1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * Copyright (c) 2005 Yahoo! Technologies Norway AS 9 * All rights reserved. 10 * 11 * This code is derived from software contributed to Berkeley by 12 * The Mach Operating System project at Carnegie-Mellon University. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 43 * 44 * 45 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 46 * All rights reserved. 47 * 48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 49 * 50 * Permission to use, copy, modify and distribute this software and 51 * its documentation is hereby granted, provided that both the copyright 52 * notice and this permission notice appear in all copies of the 53 * software, derivative works or modified versions, and any portions 54 * thereof, and that both notices appear in supporting documentation. 55 * 56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 57 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 59 * 60 * Carnegie Mellon requests users of this software to return to 61 * 62 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 63 * School of Computer Science 64 * Carnegie Mellon University 65 * Pittsburgh PA 15213-3890 66 * 67 * any improvements or extensions that they make and grant Carnegie the 68 * rights to redistribute these changes. 69 */ 70 71 /* 72 * The proverbial page-out daemon. 73 */ 74 75 #include <sys/cdefs.h> 76 __FBSDID("$FreeBSD$"); 77 78 #include "opt_vm.h" 79 #include "opt_kdtrace.h" 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/eventhandler.h> 84 #include <sys/lock.h> 85 #include <sys/mutex.h> 86 #include <sys/proc.h> 87 #include <sys/kthread.h> 88 #include <sys/ktr.h> 89 #include <sys/mount.h> 90 #include <sys/racct.h> 91 #include <sys/resourcevar.h> 92 #include <sys/sched.h> 93 #include <sys/sdt.h> 94 #include <sys/signalvar.h> 95 #include <sys/smp.h> 96 #include <sys/vnode.h> 97 #include <sys/vmmeter.h> 98 #include <sys/rwlock.h> 99 #include <sys/sx.h> 100 #include <sys/sysctl.h> 101 102 #include <vm/vm.h> 103 #include <vm/vm_param.h> 104 #include <vm/vm_object.h> 105 #include <vm/vm_page.h> 106 #include <vm/vm_map.h> 107 #include <vm/vm_pageout.h> 108 #include <vm/vm_pager.h> 109 #include <vm/vm_phys.h> 110 #include <vm/swap_pager.h> 111 #include <vm/vm_extern.h> 112 #include <vm/uma.h> 113 114 /* 115 * System initialization 116 */ 117 118 /* the kernel process "vm_pageout"*/ 119 static void vm_pageout(void); 120 static void vm_pageout_init(void); 121 static int vm_pageout_clean(vm_page_t m); 122 static int vm_pageout_cluster(vm_page_t m); 123 static void vm_pageout_scan(struct vm_domain *vmd, int pass); 124 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass); 125 126 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 127 NULL); 128 129 struct proc *pageproc; 130 131 static struct kproc_desc page_kp = { 132 "pagedaemon", 133 vm_pageout, 134 &pageproc 135 }; 136 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 137 &page_kp); 138 139 SDT_PROVIDER_DEFINE(vm); 140 SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache); 141 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 142 143 #if !defined(NO_SWAPPING) 144 /* the kernel process "vm_daemon"*/ 145 static void vm_daemon(void); 146 static struct proc *vmproc; 147 148 static struct kproc_desc vm_kp = { 149 "vmdaemon", 150 vm_daemon, 151 &vmproc 152 }; 153 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp); 154 #endif 155 156 157 int vm_pages_needed; /* Event on which pageout daemon sleeps */ 158 int vm_pageout_deficit; /* Estimated number of pages deficit */ 159 int vm_pageout_pages_needed; /* flag saying that the pageout daemon needs pages */ 160 int vm_pageout_wakeup_thresh; 161 162 #if !defined(NO_SWAPPING) 163 static int vm_pageout_req_swapout; /* XXX */ 164 static int vm_daemon_needed; 165 static struct mtx vm_daemon_mtx; 166 /* Allow for use by vm_pageout before vm_daemon is initialized. */ 167 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF); 168 #endif 169 static int vm_max_launder = 32; 170 static int vm_pageout_update_period; 171 static int defer_swap_pageouts; 172 static int disable_swap_pageouts; 173 static int lowmem_period = 10; 174 static int lowmem_ticks; 175 176 #if defined(NO_SWAPPING) 177 static int vm_swap_enabled = 0; 178 static int vm_swap_idle_enabled = 0; 179 #else 180 static int vm_swap_enabled = 1; 181 static int vm_swap_idle_enabled = 0; 182 #endif 183 184 static int vm_panic_on_oom = 0; 185 186 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 187 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 188 "panic on out of memory instead of killing the largest process"); 189 190 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh, 191 CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0, 192 "free page threshold for waking up the pageout daemon"); 193 194 SYSCTL_INT(_vm, OID_AUTO, max_launder, 195 CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout"); 196 197 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 198 CTLFLAG_RW, &vm_pageout_update_period, 0, 199 "Maximum active LRU update period"); 200 201 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0, 202 "Low memory callback period"); 203 204 #if defined(NO_SWAPPING) 205 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled, 206 CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout"); 207 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled, 208 CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria"); 209 #else 210 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled, 211 CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout"); 212 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled, 213 CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria"); 214 #endif 215 216 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts, 217 CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem"); 218 219 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 220 CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages"); 221 222 static int pageout_lock_miss; 223 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 224 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout"); 225 226 #define VM_PAGEOUT_PAGE_COUNT 16 227 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT; 228 229 int vm_page_max_wired; /* XXX max # of wired pages system-wide */ 230 SYSCTL_INT(_vm, OID_AUTO, max_wired, 231 CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count"); 232 233 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *); 234 static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t, 235 vm_paddr_t); 236 #if !defined(NO_SWAPPING) 237 static void vm_pageout_map_deactivate_pages(vm_map_t, long); 238 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long); 239 static void vm_req_vmdaemon(int req); 240 #endif 241 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *); 242 243 /* 244 * Initialize a dummy page for marking the caller's place in the specified 245 * paging queue. In principle, this function only needs to set the flag 246 * PG_MARKER. Nonetheless, it wirte busies and initializes the hold count 247 * to one as safety precautions. 248 */ 249 static void 250 vm_pageout_init_marker(vm_page_t marker, u_short queue) 251 { 252 253 bzero(marker, sizeof(*marker)); 254 marker->flags = PG_MARKER; 255 marker->busy_lock = VPB_SINGLE_EXCLUSIVER; 256 marker->queue = queue; 257 marker->hold_count = 1; 258 } 259 260 /* 261 * vm_pageout_fallback_object_lock: 262 * 263 * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is 264 * known to have failed and page queue must be either PQ_ACTIVE or 265 * PQ_INACTIVE. To avoid lock order violation, unlock the page queues 266 * while locking the vm object. Use marker page to detect page queue 267 * changes and maintain notion of next page on page queue. Return 268 * TRUE if no changes were detected, FALSE otherwise. vm object is 269 * locked on return. 270 * 271 * This function depends on both the lock portion of struct vm_object 272 * and normal struct vm_page being type stable. 273 */ 274 static boolean_t 275 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next) 276 { 277 struct vm_page marker; 278 struct vm_pagequeue *pq; 279 boolean_t unchanged; 280 u_short queue; 281 vm_object_t object; 282 283 queue = m->queue; 284 vm_pageout_init_marker(&marker, queue); 285 pq = vm_page_pagequeue(m); 286 object = m->object; 287 288 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q); 289 vm_pagequeue_unlock(pq); 290 vm_page_unlock(m); 291 VM_OBJECT_WLOCK(object); 292 vm_page_lock(m); 293 vm_pagequeue_lock(pq); 294 295 /* Page queue might have changed. */ 296 *next = TAILQ_NEXT(&marker, plinks.q); 297 unchanged = (m->queue == queue && 298 m->object == object && 299 &marker == TAILQ_NEXT(m, plinks.q)); 300 TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q); 301 return (unchanged); 302 } 303 304 /* 305 * Lock the page while holding the page queue lock. Use marker page 306 * to detect page queue changes and maintain notion of next page on 307 * page queue. Return TRUE if no changes were detected, FALSE 308 * otherwise. The page is locked on return. The page queue lock might 309 * be dropped and reacquired. 310 * 311 * This function depends on normal struct vm_page being type stable. 312 */ 313 static boolean_t 314 vm_pageout_page_lock(vm_page_t m, vm_page_t *next) 315 { 316 struct vm_page marker; 317 struct vm_pagequeue *pq; 318 boolean_t unchanged; 319 u_short queue; 320 321 vm_page_lock_assert(m, MA_NOTOWNED); 322 if (vm_page_trylock(m)) 323 return (TRUE); 324 325 queue = m->queue; 326 vm_pageout_init_marker(&marker, queue); 327 pq = vm_page_pagequeue(m); 328 329 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q); 330 vm_pagequeue_unlock(pq); 331 vm_page_lock(m); 332 vm_pagequeue_lock(pq); 333 334 /* Page queue might have changed. */ 335 *next = TAILQ_NEXT(&marker, plinks.q); 336 unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, plinks.q)); 337 TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q); 338 return (unchanged); 339 } 340 341 /* 342 * vm_pageout_clean: 343 * 344 * Clean the page and remove it from the laundry. 345 * 346 * We set the busy bit to cause potential page faults on this page to 347 * block. Note the careful timing, however, the busy bit isn't set till 348 * late and we cannot do anything that will mess with the page. 349 */ 350 static int 351 vm_pageout_cluster(vm_page_t m) 352 { 353 vm_object_t object; 354 vm_page_t mc[2*vm_pageout_page_count], pb, ps; 355 int pageout_count; 356 int ib, is, page_base; 357 vm_pindex_t pindex = m->pindex; 358 359 vm_page_lock_assert(m, MA_OWNED); 360 object = m->object; 361 VM_OBJECT_ASSERT_WLOCKED(object); 362 363 /* 364 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP 365 * with the new swapper, but we could have serious problems paging 366 * out other object types if there is insufficient memory. 367 * 368 * Unfortunately, checking free memory here is far too late, so the 369 * check has been moved up a procedural level. 370 */ 371 372 /* 373 * Can't clean the page if it's busy or held. 374 */ 375 vm_page_assert_unbusied(m); 376 KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m)); 377 vm_page_unlock(m); 378 379 mc[vm_pageout_page_count] = pb = ps = m; 380 pageout_count = 1; 381 page_base = vm_pageout_page_count; 382 ib = 1; 383 is = 1; 384 385 /* 386 * Scan object for clusterable pages. 387 * 388 * We can cluster ONLY if: ->> the page is NOT 389 * clean, wired, busy, held, or mapped into a 390 * buffer, and one of the following: 391 * 1) The page is inactive, or a seldom used 392 * active page. 393 * -or- 394 * 2) we force the issue. 395 * 396 * During heavy mmap/modification loads the pageout 397 * daemon can really fragment the underlying file 398 * due to flushing pages out of order and not trying 399 * align the clusters (which leave sporatic out-of-order 400 * holes). To solve this problem we do the reverse scan 401 * first and attempt to align our cluster, then do a 402 * forward scan if room remains. 403 */ 404 more: 405 while (ib && pageout_count < vm_pageout_page_count) { 406 vm_page_t p; 407 408 if (ib > pindex) { 409 ib = 0; 410 break; 411 } 412 413 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) { 414 ib = 0; 415 break; 416 } 417 vm_page_lock(p); 418 vm_page_test_dirty(p); 419 if (p->dirty == 0 || 420 p->queue != PQ_INACTIVE || 421 p->hold_count != 0) { /* may be undergoing I/O */ 422 vm_page_unlock(p); 423 ib = 0; 424 break; 425 } 426 vm_page_unlock(p); 427 mc[--page_base] = pb = p; 428 ++pageout_count; 429 ++ib; 430 /* 431 * alignment boundry, stop here and switch directions. Do 432 * not clear ib. 433 */ 434 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 435 break; 436 } 437 438 while (pageout_count < vm_pageout_page_count && 439 pindex + is < object->size) { 440 vm_page_t p; 441 442 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p)) 443 break; 444 vm_page_lock(p); 445 vm_page_test_dirty(p); 446 if (p->dirty == 0 || 447 p->queue != PQ_INACTIVE || 448 p->hold_count != 0) { /* may be undergoing I/O */ 449 vm_page_unlock(p); 450 break; 451 } 452 vm_page_unlock(p); 453 mc[page_base + pageout_count] = ps = p; 454 ++pageout_count; 455 ++is; 456 } 457 458 /* 459 * If we exhausted our forward scan, continue with the reverse scan 460 * when possible, even past a page boundry. This catches boundry 461 * conditions. 462 */ 463 if (ib && pageout_count < vm_pageout_page_count) 464 goto more; 465 466 /* 467 * we allow reads during pageouts... 468 */ 469 return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL, 470 NULL)); 471 } 472 473 /* 474 * vm_pageout_flush() - launder the given pages 475 * 476 * The given pages are laundered. Note that we setup for the start of 477 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 478 * reference count all in here rather then in the parent. If we want 479 * the parent to do more sophisticated things we may have to change 480 * the ordering. 481 * 482 * Returned runlen is the count of pages between mreq and first 483 * page after mreq with status VM_PAGER_AGAIN. 484 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 485 * for any page in runlen set. 486 */ 487 int 488 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 489 boolean_t *eio) 490 { 491 vm_object_t object = mc[0]->object; 492 int pageout_status[count]; 493 int numpagedout = 0; 494 int i, runlen; 495 496 VM_OBJECT_ASSERT_WLOCKED(object); 497 498 /* 499 * Initiate I/O. Bump the vm_page_t->busy counter and 500 * mark the pages read-only. 501 * 502 * We do not have to fixup the clean/dirty bits here... we can 503 * allow the pager to do it after the I/O completes. 504 * 505 * NOTE! mc[i]->dirty may be partial or fragmented due to an 506 * edge case with file fragments. 507 */ 508 for (i = 0; i < count; i++) { 509 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, 510 ("vm_pageout_flush: partially invalid page %p index %d/%d", 511 mc[i], i, count)); 512 vm_page_sbusy(mc[i]); 513 pmap_remove_write(mc[i]); 514 } 515 vm_object_pip_add(object, count); 516 517 vm_pager_put_pages(object, mc, count, flags, pageout_status); 518 519 runlen = count - mreq; 520 if (eio != NULL) 521 *eio = FALSE; 522 for (i = 0; i < count; i++) { 523 vm_page_t mt = mc[i]; 524 525 KASSERT(pageout_status[i] == VM_PAGER_PEND || 526 !pmap_page_is_write_mapped(mt), 527 ("vm_pageout_flush: page %p is not write protected", mt)); 528 switch (pageout_status[i]) { 529 case VM_PAGER_OK: 530 case VM_PAGER_PEND: 531 numpagedout++; 532 break; 533 case VM_PAGER_BAD: 534 /* 535 * Page outside of range of object. Right now we 536 * essentially lose the changes by pretending it 537 * worked. 538 */ 539 vm_page_undirty(mt); 540 break; 541 case VM_PAGER_ERROR: 542 case VM_PAGER_FAIL: 543 /* 544 * If page couldn't be paged out, then reactivate the 545 * page so it doesn't clog the inactive list. (We 546 * will try paging out it again later). 547 */ 548 vm_page_lock(mt); 549 vm_page_activate(mt); 550 vm_page_unlock(mt); 551 if (eio != NULL && i >= mreq && i - mreq < runlen) 552 *eio = TRUE; 553 break; 554 case VM_PAGER_AGAIN: 555 if (i >= mreq && i - mreq < runlen) 556 runlen = i - mreq; 557 break; 558 } 559 560 /* 561 * If the operation is still going, leave the page busy to 562 * block all other accesses. Also, leave the paging in 563 * progress indicator set so that we don't attempt an object 564 * collapse. 565 */ 566 if (pageout_status[i] != VM_PAGER_PEND) { 567 vm_object_pip_wakeup(object); 568 vm_page_sunbusy(mt); 569 if (vm_page_count_severe()) { 570 vm_page_lock(mt); 571 vm_page_try_to_cache(mt); 572 vm_page_unlock(mt); 573 } 574 } 575 } 576 if (prunlen != NULL) 577 *prunlen = runlen; 578 return (numpagedout); 579 } 580 581 static boolean_t 582 vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low, 583 vm_paddr_t high) 584 { 585 struct mount *mp; 586 struct vnode *vp; 587 vm_object_t object; 588 vm_paddr_t pa; 589 vm_page_t m, m_tmp, next; 590 int lockmode; 591 592 vm_pagequeue_lock(pq); 593 TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) { 594 if ((m->flags & PG_MARKER) != 0) 595 continue; 596 pa = VM_PAGE_TO_PHYS(m); 597 if (pa < low || pa + PAGE_SIZE > high) 598 continue; 599 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) { 600 vm_page_unlock(m); 601 continue; 602 } 603 object = m->object; 604 if ((!VM_OBJECT_TRYWLOCK(object) && 605 (!vm_pageout_fallback_object_lock(m, &next) || 606 m->hold_count != 0)) || vm_page_busied(m)) { 607 vm_page_unlock(m); 608 VM_OBJECT_WUNLOCK(object); 609 continue; 610 } 611 vm_page_test_dirty(m); 612 if (m->dirty == 0 && object->ref_count != 0) 613 pmap_remove_all(m); 614 if (m->dirty != 0) { 615 vm_page_unlock(m); 616 if (tries == 0 || (object->flags & OBJ_DEAD) != 0) { 617 VM_OBJECT_WUNLOCK(object); 618 continue; 619 } 620 if (object->type == OBJT_VNODE) { 621 vm_pagequeue_unlock(pq); 622 vp = object->handle; 623 vm_object_reference_locked(object); 624 VM_OBJECT_WUNLOCK(object); 625 (void)vn_start_write(vp, &mp, V_WAIT); 626 lockmode = MNT_SHARED_WRITES(vp->v_mount) ? 627 LK_SHARED : LK_EXCLUSIVE; 628 vn_lock(vp, lockmode | LK_RETRY); 629 VM_OBJECT_WLOCK(object); 630 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 631 VM_OBJECT_WUNLOCK(object); 632 VOP_UNLOCK(vp, 0); 633 vm_object_deallocate(object); 634 vn_finished_write(mp); 635 return (TRUE); 636 } else if (object->type == OBJT_SWAP || 637 object->type == OBJT_DEFAULT) { 638 vm_pagequeue_unlock(pq); 639 m_tmp = m; 640 vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC, 641 0, NULL, NULL); 642 VM_OBJECT_WUNLOCK(object); 643 return (TRUE); 644 } 645 } else { 646 /* 647 * Dequeue here to prevent lock recursion in 648 * vm_page_cache(). 649 */ 650 vm_page_dequeue_locked(m); 651 vm_page_cache(m); 652 vm_page_unlock(m); 653 } 654 VM_OBJECT_WUNLOCK(object); 655 } 656 vm_pagequeue_unlock(pq); 657 return (FALSE); 658 } 659 660 /* 661 * Increase the number of cached pages. The specified value, "tries", 662 * determines which categories of pages are cached: 663 * 664 * 0: All clean, inactive pages within the specified physical address range 665 * are cached. Will not sleep. 666 * 1: The vm_lowmem handlers are called. All inactive pages within 667 * the specified physical address range are cached. May sleep. 668 * 2: The vm_lowmem handlers are called. All inactive and active pages 669 * within the specified physical address range are cached. May sleep. 670 */ 671 void 672 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high) 673 { 674 int actl, actmax, inactl, inactmax, dom, initial_dom; 675 static int start_dom = 0; 676 677 if (tries > 0) { 678 /* 679 * Decrease registered cache sizes. The vm_lowmem handlers 680 * may acquire locks and/or sleep, so they can only be invoked 681 * when "tries" is greater than zero. 682 */ 683 SDT_PROBE0(vm, , , vm__lowmem_cache); 684 EVENTHANDLER_INVOKE(vm_lowmem, 0); 685 686 /* 687 * We do this explicitly after the caches have been drained 688 * above. 689 */ 690 uma_reclaim(); 691 } 692 693 /* 694 * Make the next scan start on the next domain. 695 */ 696 initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains; 697 698 inactl = 0; 699 inactmax = vm_cnt.v_inactive_count; 700 actl = 0; 701 actmax = tries < 2 ? 0 : vm_cnt.v_active_count; 702 dom = initial_dom; 703 704 /* 705 * Scan domains in round-robin order, first inactive queues, 706 * then active. Since domain usually owns large physically 707 * contiguous chunk of memory, it makes sense to completely 708 * exhaust one domain before switching to next, while growing 709 * the pool of contiguous physical pages. 710 * 711 * Do not even start launder a domain which cannot contain 712 * the specified address range, as indicated by segments 713 * constituting the domain. 714 */ 715 again: 716 if (inactl < inactmax) { 717 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs, 718 low, high) && 719 vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE], 720 tries, low, high)) { 721 inactl++; 722 goto again; 723 } 724 if (++dom == vm_ndomains) 725 dom = 0; 726 if (dom != initial_dom) 727 goto again; 728 } 729 if (actl < actmax) { 730 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs, 731 low, high) && 732 vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE], 733 tries, low, high)) { 734 actl++; 735 goto again; 736 } 737 if (++dom == vm_ndomains) 738 dom = 0; 739 if (dom != initial_dom) 740 goto again; 741 } 742 } 743 744 #if !defined(NO_SWAPPING) 745 /* 746 * vm_pageout_object_deactivate_pages 747 * 748 * Deactivate enough pages to satisfy the inactive target 749 * requirements. 750 * 751 * The object and map must be locked. 752 */ 753 static void 754 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object, 755 long desired) 756 { 757 vm_object_t backing_object, object; 758 vm_page_t p; 759 int act_delta, remove_mode; 760 761 VM_OBJECT_ASSERT_LOCKED(first_object); 762 if ((first_object->flags & OBJ_FICTITIOUS) != 0) 763 return; 764 for (object = first_object;; object = backing_object) { 765 if (pmap_resident_count(pmap) <= desired) 766 goto unlock_return; 767 VM_OBJECT_ASSERT_LOCKED(object); 768 if ((object->flags & OBJ_UNMANAGED) != 0 || 769 object->paging_in_progress != 0) 770 goto unlock_return; 771 772 remove_mode = 0; 773 if (object->shadow_count > 1) 774 remove_mode = 1; 775 /* 776 * Scan the object's entire memory queue. 777 */ 778 TAILQ_FOREACH(p, &object->memq, listq) { 779 if (pmap_resident_count(pmap) <= desired) 780 goto unlock_return; 781 if (vm_page_busied(p)) 782 continue; 783 PCPU_INC(cnt.v_pdpages); 784 vm_page_lock(p); 785 if (p->wire_count != 0 || p->hold_count != 0 || 786 !pmap_page_exists_quick(pmap, p)) { 787 vm_page_unlock(p); 788 continue; 789 } 790 act_delta = pmap_ts_referenced(p); 791 if ((p->aflags & PGA_REFERENCED) != 0) { 792 if (act_delta == 0) 793 act_delta = 1; 794 vm_page_aflag_clear(p, PGA_REFERENCED); 795 } 796 if (p->queue != PQ_ACTIVE && act_delta != 0) { 797 vm_page_activate(p); 798 p->act_count += act_delta; 799 } else if (p->queue == PQ_ACTIVE) { 800 if (act_delta == 0) { 801 p->act_count -= min(p->act_count, 802 ACT_DECLINE); 803 if (!remove_mode && p->act_count == 0) { 804 pmap_remove_all(p); 805 vm_page_deactivate(p); 806 } else 807 vm_page_requeue(p); 808 } else { 809 vm_page_activate(p); 810 if (p->act_count < ACT_MAX - 811 ACT_ADVANCE) 812 p->act_count += ACT_ADVANCE; 813 vm_page_requeue(p); 814 } 815 } else if (p->queue == PQ_INACTIVE) 816 pmap_remove_all(p); 817 vm_page_unlock(p); 818 } 819 if ((backing_object = object->backing_object) == NULL) 820 goto unlock_return; 821 VM_OBJECT_RLOCK(backing_object); 822 if (object != first_object) 823 VM_OBJECT_RUNLOCK(object); 824 } 825 unlock_return: 826 if (object != first_object) 827 VM_OBJECT_RUNLOCK(object); 828 } 829 830 /* 831 * deactivate some number of pages in a map, try to do it fairly, but 832 * that is really hard to do. 833 */ 834 static void 835 vm_pageout_map_deactivate_pages(map, desired) 836 vm_map_t map; 837 long desired; 838 { 839 vm_map_entry_t tmpe; 840 vm_object_t obj, bigobj; 841 int nothingwired; 842 843 if (!vm_map_trylock(map)) 844 return; 845 846 bigobj = NULL; 847 nothingwired = TRUE; 848 849 /* 850 * first, search out the biggest object, and try to free pages from 851 * that. 852 */ 853 tmpe = map->header.next; 854 while (tmpe != &map->header) { 855 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 856 obj = tmpe->object.vm_object; 857 if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) { 858 if (obj->shadow_count <= 1 && 859 (bigobj == NULL || 860 bigobj->resident_page_count < obj->resident_page_count)) { 861 if (bigobj != NULL) 862 VM_OBJECT_RUNLOCK(bigobj); 863 bigobj = obj; 864 } else 865 VM_OBJECT_RUNLOCK(obj); 866 } 867 } 868 if (tmpe->wired_count > 0) 869 nothingwired = FALSE; 870 tmpe = tmpe->next; 871 } 872 873 if (bigobj != NULL) { 874 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired); 875 VM_OBJECT_RUNLOCK(bigobj); 876 } 877 /* 878 * Next, hunt around for other pages to deactivate. We actually 879 * do this search sort of wrong -- .text first is not the best idea. 880 */ 881 tmpe = map->header.next; 882 while (tmpe != &map->header) { 883 if (pmap_resident_count(vm_map_pmap(map)) <= desired) 884 break; 885 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 886 obj = tmpe->object.vm_object; 887 if (obj != NULL) { 888 VM_OBJECT_RLOCK(obj); 889 vm_pageout_object_deactivate_pages(map->pmap, obj, desired); 890 VM_OBJECT_RUNLOCK(obj); 891 } 892 } 893 tmpe = tmpe->next; 894 } 895 896 /* 897 * Remove all mappings if a process is swapped out, this will free page 898 * table pages. 899 */ 900 if (desired == 0 && nothingwired) { 901 pmap_remove(vm_map_pmap(map), vm_map_min(map), 902 vm_map_max(map)); 903 } 904 905 vm_map_unlock(map); 906 } 907 #endif /* !defined(NO_SWAPPING) */ 908 909 /* 910 * Attempt to acquire all of the necessary locks to launder a page and 911 * then call through the clustering layer to PUTPAGES. Wait a short 912 * time for a vnode lock. 913 * 914 * Requires the page and object lock on entry, releases both before return. 915 * Returns 0 on success and an errno otherwise. 916 */ 917 static int 918 vm_pageout_clean(vm_page_t m) 919 { 920 struct vnode *vp; 921 struct mount *mp; 922 vm_object_t object; 923 vm_pindex_t pindex; 924 int error, lockmode; 925 926 vm_page_assert_locked(m); 927 object = m->object; 928 VM_OBJECT_ASSERT_WLOCKED(object); 929 error = 0; 930 vp = NULL; 931 mp = NULL; 932 933 /* 934 * The object is already known NOT to be dead. It 935 * is possible for the vget() to block the whole 936 * pageout daemon, but the new low-memory handling 937 * code should prevent it. 938 * 939 * We can't wait forever for the vnode lock, we might 940 * deadlock due to a vn_read() getting stuck in 941 * vm_wait while holding this vnode. We skip the 942 * vnode if we can't get it in a reasonable amount 943 * of time. 944 */ 945 if (object->type == OBJT_VNODE) { 946 vm_page_unlock(m); 947 vp = object->handle; 948 if (vp->v_type == VREG && 949 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 950 mp = NULL; 951 error = EDEADLK; 952 goto unlock_all; 953 } 954 KASSERT(mp != NULL, 955 ("vp %p with NULL v_mount", vp)); 956 vm_object_reference_locked(object); 957 pindex = m->pindex; 958 VM_OBJECT_WUNLOCK(object); 959 lockmode = MNT_SHARED_WRITES(vp->v_mount) ? 960 LK_SHARED : LK_EXCLUSIVE; 961 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) { 962 vp = NULL; 963 error = EDEADLK; 964 goto unlock_mp; 965 } 966 VM_OBJECT_WLOCK(object); 967 vm_page_lock(m); 968 /* 969 * While the object and page were unlocked, the page 970 * may have been: 971 * (1) moved to a different queue, 972 * (2) reallocated to a different object, 973 * (3) reallocated to a different offset, or 974 * (4) cleaned. 975 */ 976 if (m->queue != PQ_INACTIVE || m->object != object || 977 m->pindex != pindex || m->dirty == 0) { 978 vm_page_unlock(m); 979 error = ENXIO; 980 goto unlock_all; 981 } 982 983 /* 984 * The page may have been busied or held while the object 985 * and page locks were released. 986 */ 987 if (vm_page_busied(m) || m->hold_count != 0) { 988 vm_page_unlock(m); 989 error = EBUSY; 990 goto unlock_all; 991 } 992 } 993 994 /* 995 * If a page is dirty, then it is either being washed 996 * (but not yet cleaned) or it is still in the 997 * laundry. If it is still in the laundry, then we 998 * start the cleaning operation. 999 */ 1000 if (vm_pageout_cluster(m) == 0) 1001 error = EIO; 1002 1003 unlock_all: 1004 VM_OBJECT_WUNLOCK(object); 1005 1006 unlock_mp: 1007 vm_page_lock_assert(m, MA_NOTOWNED); 1008 if (mp != NULL) { 1009 if (vp != NULL) 1010 vput(vp); 1011 vm_object_deallocate(object); 1012 vn_finished_write(mp); 1013 } 1014 1015 return (error); 1016 } 1017 1018 /* 1019 * vm_pageout_scan does the dirty work for the pageout daemon. 1020 * 1021 * pass 0 - Update active LRU/deactivate pages 1022 * pass 1 - Move inactive to cache or free 1023 * pass 2 - Launder dirty pages 1024 */ 1025 static void 1026 vm_pageout_scan(struct vm_domain *vmd, int pass) 1027 { 1028 vm_page_t m, next; 1029 struct vm_pagequeue *pq; 1030 vm_object_t object; 1031 int act_delta, addl_page_shortage, deficit, maxscan, page_shortage; 1032 int vnodes_skipped = 0; 1033 int maxlaunder; 1034 boolean_t queues_locked; 1035 1036 /* 1037 * If we need to reclaim memory ask kernel caches to return 1038 * some. We rate limit to avoid thrashing. 1039 */ 1040 if (vmd == &vm_dom[0] && pass > 0 && 1041 (ticks - lowmem_ticks) / hz >= lowmem_period) { 1042 /* 1043 * Decrease registered cache sizes. 1044 */ 1045 SDT_PROBE0(vm, , , vm__lowmem_scan); 1046 EVENTHANDLER_INVOKE(vm_lowmem, 0); 1047 /* 1048 * We do this explicitly after the caches have been 1049 * drained above. 1050 */ 1051 uma_reclaim(); 1052 lowmem_ticks = ticks; 1053 } 1054 1055 /* 1056 * The addl_page_shortage is the number of temporarily 1057 * stuck pages in the inactive queue. In other words, the 1058 * number of pages from the inactive count that should be 1059 * discounted in setting the target for the active queue scan. 1060 */ 1061 addl_page_shortage = 0; 1062 1063 /* 1064 * Calculate the number of pages we want to either free or move 1065 * to the cache. 1066 */ 1067 if (pass > 0) { 1068 deficit = atomic_readandclear_int(&vm_pageout_deficit); 1069 page_shortage = vm_paging_target() + deficit; 1070 } else 1071 page_shortage = deficit = 0; 1072 1073 /* 1074 * maxlaunder limits the number of dirty pages we flush per scan. 1075 * For most systems a smaller value (16 or 32) is more robust under 1076 * extreme memory and disk pressure because any unnecessary writes 1077 * to disk can result in extreme performance degredation. However, 1078 * systems with excessive dirty pages (especially when MAP_NOSYNC is 1079 * used) will die horribly with limited laundering. If the pageout 1080 * daemon cannot clean enough pages in the first pass, we let it go 1081 * all out in succeeding passes. 1082 */ 1083 if ((maxlaunder = vm_max_launder) <= 1) 1084 maxlaunder = 1; 1085 if (pass > 1) 1086 maxlaunder = 10000; 1087 1088 /* 1089 * Start scanning the inactive queue for pages we can move to the 1090 * cache or free. The scan will stop when the target is reached or 1091 * we have scanned the entire inactive queue. Note that m->act_count 1092 * is not used to form decisions for the inactive queue, only for the 1093 * active queue. 1094 */ 1095 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1096 maxscan = pq->pq_cnt; 1097 vm_pagequeue_lock(pq); 1098 queues_locked = TRUE; 1099 for (m = TAILQ_FIRST(&pq->pq_pl); 1100 m != NULL && maxscan-- > 0 && page_shortage > 0; 1101 m = next) { 1102 vm_pagequeue_assert_locked(pq); 1103 KASSERT(queues_locked, ("unlocked queues")); 1104 KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m)); 1105 1106 PCPU_INC(cnt.v_pdpages); 1107 next = TAILQ_NEXT(m, plinks.q); 1108 1109 /* 1110 * skip marker pages 1111 */ 1112 if (m->flags & PG_MARKER) 1113 continue; 1114 1115 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1116 ("Fictitious page %p cannot be in inactive queue", m)); 1117 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1118 ("Unmanaged page %p cannot be in inactive queue", m)); 1119 1120 /* 1121 * The page or object lock acquisitions fail if the 1122 * page was removed from the queue or moved to a 1123 * different position within the queue. In either 1124 * case, addl_page_shortage should not be incremented. 1125 */ 1126 if (!vm_pageout_page_lock(m, &next)) { 1127 vm_page_unlock(m); 1128 continue; 1129 } 1130 object = m->object; 1131 if (!VM_OBJECT_TRYWLOCK(object) && 1132 !vm_pageout_fallback_object_lock(m, &next)) { 1133 vm_page_unlock(m); 1134 VM_OBJECT_WUNLOCK(object); 1135 continue; 1136 } 1137 1138 /* 1139 * Don't mess with busy pages, keep them at at the 1140 * front of the queue, most likely they are being 1141 * paged out. Increment addl_page_shortage for busy 1142 * pages, because they may leave the inactive queue 1143 * shortly after page scan is finished. 1144 */ 1145 if (vm_page_busied(m)) { 1146 vm_page_unlock(m); 1147 VM_OBJECT_WUNLOCK(object); 1148 addl_page_shortage++; 1149 continue; 1150 } 1151 1152 /* 1153 * We unlock the inactive page queue, invalidating the 1154 * 'next' pointer. Use our marker to remember our 1155 * place. 1156 */ 1157 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q); 1158 vm_pagequeue_unlock(pq); 1159 queues_locked = FALSE; 1160 1161 /* 1162 * Invalid pages can be easily freed. They cannot be 1163 * mapped, vm_page_free() asserts this. 1164 */ 1165 if (m->valid == 0 && m->hold_count == 0) { 1166 vm_page_free(m); 1167 PCPU_INC(cnt.v_dfree); 1168 --page_shortage; 1169 goto drop_page; 1170 } 1171 1172 /* 1173 * We bump the activation count if the page has been 1174 * referenced while in the inactive queue. This makes 1175 * it less likely that the page will be added back to the 1176 * inactive queue prematurely again. Here we check the 1177 * page tables (or emulated bits, if any), given the upper 1178 * level VM system not knowing anything about existing 1179 * references. 1180 */ 1181 if ((m->aflags & PGA_REFERENCED) != 0) { 1182 vm_page_aflag_clear(m, PGA_REFERENCED); 1183 act_delta = 1; 1184 } else 1185 act_delta = 0; 1186 if (object->ref_count != 0) { 1187 act_delta += pmap_ts_referenced(m); 1188 } else { 1189 KASSERT(!pmap_page_is_mapped(m), 1190 ("vm_pageout_scan: page %p is mapped", m)); 1191 } 1192 1193 /* 1194 * If the upper level VM system knows about any page 1195 * references, we reactivate the page or requeue it. 1196 */ 1197 if (act_delta != 0) { 1198 if (object->ref_count != 0) { 1199 vm_page_activate(m); 1200 m->act_count += act_delta + ACT_ADVANCE; 1201 } else { 1202 vm_pagequeue_lock(pq); 1203 queues_locked = TRUE; 1204 vm_page_requeue_locked(m); 1205 } 1206 goto drop_page; 1207 } 1208 1209 if (m->hold_count != 0) { 1210 /* 1211 * Held pages are essentially stuck in the 1212 * queue. So, they ought to be discounted 1213 * from the inactive count. See the 1214 * calculation of the page_shortage for the 1215 * loop over the active queue below. 1216 */ 1217 addl_page_shortage++; 1218 goto drop_page; 1219 } 1220 1221 /* 1222 * If the page appears to be clean at the machine-independent 1223 * layer, then remove all of its mappings from the pmap in 1224 * anticipation of placing it onto the cache queue. If, 1225 * however, any of the page's mappings allow write access, 1226 * then the page may still be modified until the last of those 1227 * mappings are removed. 1228 */ 1229 if (object->ref_count != 0) { 1230 vm_page_test_dirty(m); 1231 if (m->dirty == 0) 1232 pmap_remove_all(m); 1233 } 1234 1235 if (m->dirty == 0) { 1236 /* 1237 * Clean pages can be freed. 1238 */ 1239 vm_page_free(m); 1240 PCPU_INC(cnt.v_dfree); 1241 --page_shortage; 1242 } else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) { 1243 /* 1244 * Dirty pages need to be paged out, but flushing 1245 * a page is extremely expensive versus freeing 1246 * a clean page. Rather then artificially limiting 1247 * the number of pages we can flush, we instead give 1248 * dirty pages extra priority on the inactive queue 1249 * by forcing them to be cycled through the queue 1250 * twice before being flushed, after which the 1251 * (now clean) page will cycle through once more 1252 * before being freed. This significantly extends 1253 * the thrash point for a heavily loaded machine. 1254 */ 1255 m->flags |= PG_WINATCFLS; 1256 vm_pagequeue_lock(pq); 1257 queues_locked = TRUE; 1258 vm_page_requeue_locked(m); 1259 } else if (maxlaunder > 0) { 1260 /* 1261 * We always want to try to flush some dirty pages if 1262 * we encounter them, to keep the system stable. 1263 * Normally this number is small, but under extreme 1264 * pressure where there are insufficient clean pages 1265 * on the inactive queue, we may have to go all out. 1266 */ 1267 int swap_pageouts_ok; 1268 int error; 1269 1270 if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) { 1271 swap_pageouts_ok = 1; 1272 } else { 1273 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts); 1274 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts && 1275 vm_page_count_min()); 1276 1277 } 1278 1279 /* 1280 * We don't bother paging objects that are "dead". 1281 * Those objects are in a "rundown" state. 1282 */ 1283 if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) { 1284 vm_pagequeue_lock(pq); 1285 vm_page_unlock(m); 1286 VM_OBJECT_WUNLOCK(object); 1287 queues_locked = TRUE; 1288 vm_page_requeue_locked(m); 1289 goto relock_queues; 1290 } 1291 error = vm_pageout_clean(m); 1292 /* 1293 * Decrement page_shortage on success to account for 1294 * the (future) cleaned page. Otherwise we could wind 1295 * up laundering or cleaning too many pages. 1296 */ 1297 if (error == 0) { 1298 page_shortage--; 1299 maxlaunder--; 1300 } else if (error == EDEADLK) { 1301 pageout_lock_miss++; 1302 vnodes_skipped++; 1303 } else if (error == EBUSY) { 1304 addl_page_shortage++; 1305 } 1306 vm_page_lock_assert(m, MA_NOTOWNED); 1307 goto relock_queues; 1308 } 1309 drop_page: 1310 vm_page_unlock(m); 1311 VM_OBJECT_WUNLOCK(object); 1312 relock_queues: 1313 if (!queues_locked) { 1314 vm_pagequeue_lock(pq); 1315 queues_locked = TRUE; 1316 } 1317 next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q); 1318 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q); 1319 } 1320 vm_pagequeue_unlock(pq); 1321 1322 #if !defined(NO_SWAPPING) 1323 /* 1324 * Wakeup the swapout daemon if we didn't cache or free the targeted 1325 * number of pages. 1326 */ 1327 if (vm_swap_enabled && page_shortage > 0) 1328 vm_req_vmdaemon(VM_SWAP_NORMAL); 1329 #endif 1330 1331 /* 1332 * Wakeup the sync daemon if we skipped a vnode in a writeable object 1333 * and we didn't cache or free enough pages. 1334 */ 1335 if (vnodes_skipped > 0 && page_shortage > vm_cnt.v_free_target - 1336 vm_cnt.v_free_min) 1337 (void)speedup_syncer(); 1338 1339 /* 1340 * Compute the number of pages we want to try to move from the 1341 * active queue to the inactive queue. 1342 */ 1343 page_shortage = vm_cnt.v_inactive_target - vm_cnt.v_inactive_count + 1344 vm_paging_target() + deficit + addl_page_shortage; 1345 1346 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1347 vm_pagequeue_lock(pq); 1348 maxscan = pq->pq_cnt; 1349 1350 /* 1351 * If we're just idle polling attempt to visit every 1352 * active page within 'update_period' seconds. 1353 */ 1354 if (pass == 0 && vm_pageout_update_period != 0) { 1355 maxscan /= vm_pageout_update_period; 1356 page_shortage = maxscan; 1357 } 1358 1359 /* 1360 * Scan the active queue for things we can deactivate. We nominally 1361 * track the per-page activity counter and use it to locate 1362 * deactivation candidates. 1363 */ 1364 m = TAILQ_FIRST(&pq->pq_pl); 1365 while (m != NULL && maxscan-- > 0 && page_shortage > 0) { 1366 1367 KASSERT(m->queue == PQ_ACTIVE, 1368 ("vm_pageout_scan: page %p isn't active", m)); 1369 1370 next = TAILQ_NEXT(m, plinks.q); 1371 if ((m->flags & PG_MARKER) != 0) { 1372 m = next; 1373 continue; 1374 } 1375 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1376 ("Fictitious page %p cannot be in active queue", m)); 1377 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1378 ("Unmanaged page %p cannot be in active queue", m)); 1379 if (!vm_pageout_page_lock(m, &next)) { 1380 vm_page_unlock(m); 1381 m = next; 1382 continue; 1383 } 1384 1385 /* 1386 * The count for pagedaemon pages is done after checking the 1387 * page for eligibility... 1388 */ 1389 PCPU_INC(cnt.v_pdpages); 1390 1391 /* 1392 * Check to see "how much" the page has been used. 1393 */ 1394 if ((m->aflags & PGA_REFERENCED) != 0) { 1395 vm_page_aflag_clear(m, PGA_REFERENCED); 1396 act_delta = 1; 1397 } else 1398 act_delta = 0; 1399 1400 /* 1401 * Unlocked object ref count check. Two races are possible. 1402 * 1) The ref was transitioning to zero and we saw non-zero, 1403 * the pmap bits will be checked unnecessarily. 1404 * 2) The ref was transitioning to one and we saw zero. 1405 * The page lock prevents a new reference to this page so 1406 * we need not check the reference bits. 1407 */ 1408 if (m->object->ref_count != 0) 1409 act_delta += pmap_ts_referenced(m); 1410 1411 /* 1412 * Advance or decay the act_count based on recent usage. 1413 */ 1414 if (act_delta != 0) { 1415 m->act_count += ACT_ADVANCE + act_delta; 1416 if (m->act_count > ACT_MAX) 1417 m->act_count = ACT_MAX; 1418 } else 1419 m->act_count -= min(m->act_count, ACT_DECLINE); 1420 1421 /* 1422 * Move this page to the tail of the active or inactive 1423 * queue depending on usage. 1424 */ 1425 if (m->act_count == 0) { 1426 /* Dequeue to avoid later lock recursion. */ 1427 vm_page_dequeue_locked(m); 1428 vm_page_deactivate(m); 1429 page_shortage--; 1430 } else 1431 vm_page_requeue_locked(m); 1432 vm_page_unlock(m); 1433 m = next; 1434 } 1435 vm_pagequeue_unlock(pq); 1436 #if !defined(NO_SWAPPING) 1437 /* 1438 * Idle process swapout -- run once per second. 1439 */ 1440 if (vm_swap_idle_enabled) { 1441 static long lsec; 1442 if (time_second != lsec) { 1443 vm_req_vmdaemon(VM_SWAP_IDLE); 1444 lsec = time_second; 1445 } 1446 } 1447 #endif 1448 1449 /* 1450 * If we are critically low on one of RAM or swap and low on 1451 * the other, kill the largest process. However, we avoid 1452 * doing this on the first pass in order to give ourselves a 1453 * chance to flush out dirty vnode-backed pages and to allow 1454 * active pages to be moved to the inactive queue and reclaimed. 1455 */ 1456 vm_pageout_mightbe_oom(vmd, pass); 1457 } 1458 1459 static int vm_pageout_oom_vote; 1460 1461 /* 1462 * The pagedaemon threads randlomly select one to perform the 1463 * OOM. Trying to kill processes before all pagedaemons 1464 * failed to reach free target is premature. 1465 */ 1466 static void 1467 vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass) 1468 { 1469 int old_vote; 1470 1471 if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) || 1472 (swap_pager_full && vm_paging_target() > 0))) { 1473 if (vmd->vmd_oom) { 1474 vmd->vmd_oom = FALSE; 1475 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1476 } 1477 return; 1478 } 1479 1480 if (vmd->vmd_oom) 1481 return; 1482 1483 vmd->vmd_oom = TRUE; 1484 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1485 if (old_vote != vm_ndomains - 1) 1486 return; 1487 1488 /* 1489 * The current pagedaemon thread is the last in the quorum to 1490 * start OOM. Initiate the selection and signaling of the 1491 * victim. 1492 */ 1493 vm_pageout_oom(VM_OOM_MEM); 1494 1495 /* 1496 * After one round of OOM terror, recall our vote. On the 1497 * next pass, current pagedaemon would vote again if the low 1498 * memory condition is still there, due to vmd_oom being 1499 * false. 1500 */ 1501 vmd->vmd_oom = FALSE; 1502 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1503 } 1504 1505 void 1506 vm_pageout_oom(int shortage) 1507 { 1508 struct proc *p, *bigproc; 1509 vm_offset_t size, bigsize; 1510 struct thread *td; 1511 struct vmspace *vm; 1512 1513 /* 1514 * We keep the process bigproc locked once we find it to keep anyone 1515 * from messing with it; however, there is a possibility of 1516 * deadlock if process B is bigproc and one of it's child processes 1517 * attempts to propagate a signal to B while we are waiting for A's 1518 * lock while walking this list. To avoid this, we don't block on 1519 * the process lock but just skip a process if it is already locked. 1520 */ 1521 bigproc = NULL; 1522 bigsize = 0; 1523 sx_slock(&allproc_lock); 1524 FOREACH_PROC_IN_SYSTEM(p) { 1525 int breakout; 1526 1527 PROC_LOCK(p); 1528 1529 /* 1530 * If this is a system, protected or killed process, skip it. 1531 */ 1532 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1533 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1534 p->p_pid == 1 || P_KILLED(p) || 1535 (p->p_pid < 48 && swap_pager_avail != 0)) { 1536 PROC_UNLOCK(p); 1537 continue; 1538 } 1539 /* 1540 * If the process is in a non-running type state, 1541 * don't touch it. Check all the threads individually. 1542 */ 1543 breakout = 0; 1544 FOREACH_THREAD_IN_PROC(p, td) { 1545 thread_lock(td); 1546 if (!TD_ON_RUNQ(td) && 1547 !TD_IS_RUNNING(td) && 1548 !TD_IS_SLEEPING(td) && 1549 !TD_IS_SUSPENDED(td)) { 1550 thread_unlock(td); 1551 breakout = 1; 1552 break; 1553 } 1554 thread_unlock(td); 1555 } 1556 if (breakout) { 1557 PROC_UNLOCK(p); 1558 continue; 1559 } 1560 /* 1561 * get the process size 1562 */ 1563 vm = vmspace_acquire_ref(p); 1564 if (vm == NULL) { 1565 PROC_UNLOCK(p); 1566 continue; 1567 } 1568 _PHOLD(p); 1569 if (!vm_map_trylock_read(&vm->vm_map)) { 1570 _PRELE(p); 1571 PROC_UNLOCK(p); 1572 vmspace_free(vm); 1573 continue; 1574 } 1575 PROC_UNLOCK(p); 1576 size = vmspace_swap_count(vm); 1577 vm_map_unlock_read(&vm->vm_map); 1578 if (shortage == VM_OOM_MEM) 1579 size += vmspace_resident_count(vm); 1580 vmspace_free(vm); 1581 /* 1582 * if the this process is bigger than the biggest one 1583 * remember it. 1584 */ 1585 if (size > bigsize) { 1586 if (bigproc != NULL) 1587 PRELE(bigproc); 1588 bigproc = p; 1589 bigsize = size; 1590 } else { 1591 PRELE(p); 1592 } 1593 } 1594 sx_sunlock(&allproc_lock); 1595 if (bigproc != NULL) { 1596 if (vm_panic_on_oom != 0) 1597 panic("out of swap space"); 1598 PROC_LOCK(bigproc); 1599 killproc(bigproc, "out of swap space"); 1600 sched_nice(bigproc, PRIO_MIN); 1601 _PRELE(bigproc); 1602 PROC_UNLOCK(bigproc); 1603 wakeup(&vm_cnt.v_free_count); 1604 } 1605 } 1606 1607 static void 1608 vm_pageout_worker(void *arg) 1609 { 1610 struct vm_domain *domain; 1611 int domidx; 1612 1613 domidx = (uintptr_t)arg; 1614 domain = &vm_dom[domidx]; 1615 1616 /* 1617 * XXXKIB It could be useful to bind pageout daemon threads to 1618 * the cores belonging to the domain, from which vm_page_array 1619 * is allocated. 1620 */ 1621 1622 KASSERT(domain->vmd_segs != 0, ("domain without segments")); 1623 vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE); 1624 1625 /* 1626 * The pageout daemon worker is never done, so loop forever. 1627 */ 1628 while (TRUE) { 1629 /* 1630 * If we have enough free memory, wakeup waiters. Do 1631 * not clear vm_pages_needed until we reach our target, 1632 * otherwise we may be woken up over and over again and 1633 * waste a lot of cpu. 1634 */ 1635 mtx_lock(&vm_page_queue_free_mtx); 1636 if (vm_pages_needed && !vm_page_count_min()) { 1637 if (!vm_paging_needed()) 1638 vm_pages_needed = 0; 1639 wakeup(&vm_cnt.v_free_count); 1640 } 1641 if (vm_pages_needed) { 1642 /* 1643 * Still not done, take a second pass without waiting 1644 * (unlimited dirty cleaning), otherwise sleep a bit 1645 * and try again. 1646 */ 1647 if (domain->vmd_pass > 1) 1648 msleep(&vm_pages_needed, 1649 &vm_page_queue_free_mtx, PVM, "psleep", 1650 hz / 2); 1651 } else { 1652 /* 1653 * Good enough, sleep until required to refresh 1654 * stats. 1655 */ 1656 domain->vmd_pass = 0; 1657 msleep(&vm_pages_needed, &vm_page_queue_free_mtx, 1658 PVM, "psleep", hz); 1659 1660 } 1661 if (vm_pages_needed) { 1662 vm_cnt.v_pdwakeups++; 1663 domain->vmd_pass++; 1664 } 1665 mtx_unlock(&vm_page_queue_free_mtx); 1666 vm_pageout_scan(domain, domain->vmd_pass); 1667 } 1668 } 1669 1670 /* 1671 * vm_pageout_init initialises basic pageout daemon settings. 1672 */ 1673 static void 1674 vm_pageout_init(void) 1675 { 1676 /* 1677 * Initialize some paging parameters. 1678 */ 1679 vm_cnt.v_interrupt_free_min = 2; 1680 if (vm_cnt.v_page_count < 2000) 1681 vm_pageout_page_count = 8; 1682 1683 /* 1684 * v_free_reserved needs to include enough for the largest 1685 * swap pager structures plus enough for any pv_entry structs 1686 * when paging. 1687 */ 1688 if (vm_cnt.v_page_count > 1024) 1689 vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200; 1690 else 1691 vm_cnt.v_free_min = 4; 1692 vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE + 1693 vm_cnt.v_interrupt_free_min; 1694 vm_cnt.v_free_reserved = vm_pageout_page_count + 1695 vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768); 1696 vm_cnt.v_free_severe = vm_cnt.v_free_min / 2; 1697 vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved; 1698 vm_cnt.v_free_min += vm_cnt.v_free_reserved; 1699 vm_cnt.v_free_severe += vm_cnt.v_free_reserved; 1700 vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2; 1701 if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3) 1702 vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3; 1703 1704 /* 1705 * Set the default wakeup threshold to be 10% above the minimum 1706 * page limit. This keeps the steady state out of shortfall. 1707 */ 1708 vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11; 1709 1710 /* 1711 * Set interval in seconds for active scan. We want to visit each 1712 * page at least once every ten minutes. This is to prevent worst 1713 * case paging behaviors with stale active LRU. 1714 */ 1715 if (vm_pageout_update_period == 0) 1716 vm_pageout_update_period = 600; 1717 1718 /* XXX does not really belong here */ 1719 if (vm_page_max_wired == 0) 1720 vm_page_max_wired = vm_cnt.v_free_count / 3; 1721 } 1722 1723 /* 1724 * vm_pageout is the high level pageout daemon. 1725 */ 1726 static void 1727 vm_pageout(void) 1728 { 1729 int error; 1730 #if MAXMEMDOM > 1 1731 int i; 1732 #endif 1733 1734 swap_pager_swap_init(); 1735 #if MAXMEMDOM > 1 1736 for (i = 1; i < vm_ndomains; i++) { 1737 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i, 1738 curproc, NULL, 0, 0, "dom%d", i); 1739 if (error != 0) { 1740 panic("starting pageout for domain %d, error %d\n", 1741 i, error); 1742 } 1743 } 1744 #endif 1745 error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL, 1746 0, 0, "uma"); 1747 if (error != 0) 1748 panic("starting uma_reclaim helper, error %d\n", error); 1749 vm_pageout_worker((void *)(uintptr_t)0); 1750 } 1751 1752 /* 1753 * Unless the free page queue lock is held by the caller, this function 1754 * should be regarded as advisory. Specifically, the caller should 1755 * not msleep() on &vm_cnt.v_free_count following this function unless 1756 * the free page queue lock is held until the msleep() is performed. 1757 */ 1758 void 1759 pagedaemon_wakeup(void) 1760 { 1761 1762 if (!vm_pages_needed && curthread->td_proc != pageproc) { 1763 vm_pages_needed = 1; 1764 wakeup(&vm_pages_needed); 1765 } 1766 } 1767 1768 #if !defined(NO_SWAPPING) 1769 static void 1770 vm_req_vmdaemon(int req) 1771 { 1772 static int lastrun = 0; 1773 1774 mtx_lock(&vm_daemon_mtx); 1775 vm_pageout_req_swapout |= req; 1776 if ((ticks > (lastrun + hz)) || (ticks < lastrun)) { 1777 wakeup(&vm_daemon_needed); 1778 lastrun = ticks; 1779 } 1780 mtx_unlock(&vm_daemon_mtx); 1781 } 1782 1783 static void 1784 vm_daemon(void) 1785 { 1786 struct rlimit rsslim; 1787 struct proc *p; 1788 struct thread *td; 1789 struct vmspace *vm; 1790 int breakout, swapout_flags, tryagain, attempts; 1791 #ifdef RACCT 1792 uint64_t rsize, ravailable; 1793 #endif 1794 1795 while (TRUE) { 1796 mtx_lock(&vm_daemon_mtx); 1797 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 1798 #ifdef RACCT 1799 racct_enable ? hz : 0 1800 #else 1801 0 1802 #endif 1803 ); 1804 swapout_flags = vm_pageout_req_swapout; 1805 vm_pageout_req_swapout = 0; 1806 mtx_unlock(&vm_daemon_mtx); 1807 if (swapout_flags) 1808 swapout_procs(swapout_flags); 1809 1810 /* 1811 * scan the processes for exceeding their rlimits or if 1812 * process is swapped out -- deactivate pages 1813 */ 1814 tryagain = 0; 1815 attempts = 0; 1816 again: 1817 attempts++; 1818 sx_slock(&allproc_lock); 1819 FOREACH_PROC_IN_SYSTEM(p) { 1820 vm_pindex_t limit, size; 1821 1822 /* 1823 * if this is a system process or if we have already 1824 * looked at this process, skip it. 1825 */ 1826 PROC_LOCK(p); 1827 if (p->p_state != PRS_NORMAL || 1828 p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) { 1829 PROC_UNLOCK(p); 1830 continue; 1831 } 1832 /* 1833 * if the process is in a non-running type state, 1834 * don't touch it. 1835 */ 1836 breakout = 0; 1837 FOREACH_THREAD_IN_PROC(p, td) { 1838 thread_lock(td); 1839 if (!TD_ON_RUNQ(td) && 1840 !TD_IS_RUNNING(td) && 1841 !TD_IS_SLEEPING(td) && 1842 !TD_IS_SUSPENDED(td)) { 1843 thread_unlock(td); 1844 breakout = 1; 1845 break; 1846 } 1847 thread_unlock(td); 1848 } 1849 if (breakout) { 1850 PROC_UNLOCK(p); 1851 continue; 1852 } 1853 /* 1854 * get a limit 1855 */ 1856 lim_rlimit_proc(p, RLIMIT_RSS, &rsslim); 1857 limit = OFF_TO_IDX( 1858 qmin(rsslim.rlim_cur, rsslim.rlim_max)); 1859 1860 /* 1861 * let processes that are swapped out really be 1862 * swapped out set the limit to nothing (will force a 1863 * swap-out.) 1864 */ 1865 if ((p->p_flag & P_INMEM) == 0) 1866 limit = 0; /* XXX */ 1867 vm = vmspace_acquire_ref(p); 1868 PROC_UNLOCK(p); 1869 if (vm == NULL) 1870 continue; 1871 1872 size = vmspace_resident_count(vm); 1873 if (size >= limit) { 1874 vm_pageout_map_deactivate_pages( 1875 &vm->vm_map, limit); 1876 } 1877 #ifdef RACCT 1878 if (racct_enable) { 1879 rsize = IDX_TO_OFF(size); 1880 PROC_LOCK(p); 1881 racct_set(p, RACCT_RSS, rsize); 1882 ravailable = racct_get_available(p, RACCT_RSS); 1883 PROC_UNLOCK(p); 1884 if (rsize > ravailable) { 1885 /* 1886 * Don't be overly aggressive; this 1887 * might be an innocent process, 1888 * and the limit could've been exceeded 1889 * by some memory hog. Don't try 1890 * to deactivate more than 1/4th 1891 * of process' resident set size. 1892 */ 1893 if (attempts <= 8) { 1894 if (ravailable < rsize - 1895 (rsize / 4)) { 1896 ravailable = rsize - 1897 (rsize / 4); 1898 } 1899 } 1900 vm_pageout_map_deactivate_pages( 1901 &vm->vm_map, 1902 OFF_TO_IDX(ravailable)); 1903 /* Update RSS usage after paging out. */ 1904 size = vmspace_resident_count(vm); 1905 rsize = IDX_TO_OFF(size); 1906 PROC_LOCK(p); 1907 racct_set(p, RACCT_RSS, rsize); 1908 PROC_UNLOCK(p); 1909 if (rsize > ravailable) 1910 tryagain = 1; 1911 } 1912 } 1913 #endif 1914 vmspace_free(vm); 1915 } 1916 sx_sunlock(&allproc_lock); 1917 if (tryagain != 0 && attempts <= 10) 1918 goto again; 1919 } 1920 } 1921 #endif /* !defined(NO_SWAPPING) */ 1922