1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 45 * 46 * 47 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 48 * All rights reserved. 49 * 50 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 51 * 52 * Permission to use, copy, modify and distribute this software and 53 * its documentation is hereby granted, provided that both the copyright 54 * notice and this permission notice appear in all copies of the 55 * software, derivative works or modified versions, and any portions 56 * thereof, and that both notices appear in supporting documentation. 57 * 58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 61 * 62 * Carnegie Mellon requests users of this software to return to 63 * 64 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 65 * School of Computer Science 66 * Carnegie Mellon University 67 * Pittsburgh PA 15213-3890 68 * 69 * any improvements or extensions that they make and grant Carnegie the 70 * rights to redistribute these changes. 71 */ 72 73 /* 74 * The proverbial page-out daemon. 75 */ 76 77 #include <sys/cdefs.h> 78 __FBSDID("$FreeBSD$"); 79 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/mutex.h> 88 #include <sys/proc.h> 89 #include <sys/kthread.h> 90 #include <sys/ktr.h> 91 #include <sys/mount.h> 92 #include <sys/racct.h> 93 #include <sys/resourcevar.h> 94 #include <sys/sched.h> 95 #include <sys/sdt.h> 96 #include <sys/signalvar.h> 97 #include <sys/smp.h> 98 #include <sys/time.h> 99 #include <sys/vnode.h> 100 #include <sys/vmmeter.h> 101 #include <sys/rwlock.h> 102 #include <sys/sx.h> 103 #include <sys/sysctl.h> 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_page.h> 109 #include <vm/vm_map.h> 110 #include <vm/vm_pageout.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_phys.h> 113 #include <vm/vm_pagequeue.h> 114 #include <vm/swap_pager.h> 115 #include <vm/vm_extern.h> 116 #include <vm/uma.h> 117 118 /* 119 * System initialization 120 */ 121 122 /* the kernel process "vm_pageout"*/ 123 static void vm_pageout(void); 124 static void vm_pageout_init(void); 125 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 126 static int vm_pageout_cluster(vm_page_t m); 127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 128 int starting_page_shortage); 129 130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 131 NULL); 132 133 struct proc *pageproc; 134 135 static struct kproc_desc page_kp = { 136 "pagedaemon", 137 vm_pageout, 138 &pageproc 139 }; 140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 141 &page_kp); 142 143 SDT_PROVIDER_DEFINE(vm); 144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 145 146 /* Pagedaemon activity rates, in subdivisions of one second. */ 147 #define VM_LAUNDER_RATE 10 148 #define VM_INACT_SCAN_RATE 10 149 150 static int vm_pageout_oom_seq = 12; 151 152 static int vm_pageout_update_period; 153 static int disable_swap_pageouts; 154 static int lowmem_period = 10; 155 static int swapdev_enabled; 156 157 static int vm_panic_on_oom = 0; 158 159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 160 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 161 "panic on out of memory instead of killing the largest process"); 162 163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 164 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 165 "Maximum active LRU update period"); 166 167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 168 "Low memory callback period"); 169 170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 171 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages"); 172 173 static int pageout_lock_miss; 174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 175 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout"); 176 177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 178 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 179 "back-to-back calls to oom detector to start OOM"); 180 181 static int act_scan_laundry_weight = 3; 182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 183 &act_scan_laundry_weight, 0, 184 "weight given to clean vs. dirty pages in active queue scans"); 185 186 static u_int vm_background_launder_rate = 4096; 187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 188 &vm_background_launder_rate, 0, 189 "background laundering rate, in kilobytes per second"); 190 191 static u_int vm_background_launder_max = 20 * 1024; 192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 193 &vm_background_launder_max, 0, "background laundering cap, in kilobytes"); 194 195 int vm_pageout_page_count = 32; 196 197 u_long vm_page_max_user_wired; 198 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW, 199 &vm_page_max_user_wired, 0, 200 "system-wide limit to user-wired page count"); 201 202 static u_int isqrt(u_int num); 203 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 204 bool in_shortfall); 205 static void vm_pageout_laundry_worker(void *arg); 206 207 struct scan_state { 208 struct vm_batchqueue bq; 209 struct vm_pagequeue *pq; 210 vm_page_t marker; 211 int maxscan; 212 int scanned; 213 }; 214 215 static void 216 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq, 217 vm_page_t marker, vm_page_t after, int maxscan) 218 { 219 220 vm_pagequeue_assert_locked(pq); 221 KASSERT((marker->aflags & PGA_ENQUEUED) == 0, 222 ("marker %p already enqueued", marker)); 223 224 if (after == NULL) 225 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q); 226 else 227 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q); 228 vm_page_aflag_set(marker, PGA_ENQUEUED); 229 230 vm_batchqueue_init(&ss->bq); 231 ss->pq = pq; 232 ss->marker = marker; 233 ss->maxscan = maxscan; 234 ss->scanned = 0; 235 vm_pagequeue_unlock(pq); 236 } 237 238 static void 239 vm_pageout_end_scan(struct scan_state *ss) 240 { 241 struct vm_pagequeue *pq; 242 243 pq = ss->pq; 244 vm_pagequeue_assert_locked(pq); 245 KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0, 246 ("marker %p not enqueued", ss->marker)); 247 248 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q); 249 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED); 250 pq->pq_pdpages += ss->scanned; 251 } 252 253 /* 254 * Add a small number of queued pages to a batch queue for later processing 255 * without the corresponding queue lock held. The caller must have enqueued a 256 * marker page at the desired start point for the scan. Pages will be 257 * physically dequeued if the caller so requests. Otherwise, the returned 258 * batch may contain marker pages, and it is up to the caller to handle them. 259 * 260 * When processing the batch queue, vm_page_queue() must be used to 261 * determine whether the page has been logically dequeued by another thread. 262 * Once this check is performed, the page lock guarantees that the page will 263 * not be disassociated from the queue. 264 */ 265 static __always_inline void 266 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue) 267 { 268 struct vm_pagequeue *pq; 269 vm_page_t m, marker, n; 270 271 marker = ss->marker; 272 pq = ss->pq; 273 274 KASSERT((marker->aflags & PGA_ENQUEUED) != 0, 275 ("marker %p not enqueued", ss->marker)); 276 277 vm_pagequeue_lock(pq); 278 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL && 279 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE; 280 m = n, ss->scanned++) { 281 n = TAILQ_NEXT(m, plinks.q); 282 if ((m->flags & PG_MARKER) == 0) { 283 KASSERT((m->aflags & PGA_ENQUEUED) != 0, 284 ("page %p not enqueued", m)); 285 KASSERT((m->flags & PG_FICTITIOUS) == 0, 286 ("Fictitious page %p cannot be in page queue", m)); 287 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 288 ("Unmanaged page %p cannot be in page queue", m)); 289 } else if (dequeue) 290 continue; 291 292 (void)vm_batchqueue_insert(&ss->bq, m); 293 if (dequeue) { 294 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 295 vm_page_aflag_clear(m, PGA_ENQUEUED); 296 } 297 } 298 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 299 if (__predict_true(m != NULL)) 300 TAILQ_INSERT_BEFORE(m, marker, plinks.q); 301 else 302 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q); 303 if (dequeue) 304 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt); 305 vm_pagequeue_unlock(pq); 306 } 307 308 /* 309 * Return the next page to be scanned, or NULL if the scan is complete. 310 */ 311 static __always_inline vm_page_t 312 vm_pageout_next(struct scan_state *ss, const bool dequeue) 313 { 314 315 if (ss->bq.bq_cnt == 0) 316 vm_pageout_collect_batch(ss, dequeue); 317 return (vm_batchqueue_pop(&ss->bq)); 318 } 319 320 /* 321 * Scan for pages at adjacent offsets within the given page's object that are 322 * eligible for laundering, form a cluster of these pages and the given page, 323 * and launder that cluster. 324 */ 325 static int 326 vm_pageout_cluster(vm_page_t m) 327 { 328 vm_object_t object; 329 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; 330 vm_pindex_t pindex; 331 int ib, is, page_base, pageout_count; 332 333 object = m->object; 334 VM_OBJECT_ASSERT_WLOCKED(object); 335 pindex = m->pindex; 336 337 vm_page_assert_unbusied(m); 338 339 mc[vm_pageout_page_count] = pb = ps = m; 340 pageout_count = 1; 341 page_base = vm_pageout_page_count; 342 ib = 1; 343 is = 1; 344 345 /* 346 * We can cluster only if the page is not clean, busy, or held, and 347 * the page is in the laundry queue. 348 * 349 * During heavy mmap/modification loads the pageout 350 * daemon can really fragment the underlying file 351 * due to flushing pages out of order and not trying to 352 * align the clusters (which leaves sporadic out-of-order 353 * holes). To solve this problem we do the reverse scan 354 * first and attempt to align our cluster, then do a 355 * forward scan if room remains. 356 */ 357 more: 358 while (ib != 0 && pageout_count < vm_pageout_page_count) { 359 if (ib > pindex) { 360 ib = 0; 361 break; 362 } 363 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p) || 364 vm_page_wired(p)) { 365 ib = 0; 366 break; 367 } 368 vm_page_test_dirty(p); 369 if (p->dirty == 0) { 370 ib = 0; 371 break; 372 } 373 vm_page_lock(p); 374 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) { 375 vm_page_unlock(p); 376 ib = 0; 377 break; 378 } 379 vm_page_unlock(p); 380 mc[--page_base] = pb = p; 381 ++pageout_count; 382 ++ib; 383 384 /* 385 * We are at an alignment boundary. Stop here, and switch 386 * directions. Do not clear ib. 387 */ 388 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 389 break; 390 } 391 while (pageout_count < vm_pageout_page_count && 392 pindex + is < object->size) { 393 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p) || 394 vm_page_wired(p)) 395 break; 396 vm_page_test_dirty(p); 397 if (p->dirty == 0) 398 break; 399 vm_page_lock(p); 400 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) { 401 vm_page_unlock(p); 402 break; 403 } 404 vm_page_unlock(p); 405 mc[page_base + pageout_count] = ps = p; 406 ++pageout_count; 407 ++is; 408 } 409 410 /* 411 * If we exhausted our forward scan, continue with the reverse scan 412 * when possible, even past an alignment boundary. This catches 413 * boundary conditions. 414 */ 415 if (ib != 0 && pageout_count < vm_pageout_page_count) 416 goto more; 417 418 return (vm_pageout_flush(&mc[page_base], pageout_count, 419 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 420 } 421 422 /* 423 * vm_pageout_flush() - launder the given pages 424 * 425 * The given pages are laundered. Note that we setup for the start of 426 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 427 * reference count all in here rather then in the parent. If we want 428 * the parent to do more sophisticated things we may have to change 429 * the ordering. 430 * 431 * Returned runlen is the count of pages between mreq and first 432 * page after mreq with status VM_PAGER_AGAIN. 433 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 434 * for any page in runlen set. 435 */ 436 int 437 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 438 boolean_t *eio) 439 { 440 vm_object_t object = mc[0]->object; 441 int pageout_status[count]; 442 int numpagedout = 0; 443 int i, runlen; 444 445 VM_OBJECT_ASSERT_WLOCKED(object); 446 447 /* 448 * Initiate I/O. Mark the pages busy and verify that they're valid 449 * and read-only. 450 * 451 * We do not have to fixup the clean/dirty bits here... we can 452 * allow the pager to do it after the I/O completes. 453 * 454 * NOTE! mc[i]->dirty may be partial or fragmented due to an 455 * edge case with file fragments. 456 */ 457 for (i = 0; i < count; i++) { 458 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, 459 ("vm_pageout_flush: partially invalid page %p index %d/%d", 460 mc[i], i, count)); 461 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0, 462 ("vm_pageout_flush: writeable page %p", mc[i])); 463 vm_page_sbusy(mc[i]); 464 } 465 vm_object_pip_add(object, count); 466 467 vm_pager_put_pages(object, mc, count, flags, pageout_status); 468 469 runlen = count - mreq; 470 if (eio != NULL) 471 *eio = FALSE; 472 for (i = 0; i < count; i++) { 473 vm_page_t mt = mc[i]; 474 475 KASSERT(pageout_status[i] == VM_PAGER_PEND || 476 !pmap_page_is_write_mapped(mt), 477 ("vm_pageout_flush: page %p is not write protected", mt)); 478 switch (pageout_status[i]) { 479 case VM_PAGER_OK: 480 vm_page_lock(mt); 481 if (vm_page_in_laundry(mt)) 482 vm_page_deactivate_noreuse(mt); 483 vm_page_unlock(mt); 484 /* FALLTHROUGH */ 485 case VM_PAGER_PEND: 486 numpagedout++; 487 break; 488 case VM_PAGER_BAD: 489 /* 490 * The page is outside the object's range. We pretend 491 * that the page out worked and clean the page, so the 492 * changes will be lost if the page is reclaimed by 493 * the page daemon. 494 */ 495 vm_page_undirty(mt); 496 vm_page_lock(mt); 497 if (vm_page_in_laundry(mt)) 498 vm_page_deactivate_noreuse(mt); 499 vm_page_unlock(mt); 500 break; 501 case VM_PAGER_ERROR: 502 case VM_PAGER_FAIL: 503 /* 504 * If the page couldn't be paged out to swap because the 505 * pager wasn't able to find space, place the page in 506 * the PQ_UNSWAPPABLE holding queue. This is an 507 * optimization that prevents the page daemon from 508 * wasting CPU cycles on pages that cannot be reclaimed 509 * becase no swap device is configured. 510 * 511 * Otherwise, reactivate the page so that it doesn't 512 * clog the laundry and inactive queues. (We will try 513 * paging it out again later.) 514 */ 515 vm_page_lock(mt); 516 if (object->type == OBJT_SWAP && 517 pageout_status[i] == VM_PAGER_FAIL) { 518 vm_page_unswappable(mt); 519 numpagedout++; 520 } else 521 vm_page_activate(mt); 522 vm_page_unlock(mt); 523 if (eio != NULL && i >= mreq && i - mreq < runlen) 524 *eio = TRUE; 525 break; 526 case VM_PAGER_AGAIN: 527 if (i >= mreq && i - mreq < runlen) 528 runlen = i - mreq; 529 break; 530 } 531 532 /* 533 * If the operation is still going, leave the page busy to 534 * block all other accesses. Also, leave the paging in 535 * progress indicator set so that we don't attempt an object 536 * collapse. 537 */ 538 if (pageout_status[i] != VM_PAGER_PEND) { 539 vm_object_pip_wakeup(object); 540 vm_page_sunbusy(mt); 541 } 542 } 543 if (prunlen != NULL) 544 *prunlen = runlen; 545 return (numpagedout); 546 } 547 548 static void 549 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 550 { 551 552 atomic_store_rel_int(&swapdev_enabled, 1); 553 } 554 555 static void 556 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 557 { 558 559 if (swap_pager_nswapdev() == 1) 560 atomic_store_rel_int(&swapdev_enabled, 0); 561 } 562 563 /* 564 * Attempt to acquire all of the necessary locks to launder a page and 565 * then call through the clustering layer to PUTPAGES. Wait a short 566 * time for a vnode lock. 567 * 568 * Requires the page and object lock on entry, releases both before return. 569 * Returns 0 on success and an errno otherwise. 570 */ 571 static int 572 vm_pageout_clean(vm_page_t m, int *numpagedout) 573 { 574 struct vnode *vp; 575 struct mount *mp; 576 vm_object_t object; 577 vm_pindex_t pindex; 578 int error, lockmode; 579 580 vm_page_assert_locked(m); 581 object = m->object; 582 VM_OBJECT_ASSERT_WLOCKED(object); 583 error = 0; 584 vp = NULL; 585 mp = NULL; 586 587 /* 588 * The object is already known NOT to be dead. It 589 * is possible for the vget() to block the whole 590 * pageout daemon, but the new low-memory handling 591 * code should prevent it. 592 * 593 * We can't wait forever for the vnode lock, we might 594 * deadlock due to a vn_read() getting stuck in 595 * vm_wait while holding this vnode. We skip the 596 * vnode if we can't get it in a reasonable amount 597 * of time. 598 */ 599 if (object->type == OBJT_VNODE) { 600 vm_page_unlock(m); 601 vp = object->handle; 602 if (vp->v_type == VREG && 603 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 604 mp = NULL; 605 error = EDEADLK; 606 goto unlock_all; 607 } 608 KASSERT(mp != NULL, 609 ("vp %p with NULL v_mount", vp)); 610 vm_object_reference_locked(object); 611 pindex = m->pindex; 612 VM_OBJECT_WUNLOCK(object); 613 lockmode = MNT_SHARED_WRITES(vp->v_mount) ? 614 LK_SHARED : LK_EXCLUSIVE; 615 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) { 616 vp = NULL; 617 error = EDEADLK; 618 goto unlock_mp; 619 } 620 VM_OBJECT_WLOCK(object); 621 622 /* 623 * Ensure that the object and vnode were not disassociated 624 * while locks were dropped. 625 */ 626 if (vp->v_object != object) { 627 error = ENOENT; 628 goto unlock_all; 629 } 630 vm_page_lock(m); 631 632 /* 633 * While the object and page were unlocked, the page 634 * may have been: 635 * (1) moved to a different queue, 636 * (2) reallocated to a different object, 637 * (3) reallocated to a different offset, or 638 * (4) cleaned. 639 */ 640 if (!vm_page_in_laundry(m) || m->object != object || 641 m->pindex != pindex || m->dirty == 0) { 642 vm_page_unlock(m); 643 error = ENXIO; 644 goto unlock_all; 645 } 646 647 /* 648 * The page may have been busied while the object and page 649 * locks were released. 650 */ 651 if (vm_page_busied(m)) { 652 vm_page_unlock(m); 653 error = EBUSY; 654 goto unlock_all; 655 } 656 } 657 658 /* 659 * Remove all writeable mappings, failing if the page is wired. 660 */ 661 if (!vm_page_try_remove_write(m)) { 662 vm_page_unlock(m); 663 error = EBUSY; 664 goto unlock_all; 665 } 666 vm_page_unlock(m); 667 668 /* 669 * If a page is dirty, then it is either being washed 670 * (but not yet cleaned) or it is still in the 671 * laundry. If it is still in the laundry, then we 672 * start the cleaning operation. 673 */ 674 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 675 error = EIO; 676 677 unlock_all: 678 VM_OBJECT_WUNLOCK(object); 679 680 unlock_mp: 681 vm_page_lock_assert(m, MA_NOTOWNED); 682 if (mp != NULL) { 683 if (vp != NULL) 684 vput(vp); 685 vm_object_deallocate(object); 686 vn_finished_write(mp); 687 } 688 689 return (error); 690 } 691 692 /* 693 * Attempt to launder the specified number of pages. 694 * 695 * Returns the number of pages successfully laundered. 696 */ 697 static int 698 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 699 { 700 struct scan_state ss; 701 struct vm_pagequeue *pq; 702 struct mtx *mtx; 703 vm_object_t object; 704 vm_page_t m, marker; 705 int act_delta, error, numpagedout, queue, starting_target; 706 int vnodes_skipped; 707 bool pageout_ok; 708 709 mtx = NULL; 710 object = NULL; 711 starting_target = launder; 712 vnodes_skipped = 0; 713 714 /* 715 * Scan the laundry queues for pages eligible to be laundered. We stop 716 * once the target number of dirty pages have been laundered, or once 717 * we've reached the end of the queue. A single iteration of this loop 718 * may cause more than one page to be laundered because of clustering. 719 * 720 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 721 * swap devices are configured. 722 */ 723 if (atomic_load_acq_int(&swapdev_enabled)) 724 queue = PQ_UNSWAPPABLE; 725 else 726 queue = PQ_LAUNDRY; 727 728 scan: 729 marker = &vmd->vmd_markers[queue]; 730 pq = &vmd->vmd_pagequeues[queue]; 731 vm_pagequeue_lock(pq); 732 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 733 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) { 734 if (__predict_false((m->flags & PG_MARKER) != 0)) 735 continue; 736 737 vm_page_change_lock(m, &mtx); 738 739 recheck: 740 /* 741 * The page may have been disassociated from the queue 742 * or even freed while locks were dropped. We thus must be 743 * careful whenever modifying page state. Once the object lock 744 * has been acquired, we have a stable reference to the page. 745 */ 746 if (vm_page_queue(m) != queue) 747 continue; 748 749 /* 750 * A requeue was requested, so this page gets a second 751 * chance. 752 */ 753 if ((m->aflags & PGA_REQUEUE) != 0) { 754 vm_page_pqbatch_submit(m, queue); 755 continue; 756 } 757 758 /* 759 * Wired pages may not be freed. Complete their removal 760 * from the queue now to avoid needless revisits during 761 * future scans. This check is racy and must be reverified once 762 * we hold the object lock and have verified that the page 763 * is not busy. 764 */ 765 if (vm_page_wired(m)) { 766 vm_page_dequeue_deferred(m); 767 continue; 768 } 769 770 if (object != m->object) { 771 if (object != NULL) 772 VM_OBJECT_WUNLOCK(object); 773 774 /* 775 * A page's object pointer may be set to NULL before 776 * the object lock is acquired. 777 */ 778 object = (vm_object_t)atomic_load_ptr(&m->object); 779 if (object != NULL && !VM_OBJECT_TRYWLOCK(object)) { 780 mtx_unlock(mtx); 781 /* Depends on type-stability. */ 782 VM_OBJECT_WLOCK(object); 783 mtx_lock(mtx); 784 goto recheck; 785 } 786 } 787 if (__predict_false(m->object == NULL)) 788 /* 789 * The page has been removed from its object. 790 */ 791 continue; 792 KASSERT(m->object == object, ("page %p does not belong to %p", 793 m, object)); 794 795 if (vm_page_busied(m)) 796 continue; 797 798 /* 799 * Re-check for wirings now that we hold the object lock and 800 * have verified that the page is unbusied. If the page is 801 * mapped, it may still be wired by pmap lookups. The call to 802 * vm_page_try_remove_all() below atomically checks for such 803 * wirings and removes mappings. If the page is unmapped, the 804 * wire count is guaranteed not to increase. 805 */ 806 if (__predict_false(vm_page_wired(m))) { 807 vm_page_dequeue_deferred(m); 808 continue; 809 } 810 811 /* 812 * Invalid pages can be easily freed. They cannot be 813 * mapped; vm_page_free() asserts this. 814 */ 815 if (m->valid == 0) 816 goto free_page; 817 818 /* 819 * If the page has been referenced and the object is not dead, 820 * reactivate or requeue the page depending on whether the 821 * object is mapped. 822 * 823 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 824 * that a reference from a concurrently destroyed mapping is 825 * observed here and now. 826 */ 827 if (object->ref_count != 0) 828 act_delta = pmap_ts_referenced(m); 829 else { 830 KASSERT(!pmap_page_is_mapped(m), 831 ("page %p is mapped", m)); 832 act_delta = 0; 833 } 834 if ((m->aflags & PGA_REFERENCED) != 0) { 835 vm_page_aflag_clear(m, PGA_REFERENCED); 836 act_delta++; 837 } 838 if (act_delta != 0) { 839 if (object->ref_count != 0) { 840 VM_CNT_INC(v_reactivated); 841 vm_page_activate(m); 842 843 /* 844 * Increase the activation count if the page 845 * was referenced while in the laundry queue. 846 * This makes it less likely that the page will 847 * be returned prematurely to the inactive 848 * queue. 849 */ 850 m->act_count += act_delta + ACT_ADVANCE; 851 852 /* 853 * If this was a background laundering, count 854 * activated pages towards our target. The 855 * purpose of background laundering is to ensure 856 * that pages are eventually cycled through the 857 * laundry queue, and an activation is a valid 858 * way out. 859 */ 860 if (!in_shortfall) 861 launder--; 862 continue; 863 } else if ((object->flags & OBJ_DEAD) == 0) { 864 vm_page_requeue(m); 865 continue; 866 } 867 } 868 869 /* 870 * If the page appears to be clean at the machine-independent 871 * layer, then remove all of its mappings from the pmap in 872 * anticipation of freeing it. If, however, any of the page's 873 * mappings allow write access, then the page may still be 874 * modified until the last of those mappings are removed. 875 */ 876 if (object->ref_count != 0) { 877 vm_page_test_dirty(m); 878 if (m->dirty == 0 && !vm_page_try_remove_all(m)) { 879 vm_page_dequeue_deferred(m); 880 continue; 881 } 882 } 883 884 /* 885 * Clean pages are freed, and dirty pages are paged out unless 886 * they belong to a dead object. Requeueing dirty pages from 887 * dead objects is pointless, as they are being paged out and 888 * freed by the thread that destroyed the object. 889 */ 890 if (m->dirty == 0) { 891 free_page: 892 vm_page_free(m); 893 VM_CNT_INC(v_dfree); 894 } else if ((object->flags & OBJ_DEAD) == 0) { 895 if (object->type != OBJT_SWAP && 896 object->type != OBJT_DEFAULT) 897 pageout_ok = true; 898 else if (disable_swap_pageouts) 899 pageout_ok = false; 900 else 901 pageout_ok = true; 902 if (!pageout_ok) { 903 vm_page_requeue(m); 904 continue; 905 } 906 907 /* 908 * Form a cluster with adjacent, dirty pages from the 909 * same object, and page out that entire cluster. 910 * 911 * The adjacent, dirty pages must also be in the 912 * laundry. However, their mappings are not checked 913 * for new references. Consequently, a recently 914 * referenced page may be paged out. However, that 915 * page will not be prematurely reclaimed. After page 916 * out, the page will be placed in the inactive queue, 917 * where any new references will be detected and the 918 * page reactivated. 919 */ 920 error = vm_pageout_clean(m, &numpagedout); 921 if (error == 0) { 922 launder -= numpagedout; 923 ss.scanned += numpagedout; 924 } else if (error == EDEADLK) { 925 pageout_lock_miss++; 926 vnodes_skipped++; 927 } 928 mtx = NULL; 929 object = NULL; 930 } 931 } 932 if (mtx != NULL) { 933 mtx_unlock(mtx); 934 mtx = NULL; 935 } 936 if (object != NULL) { 937 VM_OBJECT_WUNLOCK(object); 938 object = NULL; 939 } 940 vm_pagequeue_lock(pq); 941 vm_pageout_end_scan(&ss); 942 vm_pagequeue_unlock(pq); 943 944 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 945 queue = PQ_LAUNDRY; 946 goto scan; 947 } 948 949 /* 950 * Wakeup the sync daemon if we skipped a vnode in a writeable object 951 * and we didn't launder enough pages. 952 */ 953 if (vnodes_skipped > 0 && launder > 0) 954 (void)speedup_syncer(); 955 956 return (starting_target - launder); 957 } 958 959 /* 960 * Compute the integer square root. 961 */ 962 static u_int 963 isqrt(u_int num) 964 { 965 u_int bit, root, tmp; 966 967 bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0; 968 root = 0; 969 while (bit != 0) { 970 tmp = root + bit; 971 root >>= 1; 972 if (num >= tmp) { 973 num -= tmp; 974 root += bit; 975 } 976 bit >>= 2; 977 } 978 return (root); 979 } 980 981 /* 982 * Perform the work of the laundry thread: periodically wake up and determine 983 * whether any pages need to be laundered. If so, determine the number of pages 984 * that need to be laundered, and launder them. 985 */ 986 static void 987 vm_pageout_laundry_worker(void *arg) 988 { 989 struct vm_domain *vmd; 990 struct vm_pagequeue *pq; 991 uint64_t nclean, ndirty, nfreed; 992 int domain, last_target, launder, shortfall, shortfall_cycle, target; 993 bool in_shortfall; 994 995 domain = (uintptr_t)arg; 996 vmd = VM_DOMAIN(domain); 997 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 998 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 999 1000 shortfall = 0; 1001 in_shortfall = false; 1002 shortfall_cycle = 0; 1003 last_target = target = 0; 1004 nfreed = 0; 1005 1006 /* 1007 * Calls to these handlers are serialized by the swap syscall lock. 1008 */ 1009 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 1010 EVENTHANDLER_PRI_ANY); 1011 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 1012 EVENTHANDLER_PRI_ANY); 1013 1014 /* 1015 * The pageout laundry worker is never done, so loop forever. 1016 */ 1017 for (;;) { 1018 KASSERT(target >= 0, ("negative target %d", target)); 1019 KASSERT(shortfall_cycle >= 0, 1020 ("negative cycle %d", shortfall_cycle)); 1021 launder = 0; 1022 1023 /* 1024 * First determine whether we need to launder pages to meet a 1025 * shortage of free pages. 1026 */ 1027 if (shortfall > 0) { 1028 in_shortfall = true; 1029 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 1030 target = shortfall; 1031 } else if (!in_shortfall) 1032 goto trybackground; 1033 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 1034 /* 1035 * We recently entered shortfall and began laundering 1036 * pages. If we have completed that laundering run 1037 * (and we are no longer in shortfall) or we have met 1038 * our laundry target through other activity, then we 1039 * can stop laundering pages. 1040 */ 1041 in_shortfall = false; 1042 target = 0; 1043 goto trybackground; 1044 } 1045 launder = target / shortfall_cycle--; 1046 goto dolaundry; 1047 1048 /* 1049 * There's no immediate need to launder any pages; see if we 1050 * meet the conditions to perform background laundering: 1051 * 1052 * 1. The ratio of dirty to clean inactive pages exceeds the 1053 * background laundering threshold, or 1054 * 2. we haven't yet reached the target of the current 1055 * background laundering run. 1056 * 1057 * The background laundering threshold is not a constant. 1058 * Instead, it is a slowly growing function of the number of 1059 * clean pages freed by the page daemon since the last 1060 * background laundering. Thus, as the ratio of dirty to 1061 * clean inactive pages grows, the amount of memory pressure 1062 * required to trigger laundering decreases. We ensure 1063 * that the threshold is non-zero after an inactive queue 1064 * scan, even if that scan failed to free a single clean page. 1065 */ 1066 trybackground: 1067 nclean = vmd->vmd_free_count + 1068 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1069 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1070 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1071 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1072 target = vmd->vmd_background_launder_target; 1073 } 1074 1075 /* 1076 * We have a non-zero background laundering target. If we've 1077 * laundered up to our maximum without observing a page daemon 1078 * request, just stop. This is a safety belt that ensures we 1079 * don't launder an excessive amount if memory pressure is low 1080 * and the ratio of dirty to clean pages is large. Otherwise, 1081 * proceed at the background laundering rate. 1082 */ 1083 if (target > 0) { 1084 if (nfreed > 0) { 1085 nfreed = 0; 1086 last_target = target; 1087 } else if (last_target - target >= 1088 vm_background_launder_max * PAGE_SIZE / 1024) { 1089 target = 0; 1090 } 1091 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1092 launder /= VM_LAUNDER_RATE; 1093 if (launder > target) 1094 launder = target; 1095 } 1096 1097 dolaundry: 1098 if (launder > 0) { 1099 /* 1100 * Because of I/O clustering, the number of laundered 1101 * pages could exceed "target" by the maximum size of 1102 * a cluster minus one. 1103 */ 1104 target -= min(vm_pageout_launder(vmd, launder, 1105 in_shortfall), target); 1106 pause("laundp", hz / VM_LAUNDER_RATE); 1107 } 1108 1109 /* 1110 * If we're not currently laundering pages and the page daemon 1111 * hasn't posted a new request, sleep until the page daemon 1112 * kicks us. 1113 */ 1114 vm_pagequeue_lock(pq); 1115 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1116 (void)mtx_sleep(&vmd->vmd_laundry_request, 1117 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1118 1119 /* 1120 * If the pagedaemon has indicated that it's in shortfall, start 1121 * a shortfall laundering unless we're already in the middle of 1122 * one. This may preempt a background laundering. 1123 */ 1124 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1125 (!in_shortfall || shortfall_cycle == 0)) { 1126 shortfall = vm_laundry_target(vmd) + 1127 vmd->vmd_pageout_deficit; 1128 target = 0; 1129 } else 1130 shortfall = 0; 1131 1132 if (target == 0) 1133 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1134 nfreed += vmd->vmd_clean_pages_freed; 1135 vmd->vmd_clean_pages_freed = 0; 1136 vm_pagequeue_unlock(pq); 1137 } 1138 } 1139 1140 /* 1141 * Compute the number of pages we want to try to move from the 1142 * active queue to either the inactive or laundry queue. 1143 * 1144 * When scanning active pages during a shortage, we make clean pages 1145 * count more heavily towards the page shortage than dirty pages. 1146 * This is because dirty pages must be laundered before they can be 1147 * reused and thus have less utility when attempting to quickly 1148 * alleviate a free page shortage. However, this weighting also 1149 * causes the scan to deactivate dirty pages more aggressively, 1150 * improving the effectiveness of clustering. 1151 */ 1152 static int 1153 vm_pageout_active_target(struct vm_domain *vmd) 1154 { 1155 int shortage; 1156 1157 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) - 1158 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt + 1159 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight); 1160 shortage *= act_scan_laundry_weight; 1161 return (shortage); 1162 } 1163 1164 /* 1165 * Scan the active queue. If there is no shortage of inactive pages, scan a 1166 * small portion of the queue in order to maintain quasi-LRU. 1167 */ 1168 static void 1169 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage) 1170 { 1171 struct scan_state ss; 1172 struct mtx *mtx; 1173 vm_object_t object; 1174 vm_page_t m, marker; 1175 struct vm_pagequeue *pq; 1176 long min_scan; 1177 int act_delta, max_scan, scan_tick; 1178 1179 marker = &vmd->vmd_markers[PQ_ACTIVE]; 1180 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1181 vm_pagequeue_lock(pq); 1182 1183 /* 1184 * If we're just idle polling attempt to visit every 1185 * active page within 'update_period' seconds. 1186 */ 1187 scan_tick = ticks; 1188 if (vm_pageout_update_period != 0) { 1189 min_scan = pq->pq_cnt; 1190 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1191 min_scan /= hz * vm_pageout_update_period; 1192 } else 1193 min_scan = 0; 1194 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0)) 1195 vmd->vmd_last_active_scan = scan_tick; 1196 1197 /* 1198 * Scan the active queue for pages that can be deactivated. Update 1199 * the per-page activity counter and use it to identify deactivation 1200 * candidates. Held pages may be deactivated. 1201 * 1202 * To avoid requeuing each page that remains in the active queue, we 1203 * implement the CLOCK algorithm. To keep the implementation of the 1204 * enqueue operation consistent for all page queues, we use two hands, 1205 * represented by marker pages. Scans begin at the first hand, which 1206 * precedes the second hand in the queue. When the two hands meet, 1207 * they are moved back to the head and tail of the queue, respectively, 1208 * and scanning resumes. 1209 */ 1210 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan; 1211 mtx = NULL; 1212 act_scan: 1213 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan); 1214 while ((m = vm_pageout_next(&ss, false)) != NULL) { 1215 if (__predict_false(m == &vmd->vmd_clock[1])) { 1216 vm_pagequeue_lock(pq); 1217 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1218 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q); 1219 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0], 1220 plinks.q); 1221 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1], 1222 plinks.q); 1223 max_scan -= ss.scanned; 1224 vm_pageout_end_scan(&ss); 1225 goto act_scan; 1226 } 1227 if (__predict_false((m->flags & PG_MARKER) != 0)) 1228 continue; 1229 1230 vm_page_change_lock(m, &mtx); 1231 1232 /* 1233 * The page may have been disassociated from the queue 1234 * or even freed while locks were dropped. We thus must be 1235 * careful whenever modifying page state. Once the object lock 1236 * has been acquired, we have a stable reference to the page. 1237 */ 1238 if (vm_page_queue(m) != PQ_ACTIVE) 1239 continue; 1240 1241 /* 1242 * Wired pages are dequeued lazily. 1243 */ 1244 if (vm_page_wired(m)) { 1245 vm_page_dequeue_deferred(m); 1246 continue; 1247 } 1248 1249 /* 1250 * A page's object pointer may be set to NULL before 1251 * the object lock is acquired. 1252 */ 1253 object = (vm_object_t)atomic_load_ptr(&m->object); 1254 if (__predict_false(object == NULL)) 1255 /* 1256 * The page has been removed from its object. 1257 */ 1258 continue; 1259 1260 /* 1261 * Check to see "how much" the page has been used. 1262 * 1263 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1264 * that a reference from a concurrently destroyed mapping is 1265 * observed here and now. 1266 * 1267 * Perform an unsynchronized object ref count check. While 1268 * the page lock ensures that the page is not reallocated to 1269 * another object, in particular, one with unmanaged mappings 1270 * that cannot support pmap_ts_referenced(), two races are, 1271 * nonetheless, possible: 1272 * 1) The count was transitioning to zero, but we saw a non- 1273 * zero value. pmap_ts_referenced() will return zero 1274 * because the page is not mapped. 1275 * 2) The count was transitioning to one, but we saw zero. 1276 * This race delays the detection of a new reference. At 1277 * worst, we will deactivate and reactivate the page. 1278 */ 1279 if (object->ref_count != 0) 1280 act_delta = pmap_ts_referenced(m); 1281 else 1282 act_delta = 0; 1283 if ((m->aflags & PGA_REFERENCED) != 0) { 1284 vm_page_aflag_clear(m, PGA_REFERENCED); 1285 act_delta++; 1286 } 1287 1288 /* 1289 * Advance or decay the act_count based on recent usage. 1290 */ 1291 if (act_delta != 0) { 1292 m->act_count += ACT_ADVANCE + act_delta; 1293 if (m->act_count > ACT_MAX) 1294 m->act_count = ACT_MAX; 1295 } else 1296 m->act_count -= min(m->act_count, ACT_DECLINE); 1297 1298 if (m->act_count == 0) { 1299 /* 1300 * When not short for inactive pages, let dirty pages go 1301 * through the inactive queue before moving to the 1302 * laundry queues. This gives them some extra time to 1303 * be reactivated, potentially avoiding an expensive 1304 * pageout. However, during a page shortage, the 1305 * inactive queue is necessarily small, and so dirty 1306 * pages would only spend a trivial amount of time in 1307 * the inactive queue. Therefore, we might as well 1308 * place them directly in the laundry queue to reduce 1309 * queuing overhead. 1310 */ 1311 if (page_shortage <= 0) { 1312 vm_page_swapqueue(m, PQ_ACTIVE, PQ_INACTIVE); 1313 } else { 1314 /* 1315 * Calling vm_page_test_dirty() here would 1316 * require acquisition of the object's write 1317 * lock. However, during a page shortage, 1318 * directing dirty pages into the laundry 1319 * queue is only an optimization and not a 1320 * requirement. Therefore, we simply rely on 1321 * the opportunistic updates to the page's 1322 * dirty field by the pmap. 1323 */ 1324 if (m->dirty == 0) { 1325 vm_page_swapqueue(m, PQ_ACTIVE, 1326 PQ_INACTIVE); 1327 page_shortage -= 1328 act_scan_laundry_weight; 1329 } else { 1330 vm_page_swapqueue(m, PQ_ACTIVE, 1331 PQ_LAUNDRY); 1332 page_shortage--; 1333 } 1334 } 1335 } 1336 } 1337 if (mtx != NULL) { 1338 mtx_unlock(mtx); 1339 mtx = NULL; 1340 } 1341 vm_pagequeue_lock(pq); 1342 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1343 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q); 1344 vm_pageout_end_scan(&ss); 1345 vm_pagequeue_unlock(pq); 1346 } 1347 1348 static int 1349 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m) 1350 { 1351 struct vm_domain *vmd; 1352 1353 if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0) 1354 return (0); 1355 vm_page_aflag_set(m, PGA_ENQUEUED); 1356 if ((m->aflags & PGA_REQUEUE_HEAD) != 0) { 1357 vmd = vm_pagequeue_domain(m); 1358 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 1359 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 1360 } else if ((m->aflags & PGA_REQUEUE) != 0) { 1361 TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q); 1362 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 1363 } else 1364 TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q); 1365 return (1); 1366 } 1367 1368 /* 1369 * Re-add stuck pages to the inactive queue. We will examine them again 1370 * during the next scan. If the queue state of a page has changed since 1371 * it was physically removed from the page queue in 1372 * vm_pageout_collect_batch(), don't do anything with that page. 1373 */ 1374 static void 1375 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq, 1376 vm_page_t m) 1377 { 1378 struct vm_pagequeue *pq; 1379 int delta; 1380 1381 delta = 0; 1382 pq = ss->pq; 1383 1384 if (m != NULL) { 1385 if (vm_batchqueue_insert(bq, m)) 1386 return; 1387 vm_pagequeue_lock(pq); 1388 delta += vm_pageout_reinsert_inactive_page(ss, m); 1389 } else 1390 vm_pagequeue_lock(pq); 1391 while ((m = vm_batchqueue_pop(bq)) != NULL) 1392 delta += vm_pageout_reinsert_inactive_page(ss, m); 1393 vm_pagequeue_cnt_add(pq, delta); 1394 vm_pagequeue_unlock(pq); 1395 vm_batchqueue_init(bq); 1396 } 1397 1398 /* 1399 * Attempt to reclaim the requested number of pages from the inactive queue. 1400 * Returns true if the shortage was addressed. 1401 */ 1402 static int 1403 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage, 1404 int *addl_shortage) 1405 { 1406 struct scan_state ss; 1407 struct vm_batchqueue rq; 1408 struct mtx *mtx; 1409 vm_page_t m, marker; 1410 struct vm_pagequeue *pq; 1411 vm_object_t object; 1412 int act_delta, addl_page_shortage, deficit, page_shortage; 1413 int starting_page_shortage; 1414 1415 /* 1416 * The addl_page_shortage is an estimate of the number of temporarily 1417 * stuck pages in the inactive queue. In other words, the 1418 * number of pages from the inactive count that should be 1419 * discounted in setting the target for the active queue scan. 1420 */ 1421 addl_page_shortage = 0; 1422 1423 /* 1424 * vmd_pageout_deficit counts the number of pages requested in 1425 * allocations that failed because of a free page shortage. We assume 1426 * that the allocations will be reattempted and thus include the deficit 1427 * in our scan target. 1428 */ 1429 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1430 starting_page_shortage = page_shortage = shortage + deficit; 1431 1432 mtx = NULL; 1433 object = NULL; 1434 vm_batchqueue_init(&rq); 1435 1436 /* 1437 * Start scanning the inactive queue for pages that we can free. The 1438 * scan will stop when we reach the target or we have scanned the 1439 * entire queue. (Note that m->act_count is not used to make 1440 * decisions for the inactive queue, only for the active queue.) 1441 */ 1442 marker = &vmd->vmd_markers[PQ_INACTIVE]; 1443 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1444 vm_pagequeue_lock(pq); 1445 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 1446 while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) { 1447 KASSERT((m->flags & PG_MARKER) == 0, 1448 ("marker page %p was dequeued", m)); 1449 1450 vm_page_change_lock(m, &mtx); 1451 1452 recheck: 1453 /* 1454 * The page may have been disassociated from the queue 1455 * or even freed while locks were dropped. We thus must be 1456 * careful whenever modifying page state. Once the object lock 1457 * has been acquired, we have a stable reference to the page. 1458 */ 1459 if (vm_page_queue(m) != PQ_INACTIVE) { 1460 addl_page_shortage++; 1461 continue; 1462 } 1463 1464 /* 1465 * The page was re-enqueued after the page queue lock was 1466 * dropped, or a requeue was requested. This page gets a second 1467 * chance. 1468 */ 1469 if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE | 1470 PGA_REQUEUE_HEAD)) != 0) 1471 goto reinsert; 1472 1473 /* 1474 * Wired pages may not be freed. Complete their removal 1475 * from the queue now to avoid needless revisits during 1476 * future scans. This check is racy and must be reverified once 1477 * we hold the object lock and have verified that the page 1478 * is not busy. 1479 */ 1480 if (vm_page_wired(m)) { 1481 vm_page_dequeue_deferred(m); 1482 continue; 1483 } 1484 1485 if (object != m->object) { 1486 if (object != NULL) 1487 VM_OBJECT_WUNLOCK(object); 1488 1489 /* 1490 * A page's object pointer may be set to NULL before 1491 * the object lock is acquired. 1492 */ 1493 object = (vm_object_t)atomic_load_ptr(&m->object); 1494 if (object != NULL && !VM_OBJECT_TRYWLOCK(object)) { 1495 mtx_unlock(mtx); 1496 /* Depends on type-stability. */ 1497 VM_OBJECT_WLOCK(object); 1498 mtx_lock(mtx); 1499 goto recheck; 1500 } 1501 } 1502 if (__predict_false(m->object == NULL)) 1503 /* 1504 * The page has been removed from its object. 1505 */ 1506 continue; 1507 KASSERT(m->object == object, ("page %p does not belong to %p", 1508 m, object)); 1509 1510 if (vm_page_busied(m)) { 1511 /* 1512 * Don't mess with busy pages. Leave them at 1513 * the front of the queue. Most likely, they 1514 * are being paged out and will leave the 1515 * queue shortly after the scan finishes. So, 1516 * they ought to be discounted from the 1517 * inactive count. 1518 */ 1519 addl_page_shortage++; 1520 goto reinsert; 1521 } 1522 1523 /* 1524 * Re-check for wirings now that we hold the object lock and 1525 * have verified that the page is unbusied. If the page is 1526 * mapped, it may still be wired by pmap lookups. The call to 1527 * vm_page_try_remove_all() below atomically checks for such 1528 * wirings and removes mappings. If the page is unmapped, the 1529 * wire count is guaranteed not to increase. 1530 */ 1531 if (__predict_false(vm_page_wired(m))) { 1532 vm_page_dequeue_deferred(m); 1533 continue; 1534 } 1535 1536 /* 1537 * Invalid pages can be easily freed. They cannot be 1538 * mapped, vm_page_free() asserts this. 1539 */ 1540 if (m->valid == 0) 1541 goto free_page; 1542 1543 /* 1544 * If the page has been referenced and the object is not dead, 1545 * reactivate or requeue the page depending on whether the 1546 * object is mapped. 1547 * 1548 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1549 * that a reference from a concurrently destroyed mapping is 1550 * observed here and now. 1551 */ 1552 if (object->ref_count != 0) 1553 act_delta = pmap_ts_referenced(m); 1554 else { 1555 KASSERT(!pmap_page_is_mapped(m), 1556 ("page %p is mapped", m)); 1557 act_delta = 0; 1558 } 1559 if ((m->aflags & PGA_REFERENCED) != 0) { 1560 vm_page_aflag_clear(m, PGA_REFERENCED); 1561 act_delta++; 1562 } 1563 if (act_delta != 0) { 1564 if (object->ref_count != 0) { 1565 VM_CNT_INC(v_reactivated); 1566 vm_page_activate(m); 1567 1568 /* 1569 * Increase the activation count if the page 1570 * was referenced while in the inactive queue. 1571 * This makes it less likely that the page will 1572 * be returned prematurely to the inactive 1573 * queue. 1574 */ 1575 m->act_count += act_delta + ACT_ADVANCE; 1576 continue; 1577 } else if ((object->flags & OBJ_DEAD) == 0) { 1578 vm_page_aflag_set(m, PGA_REQUEUE); 1579 goto reinsert; 1580 } 1581 } 1582 1583 /* 1584 * If the page appears to be clean at the machine-independent 1585 * layer, then remove all of its mappings from the pmap in 1586 * anticipation of freeing it. If, however, any of the page's 1587 * mappings allow write access, then the page may still be 1588 * modified until the last of those mappings are removed. 1589 */ 1590 if (object->ref_count != 0) { 1591 vm_page_test_dirty(m); 1592 if (m->dirty == 0 && !vm_page_try_remove_all(m)) { 1593 vm_page_dequeue_deferred(m); 1594 continue; 1595 } 1596 } 1597 1598 /* 1599 * Clean pages can be freed, but dirty pages must be sent back 1600 * to the laundry, unless they belong to a dead object. 1601 * Requeueing dirty pages from dead objects is pointless, as 1602 * they are being paged out and freed by the thread that 1603 * destroyed the object. 1604 */ 1605 if (m->dirty == 0) { 1606 free_page: 1607 /* 1608 * Because we dequeued the page and have already 1609 * checked for concurrent dequeue and enqueue 1610 * requests, we can safely disassociate the page 1611 * from the inactive queue. 1612 */ 1613 KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0, 1614 ("page %p has queue state", m)); 1615 m->queue = PQ_NONE; 1616 vm_page_free(m); 1617 page_shortage--; 1618 } else if ((object->flags & OBJ_DEAD) == 0) 1619 vm_page_launder(m); 1620 continue; 1621 reinsert: 1622 vm_pageout_reinsert_inactive(&ss, &rq, m); 1623 } 1624 if (mtx != NULL) 1625 mtx_unlock(mtx); 1626 if (object != NULL) 1627 VM_OBJECT_WUNLOCK(object); 1628 vm_pageout_reinsert_inactive(&ss, &rq, NULL); 1629 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL); 1630 vm_pagequeue_lock(pq); 1631 vm_pageout_end_scan(&ss); 1632 vm_pagequeue_unlock(pq); 1633 1634 VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage); 1635 1636 /* 1637 * Wake up the laundry thread so that it can perform any needed 1638 * laundering. If we didn't meet our target, we're in shortfall and 1639 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1640 * swap devices are configured, the laundry thread has no work to do, so 1641 * don't bother waking it up. 1642 * 1643 * The laundry thread uses the number of inactive queue scans elapsed 1644 * since the last laundering to determine whether to launder again, so 1645 * keep count. 1646 */ 1647 if (starting_page_shortage > 0) { 1648 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1649 vm_pagequeue_lock(pq); 1650 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1651 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1652 if (page_shortage > 0) { 1653 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1654 VM_CNT_INC(v_pdshortfalls); 1655 } else if (vmd->vmd_laundry_request != 1656 VM_LAUNDRY_SHORTFALL) 1657 vmd->vmd_laundry_request = 1658 VM_LAUNDRY_BACKGROUND; 1659 wakeup(&vmd->vmd_laundry_request); 1660 } 1661 vmd->vmd_clean_pages_freed += 1662 starting_page_shortage - page_shortage; 1663 vm_pagequeue_unlock(pq); 1664 } 1665 1666 /* 1667 * Wakeup the swapout daemon if we didn't free the targeted number of 1668 * pages. 1669 */ 1670 if (page_shortage > 0) 1671 vm_swapout_run(); 1672 1673 /* 1674 * If the inactive queue scan fails repeatedly to meet its 1675 * target, kill the largest process. 1676 */ 1677 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1678 1679 /* 1680 * Reclaim pages by swapping out idle processes, if configured to do so. 1681 */ 1682 vm_swapout_run_idle(); 1683 1684 /* 1685 * See the description of addl_page_shortage above. 1686 */ 1687 *addl_shortage = addl_page_shortage + deficit; 1688 1689 return (page_shortage <= 0); 1690 } 1691 1692 static int vm_pageout_oom_vote; 1693 1694 /* 1695 * The pagedaemon threads randlomly select one to perform the 1696 * OOM. Trying to kill processes before all pagedaemons 1697 * failed to reach free target is premature. 1698 */ 1699 static void 1700 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1701 int starting_page_shortage) 1702 { 1703 int old_vote; 1704 1705 if (starting_page_shortage <= 0 || starting_page_shortage != 1706 page_shortage) 1707 vmd->vmd_oom_seq = 0; 1708 else 1709 vmd->vmd_oom_seq++; 1710 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1711 if (vmd->vmd_oom) { 1712 vmd->vmd_oom = FALSE; 1713 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1714 } 1715 return; 1716 } 1717 1718 /* 1719 * Do not follow the call sequence until OOM condition is 1720 * cleared. 1721 */ 1722 vmd->vmd_oom_seq = 0; 1723 1724 if (vmd->vmd_oom) 1725 return; 1726 1727 vmd->vmd_oom = TRUE; 1728 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1729 if (old_vote != vm_ndomains - 1) 1730 return; 1731 1732 /* 1733 * The current pagedaemon thread is the last in the quorum to 1734 * start OOM. Initiate the selection and signaling of the 1735 * victim. 1736 */ 1737 vm_pageout_oom(VM_OOM_MEM); 1738 1739 /* 1740 * After one round of OOM terror, recall our vote. On the 1741 * next pass, current pagedaemon would vote again if the low 1742 * memory condition is still there, due to vmd_oom being 1743 * false. 1744 */ 1745 vmd->vmd_oom = FALSE; 1746 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1747 } 1748 1749 /* 1750 * The OOM killer is the page daemon's action of last resort when 1751 * memory allocation requests have been stalled for a prolonged period 1752 * of time because it cannot reclaim memory. This function computes 1753 * the approximate number of physical pages that could be reclaimed if 1754 * the specified address space is destroyed. 1755 * 1756 * Private, anonymous memory owned by the address space is the 1757 * principal resource that we expect to recover after an OOM kill. 1758 * Since the physical pages mapped by the address space's COW entries 1759 * are typically shared pages, they are unlikely to be released and so 1760 * they are not counted. 1761 * 1762 * To get to the point where the page daemon runs the OOM killer, its 1763 * efforts to write-back vnode-backed pages may have stalled. This 1764 * could be caused by a memory allocation deadlock in the write path 1765 * that might be resolved by an OOM kill. Therefore, physical pages 1766 * belonging to vnode-backed objects are counted, because they might 1767 * be freed without being written out first if the address space holds 1768 * the last reference to an unlinked vnode. 1769 * 1770 * Similarly, physical pages belonging to OBJT_PHYS objects are 1771 * counted because the address space might hold the last reference to 1772 * the object. 1773 */ 1774 static long 1775 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1776 { 1777 vm_map_t map; 1778 vm_map_entry_t entry; 1779 vm_object_t obj; 1780 long res; 1781 1782 map = &vmspace->vm_map; 1783 KASSERT(!map->system_map, ("system map")); 1784 sx_assert(&map->lock, SA_LOCKED); 1785 res = 0; 1786 for (entry = map->header.next; entry != &map->header; 1787 entry = entry->next) { 1788 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1789 continue; 1790 obj = entry->object.vm_object; 1791 if (obj == NULL) 1792 continue; 1793 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1794 obj->ref_count != 1) 1795 continue; 1796 switch (obj->type) { 1797 case OBJT_DEFAULT: 1798 case OBJT_SWAP: 1799 case OBJT_PHYS: 1800 case OBJT_VNODE: 1801 res += obj->resident_page_count; 1802 break; 1803 } 1804 } 1805 return (res); 1806 } 1807 1808 static int vm_oom_ratelim_last; 1809 static int vm_oom_pf_secs = 10; 1810 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0, 1811 ""); 1812 static struct mtx vm_oom_ratelim_mtx; 1813 1814 void 1815 vm_pageout_oom(int shortage) 1816 { 1817 struct proc *p, *bigproc; 1818 vm_offset_t size, bigsize; 1819 struct thread *td; 1820 struct vmspace *vm; 1821 int now; 1822 bool breakout; 1823 1824 /* 1825 * For OOM requests originating from vm_fault(), there is a high 1826 * chance that a single large process faults simultaneously in 1827 * several threads. Also, on an active system running many 1828 * processes of middle-size, like buildworld, all of them 1829 * could fault almost simultaneously as well. 1830 * 1831 * To avoid killing too many processes, rate-limit OOMs 1832 * initiated by vm_fault() time-outs on the waits for free 1833 * pages. 1834 */ 1835 mtx_lock(&vm_oom_ratelim_mtx); 1836 now = ticks; 1837 if (shortage == VM_OOM_MEM_PF && 1838 (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) { 1839 mtx_unlock(&vm_oom_ratelim_mtx); 1840 return; 1841 } 1842 vm_oom_ratelim_last = now; 1843 mtx_unlock(&vm_oom_ratelim_mtx); 1844 1845 /* 1846 * We keep the process bigproc locked once we find it to keep anyone 1847 * from messing with it; however, there is a possibility of 1848 * deadlock if process B is bigproc and one of its child processes 1849 * attempts to propagate a signal to B while we are waiting for A's 1850 * lock while walking this list. To avoid this, we don't block on 1851 * the process lock but just skip a process if it is already locked. 1852 */ 1853 bigproc = NULL; 1854 bigsize = 0; 1855 sx_slock(&allproc_lock); 1856 FOREACH_PROC_IN_SYSTEM(p) { 1857 PROC_LOCK(p); 1858 1859 /* 1860 * If this is a system, protected or killed process, skip it. 1861 */ 1862 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1863 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1864 p->p_pid == 1 || P_KILLED(p) || 1865 (p->p_pid < 48 && swap_pager_avail != 0)) { 1866 PROC_UNLOCK(p); 1867 continue; 1868 } 1869 /* 1870 * If the process is in a non-running type state, 1871 * don't touch it. Check all the threads individually. 1872 */ 1873 breakout = false; 1874 FOREACH_THREAD_IN_PROC(p, td) { 1875 thread_lock(td); 1876 if (!TD_ON_RUNQ(td) && 1877 !TD_IS_RUNNING(td) && 1878 !TD_IS_SLEEPING(td) && 1879 !TD_IS_SUSPENDED(td) && 1880 !TD_IS_SWAPPED(td)) { 1881 thread_unlock(td); 1882 breakout = true; 1883 break; 1884 } 1885 thread_unlock(td); 1886 } 1887 if (breakout) { 1888 PROC_UNLOCK(p); 1889 continue; 1890 } 1891 /* 1892 * get the process size 1893 */ 1894 vm = vmspace_acquire_ref(p); 1895 if (vm == NULL) { 1896 PROC_UNLOCK(p); 1897 continue; 1898 } 1899 _PHOLD_LITE(p); 1900 PROC_UNLOCK(p); 1901 sx_sunlock(&allproc_lock); 1902 if (!vm_map_trylock_read(&vm->vm_map)) { 1903 vmspace_free(vm); 1904 sx_slock(&allproc_lock); 1905 PRELE(p); 1906 continue; 1907 } 1908 size = vmspace_swap_count(vm); 1909 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF) 1910 size += vm_pageout_oom_pagecount(vm); 1911 vm_map_unlock_read(&vm->vm_map); 1912 vmspace_free(vm); 1913 sx_slock(&allproc_lock); 1914 1915 /* 1916 * If this process is bigger than the biggest one, 1917 * remember it. 1918 */ 1919 if (size > bigsize) { 1920 if (bigproc != NULL) 1921 PRELE(bigproc); 1922 bigproc = p; 1923 bigsize = size; 1924 } else { 1925 PRELE(p); 1926 } 1927 } 1928 sx_sunlock(&allproc_lock); 1929 if (bigproc != NULL) { 1930 if (vm_panic_on_oom != 0) 1931 panic("out of swap space"); 1932 PROC_LOCK(bigproc); 1933 killproc(bigproc, "out of swap space"); 1934 sched_nice(bigproc, PRIO_MIN); 1935 _PRELE(bigproc); 1936 PROC_UNLOCK(bigproc); 1937 } 1938 } 1939 1940 static bool 1941 vm_pageout_lowmem(void) 1942 { 1943 static int lowmem_ticks = 0; 1944 int last; 1945 1946 last = atomic_load_int(&lowmem_ticks); 1947 while ((u_int)(ticks - last) / hz >= lowmem_period) { 1948 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0) 1949 continue; 1950 1951 /* 1952 * Decrease registered cache sizes. 1953 */ 1954 SDT_PROBE0(vm, , , vm__lowmem_scan); 1955 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 1956 1957 /* 1958 * We do this explicitly after the caches have been 1959 * drained above. If we have a severe page shortage on 1960 * our hands, completely drain all UMA zones. Otherwise, 1961 * just prune the caches. 1962 */ 1963 uma_reclaim(vm_page_count_min() ? UMA_RECLAIM_DRAIN_CPU : 1964 UMA_RECLAIM_TRIM); 1965 return (true); 1966 } 1967 return (false); 1968 } 1969 1970 static void 1971 vm_pageout_worker(void *arg) 1972 { 1973 struct vm_domain *vmd; 1974 u_int ofree; 1975 int addl_shortage, domain, shortage; 1976 bool target_met; 1977 1978 domain = (uintptr_t)arg; 1979 vmd = VM_DOMAIN(domain); 1980 shortage = 0; 1981 target_met = true; 1982 1983 /* 1984 * XXXKIB It could be useful to bind pageout daemon threads to 1985 * the cores belonging to the domain, from which vm_page_array 1986 * is allocated. 1987 */ 1988 1989 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 1990 vmd->vmd_last_active_scan = ticks; 1991 1992 /* 1993 * The pageout daemon worker is never done, so loop forever. 1994 */ 1995 while (TRUE) { 1996 vm_domain_pageout_lock(vmd); 1997 1998 /* 1999 * We need to clear wanted before we check the limits. This 2000 * prevents races with wakers who will check wanted after they 2001 * reach the limit. 2002 */ 2003 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 2004 2005 /* 2006 * Might the page daemon need to run again? 2007 */ 2008 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 2009 /* 2010 * Yes. If the scan failed to produce enough free 2011 * pages, sleep uninterruptibly for some time in the 2012 * hope that the laundry thread will clean some pages. 2013 */ 2014 vm_domain_pageout_unlock(vmd); 2015 if (!target_met) 2016 pause("pwait", hz / VM_INACT_SCAN_RATE); 2017 } else { 2018 /* 2019 * No, sleep until the next wakeup or until pages 2020 * need to have their reference stats updated. 2021 */ 2022 if (mtx_sleep(&vmd->vmd_pageout_wanted, 2023 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 2024 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 2025 VM_CNT_INC(v_pdwakeups); 2026 } 2027 2028 /* Prevent spurious wakeups by ensuring that wanted is set. */ 2029 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2030 2031 /* 2032 * Use the controller to calculate how many pages to free in 2033 * this interval, and scan the inactive queue. If the lowmem 2034 * handlers appear to have freed up some pages, subtract the 2035 * difference from the inactive queue scan target. 2036 */ 2037 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 2038 if (shortage > 0) { 2039 ofree = vmd->vmd_free_count; 2040 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree) 2041 shortage -= min(vmd->vmd_free_count - ofree, 2042 (u_int)shortage); 2043 target_met = vm_pageout_scan_inactive(vmd, shortage, 2044 &addl_shortage); 2045 } else 2046 addl_shortage = 0; 2047 2048 /* 2049 * Scan the active queue. A positive value for shortage 2050 * indicates that we must aggressively deactivate pages to avoid 2051 * a shortfall. 2052 */ 2053 shortage = vm_pageout_active_target(vmd) + addl_shortage; 2054 vm_pageout_scan_active(vmd, shortage); 2055 } 2056 } 2057 2058 /* 2059 * vm_pageout_init initialises basic pageout daemon settings. 2060 */ 2061 static void 2062 vm_pageout_init_domain(int domain) 2063 { 2064 struct vm_domain *vmd; 2065 struct sysctl_oid *oid; 2066 2067 vmd = VM_DOMAIN(domain); 2068 vmd->vmd_interrupt_free_min = 2; 2069 2070 /* 2071 * v_free_reserved needs to include enough for the largest 2072 * swap pager structures plus enough for any pv_entry structs 2073 * when paging. 2074 */ 2075 if (vmd->vmd_page_count > 1024) 2076 vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200; 2077 else 2078 vmd->vmd_free_min = 4; 2079 vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE + 2080 vmd->vmd_interrupt_free_min; 2081 vmd->vmd_free_reserved = vm_pageout_page_count + 2082 vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768); 2083 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 2084 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 2085 vmd->vmd_free_min += vmd->vmd_free_reserved; 2086 vmd->vmd_free_severe += vmd->vmd_free_reserved; 2087 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 2088 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 2089 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 2090 2091 /* 2092 * Set the default wakeup threshold to be 10% below the paging 2093 * target. This keeps the steady state out of shortfall. 2094 */ 2095 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 2096 2097 /* 2098 * Target amount of memory to move out of the laundry queue during a 2099 * background laundering. This is proportional to the amount of system 2100 * memory. 2101 */ 2102 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 2103 vmd->vmd_free_min) / 10; 2104 2105 /* Initialize the pageout daemon pid controller. */ 2106 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 2107 vmd->vmd_free_target, PIDCTRL_BOUND, 2108 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 2109 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 2110 "pidctrl", CTLFLAG_RD, NULL, ""); 2111 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 2112 } 2113 2114 static void 2115 vm_pageout_init(void) 2116 { 2117 u_int freecount; 2118 int i; 2119 2120 /* 2121 * Initialize some paging parameters. 2122 */ 2123 if (vm_cnt.v_page_count < 2000) 2124 vm_pageout_page_count = 8; 2125 2126 freecount = 0; 2127 for (i = 0; i < vm_ndomains; i++) { 2128 struct vm_domain *vmd; 2129 2130 vm_pageout_init_domain(i); 2131 vmd = VM_DOMAIN(i); 2132 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 2133 vm_cnt.v_free_target += vmd->vmd_free_target; 2134 vm_cnt.v_free_min += vmd->vmd_free_min; 2135 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 2136 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 2137 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 2138 vm_cnt.v_free_severe += vmd->vmd_free_severe; 2139 freecount += vmd->vmd_free_count; 2140 } 2141 2142 /* 2143 * Set interval in seconds for active scan. We want to visit each 2144 * page at least once every ten minutes. This is to prevent worst 2145 * case paging behaviors with stale active LRU. 2146 */ 2147 if (vm_pageout_update_period == 0) 2148 vm_pageout_update_period = 600; 2149 2150 if (vm_page_max_user_wired == 0) 2151 vm_page_max_user_wired = freecount / 3; 2152 } 2153 2154 /* 2155 * vm_pageout is the high level pageout daemon. 2156 */ 2157 static void 2158 vm_pageout(void) 2159 { 2160 struct proc *p; 2161 struct thread *td; 2162 int error, first, i; 2163 2164 p = curproc; 2165 td = curthread; 2166 2167 mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF); 2168 swap_pager_swap_init(); 2169 for (first = -1, i = 0; i < vm_ndomains; i++) { 2170 if (VM_DOMAIN_EMPTY(i)) { 2171 if (bootverbose) 2172 printf("domain %d empty; skipping pageout\n", 2173 i); 2174 continue; 2175 } 2176 if (first == -1) 2177 first = i; 2178 else { 2179 error = kthread_add(vm_pageout_worker, 2180 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i); 2181 if (error != 0) 2182 panic("starting pageout for domain %d: %d\n", 2183 i, error); 2184 } 2185 error = kthread_add(vm_pageout_laundry_worker, 2186 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i); 2187 if (error != 0) 2188 panic("starting laundry for domain %d: %d", i, error); 2189 } 2190 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma"); 2191 if (error != 0) 2192 panic("starting uma_reclaim helper, error %d\n", error); 2193 2194 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first); 2195 vm_pageout_worker((void *)(uintptr_t)first); 2196 } 2197 2198 /* 2199 * Perform an advisory wakeup of the page daemon. 2200 */ 2201 void 2202 pagedaemon_wakeup(int domain) 2203 { 2204 struct vm_domain *vmd; 2205 2206 vmd = VM_DOMAIN(domain); 2207 vm_domain_pageout_assert_unlocked(vmd); 2208 if (curproc == pageproc) 2209 return; 2210 2211 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 2212 vm_domain_pageout_lock(vmd); 2213 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2214 wakeup(&vmd->vmd_pageout_wanted); 2215 vm_domain_pageout_unlock(vmd); 2216 } 2217 } 2218