xref: /freebsd/sys/vm/vm_pageout.c (revision a8445737e740901f5f2c8d24c12ef7fc8b00134e)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $Id: vm_pageout.c,v 1.125 1998/08/24 08:39:38 dfr Exp $
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/proc.h>
79 #include <sys/resourcevar.h>
80 #include <sys/signalvar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sysctl.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/vm_prot.h>
88 #include <sys/lock.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_extern.h>
96 
97 /*
98  * System initialization
99  */
100 
101 /* the kernel process "vm_pageout"*/
102 static void vm_pageout __P((void));
103 static int vm_pageout_clean __P((vm_page_t));
104 static int vm_pageout_scan __P((void));
105 static int vm_pageout_free_page_calc __P((vm_size_t count));
106 struct proc *pageproc;
107 
108 static struct kproc_desc page_kp = {
109 	"pagedaemon",
110 	vm_pageout,
111 	&pageproc
112 };
113 SYSINIT_KT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
114 
115 #if !defined(NO_SWAPPING)
116 /* the kernel process "vm_daemon"*/
117 static void vm_daemon __P((void));
118 static struct	proc *vmproc;
119 
120 static struct kproc_desc vm_kp = {
121 	"vmdaemon",
122 	vm_daemon,
123 	&vmproc
124 };
125 SYSINIT_KT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
126 #endif
127 
128 
129 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
130 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
131 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
132 
133 extern int npendingio;
134 #if !defined(NO_SWAPPING)
135 static int vm_pageout_req_swapout;	/* XXX */
136 static int vm_daemon_needed;
137 #endif
138 extern int nswiodone;
139 extern int vm_swap_size;
140 extern int vfs_update_wakeup;
141 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
142 static int vm_pageout_full_stats_interval = 0;
143 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm_lru=0;
144 static int defer_swap_pageouts=0;
145 static int disable_swap_pageouts=0;
146 
147 static int max_page_launder=100;
148 #if defined(NO_SWAPPING)
149 static int vm_swap_enabled=0;
150 static int vm_swap_idle_enabled=0;
151 #else
152 static int vm_swap_enabled=1;
153 static int vm_swap_idle_enabled=0;
154 #endif
155 
156 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
157 	CTLFLAG_RW, &vm_pageout_algorithm_lru, 0, "");
158 
159 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
160 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "");
161 
162 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
163 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "");
164 
165 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
166 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "");
167 
168 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
169 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "");
170 
171 #if defined(NO_SWAPPING)
172 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
173 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
174 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
175 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
176 #else
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178 	CTLFLAG_RW, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "");
181 #endif
182 
183 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
184 	CTLFLAG_RW, &defer_swap_pageouts, 0, "");
185 
186 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
187 	CTLFLAG_RW, &disable_swap_pageouts, 0, "");
188 
189 SYSCTL_INT(_vm, OID_AUTO, max_page_launder,
190 	CTLFLAG_RW, &max_page_launder, 0, "");
191 
192 
193 #define VM_PAGEOUT_PAGE_COUNT 16
194 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
195 
196 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
197 
198 #if !defined(NO_SWAPPING)
199 typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
200 static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
201 static freeer_fcn_t vm_pageout_object_deactivate_pages;
202 static void vm_req_vmdaemon __P((void));
203 #endif
204 static void vm_pageout_page_stats(void);
205 void pmap_collect(void);
206 
207 /*
208  * vm_pageout_clean:
209  *
210  * Clean the page and remove it from the laundry.
211  *
212  * We set the busy bit to cause potential page faults on this page to
213  * block.
214  *
215  * And we set pageout-in-progress to keep the object from disappearing
216  * during pageout.  This guarantees that the page won't move from the
217  * inactive queue.  (However, any other page on the inactive queue may
218  * move!)
219  */
220 static int
221 vm_pageout_clean(m)
222 	vm_page_t m;
223 {
224 	register vm_object_t object;
225 	vm_page_t mc[2*vm_pageout_page_count];
226 	int pageout_count;
227 	int i, forward_okay, backward_okay, page_base;
228 	vm_pindex_t pindex = m->pindex;
229 
230 	object = m->object;
231 
232 	/*
233 	 * If not OBJT_SWAP, additional memory may be needed to do the pageout.
234 	 * Try to avoid the deadlock.
235 	 */
236 	if ((object->type == OBJT_DEFAULT) &&
237 	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min))
238 		return 0;
239 
240 	/*
241 	 * Don't mess with the page if it's busy.
242 	 */
243 	if ((m->hold_count != 0) ||
244 	    ((m->busy != 0) || (m->flags & PG_BUSY)))
245 		return 0;
246 
247 	/*
248 	 * Try collapsing before it's too late.
249 	 */
250 	if (object->backing_object) {
251 		vm_object_collapse(object);
252 	}
253 
254 	mc[vm_pageout_page_count] = m;
255 	pageout_count = 1;
256 	page_base = vm_pageout_page_count;
257 	forward_okay = TRUE;
258 	if (pindex != 0)
259 		backward_okay = TRUE;
260 	else
261 		backward_okay = FALSE;
262 	/*
263 	 * Scan object for clusterable pages.
264 	 *
265 	 * We can cluster ONLY if: ->> the page is NOT
266 	 * clean, wired, busy, held, or mapped into a
267 	 * buffer, and one of the following:
268 	 * 1) The page is inactive, or a seldom used
269 	 *    active page.
270 	 * -or-
271 	 * 2) we force the issue.
272 	 */
273 	for (i = 1; (i < vm_pageout_page_count) && (forward_okay || backward_okay); i++) {
274 		vm_page_t p;
275 
276 		/*
277 		 * See if forward page is clusterable.
278 		 */
279 		if (forward_okay) {
280 			/*
281 			 * Stop forward scan at end of object.
282 			 */
283 			if ((pindex + i) > object->size) {
284 				forward_okay = FALSE;
285 				goto do_backward;
286 			}
287 			p = vm_page_lookup(object, pindex + i);
288 			if (p) {
289 				if (((p->queue - p->pc) == PQ_CACHE) ||
290 					(p->flags & PG_BUSY) || p->busy) {
291 					forward_okay = FALSE;
292 					goto do_backward;
293 				}
294 				vm_page_test_dirty(p);
295 				if ((p->dirty & p->valid) != 0 &&
296 				    (p->queue == PQ_INACTIVE) &&
297 				    (p->wire_count == 0) &&
298 				    (p->hold_count == 0)) {
299 					mc[vm_pageout_page_count + i] = p;
300 					pageout_count++;
301 					if (pageout_count == vm_pageout_page_count)
302 						break;
303 				} else {
304 					forward_okay = FALSE;
305 				}
306 			} else {
307 				forward_okay = FALSE;
308 			}
309 		}
310 do_backward:
311 		/*
312 		 * See if backward page is clusterable.
313 		 */
314 		if (backward_okay) {
315 			/*
316 			 * Stop backward scan at beginning of object.
317 			 */
318 			if ((pindex - i) == 0) {
319 				backward_okay = FALSE;
320 			}
321 			p = vm_page_lookup(object, pindex - i);
322 			if (p) {
323 				if (((p->queue - p->pc) == PQ_CACHE) ||
324 					(p->flags & PG_BUSY) || p->busy) {
325 					backward_okay = FALSE;
326 					continue;
327 				}
328 				vm_page_test_dirty(p);
329 				if ((p->dirty & p->valid) != 0 &&
330 				    (p->queue == PQ_INACTIVE) &&
331 				    (p->wire_count == 0) &&
332 				    (p->hold_count == 0)) {
333 					mc[vm_pageout_page_count - i] = p;
334 					pageout_count++;
335 					page_base--;
336 					if (pageout_count == vm_pageout_page_count)
337 						break;
338 				} else {
339 					backward_okay = FALSE;
340 				}
341 			} else {
342 				backward_okay = FALSE;
343 			}
344 		}
345 	}
346 
347 	/*
348 	 * we allow reads during pageouts...
349 	 */
350 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
351 }
352 
353 int
354 vm_pageout_flush(mc, count, flags)
355 	vm_page_t *mc;
356 	int count;
357 	int flags;
358 {
359 	register vm_object_t object;
360 	int pageout_status[count];
361 	int numpagedout = 0;
362 	int i;
363 
364 	for (i = 0; i < count; i++) {
365 		vm_page_io_start(mc[i]);
366 		vm_page_protect(mc[i], VM_PROT_READ);
367 	}
368 
369 	object = mc[0]->object;
370 	vm_object_pip_add(object, count);
371 
372 	vm_pager_put_pages(object, mc, count,
373 	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
374 	    pageout_status);
375 
376 	for (i = 0; i < count; i++) {
377 		vm_page_t mt = mc[i];
378 
379 		switch (pageout_status[i]) {
380 		case VM_PAGER_OK:
381 			numpagedout++;
382 			break;
383 		case VM_PAGER_PEND:
384 			numpagedout++;
385 			break;
386 		case VM_PAGER_BAD:
387 			/*
388 			 * Page outside of range of object. Right now we
389 			 * essentially lose the changes by pretending it
390 			 * worked.
391 			 */
392 			pmap_clear_modify(VM_PAGE_TO_PHYS(mt));
393 			mt->dirty = 0;
394 			break;
395 		case VM_PAGER_ERROR:
396 		case VM_PAGER_FAIL:
397 			/*
398 			 * If page couldn't be paged out, then reactivate the
399 			 * page so it doesn't clog the inactive list.  (We
400 			 * will try paging out it again later).
401 			 */
402 			vm_page_activate(mt);
403 			break;
404 		case VM_PAGER_AGAIN:
405 			break;
406 		}
407 
408 		/*
409 		 * If the operation is still going, leave the page busy to
410 		 * block all other accesses. Also, leave the paging in
411 		 * progress indicator set so that we don't attempt an object
412 		 * collapse.
413 		 */
414 		if (pageout_status[i] != VM_PAGER_PEND) {
415 			vm_object_pip_wakeup(object);
416 			vm_page_io_finish(mt);
417 		}
418 	}
419 	return numpagedout;
420 }
421 
422 #if !defined(NO_SWAPPING)
423 /*
424  *	vm_pageout_object_deactivate_pages
425  *
426  *	deactivate enough pages to satisfy the inactive target
427  *	requirements or if vm_page_proc_limit is set, then
428  *	deactivate all of the pages in the object and its
429  *	backing_objects.
430  *
431  *	The object and map must be locked.
432  */
433 static void
434 vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
435 	vm_map_t map;
436 	vm_object_t object;
437 	vm_pindex_t desired;
438 	int map_remove_only;
439 {
440 	register vm_page_t p, next;
441 	int rcount;
442 	int remove_mode;
443 	int s;
444 
445 	if (object->type == OBJT_DEVICE)
446 		return;
447 
448 	while (object) {
449 		if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
450 			return;
451 		if (object->paging_in_progress)
452 			return;
453 
454 		remove_mode = map_remove_only;
455 		if (object->shadow_count > 1)
456 			remove_mode = 1;
457 	/*
458 	 * scan the objects entire memory queue
459 	 */
460 		rcount = object->resident_page_count;
461 		p = TAILQ_FIRST(&object->memq);
462 		while (p && (rcount-- > 0)) {
463 			int actcount;
464 			if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
465 				return;
466 			next = TAILQ_NEXT(p, listq);
467 			cnt.v_pdpages++;
468 			if (p->wire_count != 0 ||
469 			    p->hold_count != 0 ||
470 			    p->busy != 0 ||
471 			    (p->flags & PG_BUSY) ||
472 			    !pmap_page_exists(vm_map_pmap(map), VM_PAGE_TO_PHYS(p))) {
473 				p = next;
474 				continue;
475 			}
476 
477 			actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(p));
478 			if (actcount) {
479 				vm_page_flag_set(p, PG_REFERENCED);
480 			} else if (p->flags & PG_REFERENCED) {
481 				actcount = 1;
482 			}
483 
484 			if ((p->queue != PQ_ACTIVE) &&
485 				(p->flags & PG_REFERENCED)) {
486 				vm_page_activate(p);
487 				p->act_count += actcount;
488 				vm_page_flag_clear(p, PG_REFERENCED);
489 			} else if (p->queue == PQ_ACTIVE) {
490 				if ((p->flags & PG_REFERENCED) == 0) {
491 					p->act_count -= min(p->act_count, ACT_DECLINE);
492 					if (!remove_mode && (vm_pageout_algorithm_lru || (p->act_count == 0))) {
493 						vm_page_protect(p, VM_PROT_NONE);
494 						vm_page_deactivate(p);
495 					} else {
496 						s = splvm();
497 						TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
498 						TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
499 						splx(s);
500 					}
501 				} else {
502 					vm_page_activate(p);
503 					vm_page_flag_clear(p, PG_REFERENCED);
504 					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
505 						p->act_count += ACT_ADVANCE;
506 					s = splvm();
507 					TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
508 					TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
509 					splx(s);
510 				}
511 			} else if (p->queue == PQ_INACTIVE) {
512 				vm_page_protect(p, VM_PROT_NONE);
513 			}
514 			p = next;
515 		}
516 		object = object->backing_object;
517 	}
518 	return;
519 }
520 
521 /*
522  * deactivate some number of pages in a map, try to do it fairly, but
523  * that is really hard to do.
524  */
525 static void
526 vm_pageout_map_deactivate_pages(map, desired)
527 	vm_map_t map;
528 	vm_pindex_t desired;
529 {
530 	vm_map_entry_t tmpe;
531 	vm_object_t obj, bigobj;
532 
533 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curproc)) {
534 		return;
535 	}
536 
537 	bigobj = NULL;
538 
539 	/*
540 	 * first, search out the biggest object, and try to free pages from
541 	 * that.
542 	 */
543 	tmpe = map->header.next;
544 	while (tmpe != &map->header) {
545 		if ((tmpe->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) {
546 			obj = tmpe->object.vm_object;
547 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
548 				((bigobj == NULL) ||
549 				 (bigobj->resident_page_count < obj->resident_page_count))) {
550 				bigobj = obj;
551 			}
552 		}
553 		tmpe = tmpe->next;
554 	}
555 
556 	if (bigobj)
557 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
558 
559 	/*
560 	 * Next, hunt around for other pages to deactivate.  We actually
561 	 * do this search sort of wrong -- .text first is not the best idea.
562 	 */
563 	tmpe = map->header.next;
564 	while (tmpe != &map->header) {
565 		if (vm_map_pmap(map)->pm_stats.resident_count <= desired)
566 			break;
567 		if ((tmpe->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) {
568 			obj = tmpe->object.vm_object;
569 			if (obj)
570 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
571 		}
572 		tmpe = tmpe->next;
573 	};
574 
575 	/*
576 	 * Remove all mappings if a process is swapped out, this will free page
577 	 * table pages.
578 	 */
579 	if (desired == 0)
580 		pmap_remove(vm_map_pmap(map),
581 			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
582 	vm_map_unlock(map);
583 	return;
584 }
585 #endif
586 
587 void
588 vm_pageout_page_free(vm_page_t m) {
589 	struct vnode *vp;
590 	vm_object_t object;
591 
592 	object = m->object;
593 	object->ref_count++;
594 
595 	if (object->type == OBJT_VNODE) {
596 		vp = object->handle;
597 		vp->v_usecount++;
598 		if (VSHOULDBUSY(vp))
599 			vbusy(vp);
600 	}
601 
602 	vm_page_busy(m);
603 	vm_page_protect(m, VM_PROT_NONE);
604 	vm_page_free(m);
605 	vm_object_deallocate(object);
606 }
607 
608 /*
609  *	vm_pageout_scan does the dirty work for the pageout daemon.
610  */
611 static int
612 vm_pageout_scan()
613 {
614 	vm_page_t m, next;
615 	int page_shortage, addl_page_shortage, maxscan, pcount;
616 	int maxlaunder;
617 	int pages_freed;
618 	struct proc *p, *bigproc;
619 	vm_offset_t size, bigsize;
620 	vm_object_t object;
621 	int force_wakeup = 0;
622 	int actcount;
623 	int vnodes_skipped = 0;
624 	int s;
625 
626 	/*
627 	 * Do whatever cleanup that the pmap code can.
628 	 */
629 	pmap_collect();
630 
631 	/*
632 	 * Start scanning the inactive queue for pages we can free. We keep
633 	 * scanning until we have enough free pages or we have scanned through
634 	 * the entire queue.  If we encounter dirty pages, we start cleaning
635 	 * them.
636 	 */
637 
638 	pages_freed = 0;
639 	addl_page_shortage = vm_pageout_deficit;
640 	vm_pageout_deficit = 0;
641 
642 	if (max_page_launder == 0)
643 		max_page_launder = 1;
644 	maxlaunder = (cnt.v_inactive_target > max_page_launder) ?
645 	    max_page_launder : cnt.v_inactive_target;
646 
647 rescan0:
648 	maxscan = cnt.v_inactive_count;
649 	for( m = TAILQ_FIRST(&vm_page_queue_inactive);
650 
651 		(m != NULL) && (maxscan-- > 0) &&
652 			((cnt.v_cache_count + cnt.v_free_count) <
653 			(cnt.v_cache_min + cnt.v_free_target));
654 
655 		m = next) {
656 
657 		cnt.v_pdpages++;
658 
659 		if (m->queue != PQ_INACTIVE) {
660 			goto rescan0;
661 		}
662 
663 		next = TAILQ_NEXT(m, pageq);
664 
665 		if (m->hold_count) {
666 			s = splvm();
667 			TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
668 			TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
669 			splx(s);
670 			addl_page_shortage++;
671 			continue;
672 		}
673 		/*
674 		 * Dont mess with busy pages, keep in the front of the
675 		 * queue, most likely are being paged out.
676 		 */
677 		if (m->busy || (m->flags & PG_BUSY)) {
678 			addl_page_shortage++;
679 			continue;
680 		}
681 
682 		/*
683 		 * If the object is not being used, we ignore previous references.
684 		 */
685 		if (m->object->ref_count == 0) {
686 			vm_page_flag_clear(m, PG_REFERENCED);
687 			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
688 
689 		/*
690 		 * Otherwise, if the page has been referenced while in the inactive
691 		 * queue, we bump the "activation count" upwards, making it less
692 		 * likely that the page will be added back to the inactive queue
693 		 * prematurely again.  Here we check the page tables (or emulated
694 		 * bits, if any), given the upper level VM system not knowing anything
695 		 * about existing references.
696 		 */
697 		} else if (((m->flags & PG_REFERENCED) == 0) &&
698 			(actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(m)))) {
699 			vm_page_activate(m);
700 			m->act_count += (actcount + ACT_ADVANCE);
701 			continue;
702 		}
703 
704 		/*
705 		 * If the upper level VM system knows about any page references,
706 		 * we activate the page.  We also set the "activation count" higher
707 		 * than normal so that we will less likely place pages back onto the
708 		 * inactive queue again.
709 		 */
710 		if ((m->flags & PG_REFERENCED) != 0) {
711 			vm_page_flag_clear(m, PG_REFERENCED);
712 			actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
713 			vm_page_activate(m);
714 			m->act_count += (actcount + ACT_ADVANCE + 1);
715 			continue;
716 		}
717 
718 		/*
719 		 * If the upper level VM system doesn't know anything about the
720 		 * page being dirty, we have to check for it again.  As far as the
721 		 * VM code knows, any partially dirty pages are fully dirty.
722 		 */
723 		if (m->dirty == 0) {
724 			vm_page_test_dirty(m);
725 		} else {
726 			m->dirty = VM_PAGE_BITS_ALL;
727 		}
728 
729 		/*
730 		 * Invalid pages can be easily freed
731 		 */
732 		if (m->valid == 0) {
733 			vm_pageout_page_free(m);
734 			cnt.v_dfree++;
735 			pages_freed++;
736 
737 		/*
738 		 * Clean pages can be placed onto the cache queue.
739 		 */
740 		} else if (m->dirty == 0) {
741 			vm_page_cache(m);
742 			pages_freed++;
743 
744 		/*
745 		 * Dirty pages need to be paged out.  Note that we clean
746 		 * only a limited number of pages per pagedaemon pass.
747 		 */
748 		} else if (maxlaunder > 0) {
749 			int written;
750 			int swap_pageouts_ok;
751 			struct vnode *vp = NULL;
752 
753 			object = m->object;
754 
755 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
756 				swap_pageouts_ok = 1;
757 			} else {
758 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
759 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
760 					(cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min);
761 
762 			}
763 
764 			/*
765 			 * We don't bother paging objects that are "dead".  Those
766 			 * objects are in a "rundown" state.
767 			 */
768 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
769 				s = splvm();
770 				TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
771 				TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
772 				splx(s);
773 				continue;
774 			}
775 
776 			if ((object->type == OBJT_VNODE) &&
777 				(object->flags & OBJ_DEAD) == 0) {
778 				vp = object->handle;
779 				if (VOP_ISLOCKED(vp) ||
780 				    vget(vp, LK_EXCLUSIVE|LK_NOOBJ, curproc)) {
781 					if ((m->queue == PQ_INACTIVE) &&
782 						(m->hold_count == 0) &&
783 						(m->busy == 0) &&
784 						(m->flags & PG_BUSY) == 0) {
785 						s = splvm();
786 						TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
787 						TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
788 						splx(s);
789 					}
790 					if (object->flags & OBJ_MIGHTBEDIRTY)
791 						vnodes_skipped++;
792 					continue;
793 				}
794 
795 				/*
796 				 * The page might have been moved to another queue
797 				 * during potential blocking in vget() above.
798 				 */
799 				if (m->queue != PQ_INACTIVE) {
800 					if (object->flags & OBJ_MIGHTBEDIRTY)
801 						vnodes_skipped++;
802 					vput(vp);
803 					continue;
804 				}
805 
806 				/*
807 				 * The page may have been busied during the blocking in
808 				 * vput();  We don't move the page back onto the end of
809 				 * the queue so that statistics are more correct if we don't.
810 				 */
811 				if (m->busy || (m->flags & PG_BUSY)) {
812 					vput(vp);
813 					continue;
814 				}
815 
816 				/*
817 				 * If the page has become held, then skip it
818 				 */
819 				if (m->hold_count) {
820 					s = splvm();
821 					TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
822 					TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
823 					splx(s);
824 					if (object->flags & OBJ_MIGHTBEDIRTY)
825 						vnodes_skipped++;
826 					vput(vp);
827 					continue;
828 				}
829 			}
830 
831 			/*
832 			 * If a page is dirty, then it is either being washed
833 			 * (but not yet cleaned) or it is still in the
834 			 * laundry.  If it is still in the laundry, then we
835 			 * start the cleaning operation.
836 			 */
837 			written = vm_pageout_clean(m);
838 			if (vp)
839 				vput(vp);
840 
841 			maxlaunder -= written;
842 		}
843 	}
844 
845 	/*
846 	 * Compute the page shortage.  If we are still very low on memory be
847 	 * sure that we will move a minimal amount of pages from active to
848 	 * inactive.
849 	 */
850 	page_shortage = (cnt.v_inactive_target + cnt.v_cache_min) -
851 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
852 	page_shortage += addl_page_shortage;
853 	if (page_shortage <= 0) {
854 		page_shortage = 0;
855 	}
856 
857 	pcount = cnt.v_active_count;
858 	m = TAILQ_FIRST(&vm_page_queue_active);
859 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
860 
861 		/*
862 		 * This is a consistancy check, and should likely be a panic
863 		 * or warning.
864 		 */
865 		if (m->queue != PQ_ACTIVE) {
866 			break;
867 		}
868 
869 		next = TAILQ_NEXT(m, pageq);
870 		/*
871 		 * Don't deactivate pages that are busy.
872 		 */
873 		if ((m->busy != 0) ||
874 		    (m->flags & PG_BUSY) ||
875 		    (m->hold_count != 0)) {
876 			s = splvm();
877 			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
878 			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
879 			splx(s);
880 			m = next;
881 			continue;
882 		}
883 
884 		/*
885 		 * The count for pagedaemon pages is done after checking the
886 		 * page for eligbility...
887 		 */
888 		cnt.v_pdpages++;
889 
890 		/*
891 		 * Check to see "how much" the page has been used.
892 		 */
893 		actcount = 0;
894 		if (m->object->ref_count != 0) {
895 			if (m->flags & PG_REFERENCED) {
896 				actcount += 1;
897 			}
898 			actcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
899 			if (actcount) {
900 				m->act_count += ACT_ADVANCE + actcount;
901 				if (m->act_count > ACT_MAX)
902 					m->act_count = ACT_MAX;
903 			}
904 		}
905 
906 		/*
907 		 * Since we have "tested" this bit, we need to clear it now.
908 		 */
909 		vm_page_flag_clear(m, PG_REFERENCED);
910 
911 		/*
912 		 * Only if an object is currently being used, do we use the
913 		 * page activation count stats.
914 		 */
915 		if (actcount && (m->object->ref_count != 0)) {
916 			s = splvm();
917 			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
918 			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
919 			splx(s);
920 		} else {
921 			m->act_count -= min(m->act_count, ACT_DECLINE);
922 			if (vm_pageout_algorithm_lru ||
923 				(m->object->ref_count == 0) || (m->act_count == 0)) {
924 				page_shortage--;
925 				if (m->object->ref_count == 0) {
926 					vm_page_protect(m, VM_PROT_NONE);
927 					if (m->dirty == 0)
928 						vm_page_cache(m);
929 					else
930 						vm_page_deactivate(m);
931 				} else {
932 					vm_page_deactivate(m);
933 				}
934 			} else {
935 				s = splvm();
936 				TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
937 				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
938 				splx(s);
939 			}
940 		}
941 		m = next;
942 	}
943 
944 	s = splvm();
945 	/*
946 	 * We try to maintain some *really* free pages, this allows interrupt
947 	 * code to be guaranteed space.
948 	 */
949 	while (cnt.v_free_count < cnt.v_free_reserved) {
950 		static int cache_rover = 0;
951 		m = vm_page_list_find(PQ_CACHE, cache_rover);
952 		if (!m)
953 			break;
954 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
955 		vm_pageout_page_free(m);
956 		cnt.v_dfree++;
957 	}
958 	splx(s);
959 
960 #if !defined(NO_SWAPPING)
961 	/*
962 	 * Idle process swapout -- run once per second.
963 	 */
964 	if (vm_swap_idle_enabled) {
965 		static long lsec;
966 		if (time_second != lsec) {
967 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
968 			vm_req_vmdaemon();
969 			lsec = time_second;
970 		}
971 	}
972 #endif
973 
974 	/*
975 	 * If we didn't get enough free pages, and we have skipped a vnode
976 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
977 	 * if we did not get enough free pages.
978 	 */
979 	if ((cnt.v_cache_count + cnt.v_free_count) <
980 		(cnt.v_free_target + cnt.v_cache_min) ) {
981 		if (vnodes_skipped &&
982 		    (cnt.v_cache_count + cnt.v_free_count) < cnt.v_free_min) {
983 			if (!vfs_update_wakeup) {
984 				vfs_update_wakeup = 1;
985 				wakeup(&vfs_update_wakeup);
986 			}
987 		}
988 #if !defined(NO_SWAPPING)
989 		if (vm_swap_enabled &&
990 			(cnt.v_free_count + cnt.v_cache_count < cnt.v_free_target)) {
991 			vm_req_vmdaemon();
992 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
993 		}
994 #endif
995 	}
996 
997 
998 	/*
999 	 * make sure that we have swap space -- if we are low on memory and
1000 	 * swap -- then kill the biggest process.
1001 	 */
1002 	if ((vm_swap_size == 0 || swap_pager_full) &&
1003 	    ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min)) {
1004 		bigproc = NULL;
1005 		bigsize = 0;
1006 		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1007 			/*
1008 			 * if this is a system process, skip it
1009 			 */
1010 			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1011 			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1012 				continue;
1013 			}
1014 			/*
1015 			 * if the process is in a non-running type state,
1016 			 * don't touch it.
1017 			 */
1018 			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1019 				continue;
1020 			}
1021 			/*
1022 			 * get the process size
1023 			 */
1024 			size = p->p_vmspace->vm_pmap.pm_stats.resident_count;
1025 			/*
1026 			 * if the this process is bigger than the biggest one
1027 			 * remember it.
1028 			 */
1029 			if (size > bigsize) {
1030 				bigproc = p;
1031 				bigsize = size;
1032 			}
1033 		}
1034 		if (bigproc != NULL) {
1035 			killproc(bigproc, "out of swap space");
1036 			bigproc->p_estcpu = 0;
1037 			bigproc->p_nice = PRIO_MIN;
1038 			resetpriority(bigproc);
1039 			wakeup(&cnt.v_free_count);
1040 		}
1041 	}
1042 	return force_wakeup;
1043 }
1044 
1045 /*
1046  * This routine tries to maintain the pseudo LRU active queue,
1047  * so that during long periods of time where there is no paging,
1048  * that some statistic accumlation still occurs.  This code
1049  * helps the situation where paging just starts to occur.
1050  */
1051 static void
1052 vm_pageout_page_stats()
1053 {
1054 	int s;
1055 	vm_page_t m,next;
1056 	int pcount,tpcount;		/* Number of pages to check */
1057 	static int fullintervalcount = 0;
1058 	int page_shortage;
1059 
1060 	page_shortage = (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1061 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1062 	if (page_shortage <= 0)
1063 		return;
1064 
1065 	pcount = cnt.v_active_count;
1066 	fullintervalcount += vm_pageout_stats_interval;
1067 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1068 		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1069 		if (pcount > tpcount)
1070 			pcount = tpcount;
1071 	}
1072 
1073 	m = TAILQ_FIRST(&vm_page_queue_active);
1074 	while ((m != NULL) && (pcount-- > 0)) {
1075 		int actcount;
1076 
1077 		if (m->queue != PQ_ACTIVE) {
1078 			break;
1079 		}
1080 
1081 		next = TAILQ_NEXT(m, pageq);
1082 		/*
1083 		 * Don't deactivate pages that are busy.
1084 		 */
1085 		if ((m->busy != 0) ||
1086 		    (m->flags & PG_BUSY) ||
1087 		    (m->hold_count != 0)) {
1088 			s = splvm();
1089 			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1090 			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1091 			splx(s);
1092 			m = next;
1093 			continue;
1094 		}
1095 
1096 		actcount = 0;
1097 		if (m->flags & PG_REFERENCED) {
1098 			vm_page_flag_clear(m, PG_REFERENCED);
1099 			actcount += 1;
1100 		}
1101 
1102 		actcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
1103 		if (actcount) {
1104 			m->act_count += ACT_ADVANCE + actcount;
1105 			if (m->act_count > ACT_MAX)
1106 				m->act_count = ACT_MAX;
1107 			s = splvm();
1108 			TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1109 			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1110 			splx(s);
1111 		} else {
1112 			if (m->act_count == 0) {
1113 				/*
1114 				 * We turn off page access, so that we have more accurate
1115 				 * RSS stats.  We don't do this in the normal page deactivation
1116 				 * when the system is loaded VM wise, because the cost of
1117 				 * the large number of page protect operations would be higher
1118 				 * than the value of doing the operation.
1119 				 */
1120 				vm_page_protect(m, VM_PROT_NONE);
1121 				vm_page_deactivate(m);
1122 			} else {
1123 				m->act_count -= min(m->act_count, ACT_DECLINE);
1124 				s = splvm();
1125 				TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
1126 				TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1127 				splx(s);
1128 			}
1129 		}
1130 
1131 		m = next;
1132 	}
1133 }
1134 
1135 static int
1136 vm_pageout_free_page_calc(count)
1137 vm_size_t count;
1138 {
1139 	if (count < cnt.v_page_count)
1140 		 return 0;
1141 	/*
1142 	 * free_reserved needs to include enough for the largest swap pager
1143 	 * structures plus enough for any pv_entry structs when paging.
1144 	 */
1145 	if (cnt.v_page_count > 1024)
1146 		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1147 	else
1148 		cnt.v_free_min = 4;
1149 	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1150 		cnt.v_interrupt_free_min;
1151 	cnt.v_free_reserved = vm_pageout_page_count +
1152 		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1153 	cnt.v_free_min += cnt.v_free_reserved;
1154 	return 1;
1155 }
1156 
1157 
1158 /*
1159  *	vm_pageout is the high level pageout daemon.
1160  */
1161 static void
1162 vm_pageout()
1163 {
1164 	/*
1165 	 * Initialize some paging parameters.
1166 	 */
1167 
1168 	cnt.v_interrupt_free_min = 2;
1169 	if (cnt.v_page_count < 2000)
1170 		vm_pageout_page_count = 8;
1171 
1172 	vm_pageout_free_page_calc(cnt.v_page_count);
1173 	/*
1174 	 * free_reserved needs to include enough for the largest swap pager
1175 	 * structures plus enough for any pv_entry structs when paging.
1176 	 */
1177 	if (cnt.v_free_count > 6144)
1178 		cnt.v_free_target = 3 * cnt.v_free_min + cnt.v_free_reserved;
1179 	else
1180 		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1181 
1182 	if (cnt.v_free_count > 2048) {
1183 		cnt.v_cache_min = cnt.v_free_target;
1184 		cnt.v_cache_max = 2 * cnt.v_cache_min;
1185 		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1186 	} else {
1187 		cnt.v_cache_min = 0;
1188 		cnt.v_cache_max = 0;
1189 		cnt.v_inactive_target = cnt.v_free_count / 4;
1190 	}
1191 	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1192 		cnt.v_inactive_target = cnt.v_free_count / 3;
1193 
1194 	/* XXX does not really belong here */
1195 	if (vm_page_max_wired == 0)
1196 		vm_page_max_wired = cnt.v_free_count / 3;
1197 
1198 	if (vm_pageout_stats_max == 0)
1199 		vm_pageout_stats_max = cnt.v_free_target;
1200 
1201 	/*
1202 	 * Set interval in seconds for stats scan.
1203 	 */
1204 	if (vm_pageout_stats_interval == 0)
1205 		vm_pageout_stats_interval = 5;
1206 	if (vm_pageout_full_stats_interval == 0)
1207 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1208 
1209 
1210 	/*
1211 	 * Set maximum free per pass
1212 	 */
1213 	if (vm_pageout_stats_free_max == 0)
1214 		vm_pageout_stats_free_max = 5;
1215 
1216 	max_page_launder = (cnt.v_page_count > 1800 ? 32 : 16);
1217 
1218 	swap_pager_swap_init();
1219 	/*
1220 	 * The pageout daemon is never done, so loop forever.
1221 	 */
1222 	while (TRUE) {
1223 		int inactive_target;
1224 		int error;
1225 		int s = splvm();
1226 		if (!vm_pages_needed ||
1227 			((cnt.v_free_count + cnt.v_cache_count) > cnt.v_free_min)) {
1228 			vm_pages_needed = 0;
1229 			error = tsleep(&vm_pages_needed,
1230 				PVM, "psleep", vm_pageout_stats_interval * hz);
1231 			if (error && !vm_pages_needed) {
1232 				splx(s);
1233 				vm_pageout_page_stats();
1234 				continue;
1235 			}
1236 		} else if (vm_pages_needed) {
1237 			vm_pages_needed = 0;
1238 			tsleep(&vm_pages_needed, PVM, "psleep", hz/2);
1239 		}
1240 
1241 		if (vm_pages_needed)
1242 			cnt.v_pdwakeups++;
1243 		vm_pages_needed = 0;
1244 		splx(s);
1245 		vm_pager_sync();
1246 		vm_pageout_scan();
1247 		vm_pageout_deficit = 0;
1248 		vm_pager_sync();
1249 		wakeup(&cnt.v_free_count);
1250 	}
1251 }
1252 
1253 void
1254 pagedaemon_wakeup()
1255 {
1256 	if (!vm_pages_needed && curproc != pageproc) {
1257 		vm_pages_needed++;
1258 		wakeup(&vm_pages_needed);
1259 	}
1260 }
1261 
1262 #if !defined(NO_SWAPPING)
1263 static void
1264 vm_req_vmdaemon()
1265 {
1266 	static int lastrun = 0;
1267 
1268 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1269 		wakeup(&vm_daemon_needed);
1270 		lastrun = ticks;
1271 	}
1272 }
1273 
1274 static void
1275 vm_daemon()
1276 {
1277 	vm_object_t object;
1278 	struct proc *p;
1279 
1280 	while (TRUE) {
1281 		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1282 		if (vm_pageout_req_swapout) {
1283 			swapout_procs(vm_pageout_req_swapout);
1284 			vm_pageout_req_swapout = 0;
1285 		}
1286 		/*
1287 		 * scan the processes for exceeding their rlimits or if
1288 		 * process is swapped out -- deactivate pages
1289 		 */
1290 
1291 		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1292 			quad_t limit;
1293 			vm_offset_t size;
1294 
1295 			/*
1296 			 * if this is a system process or if we have already
1297 			 * looked at this process, skip it.
1298 			 */
1299 			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1300 				continue;
1301 			}
1302 			/*
1303 			 * if the process is in a non-running type state,
1304 			 * don't touch it.
1305 			 */
1306 			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1307 				continue;
1308 			}
1309 			/*
1310 			 * get a limit
1311 			 */
1312 			limit = qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1313 			    p->p_rlimit[RLIMIT_RSS].rlim_max);
1314 
1315 			/*
1316 			 * let processes that are swapped out really be
1317 			 * swapped out set the limit to nothing (will force a
1318 			 * swap-out.)
1319 			 */
1320 			if ((p->p_flag & P_INMEM) == 0)
1321 				limit = 0;	/* XXX */
1322 
1323 			size = p->p_vmspace->vm_pmap.pm_stats.resident_count * PAGE_SIZE;
1324 			if (limit >= 0 && size >= limit) {
1325 				vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map,
1326 				    (vm_pindex_t)(limit >> PAGE_SHIFT) );
1327 			}
1328 		}
1329 	}
1330 }
1331 #endif
1332