_lock(td);
1315 			if (!TD_ON_RUNQ(td) &&
1316 			    !TD_IS_RUNNING(td) &&
1317 			    !TD_IS_SLEEPING(td)) {
1318 				thread_unlock(td);
1319 				breakout = 1;
1320 				break;
1321 			}
1322 			thread_unlock(td);
1323 		}
1324 		if (breakout) {
1325 			PROC_UNLOCK(p);
1326 			continue;
1327 		}
1328 		/*
1329 		 * get the process size
1330 		 */
1331 		vm = vmspace_acquire_ref(p);
1332 		if (vm == NULL) {
1333 			PROC_UNLOCK(p);
1334 			continue;
1335 		}
1336 		if (!vm_map_trylock_read(&vm->vm_map)) {
1337 			vmspace_free(vm);
1338 			PROC_UNLOCK(p);
1339 			continue;
1340 		}
1341 		size = vmspace_swap_count(vm);
1342 		vm_map_unlock_read(&vm->vm_map);
1343 		if (shortage == VM_OOM_MEM)
1344 			size += vmspace_resident_count(vm);
1345 		vmspace_free(vm);
1346 		/*
1347 		 * if the this process is bigger than the biggest one
1348 		 * remember it.
1349 		 */
1350 		if (size > bigsize) {
1351 			if (bigproc != NULL)
1352 				PROC_UNLOCK(bigproc);
1353 			bigproc = p;
1354 			bigsize = size;
1355 		} else
1356 			PROC_UNLOCK(p);
1357 	}
1358 	sx_sunlock(&allproc_lock);
1359 	if (bigproc != NULL) {
1360 		killproc(bigproc, "out of swap space");
1361 		sched_nice(bigproc, PRIO_MIN);
1362 		PROC_UNLOCK(bigproc);
1363 		wakeup(&cnt.v_free_count);
1364 	}
1365 }
1366 
1367 /*
1368  * This routine tries to maintain the pseudo LRU active queue,
1369  * so that during long periods of time where there is no paging,
1370  * that some statistic accumulation still occurs.  This code
1371  * helps the situation where paging just starts to occur.
1372  */
1373 static void
1374 vm_pageout_page_stats()
1375 {
1376 	vm_object_t object;
1377 	vm_page_t m,next;
1378 	int pcount,tpcount;		/* Number of pages to check */
1379 	static int fullintervalcount = 0;
1380 	int page_shortage;
1381 
1382 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1383 	page_shortage =
1384 	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1385 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1386 
1387 	if (page_shortage <= 0)
1388 		return;
1389 
1390 	pcount = cnt.v_active_count;
1391 	fullintervalcount += vm_pageout_stats_interval;
1392 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1393 		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1394 		    cnt.v_page_count;
1395 		if (pcount > tpcount)
1396 			pcount = tpcount;
1397 	} else {
1398 		fullintervalcount = 0;
1399 	}
1400 
1401 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1402 	while ((m != NULL) && (pcount-- > 0)) {
1403 		int actcount;
1404 
1405 		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1406 		    ("vm_pageout_page_stats: page %p isn't active", m));
1407 
1408 		next = TAILQ_NEXT(m, pageq);
1409 		if ((m->flags & PG_MARKER) != 0) {
1410 			m = next;
1411 			continue;
1412 		}
1413 		vm_page_lock_assert(m, MA_NOTOWNED);
1414 		if (!vm_pageout_page_lock(m, &next) ||
1415 		    (object = m->object) == NULL) {
1416 			vm_page_unlock(m);
1417 			m = next;
1418 			continue;
1419 		}
1420 		if (!VM_OBJECT_TRYLOCK(object) &&
1421 		    !vm_pageout_fallback_object_lock(m, &next)) {
1422 			VM_OBJECT_UNLOCK(object);
1423 			vm_page_unlock(m);
1424 			m = next;
1425 			continue;
1426 		}
1427 
1428 		/*
1429 		 * Don't deactivate pages that are busy.
1430 		 */
1431 		if ((m->busy != 0) ||
1432 		    (m->oflags & VPO_BUSY) ||
1433 		    (m->hold_count != 0)) {
1434 			vm_page_unlock(m);
1435 			VM_OBJECT_UNLOCK(object);
1436 			vm_page_requeue(m);
1437 			m = next;
1438 			continue;
1439 		}
1440 
1441 		actcount = 0;
1442 		if (m->flags & PG_REFERENCED) {
1443 			vm_page_flag_clear(m, PG_REFERENCED);
1444 			actcount += 1;
1445 		}
1446 
1447 		actcount += pmap_ts_referenced(m);
1448 		if (actcount) {
1449 			m->act_count += ACT_ADVANCE + actcount;
1450 			if (m->act_count > ACT_MAX)
1451 				m->act_count = ACT_MAX;
1452 			vm_page_requeue(m);
1453 		} else {
1454 			if (m->act_count == 0) {
1455 				/*
1456 				 * We turn off page access, so that we have
1457 				 * more accurate RSS stats.  We don't do this
1458 				 * in the normal page deactivation when the
1459 				 * system is loaded VM wise, because the
1460 				 * cost of the large number of page protect
1461 				 * operations would be higher than the value
1462 				 * of doing the operation.
1463 				 */
1464 				pmap_remove_all(m);
1465 				vm_page_deactivate(m);
1466 			} else {
1467 				m->act_count -= min(m->act_count, ACT_DECLINE);
1468 				vm_page_requeue(m);
1469 			}
1470 		}
1471 		vm_page_unlock(m);
1472 		VM_OBJECT_UNLOCK(object);
1473 		m = next;
1474 	}
1475 }
1476 
1477 /*
1478  *	vm_pageout is the high level pageout daemon.
1479  */
1480 static void
1481 vm_pageout()
1482 {
1483 	int error, pass;
1484 
1485 	/*
1486 	 * Initialize some paging parameters.
1487 	 */
1488 	cnt.v_interrupt_free_min = 2;
1489 	if (cnt.v_page_count < 2000)
1490 		vm_pageout_page_count = 8;
1491 
1492 	/*
1493 	 * v_free_reserved needs to include enough for the largest
1494 	 * swap pager structures plus enough for any pv_entry structs
1495 	 * when paging.
1496 	 */
1497 	if (cnt.v_page_count > 1024)
1498 		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1499 	else
1500 		cnt.v_free_min = 4;
1501 	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1502 	    cnt.v_interrupt_free_min;
1503 	cnt.v_free_reserved = vm_pageout_page_count +
1504 	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1505 	cnt.v_free_severe = cnt.v_free_min / 2;
1506 	cnt.v_free_min += cnt.v_free_reserved;
1507 	cnt.v_free_severe += cnt.v_free_reserved;
1508 
1509 	/*
1510 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1511 	 * that these are more a measure of the VM cache queue hysteresis
1512 	 * then the VM free queue.  Specifically, v_free_target is the
1513 	 * high water mark (free+cache pages).
1514 	 *
1515 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1516 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1517 	 * be big enough to handle memory needs while the pageout daemon
1518 	 * is signalled and run to free more pages.
1519 	 */
1520 	if (cnt.v_free_count > 6144)
1521 		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1522 	else
1523 		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1524 
1525 	if (cnt.v_free_count > 2048) {
1526 		cnt.v_cache_min = cnt.v_free_target;
1527 		cnt.v_cache_max = 2 * cnt.v_cache_min;
1528 		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1529 	} else {
1530 		cnt.v_cache_min = 0;
1531 		cnt.v_cache_max = 0;
1532 		cnt.v_inactive_target = cnt.v_free_count / 4;
1533 	}
1534 	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1535 		cnt.v_inactive_target = cnt.v_free_count / 3;
1536 
1537 	/* XXX does not really belong here */
1538 	if (vm_page_max_wired == 0)
1539 		vm_page_max_wired = cnt.v_free_count / 3;
1540 
1541 	if (vm_pageout_stats_max == 0)
1542 		vm_pageout_stats_max = cnt.v_free_target;
1543 
1544 	/*
1545 	 * Set interval in seconds for stats scan.
1546 	 */
1547 	if (vm_pageout_stats_interval == 0)
1548 		vm_pageout_stats_interval = 5;
1549 	if (vm_pageout_full_stats_interval == 0)
1550 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1551 
1552 	swap_pager_swap_init();
1553 	pass = 0;
1554 	/*
1555 	 * The pageout daemon is never done, so loop forever.
1556 	 */
1557 	while (TRUE) {
1558 		/*
1559 		 * If we have enough free memory, wakeup waiters.  Do
1560 		 * not clear vm_pages_needed until we reach our target,
1561 		 * otherwise we may be woken up over and over again and
1562 		 * waste a lot of cpu.
1563 		 */
1564 		mtx_lock(&vm_page_queue_free_mtx);
1565 		if (vm_pages_needed && !vm_page_count_min()) {
1566 			if (!vm_paging_needed())
1567 				vm_pages_needed = 0;
1568 			wakeup(&cnt.v_free_count);
1569 		}
1570 		if (vm_pages_needed) {
1571 			/*
1572 			 * Still not done, take a second pass without waiting
1573 			 * (unlimited dirty cleaning), otherwise sleep a bit
1574 			 * and try again.
1575 			 */
1576 			++pass;
1577 			if (pass > 1)
1578 				msleep(&vm_pages_needed,
1579 				    &vm_page_queue_free_mtx, PVM, "psleep",
1580 				    hz / 2);
1581 		} else {
1582 			/*
1583 			 * Good enough, sleep & handle stats.  Prime the pass
1584 			 * for the next run.
1585 			 */
1586 			if (pass > 1)
1587 				pass = 1;
1588 			else
1589 				pass = 0;
1590 			error = msleep(&vm_pages_needed,
1591 			    &vm_page_queue_free_mtx, PVM, "psleep",
1592 			    vm_pageout_stats_interval * hz);
1593 			if (error && !vm_pages_needed) {
1594 				mtx_unlock(&vm_page_queue_free_mtx);
1595 				pass = 0;
1596 				vm_page_lock_queues();
1597 				vm_pageout_page_stats();
1598 				vm_page_unlock_queues();
1599 				continue;
1600 			}
1601 		}
1602 		if (vm_pages_needed)
1603 			cnt.v_pdwakeups++;
1604 		mtx_unlock(&vm_page_queue_free_mtx);
1605 		vm_pageout_scan(pass);
1606 	}
1607 }
1608 
1609 /*
1610  * Unless the free page queue lock is held by the caller, this function
1611  * should be regarded as advisory.  Specifically, the caller should
1612  * not msleep() on &cnt.v_free_count following this function unless
1613  * the free page queue lock is held until the msleep() is performed.
1614  */
1615 void
1616 pagedaemon_wakeup()
1617 {
1618 
1619 	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1620 		vm_pages_needed = 1;
1621 		wakeup(&vm_pages_needed);
1622 	}
1623 }
1624 
1625 #if !defined(NO_SWAPPING)
1626 static void
1627 vm_req_vmdaemon(int req)
1628 {
1629 	static int lastrun = 0;
1630 
1631 	mtx_lock(&vm_daemon_mtx);
1632 	vm_pageout_req_swapout |= req;
1633 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1634 		wakeup(&vm_daemon_needed);
1635 		lastrun = ticks;
1636 	}
1637 	mtx_unlock(&vm_daemon_mtx);
1638 }
1639 
1640 static void
1641 vm_daemon()
1642 {
1643 	struct rlimit rsslim;
1644 	struct proc *p;
1645 	struct thread *td;
1646 	struct vmspace *vm;
1647 	int breakout, swapout_flags;
1648 
1649 	while (TRUE) {
1650 		mtx_lock(&vm_daemon_mtx);
1651 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1652 		swapout_flags = vm_pageout_req_swapout;
1653 		vm_pageout_req_swapout = 0;
1654 		mtx_unlock(&vm_daemon_mtx);
1655 		if (swapout_flags)
1656 			swapout_procs(swapout_flags);
1657 
1658 		/*
1659 		 * scan the processes for exceeding their rlimits or if
1660 		 * process is swapped out -- deactivate pages
1661 		 */
1662 		sx_slock(&allproc_lock);
1663 		FOREACH_PROC_IN_SYSTEM(p) {
1664 			vm_pindex_t limit, size;
1665 
1666 			/*
1667 			 * if this is a system process or if we have already
1668 			 * looked at this process, skip it.
1669 			 */
1670 			PROC_LOCK(p);
1671 			if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1672 				PROC_UNLOCK(p);
1673 				continue;
1674 			}
1675 			/*
1676 			 * if the process is in a non-running type state,
1677 			 * don't touch it.
1678 			 */
1679 			breakout = 0;
1680 			FOREACH_THREAD_IN_PROC(p, td) {
1681 				thread_lock(td);
1682 				if (!TD_ON_RUNQ(td) &&
1683 				    !TD_IS_RUNNING(td) &&
1684 				    !TD_IS_SLEEPING(td)) {
1685 					thread_unlock(td);
1686 					breakout = 1;
1687 					break;
1688 				}
1689 				thread_unlock(td);
1690 			}
1691 			if (breakout) {
1692 				PROC_UNLOCK(p);
1693 				continue;
1694 			}
1695 			/*
1696 			 * get a limit
1697 			 */
1698 			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1699 			limit = OFF_TO_IDX(
1700 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1701 
1702 			/*
1703 			 * let processes that are swapped out really be
1704 			 * swapped out set the limit to nothing (will force a
1705 			 * swap-out.)
1706 			 */
1707 			if ((p->p_flag & P_INMEM) == 0)
1708 				limit = 0;	/* XXX */
1709 			vm = vmspace_acquire_ref(p);
1710 			PROC_UNLOCK(p);
1711 			if (vm == NULL)
1712 				continue;
1713 
1714 			size = vmspace_resident_count(vm);
1715 			if (limit >= 0 && size >= limit) {
1716 				vm_pageout_map_deactivate_pages(
1717 				    &vm->vm_map, limit);
1718 			}
1719 			vmspace_free(vm);
1720 		}
1721 		sx_sunlock(&allproc_lock);
1722 	}
1723 }
1724 #endif			/* !defined(NO_SWAPPING) */
1725