xref: /freebsd/sys/vm/vm_pageout.c (revision aa64588d28258aef88cc33b8043112e8856948d0)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/signalvar.h>
92 #include <sys/vnode.h>
93 #include <sys/vmmeter.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96 
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/uma.h>
107 
108 /*
109  * System initialization
110  */
111 
112 /* the kernel process "vm_pageout"*/
113 static void vm_pageout(void);
114 static int vm_pageout_clean(vm_page_t);
115 static void vm_pageout_scan(int pass);
116 
117 struct proc *pageproc;
118 
119 static struct kproc_desc page_kp = {
120 	"pagedaemon",
121 	vm_pageout,
122 	&pageproc
123 };
124 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125     &page_kp);
126 
127 #if !defined(NO_SWAPPING)
128 /* the kernel process "vm_daemon"*/
129 static void vm_daemon(void);
130 static struct	proc *vmproc;
131 
132 static struct kproc_desc vm_kp = {
133 	"vmdaemon",
134 	vm_daemon,
135 	&vmproc
136 };
137 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138 #endif
139 
140 
141 int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142 int vm_pageout_deficit;		/* Estimated number of pages deficit */
143 int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144 
145 #if !defined(NO_SWAPPING)
146 static int vm_pageout_req_swapout;	/* XXX */
147 static int vm_daemon_needed;
148 static struct mtx vm_daemon_mtx;
149 /* Allow for use by vm_pageout before vm_daemon is initialized. */
150 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151 #endif
152 static int vm_max_launder = 32;
153 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154 static int vm_pageout_full_stats_interval = 0;
155 static int vm_pageout_algorithm=0;
156 static int defer_swap_pageouts=0;
157 static int disable_swap_pageouts=0;
158 
159 #if defined(NO_SWAPPING)
160 static int vm_swap_enabled=0;
161 static int vm_swap_idle_enabled=0;
162 #else
163 static int vm_swap_enabled=1;
164 static int vm_swap_idle_enabled=0;
165 #endif
166 
167 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169 
170 SYSCTL_INT(_vm, OID_AUTO, max_launder,
171 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175 
176 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178 
179 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181 
182 #if defined(NO_SWAPPING)
183 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184 	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187 #else
188 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192 #endif
193 
194 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196 
197 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199 
200 static int pageout_lock_miss;
201 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203 
204 #define VM_PAGEOUT_PAGE_COUNT 16
205 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206 
207 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
208 SYSCTL_INT(_vm, OID_AUTO, max_wired,
209 	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210 
211 #if !defined(NO_SWAPPING)
212 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214 static void vm_req_vmdaemon(int req);
215 #endif
216 static void vm_pageout_page_stats(void);
217 
218 static void
219 vm_pageout_init_marker(vm_page_t marker, u_short queue)
220 {
221 
222 	bzero(marker, sizeof(*marker));
223 	marker->flags = PG_FICTITIOUS | PG_MARKER;
224 	marker->oflags = VPO_BUSY;
225 	marker->queue = queue;
226 	marker->wire_count = 1;
227 }
228 
229 /*
230  * vm_pageout_fallback_object_lock:
231  *
232  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
233  * known to have failed and page queue must be either PQ_ACTIVE or
234  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
235  * while locking the vm object.  Use marker page to detect page queue
236  * changes and maintain notion of next page on page queue.  Return
237  * TRUE if no changes were detected, FALSE otherwise.  vm object is
238  * locked on return.
239  *
240  * This function depends on both the lock portion of struct vm_object
241  * and normal struct vm_page being type stable.
242  */
243 boolean_t
244 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
245 {
246 	struct vm_page marker;
247 	boolean_t unchanged;
248 	u_short queue;
249 	vm_object_t object;
250 
251 	queue = m->queue;
252 	vm_pageout_init_marker(&marker, queue);
253 	object = m->object;
254 
255 	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
256 			   m, &marker, pageq);
257 	vm_page_unlock_queues();
258 	vm_page_unlock(m);
259 	VM_OBJECT_LOCK(object);
260 	vm_page_lock(m);
261 	vm_page_lock_queues();
262 
263 	/* Page queue might have changed. */
264 	*next = TAILQ_NEXT(&marker, pageq);
265 	unchanged = (m->queue == queue &&
266 		     m->object == object &&
267 		     &marker == TAILQ_NEXT(m, pageq));
268 	TAILQ_REMOVE(&vm_page_queues[queue].pl,
269 		     &marker, pageq);
270 	return (unchanged);
271 }
272 
273 /*
274  * Lock the page while holding the page queue lock.  Use marker page
275  * to detect page queue changes and maintain notion of next page on
276  * page queue.  Return TRUE if no changes were detected, FALSE
277  * otherwise.  The page is locked on return. The page queue lock might
278  * be dropped and reacquired.
279  *
280  * This function depends on normal struct vm_page being type stable.
281  */
282 boolean_t
283 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
284 {
285 	struct vm_page marker;
286 	boolean_t unchanged;
287 	u_short queue;
288 
289 	vm_page_lock_assert(m, MA_NOTOWNED);
290 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
291 
292 	if (vm_page_trylock(m))
293 		return (TRUE);
294 
295 	queue = m->queue;
296 	vm_pageout_init_marker(&marker, queue);
297 
298 	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
299 	vm_page_unlock_queues();
300 	vm_page_lock(m);
301 	vm_page_lock_queues();
302 
303 	/* Page queue might have changed. */
304 	*next = TAILQ_NEXT(&marker, pageq);
305 	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
306 	TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
307 	return (unchanged);
308 }
309 
310 /*
311  * vm_pageout_clean:
312  *
313  * Clean the page and remove it from the laundry.
314  *
315  * We set the busy bit to cause potential page faults on this page to
316  * block.  Note the careful timing, however, the busy bit isn't set till
317  * late and we cannot do anything that will mess with the page.
318  */
319 static int
320 vm_pageout_clean(vm_page_t m)
321 {
322 	vm_object_t object;
323 	vm_page_t mc[2*vm_pageout_page_count];
324 	int pageout_count;
325 	int ib, is, page_base;
326 	vm_pindex_t pindex = m->pindex;
327 
328 	vm_page_lock_assert(m, MA_NOTOWNED);
329 	vm_page_lock(m);
330 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
331 
332 	/*
333 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
334 	 * with the new swapper, but we could have serious problems paging
335 	 * out other object types if there is insufficient memory.
336 	 *
337 	 * Unfortunately, checking free memory here is far too late, so the
338 	 * check has been moved up a procedural level.
339 	 */
340 
341 	/*
342 	 * Can't clean the page if it's busy or held.
343 	 */
344 	if ((m->hold_count != 0) ||
345 	    ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
346 		vm_page_unlock(m);
347 		return 0;
348 	}
349 
350 	mc[vm_pageout_page_count] = m;
351 	pageout_count = 1;
352 	page_base = vm_pageout_page_count;
353 	ib = 1;
354 	is = 1;
355 
356 	/*
357 	 * Scan object for clusterable pages.
358 	 *
359 	 * We can cluster ONLY if: ->> the page is NOT
360 	 * clean, wired, busy, held, or mapped into a
361 	 * buffer, and one of the following:
362 	 * 1) The page is inactive, or a seldom used
363 	 *    active page.
364 	 * -or-
365 	 * 2) we force the issue.
366 	 *
367 	 * During heavy mmap/modification loads the pageout
368 	 * daemon can really fragment the underlying file
369 	 * due to flushing pages out of order and not trying
370 	 * align the clusters (which leave sporatic out-of-order
371 	 * holes).  To solve this problem we do the reverse scan
372 	 * first and attempt to align our cluster, then do a
373 	 * forward scan if room remains.
374 	 */
375 	object = m->object;
376 more:
377 	while (ib && pageout_count < vm_pageout_page_count) {
378 		vm_page_t p;
379 
380 		if (ib > pindex) {
381 			ib = 0;
382 			break;
383 		}
384 
385 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
386 			ib = 0;
387 			break;
388 		}
389 		if ((p->oflags & VPO_BUSY) || p->busy) {
390 			ib = 0;
391 			break;
392 		}
393 		vm_page_lock(p);
394 		vm_page_test_dirty(p);
395 		if (p->dirty == 0 ||
396 		    p->queue != PQ_INACTIVE ||
397 		    p->hold_count != 0) {	/* may be undergoing I/O */
398 			vm_page_unlock(p);
399 			ib = 0;
400 			break;
401 		}
402 		vm_page_unlock(p);
403 		mc[--page_base] = p;
404 		++pageout_count;
405 		++ib;
406 		/*
407 		 * alignment boundry, stop here and switch directions.  Do
408 		 * not clear ib.
409 		 */
410 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
411 			break;
412 	}
413 
414 	while (pageout_count < vm_pageout_page_count &&
415 	    pindex + is < object->size) {
416 		vm_page_t p;
417 
418 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
419 			break;
420 		if ((p->oflags & VPO_BUSY) || p->busy) {
421 			break;
422 		}
423 		vm_page_lock(p);
424 		vm_page_test_dirty(p);
425 		if (p->dirty == 0 ||
426 		    p->queue != PQ_INACTIVE ||
427 		    p->hold_count != 0) {	/* may be undergoing I/O */
428 			vm_page_unlock(p);
429 			break;
430 		}
431 		vm_page_unlock(p);
432 		mc[page_base + pageout_count] = p;
433 		++pageout_count;
434 		++is;
435 	}
436 
437 	/*
438 	 * If we exhausted our forward scan, continue with the reverse scan
439 	 * when possible, even past a page boundry.  This catches boundry
440 	 * conditions.
441 	 */
442 	if (ib && pageout_count < vm_pageout_page_count)
443 		goto more;
444 
445 	vm_page_unlock(m);
446 	/*
447 	 * we allow reads during pageouts...
448 	 */
449 	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
450 }
451 
452 /*
453  * vm_pageout_flush() - launder the given pages
454  *
455  *	The given pages are laundered.  Note that we setup for the start of
456  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
457  *	reference count all in here rather then in the parent.  If we want
458  *	the parent to do more sophisticated things we may have to change
459  *	the ordering.
460  */
461 int
462 vm_pageout_flush(vm_page_t *mc, int count, int flags)
463 {
464 	vm_object_t object = mc[0]->object;
465 	int pageout_status[count];
466 	int numpagedout = 0;
467 	int i;
468 
469 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
470 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
471 
472 	/*
473 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
474 	 * mark the pages read-only.
475 	 *
476 	 * We do not have to fixup the clean/dirty bits here... we can
477 	 * allow the pager to do it after the I/O completes.
478 	 *
479 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
480 	 * edge case with file fragments.
481 	 */
482 	for (i = 0; i < count; i++) {
483 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
484 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
485 			mc[i], i, count));
486 		vm_page_io_start(mc[i]);
487 		pmap_remove_write(mc[i]);
488 	}
489 	vm_object_pip_add(object, count);
490 
491 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
492 
493 	for (i = 0; i < count; i++) {
494 		vm_page_t mt = mc[i];
495 
496 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
497 		    (mt->flags & PG_WRITEABLE) == 0,
498 		    ("vm_pageout_flush: page %p is not write protected", mt));
499 		switch (pageout_status[i]) {
500 		case VM_PAGER_OK:
501 		case VM_PAGER_PEND:
502 			numpagedout++;
503 			break;
504 		case VM_PAGER_BAD:
505 			/*
506 			 * Page outside of range of object. Right now we
507 			 * essentially lose the changes by pretending it
508 			 * worked.
509 			 */
510 			vm_page_undirty(mt);
511 			break;
512 		case VM_PAGER_ERROR:
513 		case VM_PAGER_FAIL:
514 			/*
515 			 * If page couldn't be paged out, then reactivate the
516 			 * page so it doesn't clog the inactive list.  (We
517 			 * will try paging out it again later).
518 			 */
519 			vm_page_lock(mt);
520 			vm_page_activate(mt);
521 			vm_page_unlock(mt);
522 			break;
523 		case VM_PAGER_AGAIN:
524 			break;
525 		}
526 
527 		/*
528 		 * If the operation is still going, leave the page busy to
529 		 * block all other accesses. Also, leave the paging in
530 		 * progress indicator set so that we don't attempt an object
531 		 * collapse.
532 		 */
533 		if (pageout_status[i] != VM_PAGER_PEND) {
534 			vm_object_pip_wakeup(object);
535 			vm_page_io_finish(mt);
536 			if (vm_page_count_severe()) {
537 				vm_page_lock(mt);
538 				vm_page_try_to_cache(mt);
539 				vm_page_unlock(mt);
540 			}
541 		}
542 	}
543 	return (numpagedout);
544 }
545 
546 #if !defined(NO_SWAPPING)
547 /*
548  *	vm_pageout_object_deactivate_pages
549  *
550  *	deactivate enough pages to satisfy the inactive target
551  *	requirements or if vm_page_proc_limit is set, then
552  *	deactivate all of the pages in the object and its
553  *	backing_objects.
554  *
555  *	The object and map must be locked.
556  */
557 static void
558 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
559 	pmap_t pmap;
560 	vm_object_t first_object;
561 	long desired;
562 {
563 	vm_object_t backing_object, object;
564 	vm_page_t p, next;
565 	int actcount, remove_mode;
566 
567 	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
568 	if (first_object->type == OBJT_DEVICE ||
569 	    first_object->type == OBJT_SG)
570 		return;
571 	for (object = first_object;; object = backing_object) {
572 		if (pmap_resident_count(pmap) <= desired)
573 			goto unlock_return;
574 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
575 		if (object->type == OBJT_PHYS || object->paging_in_progress)
576 			goto unlock_return;
577 
578 		remove_mode = 0;
579 		if (object->shadow_count > 1)
580 			remove_mode = 1;
581 		/*
582 		 * scan the objects entire memory queue
583 		 */
584 		p = TAILQ_FIRST(&object->memq);
585 		while (p != NULL) {
586 			if (pmap_resident_count(pmap) <= desired)
587 				goto unlock_return;
588 			next = TAILQ_NEXT(p, listq);
589 			if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
590 				p = next;
591 				continue;
592 			}
593 			vm_page_lock(p);
594 			vm_page_lock_queues();
595 			cnt.v_pdpages++;
596 			if (p->wire_count != 0 ||
597 			    p->hold_count != 0 ||
598 			    !pmap_page_exists_quick(pmap, p)) {
599 				vm_page_unlock_queues();
600 				vm_page_unlock(p);
601 				p = next;
602 				continue;
603 			}
604 			actcount = pmap_ts_referenced(p);
605 			if (actcount) {
606 				vm_page_flag_set(p, PG_REFERENCED);
607 			} else if (p->flags & PG_REFERENCED) {
608 				actcount = 1;
609 			}
610 			if ((p->queue != PQ_ACTIVE) &&
611 				(p->flags & PG_REFERENCED)) {
612 				vm_page_activate(p);
613 				p->act_count += actcount;
614 				vm_page_flag_clear(p, PG_REFERENCED);
615 			} else if (p->queue == PQ_ACTIVE) {
616 				if ((p->flags & PG_REFERENCED) == 0) {
617 					p->act_count -= min(p->act_count, ACT_DECLINE);
618 					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
619 						pmap_remove_all(p);
620 						vm_page_deactivate(p);
621 					} else {
622 						vm_page_requeue(p);
623 					}
624 				} else {
625 					vm_page_activate(p);
626 					vm_page_flag_clear(p, PG_REFERENCED);
627 					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
628 						p->act_count += ACT_ADVANCE;
629 					vm_page_requeue(p);
630 				}
631 			} else if (p->queue == PQ_INACTIVE) {
632 				pmap_remove_all(p);
633 			}
634 			vm_page_unlock_queues();
635 			vm_page_unlock(p);
636 			p = next;
637 		}
638 		if ((backing_object = object->backing_object) == NULL)
639 			goto unlock_return;
640 		VM_OBJECT_LOCK(backing_object);
641 		if (object != first_object)
642 			VM_OBJECT_UNLOCK(object);
643 	}
644 unlock_return:
645 	if (object != first_object)
646 		VM_OBJECT_UNLOCK(object);
647 }
648 
649 /*
650  * deactivate some number of pages in a map, try to do it fairly, but
651  * that is really hard to do.
652  */
653 static void
654 vm_pageout_map_deactivate_pages(map, desired)
655 	vm_map_t map;
656 	long desired;
657 {
658 	vm_map_entry_t tmpe;
659 	vm_object_t obj, bigobj;
660 	int nothingwired;
661 
662 	if (!vm_map_trylock(map))
663 		return;
664 
665 	bigobj = NULL;
666 	nothingwired = TRUE;
667 
668 	/*
669 	 * first, search out the biggest object, and try to free pages from
670 	 * that.
671 	 */
672 	tmpe = map->header.next;
673 	while (tmpe != &map->header) {
674 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
675 			obj = tmpe->object.vm_object;
676 			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
677 				if (obj->shadow_count <= 1 &&
678 				    (bigobj == NULL ||
679 				     bigobj->resident_page_count < obj->resident_page_count)) {
680 					if (bigobj != NULL)
681 						VM_OBJECT_UNLOCK(bigobj);
682 					bigobj = obj;
683 				} else
684 					VM_OBJECT_UNLOCK(obj);
685 			}
686 		}
687 		if (tmpe->wired_count > 0)
688 			nothingwired = FALSE;
689 		tmpe = tmpe->next;
690 	}
691 
692 	if (bigobj != NULL) {
693 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
694 		VM_OBJECT_UNLOCK(bigobj);
695 	}
696 	/*
697 	 * Next, hunt around for other pages to deactivate.  We actually
698 	 * do this search sort of wrong -- .text first is not the best idea.
699 	 */
700 	tmpe = map->header.next;
701 	while (tmpe != &map->header) {
702 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
703 			break;
704 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
705 			obj = tmpe->object.vm_object;
706 			if (obj != NULL) {
707 				VM_OBJECT_LOCK(obj);
708 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
709 				VM_OBJECT_UNLOCK(obj);
710 			}
711 		}
712 		tmpe = tmpe->next;
713 	}
714 
715 	/*
716 	 * Remove all mappings if a process is swapped out, this will free page
717 	 * table pages.
718 	 */
719 	if (desired == 0 && nothingwired) {
720 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
721 		    vm_map_max(map));
722 	}
723 	vm_map_unlock(map);
724 }
725 #endif		/* !defined(NO_SWAPPING) */
726 
727 /*
728  *	vm_pageout_scan does the dirty work for the pageout daemon.
729  */
730 static void
731 vm_pageout_scan(int pass)
732 {
733 	vm_page_t m, next;
734 	struct vm_page marker;
735 	int page_shortage, maxscan, pcount;
736 	int addl_page_shortage, addl_page_shortage_init;
737 	vm_object_t object;
738 	int actcount;
739 	int vnodes_skipped = 0;
740 	int maxlaunder;
741 
742 	/*
743 	 * Decrease registered cache sizes.
744 	 */
745 	EVENTHANDLER_INVOKE(vm_lowmem, 0);
746 	/*
747 	 * We do this explicitly after the caches have been drained above.
748 	 */
749 	uma_reclaim();
750 
751 	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
752 
753 	/*
754 	 * Calculate the number of pages we want to either free or move
755 	 * to the cache.
756 	 */
757 	page_shortage = vm_paging_target() + addl_page_shortage_init;
758 
759 	vm_pageout_init_marker(&marker, PQ_INACTIVE);
760 
761 	/*
762 	 * Start scanning the inactive queue for pages we can move to the
763 	 * cache or free.  The scan will stop when the target is reached or
764 	 * we have scanned the entire inactive queue.  Note that m->act_count
765 	 * is not used to form decisions for the inactive queue, only for the
766 	 * active queue.
767 	 *
768 	 * maxlaunder limits the number of dirty pages we flush per scan.
769 	 * For most systems a smaller value (16 or 32) is more robust under
770 	 * extreme memory and disk pressure because any unnecessary writes
771 	 * to disk can result in extreme performance degredation.  However,
772 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
773 	 * used) will die horribly with limited laundering.  If the pageout
774 	 * daemon cannot clean enough pages in the first pass, we let it go
775 	 * all out in succeeding passes.
776 	 */
777 	if ((maxlaunder = vm_max_launder) <= 1)
778 		maxlaunder = 1;
779 	if (pass)
780 		maxlaunder = 10000;
781 	vm_page_lock_queues();
782 rescan0:
783 	addl_page_shortage = addl_page_shortage_init;
784 	maxscan = cnt.v_inactive_count;
785 
786 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
787 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
788 	     m = next) {
789 
790 		cnt.v_pdpages++;
791 
792 		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
793 			goto rescan0;
794 		}
795 
796 		next = TAILQ_NEXT(m, pageq);
797 
798 		/*
799 		 * skip marker pages
800 		 */
801 		if (m->flags & PG_MARKER)
802 			continue;
803 
804 		/*
805 		 * Lock the page.
806 		 */
807 		if (!vm_pageout_page_lock(m, &next)) {
808 			vm_page_unlock(m);
809 			addl_page_shortage++;
810 			continue;
811 		}
812 
813 		/*
814 		 * A held page may be undergoing I/O, so skip it.
815 		 */
816 		if (m->hold_count || (object = m->object) == NULL) {
817 			vm_page_unlock(m);
818 			vm_page_requeue(m);
819 			addl_page_shortage++;
820 			continue;
821 		}
822 
823 		/*
824 		 * Don't mess with busy pages, keep in the front of the
825 		 * queue, most likely are being paged out.
826 		 */
827 		if (!VM_OBJECT_TRYLOCK(object) &&
828 		    (!vm_pageout_fallback_object_lock(m, &next) ||
829 			m->hold_count != 0)) {
830 			VM_OBJECT_UNLOCK(object);
831 			vm_page_unlock(m);
832 			addl_page_shortage++;
833 			continue;
834 		}
835 		if (m->busy || (m->oflags & VPO_BUSY)) {
836 			vm_page_unlock(m);
837 			VM_OBJECT_UNLOCK(object);
838 			addl_page_shortage++;
839 			continue;
840 		}
841 
842 		/*
843 		 * If the object is not being used, we ignore previous
844 		 * references.
845 		 */
846 		if (object->ref_count == 0) {
847 			vm_page_flag_clear(m, PG_REFERENCED);
848 			KASSERT(!pmap_page_is_mapped(m),
849 			    ("vm_pageout_scan: page %p is mapped", m));
850 
851 		/*
852 		 * Otherwise, if the page has been referenced while in the
853 		 * inactive queue, we bump the "activation count" upwards,
854 		 * making it less likely that the page will be added back to
855 		 * the inactive queue prematurely again.  Here we check the
856 		 * page tables (or emulated bits, if any), given the upper
857 		 * level VM system not knowing anything about existing
858 		 * references.
859 		 */
860 		} else if (((m->flags & PG_REFERENCED) == 0) &&
861 			(actcount = pmap_ts_referenced(m))) {
862 			vm_page_activate(m);
863 			VM_OBJECT_UNLOCK(object);
864 			m->act_count += (actcount + ACT_ADVANCE);
865 			vm_page_unlock(m);
866 			continue;
867 		}
868 
869 		/*
870 		 * If the upper level VM system knows about any page
871 		 * references, we activate the page.  We also set the
872 		 * "activation count" higher than normal so that we will less
873 		 * likely place pages back onto the inactive queue again.
874 		 */
875 		if ((m->flags & PG_REFERENCED) != 0) {
876 			vm_page_flag_clear(m, PG_REFERENCED);
877 			actcount = pmap_ts_referenced(m);
878 			vm_page_activate(m);
879 			VM_OBJECT_UNLOCK(object);
880 			m->act_count += (actcount + ACT_ADVANCE + 1);
881 			vm_page_unlock(m);
882 			continue;
883 		}
884 
885 		/*
886 		 * If the upper level VM system does not believe that the page
887 		 * is fully dirty, but it is mapped for write access, then we
888 		 * consult the pmap to see if the page's dirty status should
889 		 * be updated.
890 		 */
891 		if (m->dirty != VM_PAGE_BITS_ALL &&
892 		    (m->flags & PG_WRITEABLE) != 0) {
893 			/*
894 			 * Avoid a race condition: Unless write access is
895 			 * removed from the page, another processor could
896 			 * modify it before all access is removed by the call
897 			 * to vm_page_cache() below.  If vm_page_cache() finds
898 			 * that the page has been modified when it removes all
899 			 * access, it panics because it cannot cache dirty
900 			 * pages.  In principle, we could eliminate just write
901 			 * access here rather than all access.  In the expected
902 			 * case, when there are no last instant modifications
903 			 * to the page, removing all access will be cheaper
904 			 * overall.
905 			 */
906 			if (pmap_is_modified(m))
907 				vm_page_dirty(m);
908 			else if (m->dirty == 0)
909 				pmap_remove_all(m);
910 		}
911 
912 		if (m->valid == 0) {
913 			/*
914 			 * Invalid pages can be easily freed
915 			 */
916 			vm_page_free(m);
917 			cnt.v_dfree++;
918 			--page_shortage;
919 		} else if (m->dirty == 0) {
920 			/*
921 			 * Clean pages can be placed onto the cache queue.
922 			 * This effectively frees them.
923 			 */
924 			vm_page_cache(m);
925 			--page_shortage;
926 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
927 			/*
928 			 * Dirty pages need to be paged out, but flushing
929 			 * a page is extremely expensive verses freeing
930 			 * a clean page.  Rather then artificially limiting
931 			 * the number of pages we can flush, we instead give
932 			 * dirty pages extra priority on the inactive queue
933 			 * by forcing them to be cycled through the queue
934 			 * twice before being flushed, after which the
935 			 * (now clean) page will cycle through once more
936 			 * before being freed.  This significantly extends
937 			 * the thrash point for a heavily loaded machine.
938 			 */
939 			vm_page_flag_set(m, PG_WINATCFLS);
940 			vm_page_requeue(m);
941 		} else if (maxlaunder > 0) {
942 			/*
943 			 * We always want to try to flush some dirty pages if
944 			 * we encounter them, to keep the system stable.
945 			 * Normally this number is small, but under extreme
946 			 * pressure where there are insufficient clean pages
947 			 * on the inactive queue, we may have to go all out.
948 			 */
949 			int swap_pageouts_ok, vfslocked = 0;
950 			struct vnode *vp = NULL;
951 			struct mount *mp = NULL;
952 
953 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
954 				swap_pageouts_ok = 1;
955 			} else {
956 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
957 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
958 				vm_page_count_min());
959 
960 			}
961 
962 			/*
963 			 * We don't bother paging objects that are "dead".
964 			 * Those objects are in a "rundown" state.
965 			 */
966 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
967 				vm_page_unlock(m);
968 				VM_OBJECT_UNLOCK(object);
969 				vm_page_requeue(m);
970 				continue;
971 			}
972 
973 			/*
974 			 * Following operations may unlock
975 			 * vm_page_queue_mtx, invalidating the 'next'
976 			 * pointer.  To prevent an inordinate number
977 			 * of restarts we use our marker to remember
978 			 * our place.
979 			 *
980 			 */
981 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
982 					   m, &marker, pageq);
983 			/*
984 			 * The object is already known NOT to be dead.   It
985 			 * is possible for the vget() to block the whole
986 			 * pageout daemon, but the new low-memory handling
987 			 * code should prevent it.
988 			 *
989 			 * The previous code skipped locked vnodes and, worse,
990 			 * reordered pages in the queue.  This results in
991 			 * completely non-deterministic operation and, on a
992 			 * busy system, can lead to extremely non-optimal
993 			 * pageouts.  For example, it can cause clean pages
994 			 * to be freed and dirty pages to be moved to the end
995 			 * of the queue.  Since dirty pages are also moved to
996 			 * the end of the queue once-cleaned, this gives
997 			 * way too large a weighting to defering the freeing
998 			 * of dirty pages.
999 			 *
1000 			 * We can't wait forever for the vnode lock, we might
1001 			 * deadlock due to a vn_read() getting stuck in
1002 			 * vm_wait while holding this vnode.  We skip the
1003 			 * vnode if we can't get it in a reasonable amount
1004 			 * of time.
1005 			 */
1006 			if (object->type == OBJT_VNODE) {
1007 				vm_page_unlock_queues();
1008 				vm_page_unlock(m);
1009 				vp = object->handle;
1010 				if (vp->v_type == VREG &&
1011 				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1012 					mp = NULL;
1013 					++pageout_lock_miss;
1014 					if (object->flags & OBJ_MIGHTBEDIRTY)
1015 						vnodes_skipped++;
1016 					vm_page_lock_queues();
1017 					goto unlock_and_continue;
1018 				}
1019 				KASSERT(mp != NULL,
1020 				    ("vp %p with NULL v_mount", vp));
1021 				vm_object_reference_locked(object);
1022 				VM_OBJECT_UNLOCK(object);
1023 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1024 				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1025 				    curthread)) {
1026 					VM_OBJECT_LOCK(object);
1027 					vm_page_lock_queues();
1028 					++pageout_lock_miss;
1029 					if (object->flags & OBJ_MIGHTBEDIRTY)
1030 						vnodes_skipped++;
1031 					vp = NULL;
1032 					goto unlock_and_continue;
1033 				}
1034 				VM_OBJECT_LOCK(object);
1035 				vm_page_lock(m);
1036 				vm_page_lock_queues();
1037 				/*
1038 				 * The page might have been moved to another
1039 				 * queue during potential blocking in vget()
1040 				 * above.  The page might have been freed and
1041 				 * reused for another vnode.
1042 				 */
1043 				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
1044 				    m->object != object ||
1045 				    TAILQ_NEXT(m, pageq) != &marker) {
1046 					vm_page_unlock(m);
1047 					if (object->flags & OBJ_MIGHTBEDIRTY)
1048 						vnodes_skipped++;
1049 					goto unlock_and_continue;
1050 				}
1051 
1052 				/*
1053 				 * The page may have been busied during the
1054 				 * blocking in vget().  We don't move the
1055 				 * page back onto the end of the queue so that
1056 				 * statistics are more correct if we don't.
1057 				 */
1058 				if (m->busy || (m->oflags & VPO_BUSY)) {
1059 					vm_page_unlock(m);
1060 					goto unlock_and_continue;
1061 				}
1062 
1063 				/*
1064 				 * If the page has become held it might
1065 				 * be undergoing I/O, so skip it
1066 				 */
1067 				if (m->hold_count) {
1068 					vm_page_unlock(m);
1069 					vm_page_requeue(m);
1070 					if (object->flags & OBJ_MIGHTBEDIRTY)
1071 						vnodes_skipped++;
1072 					goto unlock_and_continue;
1073 				}
1074 			}
1075 			vm_page_unlock(m);
1076 
1077 			/*
1078 			 * If a page is dirty, then it is either being washed
1079 			 * (but not yet cleaned) or it is still in the
1080 			 * laundry.  If it is still in the laundry, then we
1081 			 * start the cleaning operation.
1082 			 *
1083 			 * decrement page_shortage on success to account for
1084 			 * the (future) cleaned page.  Otherwise we could wind
1085 			 * up laundering or cleaning too many pages.
1086 			 */
1087 			vm_page_unlock_queues();
1088 			if (vm_pageout_clean(m) != 0) {
1089 				--page_shortage;
1090 				--maxlaunder;
1091 			}
1092 			vm_page_lock_queues();
1093 unlock_and_continue:
1094 			vm_page_lock_assert(m, MA_NOTOWNED);
1095 			VM_OBJECT_UNLOCK(object);
1096 			if (mp != NULL) {
1097 				vm_page_unlock_queues();
1098 				if (vp != NULL)
1099 					vput(vp);
1100 				VFS_UNLOCK_GIANT(vfslocked);
1101 				vm_object_deallocate(object);
1102 				vn_finished_write(mp);
1103 				vm_page_lock_queues();
1104 			}
1105 			next = TAILQ_NEXT(&marker, pageq);
1106 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1107 				     &marker, pageq);
1108 			vm_page_lock_assert(m, MA_NOTOWNED);
1109 			continue;
1110 		}
1111 		vm_page_unlock(m);
1112 		VM_OBJECT_UNLOCK(object);
1113 	}
1114 
1115 	/*
1116 	 * Compute the number of pages we want to try to move from the
1117 	 * active queue to the inactive queue.
1118 	 */
1119 	page_shortage = vm_paging_target() +
1120 		cnt.v_inactive_target - cnt.v_inactive_count;
1121 	page_shortage += addl_page_shortage;
1122 
1123 	/*
1124 	 * Scan the active queue for things we can deactivate. We nominally
1125 	 * track the per-page activity counter and use it to locate
1126 	 * deactivation candidates.
1127 	 */
1128 	pcount = cnt.v_active_count;
1129 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1130 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1131 
1132 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1133 
1134 		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1135 		    ("vm_pageout_scan: page %p isn't active", m));
1136 
1137 		next = TAILQ_NEXT(m, pageq);
1138 		object = m->object;
1139 		if ((m->flags & PG_MARKER) != 0) {
1140 			m = next;
1141 			continue;
1142 		}
1143 		if (!vm_pageout_page_lock(m, &next) ||
1144 		    (object = m->object) == NULL) {
1145 			vm_page_unlock(m);
1146 			m = next;
1147 			continue;
1148 		}
1149 		if (!VM_OBJECT_TRYLOCK(object) &&
1150 		    !vm_pageout_fallback_object_lock(m, &next)) {
1151 			VM_OBJECT_UNLOCK(object);
1152 			vm_page_unlock(m);
1153 			m = next;
1154 			continue;
1155 		}
1156 
1157 		/*
1158 		 * Don't deactivate pages that are busy.
1159 		 */
1160 		if ((m->busy != 0) ||
1161 		    (m->oflags & VPO_BUSY) ||
1162 		    (m->hold_count != 0)) {
1163 			vm_page_unlock(m);
1164 			VM_OBJECT_UNLOCK(object);
1165 			vm_page_requeue(m);
1166 			m = next;
1167 			continue;
1168 		}
1169 
1170 		/*
1171 		 * The count for pagedaemon pages is done after checking the
1172 		 * page for eligibility...
1173 		 */
1174 		cnt.v_pdpages++;
1175 
1176 		/*
1177 		 * Check to see "how much" the page has been used.
1178 		 */
1179 		actcount = 0;
1180 		if (object->ref_count != 0) {
1181 			if (m->flags & PG_REFERENCED) {
1182 				actcount += 1;
1183 			}
1184 			actcount += pmap_ts_referenced(m);
1185 			if (actcount) {
1186 				m->act_count += ACT_ADVANCE + actcount;
1187 				if (m->act_count > ACT_MAX)
1188 					m->act_count = ACT_MAX;
1189 			}
1190 		}
1191 
1192 		/*
1193 		 * Since we have "tested" this bit, we need to clear it now.
1194 		 */
1195 		vm_page_flag_clear(m, PG_REFERENCED);
1196 
1197 		/*
1198 		 * Only if an object is currently being used, do we use the
1199 		 * page activation count stats.
1200 		 */
1201 		if (actcount && (object->ref_count != 0)) {
1202 			vm_page_requeue(m);
1203 		} else {
1204 			m->act_count -= min(m->act_count, ACT_DECLINE);
1205 			if (vm_pageout_algorithm ||
1206 			    object->ref_count == 0 ||
1207 			    m->act_count == 0) {
1208 				page_shortage--;
1209 				if (object->ref_count == 0) {
1210 					KASSERT(!pmap_page_is_mapped(m),
1211 				    ("vm_pageout_scan: page %p is mapped", m));
1212 					if (m->dirty == 0)
1213 						vm_page_cache(m);
1214 					else
1215 						vm_page_deactivate(m);
1216 				} else {
1217 					vm_page_deactivate(m);
1218 				}
1219 			} else {
1220 				vm_page_requeue(m);
1221 			}
1222 		}
1223 		vm_page_unlock(m);
1224 		VM_OBJECT_UNLOCK(object);
1225 		m = next;
1226 	}
1227 	vm_page_unlock_queues();
1228 #if !defined(NO_SWAPPING)
1229 	/*
1230 	 * Idle process swapout -- run once per second.
1231 	 */
1232 	if (vm_swap_idle_enabled) {
1233 		static long lsec;
1234 		if (time_second != lsec) {
1235 			vm_req_vmdaemon(VM_SWAP_IDLE);
1236 			lsec = time_second;
1237 		}
1238 	}
1239 #endif
1240 
1241 	/*
1242 	 * If we didn't get enough free pages, and we have skipped a vnode
1243 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1244 	 * if we did not get enough free pages.
1245 	 */
1246 	if (vm_paging_target() > 0) {
1247 		if (vnodes_skipped && vm_page_count_min())
1248 			(void) speedup_syncer();
1249 #if !defined(NO_SWAPPING)
1250 		if (vm_swap_enabled && vm_page_count_target())
1251 			vm_req_vmdaemon(VM_SWAP_NORMAL);
1252 #endif
1253 	}
1254 
1255 	/*
1256 	 * If we are critically low on one of RAM or swap and low on
1257 	 * the other, kill the largest process.  However, we avoid
1258 	 * doing this on the first pass in order to give ourselves a
1259 	 * chance to flush out dirty vnode-backed pages and to allow
1260 	 * active pages to be moved to the inactive queue and reclaimed.
1261 	 */
1262 	if (pass != 0 &&
1263 	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1264 	     (swap_pager_full && vm_paging_target() > 0)))
1265 		vm_pageout_oom(VM_OOM_MEM);
1266 }
1267 
1268 
1269 void
1270 vm_pageout_oom(int shortage)
1271 {
1272 	struct proc *p, *bigproc;
1273 	vm_offset_t size, bigsize;
1274 	struct thread *td;
1275 	struct vmspace *vm;
1276 
1277 	/*
1278 	 * We keep the process bigproc locked once we find it to keep anyone
1279 	 * from messing with it; however, there is a possibility of
1280 	 * deadlock if process B is bigproc and one of it's child processes
1281 	 * attempts to propagate a signal to B while we are waiting for A's
1282 	 * lock while walking this list.  To avoid this, we don't block on
1283 	 * the process lock but just skip a process if it is already locked.
1284 	 */
1285 	bigproc = NULL;
1286 	bigsize = 0;
1287 	sx_slock(&allproc_lock);
1288 	FOREACH_PROC_IN_SYSTEM(p) {
1289 		int breakout;
1290 
1291 		if (PROC_TRYLOCK(p) == 0)
1292 			continue;
1293 		/*
1294 		 * If this is a system, protected or killed process, skip it.
1295 		 */
1296 		if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1297 		    (p->p_pid == 1) || P_KILLED(p) ||
1298 		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1299 			PROC_UNLOCK(p);
1300 			continue;
1301 		}
1302 		/*
1303 		 * If the process is in a non-running type state,
1304 		 * don't touch it.  Check all the threads individually.
1305 		 */
1306 		breakout = 0;
1307 		FOREACH_THREAD_IN_PROC(p, td) {
1308 			thread_lock(td);
1309 			if (!TD_ON_RUNQ(td) &&
1310 			    !TD_IS_RUNNING(td) &&
1311 			    !TD_IS_SLEEPING(td)) {
1312 				thread_unlock(td);
1313 				breakout = 1;
1314 				break;
1315 			}
1316 			thread_unlock(td);
1317 		}
1318 		if (breakout) {
1319 			PROC_UNLOCK(p);
1320 			continue;
1321 		}
1322 		/*
1323 		 * get the process size
1324 		 */
1325 		vm = vmspace_acquire_ref(p);
1326 		if (vm == NULL) {
1327 			PROC_UNLOCK(p);
1328 			continue;
1329 		}
1330 		if (!vm_map_trylock_read(&vm->vm_map)) {
1331 			vmspace_free(vm);
1332 			PROC_UNLOCK(p);
1333 			continue;
1334 		}
1335 		size = vmspace_swap_count(vm);
1336 		vm_map_unlock_read(&vm->vm_map);
1337 		if (shortage == VM_OOM_MEM)
1338 			size += vmspace_resident_count(vm);
1339 		vmspace_free(vm);
1340 		/*
1341 		 * if the this process is bigger than the biggest one
1342 		 * remember it.
1343 		 */
1344 		if (size > bigsize) {
1345 			if (bigproc != NULL)
1346 				PROC_UNLOCK(bigproc);
1347 			bigproc = p;
1348 			bigsize = size;
1349 		} else
1350 			PROC_UNLOCK(p);
1351 	}
1352 	sx_sunlock(&allproc_lock);
1353 	if (bigproc != NULL) {
1354 		killproc(bigproc, "out of swap space");
1355 		sched_nice(bigproc, PRIO_MIN);
1356 		PROC_UNLOCK(bigproc);
1357 		wakeup(&cnt.v_free_count);
1358 	}
1359 }
1360 
1361 /*
1362  * This routine tries to maintain the pseudo LRU active queue,
1363  * so that during long periods of time where there is no paging,
1364  * that some statistic accumulation still occurs.  This code
1365  * helps the situation where paging just starts to occur.
1366  */
1367 static void
1368 vm_pageout_page_stats()
1369 {
1370 	vm_object_t object;
1371 	vm_page_t m,next;
1372 	int pcount,tpcount;		/* Number of pages to check */
1373 	static int fullintervalcount = 0;
1374 	int page_shortage;
1375 
1376 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1377 	page_shortage =
1378 	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1379 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1380 
1381 	if (page_shortage <= 0)
1382 		return;
1383 
1384 	pcount = cnt.v_active_count;
1385 	fullintervalcount += vm_pageout_stats_interval;
1386 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1387 		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1388 		    cnt.v_page_count;
1389 		if (pcount > tpcount)
1390 			pcount = tpcount;
1391 	} else {
1392 		fullintervalcount = 0;
1393 	}
1394 
1395 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1396 	while ((m != NULL) && (pcount-- > 0)) {
1397 		int actcount;
1398 
1399 		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1400 		    ("vm_pageout_page_stats: page %p isn't active", m));
1401 
1402 		next = TAILQ_NEXT(m, pageq);
1403 		if ((m->flags & PG_MARKER) != 0) {
1404 			m = next;
1405 			continue;
1406 		}
1407 		vm_page_lock_assert(m, MA_NOTOWNED);
1408 		if (!vm_pageout_page_lock(m, &next) ||
1409 		    (object = m->object) == NULL) {
1410 			vm_page_unlock(m);
1411 			m = next;
1412 			continue;
1413 		}
1414 		if (!VM_OBJECT_TRYLOCK(object) &&
1415 		    !vm_pageout_fallback_object_lock(m, &next)) {
1416 			VM_OBJECT_UNLOCK(object);
1417 			vm_page_unlock(m);
1418 			m = next;
1419 			continue;
1420 		}
1421 
1422 		/*
1423 		 * Don't deactivate pages that are busy.
1424 		 */
1425 		if ((m->busy != 0) ||
1426 		    (m->oflags & VPO_BUSY) ||
1427 		    (m->hold_count != 0)) {
1428 			vm_page_unlock(m);
1429 			VM_OBJECT_UNLOCK(object);
1430 			vm_page_requeue(m);
1431 			m = next;
1432 			continue;
1433 		}
1434 
1435 		actcount = 0;
1436 		if (m->flags & PG_REFERENCED) {
1437 			vm_page_flag_clear(m, PG_REFERENCED);
1438 			actcount += 1;
1439 		}
1440 
1441 		actcount += pmap_ts_referenced(m);
1442 		if (actcount) {
1443 			m->act_count += ACT_ADVANCE + actcount;
1444 			if (m->act_count > ACT_MAX)
1445 				m->act_count = ACT_MAX;
1446 			vm_page_requeue(m);
1447 		} else {
1448 			if (m->act_count == 0) {
1449 				/*
1450 				 * We turn off page access, so that we have
1451 				 * more accurate RSS stats.  We don't do this
1452 				 * in the normal page deactivation when the
1453 				 * system is loaded VM wise, because the
1454 				 * cost of the large number of page protect
1455 				 * operations would be higher than the value
1456 				 * of doing the operation.
1457 				 */
1458 				pmap_remove_all(m);
1459 				vm_page_deactivate(m);
1460 			} else {
1461 				m->act_count -= min(m->act_count, ACT_DECLINE);
1462 				vm_page_requeue(m);
1463 			}
1464 		}
1465 		vm_page_unlock(m);
1466 		VM_OBJECT_UNLOCK(object);
1467 		m = next;
1468 	}
1469 }
1470 
1471 /*
1472  *	vm_pageout is the high level pageout daemon.
1473  */
1474 static void
1475 vm_pageout()
1476 {
1477 	int error, pass;
1478 
1479 	/*
1480 	 * Initialize some paging parameters.
1481 	 */
1482 	cnt.v_interrupt_free_min = 2;
1483 	if (cnt.v_page_count < 2000)
1484 		vm_pageout_page_count = 8;
1485 
1486 	/*
1487 	 * v_free_reserved needs to include enough for the largest
1488 	 * swap pager structures plus enough for any pv_entry structs
1489 	 * when paging.
1490 	 */
1491 	if (cnt.v_page_count > 1024)
1492 		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1493 	else
1494 		cnt.v_free_min = 4;
1495 	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1496 	    cnt.v_interrupt_free_min;
1497 	cnt.v_free_reserved = vm_pageout_page_count +
1498 	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1499 	cnt.v_free_severe = cnt.v_free_min / 2;
1500 	cnt.v_free_min += cnt.v_free_reserved;
1501 	cnt.v_free_severe += cnt.v_free_reserved;
1502 
1503 	/*
1504 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1505 	 * that these are more a measure of the VM cache queue hysteresis
1506 	 * then the VM free queue.  Specifically, v_free_target is the
1507 	 * high water mark (free+cache pages).
1508 	 *
1509 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1510 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1511 	 * be big enough to handle memory needs while the pageout daemon
1512 	 * is signalled and run to free more pages.
1513 	 */
1514 	if (cnt.v_free_count > 6144)
1515 		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1516 	else
1517 		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1518 
1519 	if (cnt.v_free_count > 2048) {
1520 		cnt.v_cache_min = cnt.v_free_target;
1521 		cnt.v_cache_max = 2 * cnt.v_cache_min;
1522 		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1523 	} else {
1524 		cnt.v_cache_min = 0;
1525 		cnt.v_cache_max = 0;
1526 		cnt.v_inactive_target = cnt.v_free_count / 4;
1527 	}
1528 	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1529 		cnt.v_inactive_target = cnt.v_free_count / 3;
1530 
1531 	/* XXX does not really belong here */
1532 	if (vm_page_max_wired == 0)
1533 		vm_page_max_wired = cnt.v_free_count / 3;
1534 
1535 	if (vm_pageout_stats_max == 0)
1536 		vm_pageout_stats_max = cnt.v_free_target;
1537 
1538 	/*
1539 	 * Set interval in seconds for stats scan.
1540 	 */
1541 	if (vm_pageout_stats_interval == 0)
1542 		vm_pageout_stats_interval = 5;
1543 	if (vm_pageout_full_stats_interval == 0)
1544 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1545 
1546 	swap_pager_swap_init();
1547 	pass = 0;
1548 	/*
1549 	 * The pageout daemon is never done, so loop forever.
1550 	 */
1551 	while (TRUE) {
1552 		/*
1553 		 * If we have enough free memory, wakeup waiters.  Do
1554 		 * not clear vm_pages_needed until we reach our target,
1555 		 * otherwise we may be woken up over and over again and
1556 		 * waste a lot of cpu.
1557 		 */
1558 		mtx_lock(&vm_page_queue_free_mtx);
1559 		if (vm_pages_needed && !vm_page_count_min()) {
1560 			if (!vm_paging_needed())
1561 				vm_pages_needed = 0;
1562 			wakeup(&cnt.v_free_count);
1563 		}
1564 		if (vm_pages_needed) {
1565 			/*
1566 			 * Still not done, take a second pass without waiting
1567 			 * (unlimited dirty cleaning), otherwise sleep a bit
1568 			 * and try again.
1569 			 */
1570 			++pass;
1571 			if (pass > 1)
1572 				msleep(&vm_pages_needed,
1573 				    &vm_page_queue_free_mtx, PVM, "psleep",
1574 				    hz / 2);
1575 		} else {
1576 			/*
1577 			 * Good enough, sleep & handle stats.  Prime the pass
1578 			 * for the next run.
1579 			 */
1580 			if (pass > 1)
1581 				pass = 1;
1582 			else
1583 				pass = 0;
1584 			error = msleep(&vm_pages_needed,
1585 			    &vm_page_queue_free_mtx, PVM, "psleep",
1586 			    vm_pageout_stats_interval * hz);
1587 			if (error && !vm_pages_needed) {
1588 				mtx_unlock(&vm_page_queue_free_mtx);
1589 				pass = 0;
1590 				vm_page_lock_queues();
1591 				vm_pageout_page_stats();
1592 				vm_page_unlock_queues();
1593 				continue;
1594 			}
1595 		}
1596 		if (vm_pages_needed)
1597 			cnt.v_pdwakeups++;
1598 		mtx_unlock(&vm_page_queue_free_mtx);
1599 		vm_pageout_scan(pass);
1600 	}
1601 }
1602 
1603 /*
1604  * Unless the free page queue lock is held by the caller, this function
1605  * should be regarded as advisory.  Specifically, the caller should
1606  * not msleep() on &cnt.v_free_count following this function unless
1607  * the free page queue lock is held until the msleep() is performed.
1608  */
1609 void
1610 pagedaemon_wakeup()
1611 {
1612 
1613 	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1614 		vm_pages_needed = 1;
1615 		wakeup(&vm_pages_needed);
1616 	}
1617 }
1618 
1619 #if !defined(NO_SWAPPING)
1620 static void
1621 vm_req_vmdaemon(int req)
1622 {
1623 	static int lastrun = 0;
1624 
1625 	mtx_lock(&vm_daemon_mtx);
1626 	vm_pageout_req_swapout |= req;
1627 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1628 		wakeup(&vm_daemon_needed);
1629 		lastrun = ticks;
1630 	}
1631 	mtx_unlock(&vm_daemon_mtx);
1632 }
1633 
1634 static void
1635 vm_daemon()
1636 {
1637 	struct rlimit rsslim;
1638 	struct proc *p;
1639 	struct thread *td;
1640 	struct vmspace *vm;
1641 	int breakout, swapout_flags;
1642 
1643 	while (TRUE) {
1644 		mtx_lock(&vm_daemon_mtx);
1645 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1646 		swapout_flags = vm_pageout_req_swapout;
1647 		vm_pageout_req_swapout = 0;
1648 		mtx_unlock(&vm_daemon_mtx);
1649 		if (swapout_flags)
1650 			swapout_procs(swapout_flags);
1651 
1652 		/*
1653 		 * scan the processes for exceeding their rlimits or if
1654 		 * process is swapped out -- deactivate pages
1655 		 */
1656 		sx_slock(&allproc_lock);
1657 		FOREACH_PROC_IN_SYSTEM(p) {
1658 			vm_pindex_t limit, size;
1659 
1660 			/*
1661 			 * if this is a system process or if we have already
1662 			 * looked at this process, skip it.
1663 			 */
1664 			PROC_LOCK(p);
1665 			if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1666 				PROC_UNLOCK(p);
1667 				continue;
1668 			}
1669 			/*
1670 			 * if the process is in a non-running type state,
1671 			 * don't touch it.
1672 			 */
1673 			breakout = 0;
1674 			FOREACH_THREAD_IN_PROC(p, td) {
1675 				thread_lock(td);
1676 				if (!TD_ON_RUNQ(td) &&
1677 				    !TD_IS_RUNNING(td) &&
1678 				    !TD_IS_SLEEPING(td)) {
1679 					thread_unlock(td);
1680 					breakout = 1;
1681 					break;
1682 				}
1683 				thread_unlock(td);
1684 			}
1685 			if (breakout) {
1686 				PROC_UNLOCK(p);
1687 				continue;
1688 			}
1689 			/*
1690 			 * get a limit
1691 			 */
1692 			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1693 			limit = OFF_TO_IDX(
1694 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1695 
1696 			/*
1697 			 * let processes that are swapped out really be
1698 			 * swapped out set the limit to nothing (will force a
1699 			 * swap-out.)
1700 			 */
1701 			if ((p->p_flag & P_INMEM) == 0)
1702 				limit = 0;	/* XXX */
1703 			vm = vmspace_acquire_ref(p);
1704 			PROC_UNLOCK(p);
1705 			if (vm == NULL)
1706 				continue;
1707 
1708 			size = vmspace_resident_count(vm);
1709 			if (limit >= 0 && size >= limit) {
1710 				vm_pageout_map_deactivate_pages(
1711 				    &vm->vm_map, limit);
1712 			}
1713 			vmspace_free(vm);
1714 		}
1715 		sx_sunlock(&allproc_lock);
1716 	}
1717 }
1718 #endif			/* !defined(NO_SWAPPING) */
1719