xref: /freebsd/sys/vm/vm_pageout.c (revision b78ee15e9f04ae15c3e1200df974473167524d17)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_vm.h"
79 #include "opt_kdtrace.h"
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/lock.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/mount.h>
90 #include <sys/racct.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sched.h>
93 #include <sys/sdt.h>
94 #include <sys/signalvar.h>
95 #include <sys/smp.h>
96 #include <sys/vnode.h>
97 #include <sys/vmmeter.h>
98 #include <sys/rwlock.h>
99 #include <sys/sx.h>
100 #include <sys/sysctl.h>
101 
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_page.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_phys.h>
110 #include <vm/swap_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/uma.h>
113 
114 /*
115  * System initialization
116  */
117 
118 /* the kernel process "vm_pageout"*/
119 static void vm_pageout(void);
120 static void vm_pageout_init(void);
121 static int vm_pageout_clean(vm_page_t m);
122 static int vm_pageout_cluster(vm_page_t m);
123 static void vm_pageout_scan(struct vm_domain *vmd, int pass);
124 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass);
125 
126 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
127     NULL);
128 
129 struct proc *pageproc;
130 
131 static struct kproc_desc page_kp = {
132 	"pagedaemon",
133 	vm_pageout,
134 	&pageproc
135 };
136 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
137     &page_kp);
138 
139 SDT_PROVIDER_DEFINE(vm);
140 SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache);
141 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
142 
143 #if !defined(NO_SWAPPING)
144 /* the kernel process "vm_daemon"*/
145 static void vm_daemon(void);
146 static struct	proc *vmproc;
147 
148 static struct kproc_desc vm_kp = {
149 	"vmdaemon",
150 	vm_daemon,
151 	&vmproc
152 };
153 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
154 #endif
155 
156 
157 int vm_pages_needed;		/* Event on which pageout daemon sleeps */
158 int vm_pageout_deficit;		/* Estimated number of pages deficit */
159 int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
160 int vm_pageout_wakeup_thresh;
161 
162 #if !defined(NO_SWAPPING)
163 static int vm_pageout_req_swapout;	/* XXX */
164 static int vm_daemon_needed;
165 static struct mtx vm_daemon_mtx;
166 /* Allow for use by vm_pageout before vm_daemon is initialized. */
167 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
168 #endif
169 static int vm_max_launder = 32;
170 static int vm_pageout_update_period;
171 static int defer_swap_pageouts;
172 static int disable_swap_pageouts;
173 static int lowmem_period = 10;
174 static int lowmem_ticks;
175 
176 #if defined(NO_SWAPPING)
177 static int vm_swap_enabled = 0;
178 static int vm_swap_idle_enabled = 0;
179 #else
180 static int vm_swap_enabled = 1;
181 static int vm_swap_idle_enabled = 0;
182 #endif
183 
184 static int vm_panic_on_oom = 0;
185 
186 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
187 	CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
188 	"panic on out of memory instead of killing the largest process");
189 
190 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
191 	CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
192 	"free page threshold for waking up the pageout daemon");
193 
194 SYSCTL_INT(_vm, OID_AUTO, max_launder,
195 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
196 
197 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
198 	CTLFLAG_RW, &vm_pageout_update_period, 0,
199 	"Maximum active LRU update period");
200 
201 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
202 	"Low memory callback period");
203 
204 #if defined(NO_SWAPPING)
205 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
206 	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
207 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
208 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
209 #else
210 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
211 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
212 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
213 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
214 #endif
215 
216 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
217 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
218 
219 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
220 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
221 
222 static int pageout_lock_miss;
223 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
224 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
225 
226 #define VM_PAGEOUT_PAGE_COUNT 16
227 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
228 
229 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
230 SYSCTL_INT(_vm, OID_AUTO, max_wired,
231 	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
232 
233 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
234 static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
235     vm_paddr_t);
236 #if !defined(NO_SWAPPING)
237 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
238 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
239 static void vm_req_vmdaemon(int req);
240 #endif
241 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
242 
243 /*
244  * Initialize a dummy page for marking the caller's place in the specified
245  * paging queue.  In principle, this function only needs to set the flag
246  * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
247  * to one as safety precautions.
248  */
249 static void
250 vm_pageout_init_marker(vm_page_t marker, u_short queue)
251 {
252 
253 	bzero(marker, sizeof(*marker));
254 	marker->flags = PG_MARKER;
255 	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
256 	marker->queue = queue;
257 	marker->hold_count = 1;
258 }
259 
260 /*
261  * vm_pageout_fallback_object_lock:
262  *
263  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
264  * known to have failed and page queue must be either PQ_ACTIVE or
265  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
266  * while locking the vm object.  Use marker page to detect page queue
267  * changes and maintain notion of next page on page queue.  Return
268  * TRUE if no changes were detected, FALSE otherwise.  vm object is
269  * locked on return.
270  *
271  * This function depends on both the lock portion of struct vm_object
272  * and normal struct vm_page being type stable.
273  */
274 static boolean_t
275 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
276 {
277 	struct vm_page marker;
278 	struct vm_pagequeue *pq;
279 	boolean_t unchanged;
280 	u_short queue;
281 	vm_object_t object;
282 
283 	queue = m->queue;
284 	vm_pageout_init_marker(&marker, queue);
285 	pq = vm_page_pagequeue(m);
286 	object = m->object;
287 
288 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
289 	vm_pagequeue_unlock(pq);
290 	vm_page_unlock(m);
291 	VM_OBJECT_WLOCK(object);
292 	vm_page_lock(m);
293 	vm_pagequeue_lock(pq);
294 
295 	/* Page queue might have changed. */
296 	*next = TAILQ_NEXT(&marker, plinks.q);
297 	unchanged = (m->queue == queue &&
298 		     m->object == object &&
299 		     &marker == TAILQ_NEXT(m, plinks.q));
300 	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
301 	return (unchanged);
302 }
303 
304 /*
305  * Lock the page while holding the page queue lock.  Use marker page
306  * to detect page queue changes and maintain notion of next page on
307  * page queue.  Return TRUE if no changes were detected, FALSE
308  * otherwise.  The page is locked on return. The page queue lock might
309  * be dropped and reacquired.
310  *
311  * This function depends on normal struct vm_page being type stable.
312  */
313 static boolean_t
314 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
315 {
316 	struct vm_page marker;
317 	struct vm_pagequeue *pq;
318 	boolean_t unchanged;
319 	u_short queue;
320 
321 	vm_page_lock_assert(m, MA_NOTOWNED);
322 	if (vm_page_trylock(m))
323 		return (TRUE);
324 
325 	queue = m->queue;
326 	vm_pageout_init_marker(&marker, queue);
327 	pq = vm_page_pagequeue(m);
328 
329 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
330 	vm_pagequeue_unlock(pq);
331 	vm_page_lock(m);
332 	vm_pagequeue_lock(pq);
333 
334 	/* Page queue might have changed. */
335 	*next = TAILQ_NEXT(&marker, plinks.q);
336 	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, plinks.q));
337 	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
338 	return (unchanged);
339 }
340 
341 /*
342  * vm_pageout_clean:
343  *
344  * Clean the page and remove it from the laundry.
345  *
346  * We set the busy bit to cause potential page faults on this page to
347  * block.  Note the careful timing, however, the busy bit isn't set till
348  * late and we cannot do anything that will mess with the page.
349  */
350 static int
351 vm_pageout_cluster(vm_page_t m)
352 {
353 	vm_object_t object;
354 	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
355 	int pageout_count;
356 	int ib, is, page_base;
357 	vm_pindex_t pindex = m->pindex;
358 
359 	vm_page_lock_assert(m, MA_OWNED);
360 	object = m->object;
361 	VM_OBJECT_ASSERT_WLOCKED(object);
362 
363 	/*
364 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
365 	 * with the new swapper, but we could have serious problems paging
366 	 * out other object types if there is insufficient memory.
367 	 *
368 	 * Unfortunately, checking free memory here is far too late, so the
369 	 * check has been moved up a procedural level.
370 	 */
371 
372 	/*
373 	 * Can't clean the page if it's busy or held.
374 	 */
375 	vm_page_assert_unbusied(m);
376 	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
377 	vm_page_unlock(m);
378 
379 	mc[vm_pageout_page_count] = pb = ps = m;
380 	pageout_count = 1;
381 	page_base = vm_pageout_page_count;
382 	ib = 1;
383 	is = 1;
384 
385 	/*
386 	 * Scan object for clusterable pages.
387 	 *
388 	 * We can cluster ONLY if: ->> the page is NOT
389 	 * clean, wired, busy, held, or mapped into a
390 	 * buffer, and one of the following:
391 	 * 1) The page is inactive, or a seldom used
392 	 *    active page.
393 	 * -or-
394 	 * 2) we force the issue.
395 	 *
396 	 * During heavy mmap/modification loads the pageout
397 	 * daemon can really fragment the underlying file
398 	 * due to flushing pages out of order and not trying
399 	 * align the clusters (which leave sporatic out-of-order
400 	 * holes).  To solve this problem we do the reverse scan
401 	 * first and attempt to align our cluster, then do a
402 	 * forward scan if room remains.
403 	 */
404 more:
405 	while (ib && pageout_count < vm_pageout_page_count) {
406 		vm_page_t p;
407 
408 		if (ib > pindex) {
409 			ib = 0;
410 			break;
411 		}
412 
413 		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
414 			ib = 0;
415 			break;
416 		}
417 		vm_page_lock(p);
418 		vm_page_test_dirty(p);
419 		if (p->dirty == 0 ||
420 		    p->queue != PQ_INACTIVE ||
421 		    p->hold_count != 0) {	/* may be undergoing I/O */
422 			vm_page_unlock(p);
423 			ib = 0;
424 			break;
425 		}
426 		vm_page_unlock(p);
427 		mc[--page_base] = pb = p;
428 		++pageout_count;
429 		++ib;
430 		/*
431 		 * alignment boundry, stop here and switch directions.  Do
432 		 * not clear ib.
433 		 */
434 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
435 			break;
436 	}
437 
438 	while (pageout_count < vm_pageout_page_count &&
439 	    pindex + is < object->size) {
440 		vm_page_t p;
441 
442 		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
443 			break;
444 		vm_page_lock(p);
445 		vm_page_test_dirty(p);
446 		if (p->dirty == 0 ||
447 		    p->queue != PQ_INACTIVE ||
448 		    p->hold_count != 0) {	/* may be undergoing I/O */
449 			vm_page_unlock(p);
450 			break;
451 		}
452 		vm_page_unlock(p);
453 		mc[page_base + pageout_count] = ps = p;
454 		++pageout_count;
455 		++is;
456 	}
457 
458 	/*
459 	 * If we exhausted our forward scan, continue with the reverse scan
460 	 * when possible, even past a page boundry.  This catches boundry
461 	 * conditions.
462 	 */
463 	if (ib && pageout_count < vm_pageout_page_count)
464 		goto more;
465 
466 	/*
467 	 * we allow reads during pageouts...
468 	 */
469 	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
470 	    NULL));
471 }
472 
473 /*
474  * vm_pageout_flush() - launder the given pages
475  *
476  *	The given pages are laundered.  Note that we setup for the start of
477  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
478  *	reference count all in here rather then in the parent.  If we want
479  *	the parent to do more sophisticated things we may have to change
480  *	the ordering.
481  *
482  *	Returned runlen is the count of pages between mreq and first
483  *	page after mreq with status VM_PAGER_AGAIN.
484  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
485  *	for any page in runlen set.
486  */
487 int
488 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
489     boolean_t *eio)
490 {
491 	vm_object_t object = mc[0]->object;
492 	int pageout_status[count];
493 	int numpagedout = 0;
494 	int i, runlen;
495 
496 	VM_OBJECT_ASSERT_WLOCKED(object);
497 
498 	/*
499 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
500 	 * mark the pages read-only.
501 	 *
502 	 * We do not have to fixup the clean/dirty bits here... we can
503 	 * allow the pager to do it after the I/O completes.
504 	 *
505 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
506 	 * edge case with file fragments.
507 	 */
508 	for (i = 0; i < count; i++) {
509 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
510 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
511 			mc[i], i, count));
512 		vm_page_sbusy(mc[i]);
513 		pmap_remove_write(mc[i]);
514 	}
515 	vm_object_pip_add(object, count);
516 
517 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
518 
519 	runlen = count - mreq;
520 	if (eio != NULL)
521 		*eio = FALSE;
522 	for (i = 0; i < count; i++) {
523 		vm_page_t mt = mc[i];
524 
525 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
526 		    !pmap_page_is_write_mapped(mt),
527 		    ("vm_pageout_flush: page %p is not write protected", mt));
528 		switch (pageout_status[i]) {
529 		case VM_PAGER_OK:
530 		case VM_PAGER_PEND:
531 			numpagedout++;
532 			break;
533 		case VM_PAGER_BAD:
534 			/*
535 			 * Page outside of range of object. Right now we
536 			 * essentially lose the changes by pretending it
537 			 * worked.
538 			 */
539 			vm_page_undirty(mt);
540 			break;
541 		case VM_PAGER_ERROR:
542 		case VM_PAGER_FAIL:
543 			/*
544 			 * If page couldn't be paged out, then reactivate the
545 			 * page so it doesn't clog the inactive list.  (We
546 			 * will try paging out it again later).
547 			 */
548 			vm_page_lock(mt);
549 			vm_page_activate(mt);
550 			vm_page_unlock(mt);
551 			if (eio != NULL && i >= mreq && i - mreq < runlen)
552 				*eio = TRUE;
553 			break;
554 		case VM_PAGER_AGAIN:
555 			if (i >= mreq && i - mreq < runlen)
556 				runlen = i - mreq;
557 			break;
558 		}
559 
560 		/*
561 		 * If the operation is still going, leave the page busy to
562 		 * block all other accesses. Also, leave the paging in
563 		 * progress indicator set so that we don't attempt an object
564 		 * collapse.
565 		 */
566 		if (pageout_status[i] != VM_PAGER_PEND) {
567 			vm_object_pip_wakeup(object);
568 			vm_page_sunbusy(mt);
569 			if (vm_page_count_severe()) {
570 				vm_page_lock(mt);
571 				vm_page_try_to_cache(mt);
572 				vm_page_unlock(mt);
573 			}
574 		}
575 	}
576 	if (prunlen != NULL)
577 		*prunlen = runlen;
578 	return (numpagedout);
579 }
580 
581 static boolean_t
582 vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
583     vm_paddr_t high)
584 {
585 	struct mount *mp;
586 	struct vnode *vp;
587 	vm_object_t object;
588 	vm_paddr_t pa;
589 	vm_page_t m, m_tmp, next;
590 	int lockmode;
591 
592 	vm_pagequeue_lock(pq);
593 	TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
594 		if ((m->flags & PG_MARKER) != 0)
595 			continue;
596 		pa = VM_PAGE_TO_PHYS(m);
597 		if (pa < low || pa + PAGE_SIZE > high)
598 			continue;
599 		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
600 			vm_page_unlock(m);
601 			continue;
602 		}
603 		object = m->object;
604 		if ((!VM_OBJECT_TRYWLOCK(object) &&
605 		    (!vm_pageout_fallback_object_lock(m, &next) ||
606 		    m->hold_count != 0)) || vm_page_busied(m)) {
607 			vm_page_unlock(m);
608 			VM_OBJECT_WUNLOCK(object);
609 			continue;
610 		}
611 		vm_page_test_dirty(m);
612 		if (m->dirty == 0 && object->ref_count != 0)
613 			pmap_remove_all(m);
614 		if (m->dirty != 0) {
615 			vm_page_unlock(m);
616 			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
617 				VM_OBJECT_WUNLOCK(object);
618 				continue;
619 			}
620 			if (object->type == OBJT_VNODE) {
621 				vm_pagequeue_unlock(pq);
622 				vp = object->handle;
623 				vm_object_reference_locked(object);
624 				VM_OBJECT_WUNLOCK(object);
625 				(void)vn_start_write(vp, &mp, V_WAIT);
626 				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
627 				    LK_SHARED : LK_EXCLUSIVE;
628 				vn_lock(vp, lockmode | LK_RETRY);
629 				VM_OBJECT_WLOCK(object);
630 				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
631 				VM_OBJECT_WUNLOCK(object);
632 				VOP_UNLOCK(vp, 0);
633 				vm_object_deallocate(object);
634 				vn_finished_write(mp);
635 				return (TRUE);
636 			} else if (object->type == OBJT_SWAP ||
637 			    object->type == OBJT_DEFAULT) {
638 				vm_pagequeue_unlock(pq);
639 				m_tmp = m;
640 				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
641 				    0, NULL, NULL);
642 				VM_OBJECT_WUNLOCK(object);
643 				return (TRUE);
644 			}
645 		} else {
646 			/*
647 			 * Dequeue here to prevent lock recursion in
648 			 * vm_page_cache().
649 			 */
650 			vm_page_dequeue_locked(m);
651 			vm_page_cache(m);
652 			vm_page_unlock(m);
653 		}
654 		VM_OBJECT_WUNLOCK(object);
655 	}
656 	vm_pagequeue_unlock(pq);
657 	return (FALSE);
658 }
659 
660 /*
661  * Increase the number of cached pages.  The specified value, "tries",
662  * determines which categories of pages are cached:
663  *
664  *  0: All clean, inactive pages within the specified physical address range
665  *     are cached.  Will not sleep.
666  *  1: The vm_lowmem handlers are called.  All inactive pages within
667  *     the specified physical address range are cached.  May sleep.
668  *  2: The vm_lowmem handlers are called.  All inactive and active pages
669  *     within the specified physical address range are cached.  May sleep.
670  */
671 void
672 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
673 {
674 	int actl, actmax, inactl, inactmax, dom, initial_dom;
675 	static int start_dom = 0;
676 
677 	if (tries > 0) {
678 		/*
679 		 * Decrease registered cache sizes.  The vm_lowmem handlers
680 		 * may acquire locks and/or sleep, so they can only be invoked
681 		 * when "tries" is greater than zero.
682 		 */
683 		SDT_PROBE0(vm, , , vm__lowmem_cache);
684 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
685 
686 		/*
687 		 * We do this explicitly after the caches have been drained
688 		 * above.
689 		 */
690 		uma_reclaim();
691 	}
692 
693 	/*
694 	 * Make the next scan start on the next domain.
695 	 */
696 	initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
697 
698 	inactl = 0;
699 	inactmax = vm_cnt.v_inactive_count;
700 	actl = 0;
701 	actmax = tries < 2 ? 0 : vm_cnt.v_active_count;
702 	dom = initial_dom;
703 
704 	/*
705 	 * Scan domains in round-robin order, first inactive queues,
706 	 * then active.  Since domain usually owns large physically
707 	 * contiguous chunk of memory, it makes sense to completely
708 	 * exhaust one domain before switching to next, while growing
709 	 * the pool of contiguous physical pages.
710 	 *
711 	 * Do not even start launder a domain which cannot contain
712 	 * the specified address range, as indicated by segments
713 	 * constituting the domain.
714 	 */
715 again:
716 	if (inactl < inactmax) {
717 		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
718 		    low, high) &&
719 		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
720 		    tries, low, high)) {
721 			inactl++;
722 			goto again;
723 		}
724 		if (++dom == vm_ndomains)
725 			dom = 0;
726 		if (dom != initial_dom)
727 			goto again;
728 	}
729 	if (actl < actmax) {
730 		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
731 		    low, high) &&
732 		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
733 		      tries, low, high)) {
734 			actl++;
735 			goto again;
736 		}
737 		if (++dom == vm_ndomains)
738 			dom = 0;
739 		if (dom != initial_dom)
740 			goto again;
741 	}
742 }
743 
744 #if !defined(NO_SWAPPING)
745 /*
746  *	vm_pageout_object_deactivate_pages
747  *
748  *	Deactivate enough pages to satisfy the inactive target
749  *	requirements.
750  *
751  *	The object and map must be locked.
752  */
753 static void
754 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
755     long desired)
756 {
757 	vm_object_t backing_object, object;
758 	vm_page_t p;
759 	int act_delta, remove_mode;
760 
761 	VM_OBJECT_ASSERT_LOCKED(first_object);
762 	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
763 		return;
764 	for (object = first_object;; object = backing_object) {
765 		if (pmap_resident_count(pmap) <= desired)
766 			goto unlock_return;
767 		VM_OBJECT_ASSERT_LOCKED(object);
768 		if ((object->flags & OBJ_UNMANAGED) != 0 ||
769 		    object->paging_in_progress != 0)
770 			goto unlock_return;
771 
772 		remove_mode = 0;
773 		if (object->shadow_count > 1)
774 			remove_mode = 1;
775 		/*
776 		 * Scan the object's entire memory queue.
777 		 */
778 		TAILQ_FOREACH(p, &object->memq, listq) {
779 			if (pmap_resident_count(pmap) <= desired)
780 				goto unlock_return;
781 			if (vm_page_busied(p))
782 				continue;
783 			PCPU_INC(cnt.v_pdpages);
784 			vm_page_lock(p);
785 			if (p->wire_count != 0 || p->hold_count != 0 ||
786 			    !pmap_page_exists_quick(pmap, p)) {
787 				vm_page_unlock(p);
788 				continue;
789 			}
790 			act_delta = pmap_ts_referenced(p);
791 			if ((p->aflags & PGA_REFERENCED) != 0) {
792 				if (act_delta == 0)
793 					act_delta = 1;
794 				vm_page_aflag_clear(p, PGA_REFERENCED);
795 			}
796 			if (p->queue != PQ_ACTIVE && act_delta != 0) {
797 				vm_page_activate(p);
798 				p->act_count += act_delta;
799 			} else if (p->queue == PQ_ACTIVE) {
800 				if (act_delta == 0) {
801 					p->act_count -= min(p->act_count,
802 					    ACT_DECLINE);
803 					if (!remove_mode && p->act_count == 0) {
804 						pmap_remove_all(p);
805 						vm_page_deactivate(p);
806 					} else
807 						vm_page_requeue(p);
808 				} else {
809 					vm_page_activate(p);
810 					if (p->act_count < ACT_MAX -
811 					    ACT_ADVANCE)
812 						p->act_count += ACT_ADVANCE;
813 					vm_page_requeue(p);
814 				}
815 			} else if (p->queue == PQ_INACTIVE)
816 				pmap_remove_all(p);
817 			vm_page_unlock(p);
818 		}
819 		if ((backing_object = object->backing_object) == NULL)
820 			goto unlock_return;
821 		VM_OBJECT_RLOCK(backing_object);
822 		if (object != first_object)
823 			VM_OBJECT_RUNLOCK(object);
824 	}
825 unlock_return:
826 	if (object != first_object)
827 		VM_OBJECT_RUNLOCK(object);
828 }
829 
830 /*
831  * deactivate some number of pages in a map, try to do it fairly, but
832  * that is really hard to do.
833  */
834 static void
835 vm_pageout_map_deactivate_pages(map, desired)
836 	vm_map_t map;
837 	long desired;
838 {
839 	vm_map_entry_t tmpe;
840 	vm_object_t obj, bigobj;
841 	int nothingwired;
842 
843 	if (!vm_map_trylock(map))
844 		return;
845 
846 	bigobj = NULL;
847 	nothingwired = TRUE;
848 
849 	/*
850 	 * first, search out the biggest object, and try to free pages from
851 	 * that.
852 	 */
853 	tmpe = map->header.next;
854 	while (tmpe != &map->header) {
855 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
856 			obj = tmpe->object.vm_object;
857 			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
858 				if (obj->shadow_count <= 1 &&
859 				    (bigobj == NULL ||
860 				     bigobj->resident_page_count < obj->resident_page_count)) {
861 					if (bigobj != NULL)
862 						VM_OBJECT_RUNLOCK(bigobj);
863 					bigobj = obj;
864 				} else
865 					VM_OBJECT_RUNLOCK(obj);
866 			}
867 		}
868 		if (tmpe->wired_count > 0)
869 			nothingwired = FALSE;
870 		tmpe = tmpe->next;
871 	}
872 
873 	if (bigobj != NULL) {
874 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
875 		VM_OBJECT_RUNLOCK(bigobj);
876 	}
877 	/*
878 	 * Next, hunt around for other pages to deactivate.  We actually
879 	 * do this search sort of wrong -- .text first is not the best idea.
880 	 */
881 	tmpe = map->header.next;
882 	while (tmpe != &map->header) {
883 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
884 			break;
885 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
886 			obj = tmpe->object.vm_object;
887 			if (obj != NULL) {
888 				VM_OBJECT_RLOCK(obj);
889 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
890 				VM_OBJECT_RUNLOCK(obj);
891 			}
892 		}
893 		tmpe = tmpe->next;
894 	}
895 
896 	/*
897 	 * Remove all mappings if a process is swapped out, this will free page
898 	 * table pages.
899 	 */
900 	if (desired == 0 && nothingwired) {
901 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
902 		    vm_map_max(map));
903 	}
904 
905 	vm_map_unlock(map);
906 }
907 #endif		/* !defined(NO_SWAPPING) */
908 
909 /*
910  * Attempt to acquire all of the necessary locks to launder a page and
911  * then call through the clustering layer to PUTPAGES.  Wait a short
912  * time for a vnode lock.
913  *
914  * Requires the page and object lock on entry, releases both before return.
915  * Returns 0 on success and an errno otherwise.
916  */
917 static int
918 vm_pageout_clean(vm_page_t m)
919 {
920 	struct vnode *vp;
921 	struct mount *mp;
922 	vm_object_t object;
923 	vm_pindex_t pindex;
924 	int error, lockmode;
925 
926 	vm_page_assert_locked(m);
927 	object = m->object;
928 	VM_OBJECT_ASSERT_WLOCKED(object);
929 	error = 0;
930 	vp = NULL;
931 	mp = NULL;
932 
933 	/*
934 	 * The object is already known NOT to be dead.   It
935 	 * is possible for the vget() to block the whole
936 	 * pageout daemon, but the new low-memory handling
937 	 * code should prevent it.
938 	 *
939 	 * We can't wait forever for the vnode lock, we might
940 	 * deadlock due to a vn_read() getting stuck in
941 	 * vm_wait while holding this vnode.  We skip the
942 	 * vnode if we can't get it in a reasonable amount
943 	 * of time.
944 	 */
945 	if (object->type == OBJT_VNODE) {
946 		vm_page_unlock(m);
947 		vp = object->handle;
948 		if (vp->v_type == VREG &&
949 		    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
950 			mp = NULL;
951 			error = EDEADLK;
952 			goto unlock_all;
953 		}
954 		KASSERT(mp != NULL,
955 		    ("vp %p with NULL v_mount", vp));
956 		vm_object_reference_locked(object);
957 		pindex = m->pindex;
958 		VM_OBJECT_WUNLOCK(object);
959 		lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
960 		    LK_SHARED : LK_EXCLUSIVE;
961 		if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
962 			vp = NULL;
963 			error = EDEADLK;
964 			goto unlock_mp;
965 		}
966 		VM_OBJECT_WLOCK(object);
967 		vm_page_lock(m);
968 		/*
969 		 * While the object and page were unlocked, the page
970 		 * may have been:
971 		 * (1) moved to a different queue,
972 		 * (2) reallocated to a different object,
973 		 * (3) reallocated to a different offset, or
974 		 * (4) cleaned.
975 		 */
976 		if (m->queue != PQ_INACTIVE || m->object != object ||
977 		    m->pindex != pindex || m->dirty == 0) {
978 			vm_page_unlock(m);
979 			error = ENXIO;
980 			goto unlock_all;
981 		}
982 
983 		/*
984 		 * The page may have been busied or held while the object
985 		 * and page locks were released.
986 		 */
987 		if (vm_page_busied(m) || m->hold_count != 0) {
988 			vm_page_unlock(m);
989 			error = EBUSY;
990 			goto unlock_all;
991 		}
992 	}
993 
994 	/*
995 	 * If a page is dirty, then it is either being washed
996 	 * (but not yet cleaned) or it is still in the
997 	 * laundry.  If it is still in the laundry, then we
998 	 * start the cleaning operation.
999 	 */
1000 	if (vm_pageout_cluster(m) == 0)
1001 		error = EIO;
1002 
1003 unlock_all:
1004 	VM_OBJECT_WUNLOCK(object);
1005 
1006 unlock_mp:
1007 	vm_page_lock_assert(m, MA_NOTOWNED);
1008 	if (mp != NULL) {
1009 		if (vp != NULL)
1010 			vput(vp);
1011 		vm_object_deallocate(object);
1012 		vn_finished_write(mp);
1013 	}
1014 
1015 	return (error);
1016 }
1017 
1018 /*
1019  *	vm_pageout_scan does the dirty work for the pageout daemon.
1020  *
1021  *	pass 0 - Update active LRU/deactivate pages
1022  *	pass 1 - Move inactive to cache or free
1023  *	pass 2 - Launder dirty pages
1024  */
1025 static void
1026 vm_pageout_scan(struct vm_domain *vmd, int pass)
1027 {
1028 	vm_page_t m, next;
1029 	struct vm_pagequeue *pq;
1030 	vm_object_t object;
1031 	int act_delta, addl_page_shortage, deficit, maxscan, page_shortage;
1032 	int vnodes_skipped = 0;
1033 	int maxlaunder;
1034 	boolean_t queues_locked;
1035 
1036 	/*
1037 	 * If we need to reclaim memory ask kernel caches to return
1038 	 * some.  We rate limit to avoid thrashing.
1039 	 */
1040 	if (vmd == &vm_dom[0] && pass > 0 &&
1041 	    (ticks - lowmem_ticks) / hz >= lowmem_period) {
1042 		/*
1043 		 * Decrease registered cache sizes.
1044 		 */
1045 		SDT_PROBE0(vm, , , vm__lowmem_scan);
1046 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
1047 		/*
1048 		 * We do this explicitly after the caches have been
1049 		 * drained above.
1050 		 */
1051 		uma_reclaim();
1052 		lowmem_ticks = ticks;
1053 	}
1054 
1055 	/*
1056 	 * The addl_page_shortage is the number of temporarily
1057 	 * stuck pages in the inactive queue.  In other words, the
1058 	 * number of pages from the inactive count that should be
1059 	 * discounted in setting the target for the active queue scan.
1060 	 */
1061 	addl_page_shortage = 0;
1062 
1063 	/*
1064 	 * Calculate the number of pages we want to either free or move
1065 	 * to the cache.
1066 	 */
1067 	if (pass > 0) {
1068 		deficit = atomic_readandclear_int(&vm_pageout_deficit);
1069 		page_shortage = vm_paging_target() + deficit;
1070 	} else
1071 		page_shortage = deficit = 0;
1072 
1073 	/*
1074 	 * maxlaunder limits the number of dirty pages we flush per scan.
1075 	 * For most systems a smaller value (16 or 32) is more robust under
1076 	 * extreme memory and disk pressure because any unnecessary writes
1077 	 * to disk can result in extreme performance degredation.  However,
1078 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
1079 	 * used) will die horribly with limited laundering.  If the pageout
1080 	 * daemon cannot clean enough pages in the first pass, we let it go
1081 	 * all out in succeeding passes.
1082 	 */
1083 	if ((maxlaunder = vm_max_launder) <= 1)
1084 		maxlaunder = 1;
1085 	if (pass > 1)
1086 		maxlaunder = 10000;
1087 
1088 	/*
1089 	 * Start scanning the inactive queue for pages we can move to the
1090 	 * cache or free.  The scan will stop when the target is reached or
1091 	 * we have scanned the entire inactive queue.  Note that m->act_count
1092 	 * is not used to form decisions for the inactive queue, only for the
1093 	 * active queue.
1094 	 */
1095 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1096 	maxscan = pq->pq_cnt;
1097 	vm_pagequeue_lock(pq);
1098 	queues_locked = TRUE;
1099 	for (m = TAILQ_FIRST(&pq->pq_pl);
1100 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
1101 	     m = next) {
1102 		vm_pagequeue_assert_locked(pq);
1103 		KASSERT(queues_locked, ("unlocked queues"));
1104 		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
1105 
1106 		PCPU_INC(cnt.v_pdpages);
1107 		next = TAILQ_NEXT(m, plinks.q);
1108 
1109 		/*
1110 		 * skip marker pages
1111 		 */
1112 		if (m->flags & PG_MARKER)
1113 			continue;
1114 
1115 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1116 		    ("Fictitious page %p cannot be in inactive queue", m));
1117 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1118 		    ("Unmanaged page %p cannot be in inactive queue", m));
1119 
1120 		/*
1121 		 * The page or object lock acquisitions fail if the
1122 		 * page was removed from the queue or moved to a
1123 		 * different position within the queue.  In either
1124 		 * case, addl_page_shortage should not be incremented.
1125 		 */
1126 		if (!vm_pageout_page_lock(m, &next)) {
1127 			vm_page_unlock(m);
1128 			continue;
1129 		}
1130 		object = m->object;
1131 		if (!VM_OBJECT_TRYWLOCK(object) &&
1132 		    !vm_pageout_fallback_object_lock(m, &next)) {
1133 			vm_page_unlock(m);
1134 			VM_OBJECT_WUNLOCK(object);
1135 			continue;
1136 		}
1137 
1138 		/*
1139 		 * Don't mess with busy pages, keep them at at the
1140 		 * front of the queue, most likely they are being
1141 		 * paged out.  Increment addl_page_shortage for busy
1142 		 * pages, because they may leave the inactive queue
1143 		 * shortly after page scan is finished.
1144 		 */
1145 		if (vm_page_busied(m)) {
1146 			vm_page_unlock(m);
1147 			VM_OBJECT_WUNLOCK(object);
1148 			addl_page_shortage++;
1149 			continue;
1150 		}
1151 
1152 		/*
1153 		 * We unlock the inactive page queue, invalidating the
1154 		 * 'next' pointer.  Use our marker to remember our
1155 		 * place.
1156 		 */
1157 		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1158 		vm_pagequeue_unlock(pq);
1159 		queues_locked = FALSE;
1160 
1161 		/*
1162 		 * Invalid pages can be easily freed. They cannot be
1163 		 * mapped, vm_page_free() asserts this.
1164 		 */
1165 		if (m->valid == 0 && m->hold_count == 0) {
1166 			vm_page_free(m);
1167 			PCPU_INC(cnt.v_dfree);
1168 			--page_shortage;
1169 			goto drop_page;
1170 		}
1171 
1172 		/*
1173 		 * We bump the activation count if the page has been
1174 		 * referenced while in the inactive queue.  This makes
1175 		 * it less likely that the page will be added back to the
1176 		 * inactive queue prematurely again.  Here we check the
1177 		 * page tables (or emulated bits, if any), given the upper
1178 		 * level VM system not knowing anything about existing
1179 		 * references.
1180 		 */
1181 		if ((m->aflags & PGA_REFERENCED) != 0) {
1182 			vm_page_aflag_clear(m, PGA_REFERENCED);
1183 			act_delta = 1;
1184 		} else
1185 			act_delta = 0;
1186 		if (object->ref_count != 0) {
1187 			act_delta += pmap_ts_referenced(m);
1188 		} else {
1189 			KASSERT(!pmap_page_is_mapped(m),
1190 			    ("vm_pageout_scan: page %p is mapped", m));
1191 		}
1192 
1193 		/*
1194 		 * If the upper level VM system knows about any page
1195 		 * references, we reactivate the page or requeue it.
1196 		 */
1197 		if (act_delta != 0) {
1198 			if (object->ref_count != 0) {
1199 				vm_page_activate(m);
1200 				m->act_count += act_delta + ACT_ADVANCE;
1201 			} else {
1202 				vm_pagequeue_lock(pq);
1203 				queues_locked = TRUE;
1204 				vm_page_requeue_locked(m);
1205 			}
1206 			goto drop_page;
1207 		}
1208 
1209 		if (m->hold_count != 0) {
1210 			/*
1211 			 * Held pages are essentially stuck in the
1212 			 * queue.  So, they ought to be discounted
1213 			 * from the inactive count.  See the
1214 			 * calculation of the page_shortage for the
1215 			 * loop over the active queue below.
1216 			 */
1217 			addl_page_shortage++;
1218 			goto drop_page;
1219 		}
1220 
1221 		/*
1222 		 * If the page appears to be clean at the machine-independent
1223 		 * layer, then remove all of its mappings from the pmap in
1224 		 * anticipation of placing it onto the cache queue.  If,
1225 		 * however, any of the page's mappings allow write access,
1226 		 * then the page may still be modified until the last of those
1227 		 * mappings are removed.
1228 		 */
1229 		if (object->ref_count != 0) {
1230 			vm_page_test_dirty(m);
1231 			if (m->dirty == 0)
1232 				pmap_remove_all(m);
1233 		}
1234 
1235 		if (m->dirty == 0) {
1236 			/*
1237 			 * Clean pages can be freed.
1238 			 */
1239 			vm_page_free(m);
1240 			PCPU_INC(cnt.v_dfree);
1241 			--page_shortage;
1242 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1243 			/*
1244 			 * Dirty pages need to be paged out, but flushing
1245 			 * a page is extremely expensive versus freeing
1246 			 * a clean page.  Rather then artificially limiting
1247 			 * the number of pages we can flush, we instead give
1248 			 * dirty pages extra priority on the inactive queue
1249 			 * by forcing them to be cycled through the queue
1250 			 * twice before being flushed, after which the
1251 			 * (now clean) page will cycle through once more
1252 			 * before being freed.  This significantly extends
1253 			 * the thrash point for a heavily loaded machine.
1254 			 */
1255 			m->flags |= PG_WINATCFLS;
1256 			vm_pagequeue_lock(pq);
1257 			queues_locked = TRUE;
1258 			vm_page_requeue_locked(m);
1259 		} else if (maxlaunder > 0) {
1260 			/*
1261 			 * We always want to try to flush some dirty pages if
1262 			 * we encounter them, to keep the system stable.
1263 			 * Normally this number is small, but under extreme
1264 			 * pressure where there are insufficient clean pages
1265 			 * on the inactive queue, we may have to go all out.
1266 			 */
1267 			int swap_pageouts_ok;
1268 			int error;
1269 
1270 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1271 				swap_pageouts_ok = 1;
1272 			} else {
1273 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1274 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1275 				vm_page_count_min());
1276 
1277 			}
1278 
1279 			/*
1280 			 * We don't bother paging objects that are "dead".
1281 			 * Those objects are in a "rundown" state.
1282 			 */
1283 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1284 				vm_pagequeue_lock(pq);
1285 				vm_page_unlock(m);
1286 				VM_OBJECT_WUNLOCK(object);
1287 				queues_locked = TRUE;
1288 				vm_page_requeue_locked(m);
1289 				goto relock_queues;
1290 			}
1291 			error = vm_pageout_clean(m);
1292 			/*
1293 			 * Decrement page_shortage on success to account for
1294 			 * the (future) cleaned page.  Otherwise we could wind
1295 			 * up laundering or cleaning too many pages.
1296 			 */
1297 			if (error == 0) {
1298 				page_shortage--;
1299 				maxlaunder--;
1300 			} else if (error == EDEADLK) {
1301 				pageout_lock_miss++;
1302 				vnodes_skipped++;
1303 			} else if (error == EBUSY) {
1304 				addl_page_shortage++;
1305 			}
1306 			vm_page_lock_assert(m, MA_NOTOWNED);
1307 			goto relock_queues;
1308 		}
1309 drop_page:
1310 		vm_page_unlock(m);
1311 		VM_OBJECT_WUNLOCK(object);
1312 relock_queues:
1313 		if (!queues_locked) {
1314 			vm_pagequeue_lock(pq);
1315 			queues_locked = TRUE;
1316 		}
1317 		next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1318 		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1319 	}
1320 	vm_pagequeue_unlock(pq);
1321 
1322 #if !defined(NO_SWAPPING)
1323 	/*
1324 	 * Wakeup the swapout daemon if we didn't cache or free the targeted
1325 	 * number of pages.
1326 	 */
1327 	if (vm_swap_enabled && page_shortage > 0)
1328 		vm_req_vmdaemon(VM_SWAP_NORMAL);
1329 #endif
1330 
1331 	/*
1332 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
1333 	 * and we didn't cache or free enough pages.
1334 	 */
1335 	if (vnodes_skipped > 0 && page_shortage > vm_cnt.v_free_target -
1336 	    vm_cnt.v_free_min)
1337 		(void)speedup_syncer();
1338 
1339 	/*
1340 	 * Compute the number of pages we want to try to move from the
1341 	 * active queue to the inactive queue.
1342 	 */
1343 	page_shortage = vm_cnt.v_inactive_target - vm_cnt.v_inactive_count +
1344 	    vm_paging_target() + deficit + addl_page_shortage;
1345 
1346 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1347 	vm_pagequeue_lock(pq);
1348 	maxscan = pq->pq_cnt;
1349 
1350 	/*
1351 	 * If we're just idle polling attempt to visit every
1352 	 * active page within 'update_period' seconds.
1353 	 */
1354 	if (pass == 0 && vm_pageout_update_period != 0) {
1355 		maxscan /= vm_pageout_update_period;
1356 		page_shortage = maxscan;
1357 	}
1358 
1359 	/*
1360 	 * Scan the active queue for things we can deactivate. We nominally
1361 	 * track the per-page activity counter and use it to locate
1362 	 * deactivation candidates.
1363 	 */
1364 	m = TAILQ_FIRST(&pq->pq_pl);
1365 	while (m != NULL && maxscan-- > 0 && page_shortage > 0) {
1366 
1367 		KASSERT(m->queue == PQ_ACTIVE,
1368 		    ("vm_pageout_scan: page %p isn't active", m));
1369 
1370 		next = TAILQ_NEXT(m, plinks.q);
1371 		if ((m->flags & PG_MARKER) != 0) {
1372 			m = next;
1373 			continue;
1374 		}
1375 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1376 		    ("Fictitious page %p cannot be in active queue", m));
1377 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1378 		    ("Unmanaged page %p cannot be in active queue", m));
1379 		if (!vm_pageout_page_lock(m, &next)) {
1380 			vm_page_unlock(m);
1381 			m = next;
1382 			continue;
1383 		}
1384 
1385 		/*
1386 		 * The count for pagedaemon pages is done after checking the
1387 		 * page for eligibility...
1388 		 */
1389 		PCPU_INC(cnt.v_pdpages);
1390 
1391 		/*
1392 		 * Check to see "how much" the page has been used.
1393 		 */
1394 		if ((m->aflags & PGA_REFERENCED) != 0) {
1395 			vm_page_aflag_clear(m, PGA_REFERENCED);
1396 			act_delta = 1;
1397 		} else
1398 			act_delta = 0;
1399 
1400 		/*
1401 		 * Unlocked object ref count check.  Two races are possible.
1402 		 * 1) The ref was transitioning to zero and we saw non-zero,
1403 		 *    the pmap bits will be checked unnecessarily.
1404 		 * 2) The ref was transitioning to one and we saw zero.
1405 		 *    The page lock prevents a new reference to this page so
1406 		 *    we need not check the reference bits.
1407 		 */
1408 		if (m->object->ref_count != 0)
1409 			act_delta += pmap_ts_referenced(m);
1410 
1411 		/*
1412 		 * Advance or decay the act_count based on recent usage.
1413 		 */
1414 		if (act_delta != 0) {
1415 			m->act_count += ACT_ADVANCE + act_delta;
1416 			if (m->act_count > ACT_MAX)
1417 				m->act_count = ACT_MAX;
1418 		} else
1419 			m->act_count -= min(m->act_count, ACT_DECLINE);
1420 
1421 		/*
1422 		 * Move this page to the tail of the active or inactive
1423 		 * queue depending on usage.
1424 		 */
1425 		if (m->act_count == 0) {
1426 			/* Dequeue to avoid later lock recursion. */
1427 			vm_page_dequeue_locked(m);
1428 			vm_page_deactivate(m);
1429 			page_shortage--;
1430 		} else
1431 			vm_page_requeue_locked(m);
1432 		vm_page_unlock(m);
1433 		m = next;
1434 	}
1435 	vm_pagequeue_unlock(pq);
1436 #if !defined(NO_SWAPPING)
1437 	/*
1438 	 * Idle process swapout -- run once per second.
1439 	 */
1440 	if (vm_swap_idle_enabled) {
1441 		static long lsec;
1442 		if (time_second != lsec) {
1443 			vm_req_vmdaemon(VM_SWAP_IDLE);
1444 			lsec = time_second;
1445 		}
1446 	}
1447 #endif
1448 
1449 	/*
1450 	 * If we are critically low on one of RAM or swap and low on
1451 	 * the other, kill the largest process.  However, we avoid
1452 	 * doing this on the first pass in order to give ourselves a
1453 	 * chance to flush out dirty vnode-backed pages and to allow
1454 	 * active pages to be moved to the inactive queue and reclaimed.
1455 	 */
1456 	vm_pageout_mightbe_oom(vmd, pass);
1457 }
1458 
1459 static int vm_pageout_oom_vote;
1460 
1461 /*
1462  * The pagedaemon threads randlomly select one to perform the
1463  * OOM.  Trying to kill processes before all pagedaemons
1464  * failed to reach free target is premature.
1465  */
1466 static void
1467 vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass)
1468 {
1469 	int old_vote;
1470 
1471 	if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) ||
1472 	    (swap_pager_full && vm_paging_target() > 0))) {
1473 		if (vmd->vmd_oom) {
1474 			vmd->vmd_oom = FALSE;
1475 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1476 		}
1477 		return;
1478 	}
1479 
1480 	if (vmd->vmd_oom)
1481 		return;
1482 
1483 	vmd->vmd_oom = TRUE;
1484 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1485 	if (old_vote != vm_ndomains - 1)
1486 		return;
1487 
1488 	/*
1489 	 * The current pagedaemon thread is the last in the quorum to
1490 	 * start OOM.  Initiate the selection and signaling of the
1491 	 * victim.
1492 	 */
1493 	vm_pageout_oom(VM_OOM_MEM);
1494 
1495 	/*
1496 	 * After one round of OOM terror, recall our vote.  On the
1497 	 * next pass, current pagedaemon would vote again if the low
1498 	 * memory condition is still there, due to vmd_oom being
1499 	 * false.
1500 	 */
1501 	vmd->vmd_oom = FALSE;
1502 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1503 }
1504 
1505 void
1506 vm_pageout_oom(int shortage)
1507 {
1508 	struct proc *p, *bigproc;
1509 	vm_offset_t size, bigsize;
1510 	struct thread *td;
1511 	struct vmspace *vm;
1512 
1513 	/*
1514 	 * We keep the process bigproc locked once we find it to keep anyone
1515 	 * from messing with it; however, there is a possibility of
1516 	 * deadlock if process B is bigproc and one of it's child processes
1517 	 * attempts to propagate a signal to B while we are waiting for A's
1518 	 * lock while walking this list.  To avoid this, we don't block on
1519 	 * the process lock but just skip a process if it is already locked.
1520 	 */
1521 	bigproc = NULL;
1522 	bigsize = 0;
1523 	sx_slock(&allproc_lock);
1524 	FOREACH_PROC_IN_SYSTEM(p) {
1525 		int breakout;
1526 
1527 		PROC_LOCK(p);
1528 
1529 		/*
1530 		 * If this is a system, protected or killed process, skip it.
1531 		 */
1532 		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1533 		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1534 		    p->p_pid == 1 || P_KILLED(p) ||
1535 		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1536 			PROC_UNLOCK(p);
1537 			continue;
1538 		}
1539 		/*
1540 		 * If the process is in a non-running type state,
1541 		 * don't touch it.  Check all the threads individually.
1542 		 */
1543 		breakout = 0;
1544 		FOREACH_THREAD_IN_PROC(p, td) {
1545 			thread_lock(td);
1546 			if (!TD_ON_RUNQ(td) &&
1547 			    !TD_IS_RUNNING(td) &&
1548 			    !TD_IS_SLEEPING(td) &&
1549 			    !TD_IS_SUSPENDED(td)) {
1550 				thread_unlock(td);
1551 				breakout = 1;
1552 				break;
1553 			}
1554 			thread_unlock(td);
1555 		}
1556 		if (breakout) {
1557 			PROC_UNLOCK(p);
1558 			continue;
1559 		}
1560 		/*
1561 		 * get the process size
1562 		 */
1563 		vm = vmspace_acquire_ref(p);
1564 		if (vm == NULL) {
1565 			PROC_UNLOCK(p);
1566 			continue;
1567 		}
1568 		_PHOLD(p);
1569 		if (!vm_map_trylock_read(&vm->vm_map)) {
1570 			_PRELE(p);
1571 			PROC_UNLOCK(p);
1572 			vmspace_free(vm);
1573 			continue;
1574 		}
1575 		PROC_UNLOCK(p);
1576 		size = vmspace_swap_count(vm);
1577 		vm_map_unlock_read(&vm->vm_map);
1578 		if (shortage == VM_OOM_MEM)
1579 			size += vmspace_resident_count(vm);
1580 		vmspace_free(vm);
1581 		/*
1582 		 * if the this process is bigger than the biggest one
1583 		 * remember it.
1584 		 */
1585 		if (size > bigsize) {
1586 			if (bigproc != NULL)
1587 				PRELE(bigproc);
1588 			bigproc = p;
1589 			bigsize = size;
1590 		} else {
1591 			PRELE(p);
1592 		}
1593 	}
1594 	sx_sunlock(&allproc_lock);
1595 	if (bigproc != NULL) {
1596 		if (vm_panic_on_oom != 0)
1597 			panic("out of swap space");
1598 		PROC_LOCK(bigproc);
1599 		killproc(bigproc, "out of swap space");
1600 		sched_nice(bigproc, PRIO_MIN);
1601 		_PRELE(bigproc);
1602 		PROC_UNLOCK(bigproc);
1603 		wakeup(&vm_cnt.v_free_count);
1604 	}
1605 }
1606 
1607 static void
1608 vm_pageout_worker(void *arg)
1609 {
1610 	struct vm_domain *domain;
1611 	int domidx;
1612 
1613 	domidx = (uintptr_t)arg;
1614 	domain = &vm_dom[domidx];
1615 
1616 	/*
1617 	 * XXXKIB It could be useful to bind pageout daemon threads to
1618 	 * the cores belonging to the domain, from which vm_page_array
1619 	 * is allocated.
1620 	 */
1621 
1622 	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1623 	vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1624 
1625 	/*
1626 	 * The pageout daemon worker is never done, so loop forever.
1627 	 */
1628 	while (TRUE) {
1629 		/*
1630 		 * If we have enough free memory, wakeup waiters.  Do
1631 		 * not clear vm_pages_needed until we reach our target,
1632 		 * otherwise we may be woken up over and over again and
1633 		 * waste a lot of cpu.
1634 		 */
1635 		mtx_lock(&vm_page_queue_free_mtx);
1636 		if (vm_pages_needed && !vm_page_count_min()) {
1637 			if (!vm_paging_needed())
1638 				vm_pages_needed = 0;
1639 			wakeup(&vm_cnt.v_free_count);
1640 		}
1641 		if (vm_pages_needed) {
1642 			/*
1643 			 * Still not done, take a second pass without waiting
1644 			 * (unlimited dirty cleaning), otherwise sleep a bit
1645 			 * and try again.
1646 			 */
1647 			if (domain->vmd_pass > 1)
1648 				msleep(&vm_pages_needed,
1649 				    &vm_page_queue_free_mtx, PVM, "psleep",
1650 				    hz / 2);
1651 		} else {
1652 			/*
1653 			 * Good enough, sleep until required to refresh
1654 			 * stats.
1655 			 */
1656 			domain->vmd_pass = 0;
1657 			msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1658 			    PVM, "psleep", hz);
1659 
1660 		}
1661 		if (vm_pages_needed) {
1662 			vm_cnt.v_pdwakeups++;
1663 			domain->vmd_pass++;
1664 		}
1665 		mtx_unlock(&vm_page_queue_free_mtx);
1666 		vm_pageout_scan(domain, domain->vmd_pass);
1667 	}
1668 }
1669 
1670 /*
1671  *	vm_pageout_init initialises basic pageout daemon settings.
1672  */
1673 static void
1674 vm_pageout_init(void)
1675 {
1676 	/*
1677 	 * Initialize some paging parameters.
1678 	 */
1679 	vm_cnt.v_interrupt_free_min = 2;
1680 	if (vm_cnt.v_page_count < 2000)
1681 		vm_pageout_page_count = 8;
1682 
1683 	/*
1684 	 * v_free_reserved needs to include enough for the largest
1685 	 * swap pager structures plus enough for any pv_entry structs
1686 	 * when paging.
1687 	 */
1688 	if (vm_cnt.v_page_count > 1024)
1689 		vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200;
1690 	else
1691 		vm_cnt.v_free_min = 4;
1692 	vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1693 	    vm_cnt.v_interrupt_free_min;
1694 	vm_cnt.v_free_reserved = vm_pageout_page_count +
1695 	    vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768);
1696 	vm_cnt.v_free_severe = vm_cnt.v_free_min / 2;
1697 	vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved;
1698 	vm_cnt.v_free_min += vm_cnt.v_free_reserved;
1699 	vm_cnt.v_free_severe += vm_cnt.v_free_reserved;
1700 	vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2;
1701 	if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3)
1702 		vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3;
1703 
1704 	/*
1705 	 * Set the default wakeup threshold to be 10% above the minimum
1706 	 * page limit.  This keeps the steady state out of shortfall.
1707 	 */
1708 	vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11;
1709 
1710 	/*
1711 	 * Set interval in seconds for active scan.  We want to visit each
1712 	 * page at least once every ten minutes.  This is to prevent worst
1713 	 * case paging behaviors with stale active LRU.
1714 	 */
1715 	if (vm_pageout_update_period == 0)
1716 		vm_pageout_update_period = 600;
1717 
1718 	/* XXX does not really belong here */
1719 	if (vm_page_max_wired == 0)
1720 		vm_page_max_wired = vm_cnt.v_free_count / 3;
1721 }
1722 
1723 /*
1724  *     vm_pageout is the high level pageout daemon.
1725  */
1726 static void
1727 vm_pageout(void)
1728 {
1729 	int error;
1730 #if MAXMEMDOM > 1
1731 	int i;
1732 #endif
1733 
1734 	swap_pager_swap_init();
1735 #if MAXMEMDOM > 1
1736 	for (i = 1; i < vm_ndomains; i++) {
1737 		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1738 		    curproc, NULL, 0, 0, "dom%d", i);
1739 		if (error != 0) {
1740 			panic("starting pageout for domain %d, error %d\n",
1741 			    i, error);
1742 		}
1743 	}
1744 #endif
1745 	error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
1746 	    0, 0, "uma");
1747 	if (error != 0)
1748 		panic("starting uma_reclaim helper, error %d\n", error);
1749 	vm_pageout_worker((void *)(uintptr_t)0);
1750 }
1751 
1752 /*
1753  * Unless the free page queue lock is held by the caller, this function
1754  * should be regarded as advisory.  Specifically, the caller should
1755  * not msleep() on &vm_cnt.v_free_count following this function unless
1756  * the free page queue lock is held until the msleep() is performed.
1757  */
1758 void
1759 pagedaemon_wakeup(void)
1760 {
1761 
1762 	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1763 		vm_pages_needed = 1;
1764 		wakeup(&vm_pages_needed);
1765 	}
1766 }
1767 
1768 #if !defined(NO_SWAPPING)
1769 static void
1770 vm_req_vmdaemon(int req)
1771 {
1772 	static int lastrun = 0;
1773 
1774 	mtx_lock(&vm_daemon_mtx);
1775 	vm_pageout_req_swapout |= req;
1776 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1777 		wakeup(&vm_daemon_needed);
1778 		lastrun = ticks;
1779 	}
1780 	mtx_unlock(&vm_daemon_mtx);
1781 }
1782 
1783 static void
1784 vm_daemon(void)
1785 {
1786 	struct rlimit rsslim;
1787 	struct proc *p;
1788 	struct thread *td;
1789 	struct vmspace *vm;
1790 	int breakout, swapout_flags, tryagain, attempts;
1791 #ifdef RACCT
1792 	uint64_t rsize, ravailable;
1793 #endif
1794 
1795 	while (TRUE) {
1796 		mtx_lock(&vm_daemon_mtx);
1797 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
1798 #ifdef RACCT
1799 		    racct_enable ? hz : 0
1800 #else
1801 		    0
1802 #endif
1803 		);
1804 		swapout_flags = vm_pageout_req_swapout;
1805 		vm_pageout_req_swapout = 0;
1806 		mtx_unlock(&vm_daemon_mtx);
1807 		if (swapout_flags)
1808 			swapout_procs(swapout_flags);
1809 
1810 		/*
1811 		 * scan the processes for exceeding their rlimits or if
1812 		 * process is swapped out -- deactivate pages
1813 		 */
1814 		tryagain = 0;
1815 		attempts = 0;
1816 again:
1817 		attempts++;
1818 		sx_slock(&allproc_lock);
1819 		FOREACH_PROC_IN_SYSTEM(p) {
1820 			vm_pindex_t limit, size;
1821 
1822 			/*
1823 			 * if this is a system process or if we have already
1824 			 * looked at this process, skip it.
1825 			 */
1826 			PROC_LOCK(p);
1827 			if (p->p_state != PRS_NORMAL ||
1828 			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1829 				PROC_UNLOCK(p);
1830 				continue;
1831 			}
1832 			/*
1833 			 * if the process is in a non-running type state,
1834 			 * don't touch it.
1835 			 */
1836 			breakout = 0;
1837 			FOREACH_THREAD_IN_PROC(p, td) {
1838 				thread_lock(td);
1839 				if (!TD_ON_RUNQ(td) &&
1840 				    !TD_IS_RUNNING(td) &&
1841 				    !TD_IS_SLEEPING(td) &&
1842 				    !TD_IS_SUSPENDED(td)) {
1843 					thread_unlock(td);
1844 					breakout = 1;
1845 					break;
1846 				}
1847 				thread_unlock(td);
1848 			}
1849 			if (breakout) {
1850 				PROC_UNLOCK(p);
1851 				continue;
1852 			}
1853 			/*
1854 			 * get a limit
1855 			 */
1856 			lim_rlimit_proc(p, RLIMIT_RSS, &rsslim);
1857 			limit = OFF_TO_IDX(
1858 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1859 
1860 			/*
1861 			 * let processes that are swapped out really be
1862 			 * swapped out set the limit to nothing (will force a
1863 			 * swap-out.)
1864 			 */
1865 			if ((p->p_flag & P_INMEM) == 0)
1866 				limit = 0;	/* XXX */
1867 			vm = vmspace_acquire_ref(p);
1868 			PROC_UNLOCK(p);
1869 			if (vm == NULL)
1870 				continue;
1871 
1872 			size = vmspace_resident_count(vm);
1873 			if (size >= limit) {
1874 				vm_pageout_map_deactivate_pages(
1875 				    &vm->vm_map, limit);
1876 			}
1877 #ifdef RACCT
1878 			if (racct_enable) {
1879 				rsize = IDX_TO_OFF(size);
1880 				PROC_LOCK(p);
1881 				racct_set(p, RACCT_RSS, rsize);
1882 				ravailable = racct_get_available(p, RACCT_RSS);
1883 				PROC_UNLOCK(p);
1884 				if (rsize > ravailable) {
1885 					/*
1886 					 * Don't be overly aggressive; this
1887 					 * might be an innocent process,
1888 					 * and the limit could've been exceeded
1889 					 * by some memory hog.  Don't try
1890 					 * to deactivate more than 1/4th
1891 					 * of process' resident set size.
1892 					 */
1893 					if (attempts <= 8) {
1894 						if (ravailable < rsize -
1895 						    (rsize / 4)) {
1896 							ravailable = rsize -
1897 							    (rsize / 4);
1898 						}
1899 					}
1900 					vm_pageout_map_deactivate_pages(
1901 					    &vm->vm_map,
1902 					    OFF_TO_IDX(ravailable));
1903 					/* Update RSS usage after paging out. */
1904 					size = vmspace_resident_count(vm);
1905 					rsize = IDX_TO_OFF(size);
1906 					PROC_LOCK(p);
1907 					racct_set(p, RACCT_RSS, rsize);
1908 					PROC_UNLOCK(p);
1909 					if (rsize > ravailable)
1910 						tryagain = 1;
1911 				}
1912 			}
1913 #endif
1914 			vmspace_free(vm);
1915 		}
1916 		sx_sunlock(&allproc_lock);
1917 		if (tryagain != 0 && attempts <= 10)
1918 			goto again;
1919 	}
1920 }
1921 #endif			/* !defined(NO_SWAPPING) */
1922