xref: /freebsd/sys/vm/vm_pageout.c (revision b9f654b163bce26de79705e77b872427c9f2afa1)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72 
73 /*
74  *	The proverbial page-out daemon.
75  */
76 
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79 
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104 
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117 
118 /*
119  * System initialization
120  */
121 
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
128     int starting_page_shortage);
129 
130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
131     NULL);
132 
133 struct proc *pageproc;
134 
135 static struct kproc_desc page_kp = {
136 	"pagedaemon",
137 	vm_pageout,
138 	&pageproc
139 };
140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
141     &page_kp);
142 
143 SDT_PROVIDER_DEFINE(vm);
144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
145 
146 /* Pagedaemon activity rates, in subdivisions of one second. */
147 #define	VM_LAUNDER_RATE		10
148 #define	VM_INACT_SCAN_RATE	10
149 
150 static int vm_pageout_oom_seq = 12;
151 
152 static int vm_pageout_update_period;
153 static int disable_swap_pageouts;
154 static int lowmem_period = 10;
155 static int swapdev_enabled;
156 
157 static int vm_panic_on_oom = 0;
158 
159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
160 	CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
161 	"panic on out of memory instead of killing the largest process");
162 
163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
164 	CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
165 	"Maximum active LRU update period");
166 
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168 	"Low memory callback period");
169 
170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
171 	CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
172 
173 static int pageout_lock_miss;
174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
175 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
176 
177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
178 	CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
179 	"back-to-back calls to oom detector to start OOM");
180 
181 static int act_scan_laundry_weight = 3;
182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
183     &act_scan_laundry_weight, 0,
184     "weight given to clean vs. dirty pages in active queue scans");
185 
186 static u_int vm_background_launder_rate = 4096;
187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
188     &vm_background_launder_rate, 0,
189     "background laundering rate, in kilobytes per second");
190 
191 static u_int vm_background_launder_max = 20 * 1024;
192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
193     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
194 
195 int vm_pageout_page_count = 32;
196 
197 u_long vm_page_max_user_wired;
198 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
199     &vm_page_max_user_wired, 0,
200     "system-wide limit to user-wired page count");
201 
202 static u_int isqrt(u_int num);
203 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
204     bool in_shortfall);
205 static void vm_pageout_laundry_worker(void *arg);
206 
207 struct scan_state {
208 	struct vm_batchqueue bq;
209 	struct vm_pagequeue *pq;
210 	vm_page_t	marker;
211 	int		maxscan;
212 	int		scanned;
213 };
214 
215 static void
216 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
217     vm_page_t marker, vm_page_t after, int maxscan)
218 {
219 
220 	vm_pagequeue_assert_locked(pq);
221 	KASSERT((marker->aflags & PGA_ENQUEUED) == 0,
222 	    ("marker %p already enqueued", marker));
223 
224 	if (after == NULL)
225 		TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
226 	else
227 		TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
228 	vm_page_aflag_set(marker, PGA_ENQUEUED);
229 
230 	vm_batchqueue_init(&ss->bq);
231 	ss->pq = pq;
232 	ss->marker = marker;
233 	ss->maxscan = maxscan;
234 	ss->scanned = 0;
235 	vm_pagequeue_unlock(pq);
236 }
237 
238 static void
239 vm_pageout_end_scan(struct scan_state *ss)
240 {
241 	struct vm_pagequeue *pq;
242 
243 	pq = ss->pq;
244 	vm_pagequeue_assert_locked(pq);
245 	KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0,
246 	    ("marker %p not enqueued", ss->marker));
247 
248 	TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
249 	vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
250 	pq->pq_pdpages += ss->scanned;
251 }
252 
253 /*
254  * Add a small number of queued pages to a batch queue for later processing
255  * without the corresponding queue lock held.  The caller must have enqueued a
256  * marker page at the desired start point for the scan.  Pages will be
257  * physically dequeued if the caller so requests.  Otherwise, the returned
258  * batch may contain marker pages, and it is up to the caller to handle them.
259  *
260  * When processing the batch queue, vm_page_queue() must be used to
261  * determine whether the page has been logically dequeued by another thread.
262  * Once this check is performed, the page lock guarantees that the page will
263  * not be disassociated from the queue.
264  */
265 static __always_inline void
266 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
267 {
268 	struct vm_pagequeue *pq;
269 	vm_page_t m, marker;
270 
271 	marker = ss->marker;
272 	pq = ss->pq;
273 
274 	KASSERT((marker->aflags & PGA_ENQUEUED) != 0,
275 	    ("marker %p not enqueued", ss->marker));
276 
277 	vm_pagequeue_lock(pq);
278 	for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
279 	    ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
280 	    m = TAILQ_NEXT(m, plinks.q), ss->scanned++) {
281 		if ((m->flags & PG_MARKER) == 0) {
282 			KASSERT((m->aflags & PGA_ENQUEUED) != 0,
283 			    ("page %p not enqueued", m));
284 			KASSERT((m->flags & PG_FICTITIOUS) == 0,
285 			    ("Fictitious page %p cannot be in page queue", m));
286 			KASSERT((m->oflags & VPO_UNMANAGED) == 0,
287 			    ("Unmanaged page %p cannot be in page queue", m));
288 		} else if (dequeue)
289 			continue;
290 
291 		(void)vm_batchqueue_insert(&ss->bq, m);
292 		if (dequeue) {
293 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
294 			vm_page_aflag_clear(m, PGA_ENQUEUED);
295 		}
296 	}
297 	TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
298 	if (__predict_true(m != NULL))
299 		TAILQ_INSERT_BEFORE(m, marker, plinks.q);
300 	else
301 		TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
302 	if (dequeue)
303 		vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
304 	vm_pagequeue_unlock(pq);
305 }
306 
307 /* Return the next page to be scanned, or NULL if the scan is complete. */
308 static __always_inline vm_page_t
309 vm_pageout_next(struct scan_state *ss, const bool dequeue)
310 {
311 
312 	if (ss->bq.bq_cnt == 0)
313 		vm_pageout_collect_batch(ss, dequeue);
314 	return (vm_batchqueue_pop(&ss->bq));
315 }
316 
317 /*
318  * Scan for pages at adjacent offsets within the given page's object that are
319  * eligible for laundering, form a cluster of these pages and the given page,
320  * and launder that cluster.
321  */
322 static int
323 vm_pageout_cluster(vm_page_t m)
324 {
325 	vm_object_t object;
326 	vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
327 	vm_pindex_t pindex;
328 	int ib, is, page_base, pageout_count;
329 
330 	vm_page_assert_locked(m);
331 	object = m->object;
332 	VM_OBJECT_ASSERT_WLOCKED(object);
333 	pindex = m->pindex;
334 
335 	vm_page_assert_unbusied(m);
336 	KASSERT(!vm_page_held(m), ("page %p is held", m));
337 
338 	pmap_remove_write(m);
339 	vm_page_unlock(m);
340 
341 	mc[vm_pageout_page_count] = pb = ps = m;
342 	pageout_count = 1;
343 	page_base = vm_pageout_page_count;
344 	ib = 1;
345 	is = 1;
346 
347 	/*
348 	 * We can cluster only if the page is not clean, busy, or held, and
349 	 * the page is in the laundry queue.
350 	 *
351 	 * During heavy mmap/modification loads the pageout
352 	 * daemon can really fragment the underlying file
353 	 * due to flushing pages out of order and not trying to
354 	 * align the clusters (which leaves sporadic out-of-order
355 	 * holes).  To solve this problem we do the reverse scan
356 	 * first and attempt to align our cluster, then do a
357 	 * forward scan if room remains.
358 	 */
359 more:
360 	while (ib != 0 && pageout_count < vm_pageout_page_count) {
361 		if (ib > pindex) {
362 			ib = 0;
363 			break;
364 		}
365 		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
366 			ib = 0;
367 			break;
368 		}
369 		vm_page_test_dirty(p);
370 		if (p->dirty == 0) {
371 			ib = 0;
372 			break;
373 		}
374 		vm_page_lock(p);
375 		if (vm_page_held(p) || !vm_page_in_laundry(p)) {
376 			vm_page_unlock(p);
377 			ib = 0;
378 			break;
379 		}
380 		pmap_remove_write(p);
381 		vm_page_unlock(p);
382 		mc[--page_base] = pb = p;
383 		++pageout_count;
384 		++ib;
385 
386 		/*
387 		 * We are at an alignment boundary.  Stop here, and switch
388 		 * directions.  Do not clear ib.
389 		 */
390 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
391 			break;
392 	}
393 	while (pageout_count < vm_pageout_page_count &&
394 	    pindex + is < object->size) {
395 		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
396 			break;
397 		vm_page_test_dirty(p);
398 		if (p->dirty == 0)
399 			break;
400 		vm_page_lock(p);
401 		if (vm_page_held(p) || !vm_page_in_laundry(p)) {
402 			vm_page_unlock(p);
403 			break;
404 		}
405 		pmap_remove_write(p);
406 		vm_page_unlock(p);
407 		mc[page_base + pageout_count] = ps = p;
408 		++pageout_count;
409 		++is;
410 	}
411 
412 	/*
413 	 * If we exhausted our forward scan, continue with the reverse scan
414 	 * when possible, even past an alignment boundary.  This catches
415 	 * boundary conditions.
416 	 */
417 	if (ib != 0 && pageout_count < vm_pageout_page_count)
418 		goto more;
419 
420 	return (vm_pageout_flush(&mc[page_base], pageout_count,
421 	    VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
422 }
423 
424 /*
425  * vm_pageout_flush() - launder the given pages
426  *
427  *	The given pages are laundered.  Note that we setup for the start of
428  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
429  *	reference count all in here rather then in the parent.  If we want
430  *	the parent to do more sophisticated things we may have to change
431  *	the ordering.
432  *
433  *	Returned runlen is the count of pages between mreq and first
434  *	page after mreq with status VM_PAGER_AGAIN.
435  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
436  *	for any page in runlen set.
437  */
438 int
439 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
440     boolean_t *eio)
441 {
442 	vm_object_t object = mc[0]->object;
443 	int pageout_status[count];
444 	int numpagedout = 0;
445 	int i, runlen;
446 
447 	VM_OBJECT_ASSERT_WLOCKED(object);
448 
449 	/*
450 	 * Initiate I/O.  Mark the pages busy and verify that they're valid
451 	 * and read-only.
452 	 *
453 	 * We do not have to fixup the clean/dirty bits here... we can
454 	 * allow the pager to do it after the I/O completes.
455 	 *
456 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
457 	 * edge case with file fragments.
458 	 */
459 	for (i = 0; i < count; i++) {
460 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
461 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
462 			mc[i], i, count));
463 		KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0,
464 		    ("vm_pageout_flush: writeable page %p", mc[i]));
465 		vm_page_sbusy(mc[i]);
466 	}
467 	vm_object_pip_add(object, count);
468 
469 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
470 
471 	runlen = count - mreq;
472 	if (eio != NULL)
473 		*eio = FALSE;
474 	for (i = 0; i < count; i++) {
475 		vm_page_t mt = mc[i];
476 
477 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
478 		    !pmap_page_is_write_mapped(mt),
479 		    ("vm_pageout_flush: page %p is not write protected", mt));
480 		switch (pageout_status[i]) {
481 		case VM_PAGER_OK:
482 			vm_page_lock(mt);
483 			if (vm_page_in_laundry(mt))
484 				vm_page_deactivate_noreuse(mt);
485 			vm_page_unlock(mt);
486 			/* FALLTHROUGH */
487 		case VM_PAGER_PEND:
488 			numpagedout++;
489 			break;
490 		case VM_PAGER_BAD:
491 			/*
492 			 * The page is outside the object's range.  We pretend
493 			 * that the page out worked and clean the page, so the
494 			 * changes will be lost if the page is reclaimed by
495 			 * the page daemon.
496 			 */
497 			vm_page_undirty(mt);
498 			vm_page_lock(mt);
499 			if (vm_page_in_laundry(mt))
500 				vm_page_deactivate_noreuse(mt);
501 			vm_page_unlock(mt);
502 			break;
503 		case VM_PAGER_ERROR:
504 		case VM_PAGER_FAIL:
505 			/*
506 			 * If the page couldn't be paged out to swap because the
507 			 * pager wasn't able to find space, place the page in
508 			 * the PQ_UNSWAPPABLE holding queue.  This is an
509 			 * optimization that prevents the page daemon from
510 			 * wasting CPU cycles on pages that cannot be reclaimed
511 			 * becase no swap device is configured.
512 			 *
513 			 * Otherwise, reactivate the page so that it doesn't
514 			 * clog the laundry and inactive queues.  (We will try
515 			 * paging it out again later.)
516 			 */
517 			vm_page_lock(mt);
518 			if (object->type == OBJT_SWAP &&
519 			    pageout_status[i] == VM_PAGER_FAIL) {
520 				vm_page_unswappable(mt);
521 				numpagedout++;
522 			} else
523 				vm_page_activate(mt);
524 			vm_page_unlock(mt);
525 			if (eio != NULL && i >= mreq && i - mreq < runlen)
526 				*eio = TRUE;
527 			break;
528 		case VM_PAGER_AGAIN:
529 			if (i >= mreq && i - mreq < runlen)
530 				runlen = i - mreq;
531 			break;
532 		}
533 
534 		/*
535 		 * If the operation is still going, leave the page busy to
536 		 * block all other accesses. Also, leave the paging in
537 		 * progress indicator set so that we don't attempt an object
538 		 * collapse.
539 		 */
540 		if (pageout_status[i] != VM_PAGER_PEND) {
541 			vm_object_pip_wakeup(object);
542 			vm_page_sunbusy(mt);
543 		}
544 	}
545 	if (prunlen != NULL)
546 		*prunlen = runlen;
547 	return (numpagedout);
548 }
549 
550 static void
551 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
552 {
553 
554 	atomic_store_rel_int(&swapdev_enabled, 1);
555 }
556 
557 static void
558 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
559 {
560 
561 	if (swap_pager_nswapdev() == 1)
562 		atomic_store_rel_int(&swapdev_enabled, 0);
563 }
564 
565 /*
566  * Attempt to acquire all of the necessary locks to launder a page and
567  * then call through the clustering layer to PUTPAGES.  Wait a short
568  * time for a vnode lock.
569  *
570  * Requires the page and object lock on entry, releases both before return.
571  * Returns 0 on success and an errno otherwise.
572  */
573 static int
574 vm_pageout_clean(vm_page_t m, int *numpagedout)
575 {
576 	struct vnode *vp;
577 	struct mount *mp;
578 	vm_object_t object;
579 	vm_pindex_t pindex;
580 	int error, lockmode;
581 
582 	vm_page_assert_locked(m);
583 	object = m->object;
584 	VM_OBJECT_ASSERT_WLOCKED(object);
585 	error = 0;
586 	vp = NULL;
587 	mp = NULL;
588 
589 	/*
590 	 * The object is already known NOT to be dead.   It
591 	 * is possible for the vget() to block the whole
592 	 * pageout daemon, but the new low-memory handling
593 	 * code should prevent it.
594 	 *
595 	 * We can't wait forever for the vnode lock, we might
596 	 * deadlock due to a vn_read() getting stuck in
597 	 * vm_wait while holding this vnode.  We skip the
598 	 * vnode if we can't get it in a reasonable amount
599 	 * of time.
600 	 */
601 	if (object->type == OBJT_VNODE) {
602 		vm_page_unlock(m);
603 		vp = object->handle;
604 		if (vp->v_type == VREG &&
605 		    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
606 			mp = NULL;
607 			error = EDEADLK;
608 			goto unlock_all;
609 		}
610 		KASSERT(mp != NULL,
611 		    ("vp %p with NULL v_mount", vp));
612 		vm_object_reference_locked(object);
613 		pindex = m->pindex;
614 		VM_OBJECT_WUNLOCK(object);
615 		lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
616 		    LK_SHARED : LK_EXCLUSIVE;
617 		if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
618 			vp = NULL;
619 			error = EDEADLK;
620 			goto unlock_mp;
621 		}
622 		VM_OBJECT_WLOCK(object);
623 
624 		/*
625 		 * Ensure that the object and vnode were not disassociated
626 		 * while locks were dropped.
627 		 */
628 		if (vp->v_object != object) {
629 			error = ENOENT;
630 			goto unlock_all;
631 		}
632 		vm_page_lock(m);
633 
634 		/*
635 		 * While the object and page were unlocked, the page
636 		 * may have been:
637 		 * (1) moved to a different queue,
638 		 * (2) reallocated to a different object,
639 		 * (3) reallocated to a different offset, or
640 		 * (4) cleaned.
641 		 */
642 		if (!vm_page_in_laundry(m) || m->object != object ||
643 		    m->pindex != pindex || m->dirty == 0) {
644 			vm_page_unlock(m);
645 			error = ENXIO;
646 			goto unlock_all;
647 		}
648 
649 		/*
650 		 * The page may have been busied or referenced while the object
651 		 * and page locks were released.
652 		 */
653 		if (vm_page_busied(m) || vm_page_held(m)) {
654 			vm_page_unlock(m);
655 			error = EBUSY;
656 			goto unlock_all;
657 		}
658 	}
659 
660 	/*
661 	 * If a page is dirty, then it is either being washed
662 	 * (but not yet cleaned) or it is still in the
663 	 * laundry.  If it is still in the laundry, then we
664 	 * start the cleaning operation.
665 	 */
666 	if ((*numpagedout = vm_pageout_cluster(m)) == 0)
667 		error = EIO;
668 
669 unlock_all:
670 	VM_OBJECT_WUNLOCK(object);
671 
672 unlock_mp:
673 	vm_page_lock_assert(m, MA_NOTOWNED);
674 	if (mp != NULL) {
675 		if (vp != NULL)
676 			vput(vp);
677 		vm_object_deallocate(object);
678 		vn_finished_write(mp);
679 	}
680 
681 	return (error);
682 }
683 
684 /*
685  * Attempt to launder the specified number of pages.
686  *
687  * Returns the number of pages successfully laundered.
688  */
689 static int
690 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
691 {
692 	struct scan_state ss;
693 	struct vm_pagequeue *pq;
694 	struct mtx *mtx;
695 	vm_object_t object;
696 	vm_page_t m, marker;
697 	int act_delta, error, numpagedout, queue, starting_target;
698 	int vnodes_skipped;
699 	bool pageout_ok;
700 
701 	mtx = NULL;
702 	object = NULL;
703 	starting_target = launder;
704 	vnodes_skipped = 0;
705 
706 	/*
707 	 * Scan the laundry queues for pages eligible to be laundered.  We stop
708 	 * once the target number of dirty pages have been laundered, or once
709 	 * we've reached the end of the queue.  A single iteration of this loop
710 	 * may cause more than one page to be laundered because of clustering.
711 	 *
712 	 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
713 	 * swap devices are configured.
714 	 */
715 	if (atomic_load_acq_int(&swapdev_enabled))
716 		queue = PQ_UNSWAPPABLE;
717 	else
718 		queue = PQ_LAUNDRY;
719 
720 scan:
721 	marker = &vmd->vmd_markers[queue];
722 	pq = &vmd->vmd_pagequeues[queue];
723 	vm_pagequeue_lock(pq);
724 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
725 	while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
726 		if (__predict_false((m->flags & PG_MARKER) != 0))
727 			continue;
728 
729 		vm_page_change_lock(m, &mtx);
730 
731 recheck:
732 		/*
733 		 * The page may have been disassociated from the queue
734 		 * while locks were dropped.
735 		 */
736 		if (vm_page_queue(m) != queue)
737 			continue;
738 
739 		/*
740 		 * A requeue was requested, so this page gets a second
741 		 * chance.
742 		 */
743 		if ((m->aflags & PGA_REQUEUE) != 0) {
744 			vm_page_requeue(m);
745 			continue;
746 		}
747 
748 		/*
749 		 * Held pages are essentially stuck in the queue.
750 		 *
751 		 * Wired pages may not be freed.  Complete their removal
752 		 * from the queue now to avoid needless revisits during
753 		 * future scans.
754 		 */
755 		if (m->hold_count != 0)
756 			continue;
757 		if (vm_page_wired(m)) {
758 			vm_page_dequeue_deferred(m);
759 			continue;
760 		}
761 
762 		if (object != m->object) {
763 			if (object != NULL)
764 				VM_OBJECT_WUNLOCK(object);
765 			object = m->object;
766 			if (!VM_OBJECT_TRYWLOCK(object)) {
767 				mtx_unlock(mtx);
768 				/* Depends on type-stability. */
769 				VM_OBJECT_WLOCK(object);
770 				mtx_lock(mtx);
771 				goto recheck;
772 			}
773 		}
774 
775 		if (vm_page_busied(m))
776 			continue;
777 
778 		/*
779 		 * Invalid pages can be easily freed.  They cannot be
780 		 * mapped; vm_page_free() asserts this.
781 		 */
782 		if (m->valid == 0)
783 			goto free_page;
784 
785 		/*
786 		 * If the page has been referenced and the object is not dead,
787 		 * reactivate or requeue the page depending on whether the
788 		 * object is mapped.
789 		 *
790 		 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
791 		 * that a reference from a concurrently destroyed mapping is
792 		 * observed here and now.
793 		 */
794 		if (object->ref_count != 0)
795 			act_delta = pmap_ts_referenced(m);
796 		else {
797 			KASSERT(!pmap_page_is_mapped(m),
798 			    ("page %p is mapped", m));
799 			act_delta = 0;
800 		}
801 		if ((m->aflags & PGA_REFERENCED) != 0) {
802 			vm_page_aflag_clear(m, PGA_REFERENCED);
803 			act_delta++;
804 		}
805 		if (act_delta != 0) {
806 			if (object->ref_count != 0) {
807 				VM_CNT_INC(v_reactivated);
808 				vm_page_activate(m);
809 
810 				/*
811 				 * Increase the activation count if the page
812 				 * was referenced while in the laundry queue.
813 				 * This makes it less likely that the page will
814 				 * be returned prematurely to the inactive
815 				 * queue.
816  				 */
817 				m->act_count += act_delta + ACT_ADVANCE;
818 
819 				/*
820 				 * If this was a background laundering, count
821 				 * activated pages towards our target.  The
822 				 * purpose of background laundering is to ensure
823 				 * that pages are eventually cycled through the
824 				 * laundry queue, and an activation is a valid
825 				 * way out.
826 				 */
827 				if (!in_shortfall)
828 					launder--;
829 				continue;
830 			} else if ((object->flags & OBJ_DEAD) == 0) {
831 				vm_page_requeue(m);
832 				continue;
833 			}
834 		}
835 
836 		/*
837 		 * If the page appears to be clean at the machine-independent
838 		 * layer, then remove all of its mappings from the pmap in
839 		 * anticipation of freeing it.  If, however, any of the page's
840 		 * mappings allow write access, then the page may still be
841 		 * modified until the last of those mappings are removed.
842 		 */
843 		if (object->ref_count != 0) {
844 			vm_page_test_dirty(m);
845 			if (m->dirty == 0)
846 				pmap_remove_all(m);
847 		}
848 
849 		/*
850 		 * Clean pages are freed, and dirty pages are paged out unless
851 		 * they belong to a dead object.  Requeueing dirty pages from
852 		 * dead objects is pointless, as they are being paged out and
853 		 * freed by the thread that destroyed the object.
854 		 */
855 		if (m->dirty == 0) {
856 free_page:
857 			vm_page_free(m);
858 			VM_CNT_INC(v_dfree);
859 		} else if ((object->flags & OBJ_DEAD) == 0) {
860 			if (object->type != OBJT_SWAP &&
861 			    object->type != OBJT_DEFAULT)
862 				pageout_ok = true;
863 			else if (disable_swap_pageouts)
864 				pageout_ok = false;
865 			else
866 				pageout_ok = true;
867 			if (!pageout_ok) {
868 				vm_page_requeue(m);
869 				continue;
870 			}
871 
872 			/*
873 			 * Form a cluster with adjacent, dirty pages from the
874 			 * same object, and page out that entire cluster.
875 			 *
876 			 * The adjacent, dirty pages must also be in the
877 			 * laundry.  However, their mappings are not checked
878 			 * for new references.  Consequently, a recently
879 			 * referenced page may be paged out.  However, that
880 			 * page will not be prematurely reclaimed.  After page
881 			 * out, the page will be placed in the inactive queue,
882 			 * where any new references will be detected and the
883 			 * page reactivated.
884 			 */
885 			error = vm_pageout_clean(m, &numpagedout);
886 			if (error == 0) {
887 				launder -= numpagedout;
888 				ss.scanned += numpagedout;
889 			} else if (error == EDEADLK) {
890 				pageout_lock_miss++;
891 				vnodes_skipped++;
892 			}
893 			mtx = NULL;
894 			object = NULL;
895 		}
896 	}
897 	if (mtx != NULL) {
898 		mtx_unlock(mtx);
899 		mtx = NULL;
900 	}
901 	if (object != NULL) {
902 		VM_OBJECT_WUNLOCK(object);
903 		object = NULL;
904 	}
905 	vm_pagequeue_lock(pq);
906 	vm_pageout_end_scan(&ss);
907 	vm_pagequeue_unlock(pq);
908 
909 	if (launder > 0 && queue == PQ_UNSWAPPABLE) {
910 		queue = PQ_LAUNDRY;
911 		goto scan;
912 	}
913 
914 	/*
915 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
916 	 * and we didn't launder enough pages.
917 	 */
918 	if (vnodes_skipped > 0 && launder > 0)
919 		(void)speedup_syncer();
920 
921 	return (starting_target - launder);
922 }
923 
924 /*
925  * Compute the integer square root.
926  */
927 static u_int
928 isqrt(u_int num)
929 {
930 	u_int bit, root, tmp;
931 
932 	bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
933 	root = 0;
934 	while (bit != 0) {
935 		tmp = root + bit;
936 		root >>= 1;
937 		if (num >= tmp) {
938 			num -= tmp;
939 			root += bit;
940 		}
941 		bit >>= 2;
942 	}
943 	return (root);
944 }
945 
946 /*
947  * Perform the work of the laundry thread: periodically wake up and determine
948  * whether any pages need to be laundered.  If so, determine the number of pages
949  * that need to be laundered, and launder them.
950  */
951 static void
952 vm_pageout_laundry_worker(void *arg)
953 {
954 	struct vm_domain *vmd;
955 	struct vm_pagequeue *pq;
956 	uint64_t nclean, ndirty, nfreed;
957 	int domain, last_target, launder, shortfall, shortfall_cycle, target;
958 	bool in_shortfall;
959 
960 	domain = (uintptr_t)arg;
961 	vmd = VM_DOMAIN(domain);
962 	pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
963 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
964 
965 	shortfall = 0;
966 	in_shortfall = false;
967 	shortfall_cycle = 0;
968 	last_target = target = 0;
969 	nfreed = 0;
970 
971 	/*
972 	 * Calls to these handlers are serialized by the swap syscall lock.
973 	 */
974 	(void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
975 	    EVENTHANDLER_PRI_ANY);
976 	(void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
977 	    EVENTHANDLER_PRI_ANY);
978 
979 	/*
980 	 * The pageout laundry worker is never done, so loop forever.
981 	 */
982 	for (;;) {
983 		KASSERT(target >= 0, ("negative target %d", target));
984 		KASSERT(shortfall_cycle >= 0,
985 		    ("negative cycle %d", shortfall_cycle));
986 		launder = 0;
987 
988 		/*
989 		 * First determine whether we need to launder pages to meet a
990 		 * shortage of free pages.
991 		 */
992 		if (shortfall > 0) {
993 			in_shortfall = true;
994 			shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
995 			target = shortfall;
996 		} else if (!in_shortfall)
997 			goto trybackground;
998 		else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
999 			/*
1000 			 * We recently entered shortfall and began laundering
1001 			 * pages.  If we have completed that laundering run
1002 			 * (and we are no longer in shortfall) or we have met
1003 			 * our laundry target through other activity, then we
1004 			 * can stop laundering pages.
1005 			 */
1006 			in_shortfall = false;
1007 			target = 0;
1008 			goto trybackground;
1009 		}
1010 		launder = target / shortfall_cycle--;
1011 		goto dolaundry;
1012 
1013 		/*
1014 		 * There's no immediate need to launder any pages; see if we
1015 		 * meet the conditions to perform background laundering:
1016 		 *
1017 		 * 1. The ratio of dirty to clean inactive pages exceeds the
1018 		 *    background laundering threshold, or
1019 		 * 2. we haven't yet reached the target of the current
1020 		 *    background laundering run.
1021 		 *
1022 		 * The background laundering threshold is not a constant.
1023 		 * Instead, it is a slowly growing function of the number of
1024 		 * clean pages freed by the page daemon since the last
1025 		 * background laundering.  Thus, as the ratio of dirty to
1026 		 * clean inactive pages grows, the amount of memory pressure
1027 		 * required to trigger laundering decreases.  We ensure
1028 		 * that the threshold is non-zero after an inactive queue
1029 		 * scan, even if that scan failed to free a single clean page.
1030 		 */
1031 trybackground:
1032 		nclean = vmd->vmd_free_count +
1033 		    vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1034 		ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1035 		if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1036 		    vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1037 			target = vmd->vmd_background_launder_target;
1038 		}
1039 
1040 		/*
1041 		 * We have a non-zero background laundering target.  If we've
1042 		 * laundered up to our maximum without observing a page daemon
1043 		 * request, just stop.  This is a safety belt that ensures we
1044 		 * don't launder an excessive amount if memory pressure is low
1045 		 * and the ratio of dirty to clean pages is large.  Otherwise,
1046 		 * proceed at the background laundering rate.
1047 		 */
1048 		if (target > 0) {
1049 			if (nfreed > 0) {
1050 				nfreed = 0;
1051 				last_target = target;
1052 			} else if (last_target - target >=
1053 			    vm_background_launder_max * PAGE_SIZE / 1024) {
1054 				target = 0;
1055 			}
1056 			launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1057 			launder /= VM_LAUNDER_RATE;
1058 			if (launder > target)
1059 				launder = target;
1060 		}
1061 
1062 dolaundry:
1063 		if (launder > 0) {
1064 			/*
1065 			 * Because of I/O clustering, the number of laundered
1066 			 * pages could exceed "target" by the maximum size of
1067 			 * a cluster minus one.
1068 			 */
1069 			target -= min(vm_pageout_launder(vmd, launder,
1070 			    in_shortfall), target);
1071 			pause("laundp", hz / VM_LAUNDER_RATE);
1072 		}
1073 
1074 		/*
1075 		 * If we're not currently laundering pages and the page daemon
1076 		 * hasn't posted a new request, sleep until the page daemon
1077 		 * kicks us.
1078 		 */
1079 		vm_pagequeue_lock(pq);
1080 		if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1081 			(void)mtx_sleep(&vmd->vmd_laundry_request,
1082 			    vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1083 
1084 		/*
1085 		 * If the pagedaemon has indicated that it's in shortfall, start
1086 		 * a shortfall laundering unless we're already in the middle of
1087 		 * one.  This may preempt a background laundering.
1088 		 */
1089 		if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1090 		    (!in_shortfall || shortfall_cycle == 0)) {
1091 			shortfall = vm_laundry_target(vmd) +
1092 			    vmd->vmd_pageout_deficit;
1093 			target = 0;
1094 		} else
1095 			shortfall = 0;
1096 
1097 		if (target == 0)
1098 			vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1099 		nfreed += vmd->vmd_clean_pages_freed;
1100 		vmd->vmd_clean_pages_freed = 0;
1101 		vm_pagequeue_unlock(pq);
1102 	}
1103 }
1104 
1105 /*
1106  * Compute the number of pages we want to try to move from the
1107  * active queue to either the inactive or laundry queue.
1108  *
1109  * When scanning active pages during a shortage, we make clean pages
1110  * count more heavily towards the page shortage than dirty pages.
1111  * This is because dirty pages must be laundered before they can be
1112  * reused and thus have less utility when attempting to quickly
1113  * alleviate a free page shortage.  However, this weighting also
1114  * causes the scan to deactivate dirty pages more aggressively,
1115  * improving the effectiveness of clustering.
1116  */
1117 static int
1118 vm_pageout_active_target(struct vm_domain *vmd)
1119 {
1120 	int shortage;
1121 
1122 	shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1123 	    (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1124 	    vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1125 	shortage *= act_scan_laundry_weight;
1126 	return (shortage);
1127 }
1128 
1129 /*
1130  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1131  * small portion of the queue in order to maintain quasi-LRU.
1132  */
1133 static void
1134 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1135 {
1136 	struct scan_state ss;
1137 	struct mtx *mtx;
1138 	vm_page_t m, marker;
1139 	struct vm_pagequeue *pq;
1140 	long min_scan;
1141 	int act_delta, max_scan, scan_tick;
1142 
1143 	marker = &vmd->vmd_markers[PQ_ACTIVE];
1144 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1145 	vm_pagequeue_lock(pq);
1146 
1147 	/*
1148 	 * If we're just idle polling attempt to visit every
1149 	 * active page within 'update_period' seconds.
1150 	 */
1151 	scan_tick = ticks;
1152 	if (vm_pageout_update_period != 0) {
1153 		min_scan = pq->pq_cnt;
1154 		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1155 		min_scan /= hz * vm_pageout_update_period;
1156 	} else
1157 		min_scan = 0;
1158 	if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1159 		vmd->vmd_last_active_scan = scan_tick;
1160 
1161 	/*
1162 	 * Scan the active queue for pages that can be deactivated.  Update
1163 	 * the per-page activity counter and use it to identify deactivation
1164 	 * candidates.  Held pages may be deactivated.
1165 	 *
1166 	 * To avoid requeuing each page that remains in the active queue, we
1167 	 * implement the CLOCK algorithm.  To keep the implementation of the
1168 	 * enqueue operation consistent for all page queues, we use two hands,
1169 	 * represented by marker pages. Scans begin at the first hand, which
1170 	 * precedes the second hand in the queue.  When the two hands meet,
1171 	 * they are moved back to the head and tail of the queue, respectively,
1172 	 * and scanning resumes.
1173 	 */
1174 	max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1175 	mtx = NULL;
1176 act_scan:
1177 	vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1178 	while ((m = vm_pageout_next(&ss, false)) != NULL) {
1179 		if (__predict_false(m == &vmd->vmd_clock[1])) {
1180 			vm_pagequeue_lock(pq);
1181 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1182 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1183 			TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1184 			    plinks.q);
1185 			TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1186 			    plinks.q);
1187 			max_scan -= ss.scanned;
1188 			vm_pageout_end_scan(&ss);
1189 			goto act_scan;
1190 		}
1191 		if (__predict_false((m->flags & PG_MARKER) != 0))
1192 			continue;
1193 
1194 		vm_page_change_lock(m, &mtx);
1195 
1196 		/*
1197 		 * The page may have been disassociated from the queue
1198 		 * while locks were dropped.
1199 		 */
1200 		if (vm_page_queue(m) != PQ_ACTIVE)
1201 			continue;
1202 
1203 		/*
1204 		 * Wired pages are dequeued lazily.
1205 		 */
1206 		if (vm_page_wired(m)) {
1207 			vm_page_dequeue_deferred(m);
1208 			continue;
1209 		}
1210 
1211 		/*
1212 		 * Check to see "how much" the page has been used.
1213 		 *
1214 		 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1215 		 * that a reference from a concurrently destroyed mapping is
1216 		 * observed here and now.
1217 		 *
1218 		 * Perform an unsynchronized object ref count check.  While
1219 		 * the page lock ensures that the page is not reallocated to
1220 		 * another object, in particular, one with unmanaged mappings
1221 		 * that cannot support pmap_ts_referenced(), two races are,
1222 		 * nonetheless, possible:
1223 		 * 1) The count was transitioning to zero, but we saw a non-
1224 		 *    zero value.  pmap_ts_referenced() will return zero
1225 		 *    because the page is not mapped.
1226 		 * 2) The count was transitioning to one, but we saw zero.
1227 		 *    This race delays the detection of a new reference.  At
1228 		 *    worst, we will deactivate and reactivate the page.
1229 		 */
1230 		if (m->object->ref_count != 0)
1231 			act_delta = pmap_ts_referenced(m);
1232 		else
1233 			act_delta = 0;
1234 		if ((m->aflags & PGA_REFERENCED) != 0) {
1235 			vm_page_aflag_clear(m, PGA_REFERENCED);
1236 			act_delta++;
1237 		}
1238 
1239 		/*
1240 		 * Advance or decay the act_count based on recent usage.
1241 		 */
1242 		if (act_delta != 0) {
1243 			m->act_count += ACT_ADVANCE + act_delta;
1244 			if (m->act_count > ACT_MAX)
1245 				m->act_count = ACT_MAX;
1246 		} else
1247 			m->act_count -= min(m->act_count, ACT_DECLINE);
1248 
1249 		if (m->act_count == 0) {
1250 			/*
1251 			 * When not short for inactive pages, let dirty pages go
1252 			 * through the inactive queue before moving to the
1253 			 * laundry queues.  This gives them some extra time to
1254 			 * be reactivated, potentially avoiding an expensive
1255 			 * pageout.  However, during a page shortage, the
1256 			 * inactive queue is necessarily small, and so dirty
1257 			 * pages would only spend a trivial amount of time in
1258 			 * the inactive queue.  Therefore, we might as well
1259 			 * place them directly in the laundry queue to reduce
1260 			 * queuing overhead.
1261 			 */
1262 			if (page_shortage <= 0)
1263 				vm_page_deactivate(m);
1264 			else {
1265 				/*
1266 				 * Calling vm_page_test_dirty() here would
1267 				 * require acquisition of the object's write
1268 				 * lock.  However, during a page shortage,
1269 				 * directing dirty pages into the laundry
1270 				 * queue is only an optimization and not a
1271 				 * requirement.  Therefore, we simply rely on
1272 				 * the opportunistic updates to the page's
1273 				 * dirty field by the pmap.
1274 				 */
1275 				if (m->dirty == 0) {
1276 					vm_page_deactivate(m);
1277 					page_shortage -=
1278 					    act_scan_laundry_weight;
1279 				} else {
1280 					vm_page_launder(m);
1281 					page_shortage--;
1282 				}
1283 			}
1284 		}
1285 	}
1286 	if (mtx != NULL) {
1287 		mtx_unlock(mtx);
1288 		mtx = NULL;
1289 	}
1290 	vm_pagequeue_lock(pq);
1291 	TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1292 	TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1293 	vm_pageout_end_scan(&ss);
1294 	vm_pagequeue_unlock(pq);
1295 }
1296 
1297 static int
1298 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m)
1299 {
1300 	struct vm_domain *vmd;
1301 
1302 	if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0)
1303 		return (0);
1304 	vm_page_aflag_set(m, PGA_ENQUEUED);
1305 	if ((m->aflags & PGA_REQUEUE_HEAD) != 0) {
1306 		vmd = vm_pagequeue_domain(m);
1307 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
1308 		vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1309 	} else if ((m->aflags & PGA_REQUEUE) != 0) {
1310 		TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q);
1311 		vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1312 	} else
1313 		TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q);
1314 	return (1);
1315 }
1316 
1317 /*
1318  * Re-add stuck pages to the inactive queue.  We will examine them again
1319  * during the next scan.  If the queue state of a page has changed since
1320  * it was physically removed from the page queue in
1321  * vm_pageout_collect_batch(), don't do anything with that page.
1322  */
1323 static void
1324 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1325     vm_page_t m)
1326 {
1327 	struct vm_pagequeue *pq;
1328 	int delta;
1329 
1330 	delta = 0;
1331 	pq = ss->pq;
1332 
1333 	if (m != NULL) {
1334 		if (vm_batchqueue_insert(bq, m))
1335 			return;
1336 		vm_pagequeue_lock(pq);
1337 		delta += vm_pageout_reinsert_inactive_page(ss, m);
1338 	} else
1339 		vm_pagequeue_lock(pq);
1340 	while ((m = vm_batchqueue_pop(bq)) != NULL)
1341 		delta += vm_pageout_reinsert_inactive_page(ss, m);
1342 	vm_pagequeue_cnt_add(pq, delta);
1343 	vm_pagequeue_unlock(pq);
1344 	vm_batchqueue_init(bq);
1345 }
1346 
1347 /*
1348  * Attempt to reclaim the requested number of pages from the inactive queue.
1349  * Returns true if the shortage was addressed.
1350  */
1351 static int
1352 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
1353     int *addl_shortage)
1354 {
1355 	struct scan_state ss;
1356 	struct vm_batchqueue rq;
1357 	struct mtx *mtx;
1358 	vm_page_t m, marker;
1359 	struct vm_pagequeue *pq;
1360 	vm_object_t object;
1361 	int act_delta, addl_page_shortage, deficit, page_shortage;
1362 	int starting_page_shortage;
1363 
1364 	/*
1365 	 * The addl_page_shortage is an estimate of the number of temporarily
1366 	 * stuck pages in the inactive queue.  In other words, the
1367 	 * number of pages from the inactive count that should be
1368 	 * discounted in setting the target for the active queue scan.
1369 	 */
1370 	addl_page_shortage = 0;
1371 
1372 	/*
1373 	 * vmd_pageout_deficit counts the number of pages requested in
1374 	 * allocations that failed because of a free page shortage.  We assume
1375 	 * that the allocations will be reattempted and thus include the deficit
1376 	 * in our scan target.
1377 	 */
1378 	deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1379 	starting_page_shortage = page_shortage = shortage + deficit;
1380 
1381 	mtx = NULL;
1382 	object = NULL;
1383 	vm_batchqueue_init(&rq);
1384 
1385 	/*
1386 	 * Start scanning the inactive queue for pages that we can free.  The
1387 	 * scan will stop when we reach the target or we have scanned the
1388 	 * entire queue.  (Note that m->act_count is not used to make
1389 	 * decisions for the inactive queue, only for the active queue.)
1390 	 */
1391 	marker = &vmd->vmd_markers[PQ_INACTIVE];
1392 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1393 	vm_pagequeue_lock(pq);
1394 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1395 	while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1396 		KASSERT((m->flags & PG_MARKER) == 0,
1397 		    ("marker page %p was dequeued", m));
1398 
1399 		vm_page_change_lock(m, &mtx);
1400 
1401 recheck:
1402 		/*
1403 		 * The page may have been disassociated from the queue
1404 		 * while locks were dropped.
1405 		 */
1406 		if (vm_page_queue(m) != PQ_INACTIVE) {
1407 			addl_page_shortage++;
1408 			continue;
1409 		}
1410 
1411 		/*
1412 		 * The page was re-enqueued after the page queue lock was
1413 		 * dropped, or a requeue was requested.  This page gets a second
1414 		 * chance.
1415 		 */
1416 		if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE |
1417 		    PGA_REQUEUE_HEAD)) != 0)
1418 			goto reinsert;
1419 
1420 		/*
1421 		 * Held pages are essentially stuck in the queue.  So,
1422 		 * they ought to be discounted from the inactive count.
1423 		 * See the description of addl_page_shortage above.
1424 		 *
1425 		 * Wired pages may not be freed.  Complete their removal
1426 		 * from the queue now to avoid needless revisits during
1427 		 * future scans.
1428 		 */
1429 		if (m->hold_count != 0) {
1430 			addl_page_shortage++;
1431 			goto reinsert;
1432 		}
1433 		if (vm_page_wired(m)) {
1434 			vm_page_dequeue_deferred(m);
1435 			continue;
1436 		}
1437 
1438 		if (object != m->object) {
1439 			if (object != NULL)
1440 				VM_OBJECT_WUNLOCK(object);
1441 			object = m->object;
1442 			if (!VM_OBJECT_TRYWLOCK(object)) {
1443 				mtx_unlock(mtx);
1444 				/* Depends on type-stability. */
1445 				VM_OBJECT_WLOCK(object);
1446 				mtx_lock(mtx);
1447 				goto recheck;
1448 			}
1449 		}
1450 
1451 		if (vm_page_busied(m)) {
1452 			/*
1453 			 * Don't mess with busy pages.  Leave them at
1454 			 * the front of the queue.  Most likely, they
1455 			 * are being paged out and will leave the
1456 			 * queue shortly after the scan finishes.  So,
1457 			 * they ought to be discounted from the
1458 			 * inactive count.
1459 			 */
1460 			addl_page_shortage++;
1461 			goto reinsert;
1462 		}
1463 
1464 		/*
1465 		 * Invalid pages can be easily freed. They cannot be
1466 		 * mapped, vm_page_free() asserts this.
1467 		 */
1468 		if (m->valid == 0)
1469 			goto free_page;
1470 
1471 		/*
1472 		 * If the page has been referenced and the object is not dead,
1473 		 * reactivate or requeue the page depending on whether the
1474 		 * object is mapped.
1475 		 *
1476 		 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1477 		 * that a reference from a concurrently destroyed mapping is
1478 		 * observed here and now.
1479 		 */
1480 		if (object->ref_count != 0)
1481 			act_delta = pmap_ts_referenced(m);
1482 		else {
1483 			KASSERT(!pmap_page_is_mapped(m),
1484 			    ("page %p is mapped", m));
1485 			act_delta = 0;
1486 		}
1487 		if ((m->aflags & PGA_REFERENCED) != 0) {
1488 			vm_page_aflag_clear(m, PGA_REFERENCED);
1489 			act_delta++;
1490 		}
1491 		if (act_delta != 0) {
1492 			if (object->ref_count != 0) {
1493 				VM_CNT_INC(v_reactivated);
1494 				vm_page_activate(m);
1495 
1496 				/*
1497 				 * Increase the activation count if the page
1498 				 * was referenced while in the inactive queue.
1499 				 * This makes it less likely that the page will
1500 				 * be returned prematurely to the inactive
1501 				 * queue.
1502  				 */
1503 				m->act_count += act_delta + ACT_ADVANCE;
1504 				continue;
1505 			} else if ((object->flags & OBJ_DEAD) == 0) {
1506 				vm_page_aflag_set(m, PGA_REQUEUE);
1507 				goto reinsert;
1508 			}
1509 		}
1510 
1511 		/*
1512 		 * If the page appears to be clean at the machine-independent
1513 		 * layer, then remove all of its mappings from the pmap in
1514 		 * anticipation of freeing it.  If, however, any of the page's
1515 		 * mappings allow write access, then the page may still be
1516 		 * modified until the last of those mappings are removed.
1517 		 */
1518 		if (object->ref_count != 0) {
1519 			vm_page_test_dirty(m);
1520 			if (m->dirty == 0)
1521 				pmap_remove_all(m);
1522 		}
1523 
1524 		/*
1525 		 * Clean pages can be freed, but dirty pages must be sent back
1526 		 * to the laundry, unless they belong to a dead object.
1527 		 * Requeueing dirty pages from dead objects is pointless, as
1528 		 * they are being paged out and freed by the thread that
1529 		 * destroyed the object.
1530 		 */
1531 		if (m->dirty == 0) {
1532 free_page:
1533 			/*
1534 			 * Because we dequeued the page and have already
1535 			 * checked for concurrent dequeue and enqueue
1536 			 * requests, we can safely disassociate the page
1537 			 * from the inactive queue.
1538 			 */
1539 			KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0,
1540 			    ("page %p has queue state", m));
1541 			m->queue = PQ_NONE;
1542 			vm_page_free(m);
1543 			page_shortage--;
1544 		} else if ((object->flags & OBJ_DEAD) == 0)
1545 			vm_page_launder(m);
1546 		continue;
1547 reinsert:
1548 		vm_pageout_reinsert_inactive(&ss, &rq, m);
1549 	}
1550 	if (mtx != NULL)
1551 		mtx_unlock(mtx);
1552 	if (object != NULL)
1553 		VM_OBJECT_WUNLOCK(object);
1554 	vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1555 	vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1556 	vm_pagequeue_lock(pq);
1557 	vm_pageout_end_scan(&ss);
1558 	vm_pagequeue_unlock(pq);
1559 
1560 	VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1561 
1562 	/*
1563 	 * Wake up the laundry thread so that it can perform any needed
1564 	 * laundering.  If we didn't meet our target, we're in shortfall and
1565 	 * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1566 	 * swap devices are configured, the laundry thread has no work to do, so
1567 	 * don't bother waking it up.
1568 	 *
1569 	 * The laundry thread uses the number of inactive queue scans elapsed
1570 	 * since the last laundering to determine whether to launder again, so
1571 	 * keep count.
1572 	 */
1573 	if (starting_page_shortage > 0) {
1574 		pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1575 		vm_pagequeue_lock(pq);
1576 		if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1577 		    (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1578 			if (page_shortage > 0) {
1579 				vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1580 				VM_CNT_INC(v_pdshortfalls);
1581 			} else if (vmd->vmd_laundry_request !=
1582 			    VM_LAUNDRY_SHORTFALL)
1583 				vmd->vmd_laundry_request =
1584 				    VM_LAUNDRY_BACKGROUND;
1585 			wakeup(&vmd->vmd_laundry_request);
1586 		}
1587 		vmd->vmd_clean_pages_freed +=
1588 		    starting_page_shortage - page_shortage;
1589 		vm_pagequeue_unlock(pq);
1590 	}
1591 
1592 	/*
1593 	 * Wakeup the swapout daemon if we didn't free the targeted number of
1594 	 * pages.
1595 	 */
1596 	if (page_shortage > 0)
1597 		vm_swapout_run();
1598 
1599 	/*
1600 	 * If the inactive queue scan fails repeatedly to meet its
1601 	 * target, kill the largest process.
1602 	 */
1603 	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1604 
1605 	/*
1606 	 * Reclaim pages by swapping out idle processes, if configured to do so.
1607 	 */
1608 	vm_swapout_run_idle();
1609 
1610 	/*
1611 	 * See the description of addl_page_shortage above.
1612 	 */
1613 	*addl_shortage = addl_page_shortage + deficit;
1614 
1615 	return (page_shortage <= 0);
1616 }
1617 
1618 static int vm_pageout_oom_vote;
1619 
1620 /*
1621  * The pagedaemon threads randlomly select one to perform the
1622  * OOM.  Trying to kill processes before all pagedaemons
1623  * failed to reach free target is premature.
1624  */
1625 static void
1626 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1627     int starting_page_shortage)
1628 {
1629 	int old_vote;
1630 
1631 	if (starting_page_shortage <= 0 || starting_page_shortage !=
1632 	    page_shortage)
1633 		vmd->vmd_oom_seq = 0;
1634 	else
1635 		vmd->vmd_oom_seq++;
1636 	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1637 		if (vmd->vmd_oom) {
1638 			vmd->vmd_oom = FALSE;
1639 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1640 		}
1641 		return;
1642 	}
1643 
1644 	/*
1645 	 * Do not follow the call sequence until OOM condition is
1646 	 * cleared.
1647 	 */
1648 	vmd->vmd_oom_seq = 0;
1649 
1650 	if (vmd->vmd_oom)
1651 		return;
1652 
1653 	vmd->vmd_oom = TRUE;
1654 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1655 	if (old_vote != vm_ndomains - 1)
1656 		return;
1657 
1658 	/*
1659 	 * The current pagedaemon thread is the last in the quorum to
1660 	 * start OOM.  Initiate the selection and signaling of the
1661 	 * victim.
1662 	 */
1663 	vm_pageout_oom(VM_OOM_MEM);
1664 
1665 	/*
1666 	 * After one round of OOM terror, recall our vote.  On the
1667 	 * next pass, current pagedaemon would vote again if the low
1668 	 * memory condition is still there, due to vmd_oom being
1669 	 * false.
1670 	 */
1671 	vmd->vmd_oom = FALSE;
1672 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1673 }
1674 
1675 /*
1676  * The OOM killer is the page daemon's action of last resort when
1677  * memory allocation requests have been stalled for a prolonged period
1678  * of time because it cannot reclaim memory.  This function computes
1679  * the approximate number of physical pages that could be reclaimed if
1680  * the specified address space is destroyed.
1681  *
1682  * Private, anonymous memory owned by the address space is the
1683  * principal resource that we expect to recover after an OOM kill.
1684  * Since the physical pages mapped by the address space's COW entries
1685  * are typically shared pages, they are unlikely to be released and so
1686  * they are not counted.
1687  *
1688  * To get to the point where the page daemon runs the OOM killer, its
1689  * efforts to write-back vnode-backed pages may have stalled.  This
1690  * could be caused by a memory allocation deadlock in the write path
1691  * that might be resolved by an OOM kill.  Therefore, physical pages
1692  * belonging to vnode-backed objects are counted, because they might
1693  * be freed without being written out first if the address space holds
1694  * the last reference to an unlinked vnode.
1695  *
1696  * Similarly, physical pages belonging to OBJT_PHYS objects are
1697  * counted because the address space might hold the last reference to
1698  * the object.
1699  */
1700 static long
1701 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1702 {
1703 	vm_map_t map;
1704 	vm_map_entry_t entry;
1705 	vm_object_t obj;
1706 	long res;
1707 
1708 	map = &vmspace->vm_map;
1709 	KASSERT(!map->system_map, ("system map"));
1710 	sx_assert(&map->lock, SA_LOCKED);
1711 	res = 0;
1712 	for (entry = map->header.next; entry != &map->header;
1713 	    entry = entry->next) {
1714 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1715 			continue;
1716 		obj = entry->object.vm_object;
1717 		if (obj == NULL)
1718 			continue;
1719 		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1720 		    obj->ref_count != 1)
1721 			continue;
1722 		switch (obj->type) {
1723 		case OBJT_DEFAULT:
1724 		case OBJT_SWAP:
1725 		case OBJT_PHYS:
1726 		case OBJT_VNODE:
1727 			res += obj->resident_page_count;
1728 			break;
1729 		}
1730 	}
1731 	return (res);
1732 }
1733 
1734 void
1735 vm_pageout_oom(int shortage)
1736 {
1737 	struct proc *p, *bigproc;
1738 	vm_offset_t size, bigsize;
1739 	struct thread *td;
1740 	struct vmspace *vm;
1741 	bool breakout;
1742 
1743 	/*
1744 	 * We keep the process bigproc locked once we find it to keep anyone
1745 	 * from messing with it; however, there is a possibility of
1746 	 * deadlock if process B is bigproc and one of its child processes
1747 	 * attempts to propagate a signal to B while we are waiting for A's
1748 	 * lock while walking this list.  To avoid this, we don't block on
1749 	 * the process lock but just skip a process if it is already locked.
1750 	 */
1751 	bigproc = NULL;
1752 	bigsize = 0;
1753 	sx_slock(&allproc_lock);
1754 	FOREACH_PROC_IN_SYSTEM(p) {
1755 		PROC_LOCK(p);
1756 
1757 		/*
1758 		 * If this is a system, protected or killed process, skip it.
1759 		 */
1760 		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1761 		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1762 		    p->p_pid == 1 || P_KILLED(p) ||
1763 		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1764 			PROC_UNLOCK(p);
1765 			continue;
1766 		}
1767 		/*
1768 		 * If the process is in a non-running type state,
1769 		 * don't touch it.  Check all the threads individually.
1770 		 */
1771 		breakout = false;
1772 		FOREACH_THREAD_IN_PROC(p, td) {
1773 			thread_lock(td);
1774 			if (!TD_ON_RUNQ(td) &&
1775 			    !TD_IS_RUNNING(td) &&
1776 			    !TD_IS_SLEEPING(td) &&
1777 			    !TD_IS_SUSPENDED(td) &&
1778 			    !TD_IS_SWAPPED(td)) {
1779 				thread_unlock(td);
1780 				breakout = true;
1781 				break;
1782 			}
1783 			thread_unlock(td);
1784 		}
1785 		if (breakout) {
1786 			PROC_UNLOCK(p);
1787 			continue;
1788 		}
1789 		/*
1790 		 * get the process size
1791 		 */
1792 		vm = vmspace_acquire_ref(p);
1793 		if (vm == NULL) {
1794 			PROC_UNLOCK(p);
1795 			continue;
1796 		}
1797 		_PHOLD_LITE(p);
1798 		PROC_UNLOCK(p);
1799 		sx_sunlock(&allproc_lock);
1800 		if (!vm_map_trylock_read(&vm->vm_map)) {
1801 			vmspace_free(vm);
1802 			sx_slock(&allproc_lock);
1803 			PRELE(p);
1804 			continue;
1805 		}
1806 		size = vmspace_swap_count(vm);
1807 		if (shortage == VM_OOM_MEM)
1808 			size += vm_pageout_oom_pagecount(vm);
1809 		vm_map_unlock_read(&vm->vm_map);
1810 		vmspace_free(vm);
1811 		sx_slock(&allproc_lock);
1812 
1813 		/*
1814 		 * If this process is bigger than the biggest one,
1815 		 * remember it.
1816 		 */
1817 		if (size > bigsize) {
1818 			if (bigproc != NULL)
1819 				PRELE(bigproc);
1820 			bigproc = p;
1821 			bigsize = size;
1822 		} else {
1823 			PRELE(p);
1824 		}
1825 	}
1826 	sx_sunlock(&allproc_lock);
1827 	if (bigproc != NULL) {
1828 		if (vm_panic_on_oom != 0)
1829 			panic("out of swap space");
1830 		PROC_LOCK(bigproc);
1831 		killproc(bigproc, "out of swap space");
1832 		sched_nice(bigproc, PRIO_MIN);
1833 		_PRELE(bigproc);
1834 		PROC_UNLOCK(bigproc);
1835 	}
1836 }
1837 
1838 static bool
1839 vm_pageout_lowmem(void)
1840 {
1841 	static int lowmem_ticks = 0;
1842 	int last;
1843 
1844 	last = atomic_load_int(&lowmem_ticks);
1845 	while ((u_int)(ticks - last) / hz >= lowmem_period) {
1846 		if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
1847 			continue;
1848 
1849 		/*
1850 		 * Decrease registered cache sizes.
1851 		 */
1852 		SDT_PROBE0(vm, , , vm__lowmem_scan);
1853 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1854 
1855 		/*
1856 		 * We do this explicitly after the caches have been
1857 		 * drained above.
1858 		 */
1859 		uma_reclaim();
1860 		return (true);
1861 	}
1862 	return (false);
1863 }
1864 
1865 static void
1866 vm_pageout_worker(void *arg)
1867 {
1868 	struct vm_domain *vmd;
1869 	u_int ofree;
1870 	int addl_shortage, domain, shortage;
1871 	bool target_met;
1872 
1873 	domain = (uintptr_t)arg;
1874 	vmd = VM_DOMAIN(domain);
1875 	shortage = 0;
1876 	target_met = true;
1877 
1878 	/*
1879 	 * XXXKIB It could be useful to bind pageout daemon threads to
1880 	 * the cores belonging to the domain, from which vm_page_array
1881 	 * is allocated.
1882 	 */
1883 
1884 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1885 	vmd->vmd_last_active_scan = ticks;
1886 
1887 	/*
1888 	 * The pageout daemon worker is never done, so loop forever.
1889 	 */
1890 	while (TRUE) {
1891 		vm_domain_pageout_lock(vmd);
1892 
1893 		/*
1894 		 * We need to clear wanted before we check the limits.  This
1895 		 * prevents races with wakers who will check wanted after they
1896 		 * reach the limit.
1897 		 */
1898 		atomic_store_int(&vmd->vmd_pageout_wanted, 0);
1899 
1900 		/*
1901 		 * Might the page daemon need to run again?
1902 		 */
1903 		if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
1904 			/*
1905 			 * Yes.  If the scan failed to produce enough free
1906 			 * pages, sleep uninterruptibly for some time in the
1907 			 * hope that the laundry thread will clean some pages.
1908 			 */
1909 			vm_domain_pageout_unlock(vmd);
1910 			if (!target_met)
1911 				pause("pwait", hz / VM_INACT_SCAN_RATE);
1912 		} else {
1913 			/*
1914 			 * No, sleep until the next wakeup or until pages
1915 			 * need to have their reference stats updated.
1916 			 */
1917 			if (mtx_sleep(&vmd->vmd_pageout_wanted,
1918 			    vm_domain_pageout_lockptr(vmd), PDROP | PVM,
1919 			    "psleep", hz / VM_INACT_SCAN_RATE) == 0)
1920 				VM_CNT_INC(v_pdwakeups);
1921 		}
1922 
1923 		/* Prevent spurious wakeups by ensuring that wanted is set. */
1924 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
1925 
1926 		/*
1927 		 * Use the controller to calculate how many pages to free in
1928 		 * this interval, and scan the inactive queue.  If the lowmem
1929 		 * handlers appear to have freed up some pages, subtract the
1930 		 * difference from the inactive queue scan target.
1931 		 */
1932 		shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
1933 		if (shortage > 0) {
1934 			ofree = vmd->vmd_free_count;
1935 			if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
1936 				shortage -= min(vmd->vmd_free_count - ofree,
1937 				    (u_int)shortage);
1938 			target_met = vm_pageout_scan_inactive(vmd, shortage,
1939 			    &addl_shortage);
1940 		} else
1941 			addl_shortage = 0;
1942 
1943 		/*
1944 		 * Scan the active queue.  A positive value for shortage
1945 		 * indicates that we must aggressively deactivate pages to avoid
1946 		 * a shortfall.
1947 		 */
1948 		shortage = vm_pageout_active_target(vmd) + addl_shortage;
1949 		vm_pageout_scan_active(vmd, shortage);
1950 	}
1951 }
1952 
1953 /*
1954  *	vm_pageout_init initialises basic pageout daemon settings.
1955  */
1956 static void
1957 vm_pageout_init_domain(int domain)
1958 {
1959 	struct vm_domain *vmd;
1960 	struct sysctl_oid *oid;
1961 
1962 	vmd = VM_DOMAIN(domain);
1963 	vmd->vmd_interrupt_free_min = 2;
1964 
1965 	/*
1966 	 * v_free_reserved needs to include enough for the largest
1967 	 * swap pager structures plus enough for any pv_entry structs
1968 	 * when paging.
1969 	 */
1970 	if (vmd->vmd_page_count > 1024)
1971 		vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200;
1972 	else
1973 		vmd->vmd_free_min = 4;
1974 	vmd->vmd_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1975 	    vmd->vmd_interrupt_free_min;
1976 	vmd->vmd_free_reserved = vm_pageout_page_count +
1977 	    vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768);
1978 	vmd->vmd_free_severe = vmd->vmd_free_min / 2;
1979 	vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
1980 	vmd->vmd_free_min += vmd->vmd_free_reserved;
1981 	vmd->vmd_free_severe += vmd->vmd_free_reserved;
1982 	vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
1983 	if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
1984 		vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
1985 
1986 	/*
1987 	 * Set the default wakeup threshold to be 10% below the paging
1988 	 * target.  This keeps the steady state out of shortfall.
1989 	 */
1990 	vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
1991 
1992 	/*
1993 	 * Target amount of memory to move out of the laundry queue during a
1994 	 * background laundering.  This is proportional to the amount of system
1995 	 * memory.
1996 	 */
1997 	vmd->vmd_background_launder_target = (vmd->vmd_free_target -
1998 	    vmd->vmd_free_min) / 10;
1999 
2000 	/* Initialize the pageout daemon pid controller. */
2001 	pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2002 	    vmd->vmd_free_target, PIDCTRL_BOUND,
2003 	    PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2004 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2005 	    "pidctrl", CTLFLAG_RD, NULL, "");
2006 	pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2007 }
2008 
2009 static void
2010 vm_pageout_init(void)
2011 {
2012 	u_int freecount;
2013 	int i;
2014 
2015 	/*
2016 	 * Initialize some paging parameters.
2017 	 */
2018 	if (vm_cnt.v_page_count < 2000)
2019 		vm_pageout_page_count = 8;
2020 
2021 	freecount = 0;
2022 	for (i = 0; i < vm_ndomains; i++) {
2023 		struct vm_domain *vmd;
2024 
2025 		vm_pageout_init_domain(i);
2026 		vmd = VM_DOMAIN(i);
2027 		vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2028 		vm_cnt.v_free_target += vmd->vmd_free_target;
2029 		vm_cnt.v_free_min += vmd->vmd_free_min;
2030 		vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2031 		vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2032 		vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2033 		vm_cnt.v_free_severe += vmd->vmd_free_severe;
2034 		freecount += vmd->vmd_free_count;
2035 	}
2036 
2037 	/*
2038 	 * Set interval in seconds for active scan.  We want to visit each
2039 	 * page at least once every ten minutes.  This is to prevent worst
2040 	 * case paging behaviors with stale active LRU.
2041 	 */
2042 	if (vm_pageout_update_period == 0)
2043 		vm_pageout_update_period = 600;
2044 
2045 	if (vm_page_max_user_wired == 0)
2046 		vm_page_max_user_wired = freecount / 3;
2047 }
2048 
2049 /*
2050  *     vm_pageout is the high level pageout daemon.
2051  */
2052 static void
2053 vm_pageout(void)
2054 {
2055 	struct proc *p;
2056 	struct thread *td;
2057 	int error, first, i;
2058 
2059 	p = curproc;
2060 	td = curthread;
2061 
2062 	swap_pager_swap_init();
2063 	for (first = -1, i = 0; i < vm_ndomains; i++) {
2064 		if (VM_DOMAIN_EMPTY(i)) {
2065 			if (bootverbose)
2066 				printf("domain %d empty; skipping pageout\n",
2067 				    i);
2068 			continue;
2069 		}
2070 		if (first == -1)
2071 			first = i;
2072 		else {
2073 			error = kthread_add(vm_pageout_worker,
2074 			    (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2075 			if (error != 0)
2076 				panic("starting pageout for domain %d: %d\n",
2077 				    i, error);
2078 		}
2079 		error = kthread_add(vm_pageout_laundry_worker,
2080 		    (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2081 		if (error != 0)
2082 			panic("starting laundry for domain %d: %d", i, error);
2083 	}
2084 	error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2085 	if (error != 0)
2086 		panic("starting uma_reclaim helper, error %d\n", error);
2087 
2088 	snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2089 	vm_pageout_worker((void *)(uintptr_t)first);
2090 }
2091 
2092 /*
2093  * Perform an advisory wakeup of the page daemon.
2094  */
2095 void
2096 pagedaemon_wakeup(int domain)
2097 {
2098 	struct vm_domain *vmd;
2099 
2100 	vmd = VM_DOMAIN(domain);
2101 	vm_domain_pageout_assert_unlocked(vmd);
2102 	if (curproc == pageproc)
2103 		return;
2104 
2105 	if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2106 		vm_domain_pageout_lock(vmd);
2107 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2108 		wakeup(&vmd->vmd_pageout_wanted);
2109 		vm_domain_pageout_unlock(vmd);
2110 	}
2111 }
2112