1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 45 * 46 * 47 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 48 * All rights reserved. 49 * 50 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 51 * 52 * Permission to use, copy, modify and distribute this software and 53 * its documentation is hereby granted, provided that both the copyright 54 * notice and this permission notice appear in all copies of the 55 * software, derivative works or modified versions, and any portions 56 * thereof, and that both notices appear in supporting documentation. 57 * 58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 61 * 62 * Carnegie Mellon requests users of this software to return to 63 * 64 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 65 * School of Computer Science 66 * Carnegie Mellon University 67 * Pittsburgh PA 15213-3890 68 * 69 * any improvements or extensions that they make and grant Carnegie the 70 * rights to redistribute these changes. 71 */ 72 73 /* 74 * The proverbial page-out daemon. 75 */ 76 77 #include <sys/cdefs.h> 78 __FBSDID("$FreeBSD$"); 79 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/mutex.h> 88 #include <sys/proc.h> 89 #include <sys/kthread.h> 90 #include <sys/ktr.h> 91 #include <sys/mount.h> 92 #include <sys/racct.h> 93 #include <sys/resourcevar.h> 94 #include <sys/sched.h> 95 #include <sys/sdt.h> 96 #include <sys/signalvar.h> 97 #include <sys/smp.h> 98 #include <sys/time.h> 99 #include <sys/vnode.h> 100 #include <sys/vmmeter.h> 101 #include <sys/rwlock.h> 102 #include <sys/sx.h> 103 #include <sys/sysctl.h> 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_page.h> 109 #include <vm/vm_map.h> 110 #include <vm/vm_pageout.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_phys.h> 113 #include <vm/vm_pagequeue.h> 114 #include <vm/swap_pager.h> 115 #include <vm/vm_extern.h> 116 #include <vm/uma.h> 117 118 /* 119 * System initialization 120 */ 121 122 /* the kernel process "vm_pageout"*/ 123 static void vm_pageout(void); 124 static void vm_pageout_init(void); 125 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 126 static int vm_pageout_cluster(vm_page_t m); 127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 128 int starting_page_shortage); 129 130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 131 NULL); 132 133 struct proc *pageproc; 134 135 static struct kproc_desc page_kp = { 136 "pagedaemon", 137 vm_pageout, 138 &pageproc 139 }; 140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 141 &page_kp); 142 143 SDT_PROVIDER_DEFINE(vm); 144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 145 146 /* Pagedaemon activity rates, in subdivisions of one second. */ 147 #define VM_LAUNDER_RATE 10 148 #define VM_INACT_SCAN_RATE 10 149 150 static int vm_pageout_oom_seq = 12; 151 152 static int vm_pageout_update_period; 153 static int disable_swap_pageouts; 154 static int lowmem_period = 10; 155 static int swapdev_enabled; 156 157 static int vm_panic_on_oom = 0; 158 159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 160 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 161 "panic on out of memory instead of killing the largest process"); 162 163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 164 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 165 "Maximum active LRU update period"); 166 167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 168 "Low memory callback period"); 169 170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 171 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages"); 172 173 static int pageout_lock_miss; 174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 175 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout"); 176 177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 178 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 179 "back-to-back calls to oom detector to start OOM"); 180 181 static int act_scan_laundry_weight = 3; 182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 183 &act_scan_laundry_weight, 0, 184 "weight given to clean vs. dirty pages in active queue scans"); 185 186 static u_int vm_background_launder_rate = 4096; 187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 188 &vm_background_launder_rate, 0, 189 "background laundering rate, in kilobytes per second"); 190 191 static u_int vm_background_launder_max = 20 * 1024; 192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 193 &vm_background_launder_max, 0, "background laundering cap, in kilobytes"); 194 195 int vm_pageout_page_count = 32; 196 197 u_long vm_page_max_user_wired; 198 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW, 199 &vm_page_max_user_wired, 0, 200 "system-wide limit to user-wired page count"); 201 202 static u_int isqrt(u_int num); 203 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 204 bool in_shortfall); 205 static void vm_pageout_laundry_worker(void *arg); 206 207 struct scan_state { 208 struct vm_batchqueue bq; 209 struct vm_pagequeue *pq; 210 vm_page_t marker; 211 int maxscan; 212 int scanned; 213 }; 214 215 static void 216 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq, 217 vm_page_t marker, vm_page_t after, int maxscan) 218 { 219 220 vm_pagequeue_assert_locked(pq); 221 KASSERT((marker->aflags & PGA_ENQUEUED) == 0, 222 ("marker %p already enqueued", marker)); 223 224 if (after == NULL) 225 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q); 226 else 227 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q); 228 vm_page_aflag_set(marker, PGA_ENQUEUED); 229 230 vm_batchqueue_init(&ss->bq); 231 ss->pq = pq; 232 ss->marker = marker; 233 ss->maxscan = maxscan; 234 ss->scanned = 0; 235 vm_pagequeue_unlock(pq); 236 } 237 238 static void 239 vm_pageout_end_scan(struct scan_state *ss) 240 { 241 struct vm_pagequeue *pq; 242 243 pq = ss->pq; 244 vm_pagequeue_assert_locked(pq); 245 KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0, 246 ("marker %p not enqueued", ss->marker)); 247 248 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q); 249 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED); 250 pq->pq_pdpages += ss->scanned; 251 } 252 253 /* 254 * Add a small number of queued pages to a batch queue for later processing 255 * without the corresponding queue lock held. The caller must have enqueued a 256 * marker page at the desired start point for the scan. Pages will be 257 * physically dequeued if the caller so requests. Otherwise, the returned 258 * batch may contain marker pages, and it is up to the caller to handle them. 259 * 260 * When processing the batch queue, vm_page_queue() must be used to 261 * determine whether the page has been logically dequeued by another thread. 262 * Once this check is performed, the page lock guarantees that the page will 263 * not be disassociated from the queue. 264 */ 265 static __always_inline void 266 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue) 267 { 268 struct vm_pagequeue *pq; 269 vm_page_t m, marker; 270 271 marker = ss->marker; 272 pq = ss->pq; 273 274 KASSERT((marker->aflags & PGA_ENQUEUED) != 0, 275 ("marker %p not enqueued", ss->marker)); 276 277 vm_pagequeue_lock(pq); 278 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL && 279 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE; 280 m = TAILQ_NEXT(m, plinks.q), ss->scanned++) { 281 if ((m->flags & PG_MARKER) == 0) { 282 KASSERT((m->aflags & PGA_ENQUEUED) != 0, 283 ("page %p not enqueued", m)); 284 KASSERT((m->flags & PG_FICTITIOUS) == 0, 285 ("Fictitious page %p cannot be in page queue", m)); 286 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 287 ("Unmanaged page %p cannot be in page queue", m)); 288 } else if (dequeue) 289 continue; 290 291 (void)vm_batchqueue_insert(&ss->bq, m); 292 if (dequeue) { 293 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 294 vm_page_aflag_clear(m, PGA_ENQUEUED); 295 } 296 } 297 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 298 if (__predict_true(m != NULL)) 299 TAILQ_INSERT_BEFORE(m, marker, plinks.q); 300 else 301 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q); 302 if (dequeue) 303 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt); 304 vm_pagequeue_unlock(pq); 305 } 306 307 /* Return the next page to be scanned, or NULL if the scan is complete. */ 308 static __always_inline vm_page_t 309 vm_pageout_next(struct scan_state *ss, const bool dequeue) 310 { 311 312 if (ss->bq.bq_cnt == 0) 313 vm_pageout_collect_batch(ss, dequeue); 314 return (vm_batchqueue_pop(&ss->bq)); 315 } 316 317 /* 318 * Scan for pages at adjacent offsets within the given page's object that are 319 * eligible for laundering, form a cluster of these pages and the given page, 320 * and launder that cluster. 321 */ 322 static int 323 vm_pageout_cluster(vm_page_t m) 324 { 325 vm_object_t object; 326 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; 327 vm_pindex_t pindex; 328 int ib, is, page_base, pageout_count; 329 330 vm_page_assert_locked(m); 331 object = m->object; 332 VM_OBJECT_ASSERT_WLOCKED(object); 333 pindex = m->pindex; 334 335 vm_page_assert_unbusied(m); 336 KASSERT(!vm_page_held(m), ("page %p is held", m)); 337 338 pmap_remove_write(m); 339 vm_page_unlock(m); 340 341 mc[vm_pageout_page_count] = pb = ps = m; 342 pageout_count = 1; 343 page_base = vm_pageout_page_count; 344 ib = 1; 345 is = 1; 346 347 /* 348 * We can cluster only if the page is not clean, busy, or held, and 349 * the page is in the laundry queue. 350 * 351 * During heavy mmap/modification loads the pageout 352 * daemon can really fragment the underlying file 353 * due to flushing pages out of order and not trying to 354 * align the clusters (which leaves sporadic out-of-order 355 * holes). To solve this problem we do the reverse scan 356 * first and attempt to align our cluster, then do a 357 * forward scan if room remains. 358 */ 359 more: 360 while (ib != 0 && pageout_count < vm_pageout_page_count) { 361 if (ib > pindex) { 362 ib = 0; 363 break; 364 } 365 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) { 366 ib = 0; 367 break; 368 } 369 vm_page_test_dirty(p); 370 if (p->dirty == 0) { 371 ib = 0; 372 break; 373 } 374 vm_page_lock(p); 375 if (vm_page_held(p) || !vm_page_in_laundry(p)) { 376 vm_page_unlock(p); 377 ib = 0; 378 break; 379 } 380 pmap_remove_write(p); 381 vm_page_unlock(p); 382 mc[--page_base] = pb = p; 383 ++pageout_count; 384 ++ib; 385 386 /* 387 * We are at an alignment boundary. Stop here, and switch 388 * directions. Do not clear ib. 389 */ 390 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 391 break; 392 } 393 while (pageout_count < vm_pageout_page_count && 394 pindex + is < object->size) { 395 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p)) 396 break; 397 vm_page_test_dirty(p); 398 if (p->dirty == 0) 399 break; 400 vm_page_lock(p); 401 if (vm_page_held(p) || !vm_page_in_laundry(p)) { 402 vm_page_unlock(p); 403 break; 404 } 405 pmap_remove_write(p); 406 vm_page_unlock(p); 407 mc[page_base + pageout_count] = ps = p; 408 ++pageout_count; 409 ++is; 410 } 411 412 /* 413 * If we exhausted our forward scan, continue with the reverse scan 414 * when possible, even past an alignment boundary. This catches 415 * boundary conditions. 416 */ 417 if (ib != 0 && pageout_count < vm_pageout_page_count) 418 goto more; 419 420 return (vm_pageout_flush(&mc[page_base], pageout_count, 421 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 422 } 423 424 /* 425 * vm_pageout_flush() - launder the given pages 426 * 427 * The given pages are laundered. Note that we setup for the start of 428 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 429 * reference count all in here rather then in the parent. If we want 430 * the parent to do more sophisticated things we may have to change 431 * the ordering. 432 * 433 * Returned runlen is the count of pages between mreq and first 434 * page after mreq with status VM_PAGER_AGAIN. 435 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 436 * for any page in runlen set. 437 */ 438 int 439 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 440 boolean_t *eio) 441 { 442 vm_object_t object = mc[0]->object; 443 int pageout_status[count]; 444 int numpagedout = 0; 445 int i, runlen; 446 447 VM_OBJECT_ASSERT_WLOCKED(object); 448 449 /* 450 * Initiate I/O. Mark the pages busy and verify that they're valid 451 * and read-only. 452 * 453 * We do not have to fixup the clean/dirty bits here... we can 454 * allow the pager to do it after the I/O completes. 455 * 456 * NOTE! mc[i]->dirty may be partial or fragmented due to an 457 * edge case with file fragments. 458 */ 459 for (i = 0; i < count; i++) { 460 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, 461 ("vm_pageout_flush: partially invalid page %p index %d/%d", 462 mc[i], i, count)); 463 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0, 464 ("vm_pageout_flush: writeable page %p", mc[i])); 465 vm_page_sbusy(mc[i]); 466 } 467 vm_object_pip_add(object, count); 468 469 vm_pager_put_pages(object, mc, count, flags, pageout_status); 470 471 runlen = count - mreq; 472 if (eio != NULL) 473 *eio = FALSE; 474 for (i = 0; i < count; i++) { 475 vm_page_t mt = mc[i]; 476 477 KASSERT(pageout_status[i] == VM_PAGER_PEND || 478 !pmap_page_is_write_mapped(mt), 479 ("vm_pageout_flush: page %p is not write protected", mt)); 480 switch (pageout_status[i]) { 481 case VM_PAGER_OK: 482 vm_page_lock(mt); 483 if (vm_page_in_laundry(mt)) 484 vm_page_deactivate_noreuse(mt); 485 vm_page_unlock(mt); 486 /* FALLTHROUGH */ 487 case VM_PAGER_PEND: 488 numpagedout++; 489 break; 490 case VM_PAGER_BAD: 491 /* 492 * The page is outside the object's range. We pretend 493 * that the page out worked and clean the page, so the 494 * changes will be lost if the page is reclaimed by 495 * the page daemon. 496 */ 497 vm_page_undirty(mt); 498 vm_page_lock(mt); 499 if (vm_page_in_laundry(mt)) 500 vm_page_deactivate_noreuse(mt); 501 vm_page_unlock(mt); 502 break; 503 case VM_PAGER_ERROR: 504 case VM_PAGER_FAIL: 505 /* 506 * If the page couldn't be paged out to swap because the 507 * pager wasn't able to find space, place the page in 508 * the PQ_UNSWAPPABLE holding queue. This is an 509 * optimization that prevents the page daemon from 510 * wasting CPU cycles on pages that cannot be reclaimed 511 * becase no swap device is configured. 512 * 513 * Otherwise, reactivate the page so that it doesn't 514 * clog the laundry and inactive queues. (We will try 515 * paging it out again later.) 516 */ 517 vm_page_lock(mt); 518 if (object->type == OBJT_SWAP && 519 pageout_status[i] == VM_PAGER_FAIL) { 520 vm_page_unswappable(mt); 521 numpagedout++; 522 } else 523 vm_page_activate(mt); 524 vm_page_unlock(mt); 525 if (eio != NULL && i >= mreq && i - mreq < runlen) 526 *eio = TRUE; 527 break; 528 case VM_PAGER_AGAIN: 529 if (i >= mreq && i - mreq < runlen) 530 runlen = i - mreq; 531 break; 532 } 533 534 /* 535 * If the operation is still going, leave the page busy to 536 * block all other accesses. Also, leave the paging in 537 * progress indicator set so that we don't attempt an object 538 * collapse. 539 */ 540 if (pageout_status[i] != VM_PAGER_PEND) { 541 vm_object_pip_wakeup(object); 542 vm_page_sunbusy(mt); 543 } 544 } 545 if (prunlen != NULL) 546 *prunlen = runlen; 547 return (numpagedout); 548 } 549 550 static void 551 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 552 { 553 554 atomic_store_rel_int(&swapdev_enabled, 1); 555 } 556 557 static void 558 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 559 { 560 561 if (swap_pager_nswapdev() == 1) 562 atomic_store_rel_int(&swapdev_enabled, 0); 563 } 564 565 /* 566 * Attempt to acquire all of the necessary locks to launder a page and 567 * then call through the clustering layer to PUTPAGES. Wait a short 568 * time for a vnode lock. 569 * 570 * Requires the page and object lock on entry, releases both before return. 571 * Returns 0 on success and an errno otherwise. 572 */ 573 static int 574 vm_pageout_clean(vm_page_t m, int *numpagedout) 575 { 576 struct vnode *vp; 577 struct mount *mp; 578 vm_object_t object; 579 vm_pindex_t pindex; 580 int error, lockmode; 581 582 vm_page_assert_locked(m); 583 object = m->object; 584 VM_OBJECT_ASSERT_WLOCKED(object); 585 error = 0; 586 vp = NULL; 587 mp = NULL; 588 589 /* 590 * The object is already known NOT to be dead. It 591 * is possible for the vget() to block the whole 592 * pageout daemon, but the new low-memory handling 593 * code should prevent it. 594 * 595 * We can't wait forever for the vnode lock, we might 596 * deadlock due to a vn_read() getting stuck in 597 * vm_wait while holding this vnode. We skip the 598 * vnode if we can't get it in a reasonable amount 599 * of time. 600 */ 601 if (object->type == OBJT_VNODE) { 602 vm_page_unlock(m); 603 vp = object->handle; 604 if (vp->v_type == VREG && 605 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 606 mp = NULL; 607 error = EDEADLK; 608 goto unlock_all; 609 } 610 KASSERT(mp != NULL, 611 ("vp %p with NULL v_mount", vp)); 612 vm_object_reference_locked(object); 613 pindex = m->pindex; 614 VM_OBJECT_WUNLOCK(object); 615 lockmode = MNT_SHARED_WRITES(vp->v_mount) ? 616 LK_SHARED : LK_EXCLUSIVE; 617 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) { 618 vp = NULL; 619 error = EDEADLK; 620 goto unlock_mp; 621 } 622 VM_OBJECT_WLOCK(object); 623 624 /* 625 * Ensure that the object and vnode were not disassociated 626 * while locks were dropped. 627 */ 628 if (vp->v_object != object) { 629 error = ENOENT; 630 goto unlock_all; 631 } 632 vm_page_lock(m); 633 634 /* 635 * While the object and page were unlocked, the page 636 * may have been: 637 * (1) moved to a different queue, 638 * (2) reallocated to a different object, 639 * (3) reallocated to a different offset, or 640 * (4) cleaned. 641 */ 642 if (!vm_page_in_laundry(m) || m->object != object || 643 m->pindex != pindex || m->dirty == 0) { 644 vm_page_unlock(m); 645 error = ENXIO; 646 goto unlock_all; 647 } 648 649 /* 650 * The page may have been busied or referenced while the object 651 * and page locks were released. 652 */ 653 if (vm_page_busied(m) || vm_page_held(m)) { 654 vm_page_unlock(m); 655 error = EBUSY; 656 goto unlock_all; 657 } 658 } 659 660 /* 661 * If a page is dirty, then it is either being washed 662 * (but not yet cleaned) or it is still in the 663 * laundry. If it is still in the laundry, then we 664 * start the cleaning operation. 665 */ 666 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 667 error = EIO; 668 669 unlock_all: 670 VM_OBJECT_WUNLOCK(object); 671 672 unlock_mp: 673 vm_page_lock_assert(m, MA_NOTOWNED); 674 if (mp != NULL) { 675 if (vp != NULL) 676 vput(vp); 677 vm_object_deallocate(object); 678 vn_finished_write(mp); 679 } 680 681 return (error); 682 } 683 684 /* 685 * Attempt to launder the specified number of pages. 686 * 687 * Returns the number of pages successfully laundered. 688 */ 689 static int 690 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 691 { 692 struct scan_state ss; 693 struct vm_pagequeue *pq; 694 struct mtx *mtx; 695 vm_object_t object; 696 vm_page_t m, marker; 697 int act_delta, error, numpagedout, queue, starting_target; 698 int vnodes_skipped; 699 bool pageout_ok; 700 701 mtx = NULL; 702 object = NULL; 703 starting_target = launder; 704 vnodes_skipped = 0; 705 706 /* 707 * Scan the laundry queues for pages eligible to be laundered. We stop 708 * once the target number of dirty pages have been laundered, or once 709 * we've reached the end of the queue. A single iteration of this loop 710 * may cause more than one page to be laundered because of clustering. 711 * 712 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 713 * swap devices are configured. 714 */ 715 if (atomic_load_acq_int(&swapdev_enabled)) 716 queue = PQ_UNSWAPPABLE; 717 else 718 queue = PQ_LAUNDRY; 719 720 scan: 721 marker = &vmd->vmd_markers[queue]; 722 pq = &vmd->vmd_pagequeues[queue]; 723 vm_pagequeue_lock(pq); 724 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 725 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) { 726 if (__predict_false((m->flags & PG_MARKER) != 0)) 727 continue; 728 729 vm_page_change_lock(m, &mtx); 730 731 recheck: 732 /* 733 * The page may have been disassociated from the queue 734 * while locks were dropped. 735 */ 736 if (vm_page_queue(m) != queue) 737 continue; 738 739 /* 740 * A requeue was requested, so this page gets a second 741 * chance. 742 */ 743 if ((m->aflags & PGA_REQUEUE) != 0) { 744 vm_page_requeue(m); 745 continue; 746 } 747 748 /* 749 * Held pages are essentially stuck in the queue. 750 * 751 * Wired pages may not be freed. Complete their removal 752 * from the queue now to avoid needless revisits during 753 * future scans. 754 */ 755 if (m->hold_count != 0) 756 continue; 757 if (vm_page_wired(m)) { 758 vm_page_dequeue_deferred(m); 759 continue; 760 } 761 762 if (object != m->object) { 763 if (object != NULL) 764 VM_OBJECT_WUNLOCK(object); 765 object = m->object; 766 if (!VM_OBJECT_TRYWLOCK(object)) { 767 mtx_unlock(mtx); 768 /* Depends on type-stability. */ 769 VM_OBJECT_WLOCK(object); 770 mtx_lock(mtx); 771 goto recheck; 772 } 773 } 774 775 if (vm_page_busied(m)) 776 continue; 777 778 /* 779 * Invalid pages can be easily freed. They cannot be 780 * mapped; vm_page_free() asserts this. 781 */ 782 if (m->valid == 0) 783 goto free_page; 784 785 /* 786 * If the page has been referenced and the object is not dead, 787 * reactivate or requeue the page depending on whether the 788 * object is mapped. 789 * 790 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 791 * that a reference from a concurrently destroyed mapping is 792 * observed here and now. 793 */ 794 if (object->ref_count != 0) 795 act_delta = pmap_ts_referenced(m); 796 else { 797 KASSERT(!pmap_page_is_mapped(m), 798 ("page %p is mapped", m)); 799 act_delta = 0; 800 } 801 if ((m->aflags & PGA_REFERENCED) != 0) { 802 vm_page_aflag_clear(m, PGA_REFERENCED); 803 act_delta++; 804 } 805 if (act_delta != 0) { 806 if (object->ref_count != 0) { 807 VM_CNT_INC(v_reactivated); 808 vm_page_activate(m); 809 810 /* 811 * Increase the activation count if the page 812 * was referenced while in the laundry queue. 813 * This makes it less likely that the page will 814 * be returned prematurely to the inactive 815 * queue. 816 */ 817 m->act_count += act_delta + ACT_ADVANCE; 818 819 /* 820 * If this was a background laundering, count 821 * activated pages towards our target. The 822 * purpose of background laundering is to ensure 823 * that pages are eventually cycled through the 824 * laundry queue, and an activation is a valid 825 * way out. 826 */ 827 if (!in_shortfall) 828 launder--; 829 continue; 830 } else if ((object->flags & OBJ_DEAD) == 0) { 831 vm_page_requeue(m); 832 continue; 833 } 834 } 835 836 /* 837 * If the page appears to be clean at the machine-independent 838 * layer, then remove all of its mappings from the pmap in 839 * anticipation of freeing it. If, however, any of the page's 840 * mappings allow write access, then the page may still be 841 * modified until the last of those mappings are removed. 842 */ 843 if (object->ref_count != 0) { 844 vm_page_test_dirty(m); 845 if (m->dirty == 0) 846 pmap_remove_all(m); 847 } 848 849 /* 850 * Clean pages are freed, and dirty pages are paged out unless 851 * they belong to a dead object. Requeueing dirty pages from 852 * dead objects is pointless, as they are being paged out and 853 * freed by the thread that destroyed the object. 854 */ 855 if (m->dirty == 0) { 856 free_page: 857 vm_page_free(m); 858 VM_CNT_INC(v_dfree); 859 } else if ((object->flags & OBJ_DEAD) == 0) { 860 if (object->type != OBJT_SWAP && 861 object->type != OBJT_DEFAULT) 862 pageout_ok = true; 863 else if (disable_swap_pageouts) 864 pageout_ok = false; 865 else 866 pageout_ok = true; 867 if (!pageout_ok) { 868 vm_page_requeue(m); 869 continue; 870 } 871 872 /* 873 * Form a cluster with adjacent, dirty pages from the 874 * same object, and page out that entire cluster. 875 * 876 * The adjacent, dirty pages must also be in the 877 * laundry. However, their mappings are not checked 878 * for new references. Consequently, a recently 879 * referenced page may be paged out. However, that 880 * page will not be prematurely reclaimed. After page 881 * out, the page will be placed in the inactive queue, 882 * where any new references will be detected and the 883 * page reactivated. 884 */ 885 error = vm_pageout_clean(m, &numpagedout); 886 if (error == 0) { 887 launder -= numpagedout; 888 ss.scanned += numpagedout; 889 } else if (error == EDEADLK) { 890 pageout_lock_miss++; 891 vnodes_skipped++; 892 } 893 mtx = NULL; 894 object = NULL; 895 } 896 } 897 if (mtx != NULL) { 898 mtx_unlock(mtx); 899 mtx = NULL; 900 } 901 if (object != NULL) { 902 VM_OBJECT_WUNLOCK(object); 903 object = NULL; 904 } 905 vm_pagequeue_lock(pq); 906 vm_pageout_end_scan(&ss); 907 vm_pagequeue_unlock(pq); 908 909 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 910 queue = PQ_LAUNDRY; 911 goto scan; 912 } 913 914 /* 915 * Wakeup the sync daemon if we skipped a vnode in a writeable object 916 * and we didn't launder enough pages. 917 */ 918 if (vnodes_skipped > 0 && launder > 0) 919 (void)speedup_syncer(); 920 921 return (starting_target - launder); 922 } 923 924 /* 925 * Compute the integer square root. 926 */ 927 static u_int 928 isqrt(u_int num) 929 { 930 u_int bit, root, tmp; 931 932 bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0; 933 root = 0; 934 while (bit != 0) { 935 tmp = root + bit; 936 root >>= 1; 937 if (num >= tmp) { 938 num -= tmp; 939 root += bit; 940 } 941 bit >>= 2; 942 } 943 return (root); 944 } 945 946 /* 947 * Perform the work of the laundry thread: periodically wake up and determine 948 * whether any pages need to be laundered. If so, determine the number of pages 949 * that need to be laundered, and launder them. 950 */ 951 static void 952 vm_pageout_laundry_worker(void *arg) 953 { 954 struct vm_domain *vmd; 955 struct vm_pagequeue *pq; 956 uint64_t nclean, ndirty, nfreed; 957 int domain, last_target, launder, shortfall, shortfall_cycle, target; 958 bool in_shortfall; 959 960 domain = (uintptr_t)arg; 961 vmd = VM_DOMAIN(domain); 962 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 963 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 964 965 shortfall = 0; 966 in_shortfall = false; 967 shortfall_cycle = 0; 968 last_target = target = 0; 969 nfreed = 0; 970 971 /* 972 * Calls to these handlers are serialized by the swap syscall lock. 973 */ 974 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 975 EVENTHANDLER_PRI_ANY); 976 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 977 EVENTHANDLER_PRI_ANY); 978 979 /* 980 * The pageout laundry worker is never done, so loop forever. 981 */ 982 for (;;) { 983 KASSERT(target >= 0, ("negative target %d", target)); 984 KASSERT(shortfall_cycle >= 0, 985 ("negative cycle %d", shortfall_cycle)); 986 launder = 0; 987 988 /* 989 * First determine whether we need to launder pages to meet a 990 * shortage of free pages. 991 */ 992 if (shortfall > 0) { 993 in_shortfall = true; 994 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 995 target = shortfall; 996 } else if (!in_shortfall) 997 goto trybackground; 998 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 999 /* 1000 * We recently entered shortfall and began laundering 1001 * pages. If we have completed that laundering run 1002 * (and we are no longer in shortfall) or we have met 1003 * our laundry target through other activity, then we 1004 * can stop laundering pages. 1005 */ 1006 in_shortfall = false; 1007 target = 0; 1008 goto trybackground; 1009 } 1010 launder = target / shortfall_cycle--; 1011 goto dolaundry; 1012 1013 /* 1014 * There's no immediate need to launder any pages; see if we 1015 * meet the conditions to perform background laundering: 1016 * 1017 * 1. The ratio of dirty to clean inactive pages exceeds the 1018 * background laundering threshold, or 1019 * 2. we haven't yet reached the target of the current 1020 * background laundering run. 1021 * 1022 * The background laundering threshold is not a constant. 1023 * Instead, it is a slowly growing function of the number of 1024 * clean pages freed by the page daemon since the last 1025 * background laundering. Thus, as the ratio of dirty to 1026 * clean inactive pages grows, the amount of memory pressure 1027 * required to trigger laundering decreases. We ensure 1028 * that the threshold is non-zero after an inactive queue 1029 * scan, even if that scan failed to free a single clean page. 1030 */ 1031 trybackground: 1032 nclean = vmd->vmd_free_count + 1033 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1034 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1035 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1036 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1037 target = vmd->vmd_background_launder_target; 1038 } 1039 1040 /* 1041 * We have a non-zero background laundering target. If we've 1042 * laundered up to our maximum without observing a page daemon 1043 * request, just stop. This is a safety belt that ensures we 1044 * don't launder an excessive amount if memory pressure is low 1045 * and the ratio of dirty to clean pages is large. Otherwise, 1046 * proceed at the background laundering rate. 1047 */ 1048 if (target > 0) { 1049 if (nfreed > 0) { 1050 nfreed = 0; 1051 last_target = target; 1052 } else if (last_target - target >= 1053 vm_background_launder_max * PAGE_SIZE / 1024) { 1054 target = 0; 1055 } 1056 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1057 launder /= VM_LAUNDER_RATE; 1058 if (launder > target) 1059 launder = target; 1060 } 1061 1062 dolaundry: 1063 if (launder > 0) { 1064 /* 1065 * Because of I/O clustering, the number of laundered 1066 * pages could exceed "target" by the maximum size of 1067 * a cluster minus one. 1068 */ 1069 target -= min(vm_pageout_launder(vmd, launder, 1070 in_shortfall), target); 1071 pause("laundp", hz / VM_LAUNDER_RATE); 1072 } 1073 1074 /* 1075 * If we're not currently laundering pages and the page daemon 1076 * hasn't posted a new request, sleep until the page daemon 1077 * kicks us. 1078 */ 1079 vm_pagequeue_lock(pq); 1080 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1081 (void)mtx_sleep(&vmd->vmd_laundry_request, 1082 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1083 1084 /* 1085 * If the pagedaemon has indicated that it's in shortfall, start 1086 * a shortfall laundering unless we're already in the middle of 1087 * one. This may preempt a background laundering. 1088 */ 1089 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1090 (!in_shortfall || shortfall_cycle == 0)) { 1091 shortfall = vm_laundry_target(vmd) + 1092 vmd->vmd_pageout_deficit; 1093 target = 0; 1094 } else 1095 shortfall = 0; 1096 1097 if (target == 0) 1098 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1099 nfreed += vmd->vmd_clean_pages_freed; 1100 vmd->vmd_clean_pages_freed = 0; 1101 vm_pagequeue_unlock(pq); 1102 } 1103 } 1104 1105 /* 1106 * Compute the number of pages we want to try to move from the 1107 * active queue to either the inactive or laundry queue. 1108 * 1109 * When scanning active pages during a shortage, we make clean pages 1110 * count more heavily towards the page shortage than dirty pages. 1111 * This is because dirty pages must be laundered before they can be 1112 * reused and thus have less utility when attempting to quickly 1113 * alleviate a free page shortage. However, this weighting also 1114 * causes the scan to deactivate dirty pages more aggressively, 1115 * improving the effectiveness of clustering. 1116 */ 1117 static int 1118 vm_pageout_active_target(struct vm_domain *vmd) 1119 { 1120 int shortage; 1121 1122 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) - 1123 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt + 1124 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight); 1125 shortage *= act_scan_laundry_weight; 1126 return (shortage); 1127 } 1128 1129 /* 1130 * Scan the active queue. If there is no shortage of inactive pages, scan a 1131 * small portion of the queue in order to maintain quasi-LRU. 1132 */ 1133 static void 1134 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage) 1135 { 1136 struct scan_state ss; 1137 struct mtx *mtx; 1138 vm_page_t m, marker; 1139 struct vm_pagequeue *pq; 1140 long min_scan; 1141 int act_delta, max_scan, scan_tick; 1142 1143 marker = &vmd->vmd_markers[PQ_ACTIVE]; 1144 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1145 vm_pagequeue_lock(pq); 1146 1147 /* 1148 * If we're just idle polling attempt to visit every 1149 * active page within 'update_period' seconds. 1150 */ 1151 scan_tick = ticks; 1152 if (vm_pageout_update_period != 0) { 1153 min_scan = pq->pq_cnt; 1154 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1155 min_scan /= hz * vm_pageout_update_period; 1156 } else 1157 min_scan = 0; 1158 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0)) 1159 vmd->vmd_last_active_scan = scan_tick; 1160 1161 /* 1162 * Scan the active queue for pages that can be deactivated. Update 1163 * the per-page activity counter and use it to identify deactivation 1164 * candidates. Held pages may be deactivated. 1165 * 1166 * To avoid requeuing each page that remains in the active queue, we 1167 * implement the CLOCK algorithm. To keep the implementation of the 1168 * enqueue operation consistent for all page queues, we use two hands, 1169 * represented by marker pages. Scans begin at the first hand, which 1170 * precedes the second hand in the queue. When the two hands meet, 1171 * they are moved back to the head and tail of the queue, respectively, 1172 * and scanning resumes. 1173 */ 1174 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan; 1175 mtx = NULL; 1176 act_scan: 1177 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan); 1178 while ((m = vm_pageout_next(&ss, false)) != NULL) { 1179 if (__predict_false(m == &vmd->vmd_clock[1])) { 1180 vm_pagequeue_lock(pq); 1181 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1182 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q); 1183 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0], 1184 plinks.q); 1185 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1], 1186 plinks.q); 1187 max_scan -= ss.scanned; 1188 vm_pageout_end_scan(&ss); 1189 goto act_scan; 1190 } 1191 if (__predict_false((m->flags & PG_MARKER) != 0)) 1192 continue; 1193 1194 vm_page_change_lock(m, &mtx); 1195 1196 /* 1197 * The page may have been disassociated from the queue 1198 * while locks were dropped. 1199 */ 1200 if (vm_page_queue(m) != PQ_ACTIVE) 1201 continue; 1202 1203 /* 1204 * Wired pages are dequeued lazily. 1205 */ 1206 if (vm_page_wired(m)) { 1207 vm_page_dequeue_deferred(m); 1208 continue; 1209 } 1210 1211 /* 1212 * Check to see "how much" the page has been used. 1213 * 1214 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1215 * that a reference from a concurrently destroyed mapping is 1216 * observed here and now. 1217 * 1218 * Perform an unsynchronized object ref count check. While 1219 * the page lock ensures that the page is not reallocated to 1220 * another object, in particular, one with unmanaged mappings 1221 * that cannot support pmap_ts_referenced(), two races are, 1222 * nonetheless, possible: 1223 * 1) The count was transitioning to zero, but we saw a non- 1224 * zero value. pmap_ts_referenced() will return zero 1225 * because the page is not mapped. 1226 * 2) The count was transitioning to one, but we saw zero. 1227 * This race delays the detection of a new reference. At 1228 * worst, we will deactivate and reactivate the page. 1229 */ 1230 if (m->object->ref_count != 0) 1231 act_delta = pmap_ts_referenced(m); 1232 else 1233 act_delta = 0; 1234 if ((m->aflags & PGA_REFERENCED) != 0) { 1235 vm_page_aflag_clear(m, PGA_REFERENCED); 1236 act_delta++; 1237 } 1238 1239 /* 1240 * Advance or decay the act_count based on recent usage. 1241 */ 1242 if (act_delta != 0) { 1243 m->act_count += ACT_ADVANCE + act_delta; 1244 if (m->act_count > ACT_MAX) 1245 m->act_count = ACT_MAX; 1246 } else 1247 m->act_count -= min(m->act_count, ACT_DECLINE); 1248 1249 if (m->act_count == 0) { 1250 /* 1251 * When not short for inactive pages, let dirty pages go 1252 * through the inactive queue before moving to the 1253 * laundry queues. This gives them some extra time to 1254 * be reactivated, potentially avoiding an expensive 1255 * pageout. However, during a page shortage, the 1256 * inactive queue is necessarily small, and so dirty 1257 * pages would only spend a trivial amount of time in 1258 * the inactive queue. Therefore, we might as well 1259 * place them directly in the laundry queue to reduce 1260 * queuing overhead. 1261 */ 1262 if (page_shortage <= 0) 1263 vm_page_deactivate(m); 1264 else { 1265 /* 1266 * Calling vm_page_test_dirty() here would 1267 * require acquisition of the object's write 1268 * lock. However, during a page shortage, 1269 * directing dirty pages into the laundry 1270 * queue is only an optimization and not a 1271 * requirement. Therefore, we simply rely on 1272 * the opportunistic updates to the page's 1273 * dirty field by the pmap. 1274 */ 1275 if (m->dirty == 0) { 1276 vm_page_deactivate(m); 1277 page_shortage -= 1278 act_scan_laundry_weight; 1279 } else { 1280 vm_page_launder(m); 1281 page_shortage--; 1282 } 1283 } 1284 } 1285 } 1286 if (mtx != NULL) { 1287 mtx_unlock(mtx); 1288 mtx = NULL; 1289 } 1290 vm_pagequeue_lock(pq); 1291 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1292 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q); 1293 vm_pageout_end_scan(&ss); 1294 vm_pagequeue_unlock(pq); 1295 } 1296 1297 static int 1298 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m) 1299 { 1300 struct vm_domain *vmd; 1301 1302 if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0) 1303 return (0); 1304 vm_page_aflag_set(m, PGA_ENQUEUED); 1305 if ((m->aflags & PGA_REQUEUE_HEAD) != 0) { 1306 vmd = vm_pagequeue_domain(m); 1307 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 1308 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 1309 } else if ((m->aflags & PGA_REQUEUE) != 0) { 1310 TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q); 1311 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 1312 } else 1313 TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q); 1314 return (1); 1315 } 1316 1317 /* 1318 * Re-add stuck pages to the inactive queue. We will examine them again 1319 * during the next scan. If the queue state of a page has changed since 1320 * it was physically removed from the page queue in 1321 * vm_pageout_collect_batch(), don't do anything with that page. 1322 */ 1323 static void 1324 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq, 1325 vm_page_t m) 1326 { 1327 struct vm_pagequeue *pq; 1328 int delta; 1329 1330 delta = 0; 1331 pq = ss->pq; 1332 1333 if (m != NULL) { 1334 if (vm_batchqueue_insert(bq, m)) 1335 return; 1336 vm_pagequeue_lock(pq); 1337 delta += vm_pageout_reinsert_inactive_page(ss, m); 1338 } else 1339 vm_pagequeue_lock(pq); 1340 while ((m = vm_batchqueue_pop(bq)) != NULL) 1341 delta += vm_pageout_reinsert_inactive_page(ss, m); 1342 vm_pagequeue_cnt_add(pq, delta); 1343 vm_pagequeue_unlock(pq); 1344 vm_batchqueue_init(bq); 1345 } 1346 1347 /* 1348 * Attempt to reclaim the requested number of pages from the inactive queue. 1349 * Returns true if the shortage was addressed. 1350 */ 1351 static int 1352 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage, 1353 int *addl_shortage) 1354 { 1355 struct scan_state ss; 1356 struct vm_batchqueue rq; 1357 struct mtx *mtx; 1358 vm_page_t m, marker; 1359 struct vm_pagequeue *pq; 1360 vm_object_t object; 1361 int act_delta, addl_page_shortage, deficit, page_shortage; 1362 int starting_page_shortage; 1363 1364 /* 1365 * The addl_page_shortage is an estimate of the number of temporarily 1366 * stuck pages in the inactive queue. In other words, the 1367 * number of pages from the inactive count that should be 1368 * discounted in setting the target for the active queue scan. 1369 */ 1370 addl_page_shortage = 0; 1371 1372 /* 1373 * vmd_pageout_deficit counts the number of pages requested in 1374 * allocations that failed because of a free page shortage. We assume 1375 * that the allocations will be reattempted and thus include the deficit 1376 * in our scan target. 1377 */ 1378 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1379 starting_page_shortage = page_shortage = shortage + deficit; 1380 1381 mtx = NULL; 1382 object = NULL; 1383 vm_batchqueue_init(&rq); 1384 1385 /* 1386 * Start scanning the inactive queue for pages that we can free. The 1387 * scan will stop when we reach the target or we have scanned the 1388 * entire queue. (Note that m->act_count is not used to make 1389 * decisions for the inactive queue, only for the active queue.) 1390 */ 1391 marker = &vmd->vmd_markers[PQ_INACTIVE]; 1392 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1393 vm_pagequeue_lock(pq); 1394 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 1395 while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) { 1396 KASSERT((m->flags & PG_MARKER) == 0, 1397 ("marker page %p was dequeued", m)); 1398 1399 vm_page_change_lock(m, &mtx); 1400 1401 recheck: 1402 /* 1403 * The page may have been disassociated from the queue 1404 * while locks were dropped. 1405 */ 1406 if (vm_page_queue(m) != PQ_INACTIVE) { 1407 addl_page_shortage++; 1408 continue; 1409 } 1410 1411 /* 1412 * The page was re-enqueued after the page queue lock was 1413 * dropped, or a requeue was requested. This page gets a second 1414 * chance. 1415 */ 1416 if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE | 1417 PGA_REQUEUE_HEAD)) != 0) 1418 goto reinsert; 1419 1420 /* 1421 * Held pages are essentially stuck in the queue. So, 1422 * they ought to be discounted from the inactive count. 1423 * See the description of addl_page_shortage above. 1424 * 1425 * Wired pages may not be freed. Complete their removal 1426 * from the queue now to avoid needless revisits during 1427 * future scans. 1428 */ 1429 if (m->hold_count != 0) { 1430 addl_page_shortage++; 1431 goto reinsert; 1432 } 1433 if (vm_page_wired(m)) { 1434 vm_page_dequeue_deferred(m); 1435 continue; 1436 } 1437 1438 if (object != m->object) { 1439 if (object != NULL) 1440 VM_OBJECT_WUNLOCK(object); 1441 object = m->object; 1442 if (!VM_OBJECT_TRYWLOCK(object)) { 1443 mtx_unlock(mtx); 1444 /* Depends on type-stability. */ 1445 VM_OBJECT_WLOCK(object); 1446 mtx_lock(mtx); 1447 goto recheck; 1448 } 1449 } 1450 1451 if (vm_page_busied(m)) { 1452 /* 1453 * Don't mess with busy pages. Leave them at 1454 * the front of the queue. Most likely, they 1455 * are being paged out and will leave the 1456 * queue shortly after the scan finishes. So, 1457 * they ought to be discounted from the 1458 * inactive count. 1459 */ 1460 addl_page_shortage++; 1461 goto reinsert; 1462 } 1463 1464 /* 1465 * Invalid pages can be easily freed. They cannot be 1466 * mapped, vm_page_free() asserts this. 1467 */ 1468 if (m->valid == 0) 1469 goto free_page; 1470 1471 /* 1472 * If the page has been referenced and the object is not dead, 1473 * reactivate or requeue the page depending on whether the 1474 * object is mapped. 1475 * 1476 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1477 * that a reference from a concurrently destroyed mapping is 1478 * observed here and now. 1479 */ 1480 if (object->ref_count != 0) 1481 act_delta = pmap_ts_referenced(m); 1482 else { 1483 KASSERT(!pmap_page_is_mapped(m), 1484 ("page %p is mapped", m)); 1485 act_delta = 0; 1486 } 1487 if ((m->aflags & PGA_REFERENCED) != 0) { 1488 vm_page_aflag_clear(m, PGA_REFERENCED); 1489 act_delta++; 1490 } 1491 if (act_delta != 0) { 1492 if (object->ref_count != 0) { 1493 VM_CNT_INC(v_reactivated); 1494 vm_page_activate(m); 1495 1496 /* 1497 * Increase the activation count if the page 1498 * was referenced while in the inactive queue. 1499 * This makes it less likely that the page will 1500 * be returned prematurely to the inactive 1501 * queue. 1502 */ 1503 m->act_count += act_delta + ACT_ADVANCE; 1504 continue; 1505 } else if ((object->flags & OBJ_DEAD) == 0) { 1506 vm_page_aflag_set(m, PGA_REQUEUE); 1507 goto reinsert; 1508 } 1509 } 1510 1511 /* 1512 * If the page appears to be clean at the machine-independent 1513 * layer, then remove all of its mappings from the pmap in 1514 * anticipation of freeing it. If, however, any of the page's 1515 * mappings allow write access, then the page may still be 1516 * modified until the last of those mappings are removed. 1517 */ 1518 if (object->ref_count != 0) { 1519 vm_page_test_dirty(m); 1520 if (m->dirty == 0) 1521 pmap_remove_all(m); 1522 } 1523 1524 /* 1525 * Clean pages can be freed, but dirty pages must be sent back 1526 * to the laundry, unless they belong to a dead object. 1527 * Requeueing dirty pages from dead objects is pointless, as 1528 * they are being paged out and freed by the thread that 1529 * destroyed the object. 1530 */ 1531 if (m->dirty == 0) { 1532 free_page: 1533 /* 1534 * Because we dequeued the page and have already 1535 * checked for concurrent dequeue and enqueue 1536 * requests, we can safely disassociate the page 1537 * from the inactive queue. 1538 */ 1539 KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0, 1540 ("page %p has queue state", m)); 1541 m->queue = PQ_NONE; 1542 vm_page_free(m); 1543 page_shortage--; 1544 } else if ((object->flags & OBJ_DEAD) == 0) 1545 vm_page_launder(m); 1546 continue; 1547 reinsert: 1548 vm_pageout_reinsert_inactive(&ss, &rq, m); 1549 } 1550 if (mtx != NULL) 1551 mtx_unlock(mtx); 1552 if (object != NULL) 1553 VM_OBJECT_WUNLOCK(object); 1554 vm_pageout_reinsert_inactive(&ss, &rq, NULL); 1555 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL); 1556 vm_pagequeue_lock(pq); 1557 vm_pageout_end_scan(&ss); 1558 vm_pagequeue_unlock(pq); 1559 1560 VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage); 1561 1562 /* 1563 * Wake up the laundry thread so that it can perform any needed 1564 * laundering. If we didn't meet our target, we're in shortfall and 1565 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1566 * swap devices are configured, the laundry thread has no work to do, so 1567 * don't bother waking it up. 1568 * 1569 * The laundry thread uses the number of inactive queue scans elapsed 1570 * since the last laundering to determine whether to launder again, so 1571 * keep count. 1572 */ 1573 if (starting_page_shortage > 0) { 1574 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1575 vm_pagequeue_lock(pq); 1576 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1577 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1578 if (page_shortage > 0) { 1579 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1580 VM_CNT_INC(v_pdshortfalls); 1581 } else if (vmd->vmd_laundry_request != 1582 VM_LAUNDRY_SHORTFALL) 1583 vmd->vmd_laundry_request = 1584 VM_LAUNDRY_BACKGROUND; 1585 wakeup(&vmd->vmd_laundry_request); 1586 } 1587 vmd->vmd_clean_pages_freed += 1588 starting_page_shortage - page_shortage; 1589 vm_pagequeue_unlock(pq); 1590 } 1591 1592 /* 1593 * Wakeup the swapout daemon if we didn't free the targeted number of 1594 * pages. 1595 */ 1596 if (page_shortage > 0) 1597 vm_swapout_run(); 1598 1599 /* 1600 * If the inactive queue scan fails repeatedly to meet its 1601 * target, kill the largest process. 1602 */ 1603 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1604 1605 /* 1606 * Reclaim pages by swapping out idle processes, if configured to do so. 1607 */ 1608 vm_swapout_run_idle(); 1609 1610 /* 1611 * See the description of addl_page_shortage above. 1612 */ 1613 *addl_shortage = addl_page_shortage + deficit; 1614 1615 return (page_shortage <= 0); 1616 } 1617 1618 static int vm_pageout_oom_vote; 1619 1620 /* 1621 * The pagedaemon threads randlomly select one to perform the 1622 * OOM. Trying to kill processes before all pagedaemons 1623 * failed to reach free target is premature. 1624 */ 1625 static void 1626 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1627 int starting_page_shortage) 1628 { 1629 int old_vote; 1630 1631 if (starting_page_shortage <= 0 || starting_page_shortage != 1632 page_shortage) 1633 vmd->vmd_oom_seq = 0; 1634 else 1635 vmd->vmd_oom_seq++; 1636 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1637 if (vmd->vmd_oom) { 1638 vmd->vmd_oom = FALSE; 1639 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1640 } 1641 return; 1642 } 1643 1644 /* 1645 * Do not follow the call sequence until OOM condition is 1646 * cleared. 1647 */ 1648 vmd->vmd_oom_seq = 0; 1649 1650 if (vmd->vmd_oom) 1651 return; 1652 1653 vmd->vmd_oom = TRUE; 1654 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1655 if (old_vote != vm_ndomains - 1) 1656 return; 1657 1658 /* 1659 * The current pagedaemon thread is the last in the quorum to 1660 * start OOM. Initiate the selection and signaling of the 1661 * victim. 1662 */ 1663 vm_pageout_oom(VM_OOM_MEM); 1664 1665 /* 1666 * After one round of OOM terror, recall our vote. On the 1667 * next pass, current pagedaemon would vote again if the low 1668 * memory condition is still there, due to vmd_oom being 1669 * false. 1670 */ 1671 vmd->vmd_oom = FALSE; 1672 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1673 } 1674 1675 /* 1676 * The OOM killer is the page daemon's action of last resort when 1677 * memory allocation requests have been stalled for a prolonged period 1678 * of time because it cannot reclaim memory. This function computes 1679 * the approximate number of physical pages that could be reclaimed if 1680 * the specified address space is destroyed. 1681 * 1682 * Private, anonymous memory owned by the address space is the 1683 * principal resource that we expect to recover after an OOM kill. 1684 * Since the physical pages mapped by the address space's COW entries 1685 * are typically shared pages, they are unlikely to be released and so 1686 * they are not counted. 1687 * 1688 * To get to the point where the page daemon runs the OOM killer, its 1689 * efforts to write-back vnode-backed pages may have stalled. This 1690 * could be caused by a memory allocation deadlock in the write path 1691 * that might be resolved by an OOM kill. Therefore, physical pages 1692 * belonging to vnode-backed objects are counted, because they might 1693 * be freed without being written out first if the address space holds 1694 * the last reference to an unlinked vnode. 1695 * 1696 * Similarly, physical pages belonging to OBJT_PHYS objects are 1697 * counted because the address space might hold the last reference to 1698 * the object. 1699 */ 1700 static long 1701 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1702 { 1703 vm_map_t map; 1704 vm_map_entry_t entry; 1705 vm_object_t obj; 1706 long res; 1707 1708 map = &vmspace->vm_map; 1709 KASSERT(!map->system_map, ("system map")); 1710 sx_assert(&map->lock, SA_LOCKED); 1711 res = 0; 1712 for (entry = map->header.next; entry != &map->header; 1713 entry = entry->next) { 1714 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1715 continue; 1716 obj = entry->object.vm_object; 1717 if (obj == NULL) 1718 continue; 1719 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1720 obj->ref_count != 1) 1721 continue; 1722 switch (obj->type) { 1723 case OBJT_DEFAULT: 1724 case OBJT_SWAP: 1725 case OBJT_PHYS: 1726 case OBJT_VNODE: 1727 res += obj->resident_page_count; 1728 break; 1729 } 1730 } 1731 return (res); 1732 } 1733 1734 void 1735 vm_pageout_oom(int shortage) 1736 { 1737 struct proc *p, *bigproc; 1738 vm_offset_t size, bigsize; 1739 struct thread *td; 1740 struct vmspace *vm; 1741 bool breakout; 1742 1743 /* 1744 * We keep the process bigproc locked once we find it to keep anyone 1745 * from messing with it; however, there is a possibility of 1746 * deadlock if process B is bigproc and one of its child processes 1747 * attempts to propagate a signal to B while we are waiting for A's 1748 * lock while walking this list. To avoid this, we don't block on 1749 * the process lock but just skip a process if it is already locked. 1750 */ 1751 bigproc = NULL; 1752 bigsize = 0; 1753 sx_slock(&allproc_lock); 1754 FOREACH_PROC_IN_SYSTEM(p) { 1755 PROC_LOCK(p); 1756 1757 /* 1758 * If this is a system, protected or killed process, skip it. 1759 */ 1760 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1761 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1762 p->p_pid == 1 || P_KILLED(p) || 1763 (p->p_pid < 48 && swap_pager_avail != 0)) { 1764 PROC_UNLOCK(p); 1765 continue; 1766 } 1767 /* 1768 * If the process is in a non-running type state, 1769 * don't touch it. Check all the threads individually. 1770 */ 1771 breakout = false; 1772 FOREACH_THREAD_IN_PROC(p, td) { 1773 thread_lock(td); 1774 if (!TD_ON_RUNQ(td) && 1775 !TD_IS_RUNNING(td) && 1776 !TD_IS_SLEEPING(td) && 1777 !TD_IS_SUSPENDED(td) && 1778 !TD_IS_SWAPPED(td)) { 1779 thread_unlock(td); 1780 breakout = true; 1781 break; 1782 } 1783 thread_unlock(td); 1784 } 1785 if (breakout) { 1786 PROC_UNLOCK(p); 1787 continue; 1788 } 1789 /* 1790 * get the process size 1791 */ 1792 vm = vmspace_acquire_ref(p); 1793 if (vm == NULL) { 1794 PROC_UNLOCK(p); 1795 continue; 1796 } 1797 _PHOLD_LITE(p); 1798 PROC_UNLOCK(p); 1799 sx_sunlock(&allproc_lock); 1800 if (!vm_map_trylock_read(&vm->vm_map)) { 1801 vmspace_free(vm); 1802 sx_slock(&allproc_lock); 1803 PRELE(p); 1804 continue; 1805 } 1806 size = vmspace_swap_count(vm); 1807 if (shortage == VM_OOM_MEM) 1808 size += vm_pageout_oom_pagecount(vm); 1809 vm_map_unlock_read(&vm->vm_map); 1810 vmspace_free(vm); 1811 sx_slock(&allproc_lock); 1812 1813 /* 1814 * If this process is bigger than the biggest one, 1815 * remember it. 1816 */ 1817 if (size > bigsize) { 1818 if (bigproc != NULL) 1819 PRELE(bigproc); 1820 bigproc = p; 1821 bigsize = size; 1822 } else { 1823 PRELE(p); 1824 } 1825 } 1826 sx_sunlock(&allproc_lock); 1827 if (bigproc != NULL) { 1828 if (vm_panic_on_oom != 0) 1829 panic("out of swap space"); 1830 PROC_LOCK(bigproc); 1831 killproc(bigproc, "out of swap space"); 1832 sched_nice(bigproc, PRIO_MIN); 1833 _PRELE(bigproc); 1834 PROC_UNLOCK(bigproc); 1835 } 1836 } 1837 1838 static bool 1839 vm_pageout_lowmem(void) 1840 { 1841 static int lowmem_ticks = 0; 1842 int last; 1843 1844 last = atomic_load_int(&lowmem_ticks); 1845 while ((u_int)(ticks - last) / hz >= lowmem_period) { 1846 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0) 1847 continue; 1848 1849 /* 1850 * Decrease registered cache sizes. 1851 */ 1852 SDT_PROBE0(vm, , , vm__lowmem_scan); 1853 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 1854 1855 /* 1856 * We do this explicitly after the caches have been 1857 * drained above. 1858 */ 1859 uma_reclaim(); 1860 return (true); 1861 } 1862 return (false); 1863 } 1864 1865 static void 1866 vm_pageout_worker(void *arg) 1867 { 1868 struct vm_domain *vmd; 1869 u_int ofree; 1870 int addl_shortage, domain, shortage; 1871 bool target_met; 1872 1873 domain = (uintptr_t)arg; 1874 vmd = VM_DOMAIN(domain); 1875 shortage = 0; 1876 target_met = true; 1877 1878 /* 1879 * XXXKIB It could be useful to bind pageout daemon threads to 1880 * the cores belonging to the domain, from which vm_page_array 1881 * is allocated. 1882 */ 1883 1884 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 1885 vmd->vmd_last_active_scan = ticks; 1886 1887 /* 1888 * The pageout daemon worker is never done, so loop forever. 1889 */ 1890 while (TRUE) { 1891 vm_domain_pageout_lock(vmd); 1892 1893 /* 1894 * We need to clear wanted before we check the limits. This 1895 * prevents races with wakers who will check wanted after they 1896 * reach the limit. 1897 */ 1898 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 1899 1900 /* 1901 * Might the page daemon need to run again? 1902 */ 1903 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 1904 /* 1905 * Yes. If the scan failed to produce enough free 1906 * pages, sleep uninterruptibly for some time in the 1907 * hope that the laundry thread will clean some pages. 1908 */ 1909 vm_domain_pageout_unlock(vmd); 1910 if (!target_met) 1911 pause("pwait", hz / VM_INACT_SCAN_RATE); 1912 } else { 1913 /* 1914 * No, sleep until the next wakeup or until pages 1915 * need to have their reference stats updated. 1916 */ 1917 if (mtx_sleep(&vmd->vmd_pageout_wanted, 1918 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 1919 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 1920 VM_CNT_INC(v_pdwakeups); 1921 } 1922 1923 /* Prevent spurious wakeups by ensuring that wanted is set. */ 1924 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 1925 1926 /* 1927 * Use the controller to calculate how many pages to free in 1928 * this interval, and scan the inactive queue. If the lowmem 1929 * handlers appear to have freed up some pages, subtract the 1930 * difference from the inactive queue scan target. 1931 */ 1932 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 1933 if (shortage > 0) { 1934 ofree = vmd->vmd_free_count; 1935 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree) 1936 shortage -= min(vmd->vmd_free_count - ofree, 1937 (u_int)shortage); 1938 target_met = vm_pageout_scan_inactive(vmd, shortage, 1939 &addl_shortage); 1940 } else 1941 addl_shortage = 0; 1942 1943 /* 1944 * Scan the active queue. A positive value for shortage 1945 * indicates that we must aggressively deactivate pages to avoid 1946 * a shortfall. 1947 */ 1948 shortage = vm_pageout_active_target(vmd) + addl_shortage; 1949 vm_pageout_scan_active(vmd, shortage); 1950 } 1951 } 1952 1953 /* 1954 * vm_pageout_init initialises basic pageout daemon settings. 1955 */ 1956 static void 1957 vm_pageout_init_domain(int domain) 1958 { 1959 struct vm_domain *vmd; 1960 struct sysctl_oid *oid; 1961 1962 vmd = VM_DOMAIN(domain); 1963 vmd->vmd_interrupt_free_min = 2; 1964 1965 /* 1966 * v_free_reserved needs to include enough for the largest 1967 * swap pager structures plus enough for any pv_entry structs 1968 * when paging. 1969 */ 1970 if (vmd->vmd_page_count > 1024) 1971 vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200; 1972 else 1973 vmd->vmd_free_min = 4; 1974 vmd->vmd_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE + 1975 vmd->vmd_interrupt_free_min; 1976 vmd->vmd_free_reserved = vm_pageout_page_count + 1977 vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768); 1978 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 1979 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 1980 vmd->vmd_free_min += vmd->vmd_free_reserved; 1981 vmd->vmd_free_severe += vmd->vmd_free_reserved; 1982 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 1983 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 1984 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 1985 1986 /* 1987 * Set the default wakeup threshold to be 10% below the paging 1988 * target. This keeps the steady state out of shortfall. 1989 */ 1990 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 1991 1992 /* 1993 * Target amount of memory to move out of the laundry queue during a 1994 * background laundering. This is proportional to the amount of system 1995 * memory. 1996 */ 1997 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 1998 vmd->vmd_free_min) / 10; 1999 2000 /* Initialize the pageout daemon pid controller. */ 2001 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 2002 vmd->vmd_free_target, PIDCTRL_BOUND, 2003 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 2004 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 2005 "pidctrl", CTLFLAG_RD, NULL, ""); 2006 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 2007 } 2008 2009 static void 2010 vm_pageout_init(void) 2011 { 2012 u_int freecount; 2013 int i; 2014 2015 /* 2016 * Initialize some paging parameters. 2017 */ 2018 if (vm_cnt.v_page_count < 2000) 2019 vm_pageout_page_count = 8; 2020 2021 freecount = 0; 2022 for (i = 0; i < vm_ndomains; i++) { 2023 struct vm_domain *vmd; 2024 2025 vm_pageout_init_domain(i); 2026 vmd = VM_DOMAIN(i); 2027 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 2028 vm_cnt.v_free_target += vmd->vmd_free_target; 2029 vm_cnt.v_free_min += vmd->vmd_free_min; 2030 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 2031 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 2032 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 2033 vm_cnt.v_free_severe += vmd->vmd_free_severe; 2034 freecount += vmd->vmd_free_count; 2035 } 2036 2037 /* 2038 * Set interval in seconds for active scan. We want to visit each 2039 * page at least once every ten minutes. This is to prevent worst 2040 * case paging behaviors with stale active LRU. 2041 */ 2042 if (vm_pageout_update_period == 0) 2043 vm_pageout_update_period = 600; 2044 2045 if (vm_page_max_user_wired == 0) 2046 vm_page_max_user_wired = freecount / 3; 2047 } 2048 2049 /* 2050 * vm_pageout is the high level pageout daemon. 2051 */ 2052 static void 2053 vm_pageout(void) 2054 { 2055 struct proc *p; 2056 struct thread *td; 2057 int error, first, i; 2058 2059 p = curproc; 2060 td = curthread; 2061 2062 swap_pager_swap_init(); 2063 for (first = -1, i = 0; i < vm_ndomains; i++) { 2064 if (VM_DOMAIN_EMPTY(i)) { 2065 if (bootverbose) 2066 printf("domain %d empty; skipping pageout\n", 2067 i); 2068 continue; 2069 } 2070 if (first == -1) 2071 first = i; 2072 else { 2073 error = kthread_add(vm_pageout_worker, 2074 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i); 2075 if (error != 0) 2076 panic("starting pageout for domain %d: %d\n", 2077 i, error); 2078 } 2079 error = kthread_add(vm_pageout_laundry_worker, 2080 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i); 2081 if (error != 0) 2082 panic("starting laundry for domain %d: %d", i, error); 2083 } 2084 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma"); 2085 if (error != 0) 2086 panic("starting uma_reclaim helper, error %d\n", error); 2087 2088 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first); 2089 vm_pageout_worker((void *)(uintptr_t)first); 2090 } 2091 2092 /* 2093 * Perform an advisory wakeup of the page daemon. 2094 */ 2095 void 2096 pagedaemon_wakeup(int domain) 2097 { 2098 struct vm_domain *vmd; 2099 2100 vmd = VM_DOMAIN(domain); 2101 vm_domain_pageout_assert_unlocked(vmd); 2102 if (curproc == pageproc) 2103 return; 2104 2105 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 2106 vm_domain_pageout_lock(vmd); 2107 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2108 wakeup(&vmd->vmd_pageout_wanted); 2109 vm_domain_pageout_unlock(vmd); 2110 } 2111 } 2112