xref: /freebsd/sys/vm/vm_pageout.c (revision a812392203d7c4c3f0db9d8a0f3391374c49c71f)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_vm.h"
79 #include "opt_kdtrace.h"
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/lock.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/mount.h>
90 #include <sys/racct.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sched.h>
93 #include <sys/sdt.h>
94 #include <sys/signalvar.h>
95 #include <sys/smp.h>
96 #include <sys/vnode.h>
97 #include <sys/vmmeter.h>
98 #include <sys/rwlock.h>
99 #include <sys/sx.h>
100 #include <sys/sysctl.h>
101 
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_page.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_phys.h>
110 #include <vm/swap_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/uma.h>
113 
114 /*
115  * System initialization
116  */
117 
118 /* the kernel process "vm_pageout"*/
119 static void vm_pageout(void);
120 static void vm_pageout_init(void);
121 static int vm_pageout_clean(vm_page_t);
122 static void vm_pageout_scan(struct vm_domain *vmd, int pass);
123 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass);
124 
125 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
126     NULL);
127 
128 struct proc *pageproc;
129 
130 static struct kproc_desc page_kp = {
131 	"pagedaemon",
132 	vm_pageout,
133 	&pageproc
134 };
135 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
136     &page_kp);
137 
138 SDT_PROVIDER_DEFINE(vm);
139 SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache);
140 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
141 
142 #if !defined(NO_SWAPPING)
143 /* the kernel process "vm_daemon"*/
144 static void vm_daemon(void);
145 static struct	proc *vmproc;
146 
147 static struct kproc_desc vm_kp = {
148 	"vmdaemon",
149 	vm_daemon,
150 	&vmproc
151 };
152 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
153 #endif
154 
155 
156 int vm_pages_needed;		/* Event on which pageout daemon sleeps */
157 int vm_pageout_deficit;		/* Estimated number of pages deficit */
158 int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
159 int vm_pageout_wakeup_thresh;
160 
161 #if !defined(NO_SWAPPING)
162 static int vm_pageout_req_swapout;	/* XXX */
163 static int vm_daemon_needed;
164 static struct mtx vm_daemon_mtx;
165 /* Allow for use by vm_pageout before vm_daemon is initialized. */
166 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
167 #endif
168 static int vm_max_launder = 32;
169 static int vm_pageout_update_period;
170 static int defer_swap_pageouts;
171 static int disable_swap_pageouts;
172 static int lowmem_period = 10;
173 static int lowmem_ticks;
174 
175 #if defined(NO_SWAPPING)
176 static int vm_swap_enabled = 0;
177 static int vm_swap_idle_enabled = 0;
178 #else
179 static int vm_swap_enabled = 1;
180 static int vm_swap_idle_enabled = 0;
181 #endif
182 
183 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
184 	CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
185 	"free page threshold for waking up the pageout daemon");
186 
187 SYSCTL_INT(_vm, OID_AUTO, max_launder,
188 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
189 
190 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
191 	CTLFLAG_RW, &vm_pageout_update_period, 0,
192 	"Maximum active LRU update period");
193 
194 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
195 	"Low memory callback period");
196 
197 #if defined(NO_SWAPPING)
198 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
199 	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
200 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
201 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
202 #else
203 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
204 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
205 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
206 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
207 #endif
208 
209 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
210 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
211 
212 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
213 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
214 
215 static int pageout_lock_miss;
216 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
217 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
218 
219 #define VM_PAGEOUT_PAGE_COUNT 16
220 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
221 
222 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
223 SYSCTL_INT(_vm, OID_AUTO, max_wired,
224 	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
225 
226 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
227 static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
228     vm_paddr_t);
229 #if !defined(NO_SWAPPING)
230 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
231 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
232 static void vm_req_vmdaemon(int req);
233 #endif
234 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
235 
236 /*
237  * Initialize a dummy page for marking the caller's place in the specified
238  * paging queue.  In principle, this function only needs to set the flag
239  * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
240  * to one as safety precautions.
241  */
242 static void
243 vm_pageout_init_marker(vm_page_t marker, u_short queue)
244 {
245 
246 	bzero(marker, sizeof(*marker));
247 	marker->flags = PG_MARKER;
248 	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
249 	marker->queue = queue;
250 	marker->hold_count = 1;
251 }
252 
253 /*
254  * vm_pageout_fallback_object_lock:
255  *
256  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
257  * known to have failed and page queue must be either PQ_ACTIVE or
258  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
259  * while locking the vm object.  Use marker page to detect page queue
260  * changes and maintain notion of next page on page queue.  Return
261  * TRUE if no changes were detected, FALSE otherwise.  vm object is
262  * locked on return.
263  *
264  * This function depends on both the lock portion of struct vm_object
265  * and normal struct vm_page being type stable.
266  */
267 static boolean_t
268 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
269 {
270 	struct vm_page marker;
271 	struct vm_pagequeue *pq;
272 	boolean_t unchanged;
273 	u_short queue;
274 	vm_object_t object;
275 
276 	queue = m->queue;
277 	vm_pageout_init_marker(&marker, queue);
278 	pq = vm_page_pagequeue(m);
279 	object = m->object;
280 
281 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
282 	vm_pagequeue_unlock(pq);
283 	vm_page_unlock(m);
284 	VM_OBJECT_WLOCK(object);
285 	vm_page_lock(m);
286 	vm_pagequeue_lock(pq);
287 
288 	/* Page queue might have changed. */
289 	*next = TAILQ_NEXT(&marker, plinks.q);
290 	unchanged = (m->queue == queue &&
291 		     m->object == object &&
292 		     &marker == TAILQ_NEXT(m, plinks.q));
293 	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
294 	return (unchanged);
295 }
296 
297 /*
298  * Lock the page while holding the page queue lock.  Use marker page
299  * to detect page queue changes and maintain notion of next page on
300  * page queue.  Return TRUE if no changes were detected, FALSE
301  * otherwise.  The page is locked on return. The page queue lock might
302  * be dropped and reacquired.
303  *
304  * This function depends on normal struct vm_page being type stable.
305  */
306 static boolean_t
307 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
308 {
309 	struct vm_page marker;
310 	struct vm_pagequeue *pq;
311 	boolean_t unchanged;
312 	u_short queue;
313 
314 	vm_page_lock_assert(m, MA_NOTOWNED);
315 	if (vm_page_trylock(m))
316 		return (TRUE);
317 
318 	queue = m->queue;
319 	vm_pageout_init_marker(&marker, queue);
320 	pq = vm_page_pagequeue(m);
321 
322 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
323 	vm_pagequeue_unlock(pq);
324 	vm_page_lock(m);
325 	vm_pagequeue_lock(pq);
326 
327 	/* Page queue might have changed. */
328 	*next = TAILQ_NEXT(&marker, plinks.q);
329 	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, plinks.q));
330 	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
331 	return (unchanged);
332 }
333 
334 /*
335  * vm_pageout_clean:
336  *
337  * Clean the page and remove it from the laundry.
338  *
339  * We set the busy bit to cause potential page faults on this page to
340  * block.  Note the careful timing, however, the busy bit isn't set till
341  * late and we cannot do anything that will mess with the page.
342  */
343 static int
344 vm_pageout_clean(vm_page_t m)
345 {
346 	vm_object_t object;
347 	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
348 	int pageout_count;
349 	int ib, is, page_base;
350 	vm_pindex_t pindex = m->pindex;
351 
352 	vm_page_lock_assert(m, MA_OWNED);
353 	object = m->object;
354 	VM_OBJECT_ASSERT_WLOCKED(object);
355 
356 	/*
357 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
358 	 * with the new swapper, but we could have serious problems paging
359 	 * out other object types if there is insufficient memory.
360 	 *
361 	 * Unfortunately, checking free memory here is far too late, so the
362 	 * check has been moved up a procedural level.
363 	 */
364 
365 	/*
366 	 * Can't clean the page if it's busy or held.
367 	 */
368 	vm_page_assert_unbusied(m);
369 	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
370 	vm_page_unlock(m);
371 
372 	mc[vm_pageout_page_count] = pb = ps = m;
373 	pageout_count = 1;
374 	page_base = vm_pageout_page_count;
375 	ib = 1;
376 	is = 1;
377 
378 	/*
379 	 * Scan object for clusterable pages.
380 	 *
381 	 * We can cluster ONLY if: ->> the page is NOT
382 	 * clean, wired, busy, held, or mapped into a
383 	 * buffer, and one of the following:
384 	 * 1) The page is inactive, or a seldom used
385 	 *    active page.
386 	 * -or-
387 	 * 2) we force the issue.
388 	 *
389 	 * During heavy mmap/modification loads the pageout
390 	 * daemon can really fragment the underlying file
391 	 * due to flushing pages out of order and not trying
392 	 * align the clusters (which leave sporatic out-of-order
393 	 * holes).  To solve this problem we do the reverse scan
394 	 * first and attempt to align our cluster, then do a
395 	 * forward scan if room remains.
396 	 */
397 more:
398 	while (ib && pageout_count < vm_pageout_page_count) {
399 		vm_page_t p;
400 
401 		if (ib > pindex) {
402 			ib = 0;
403 			break;
404 		}
405 
406 		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
407 			ib = 0;
408 			break;
409 		}
410 		vm_page_lock(p);
411 		vm_page_test_dirty(p);
412 		if (p->dirty == 0 ||
413 		    p->queue != PQ_INACTIVE ||
414 		    p->hold_count != 0) {	/* may be undergoing I/O */
415 			vm_page_unlock(p);
416 			ib = 0;
417 			break;
418 		}
419 		vm_page_unlock(p);
420 		mc[--page_base] = pb = p;
421 		++pageout_count;
422 		++ib;
423 		/*
424 		 * alignment boundry, stop here and switch directions.  Do
425 		 * not clear ib.
426 		 */
427 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
428 			break;
429 	}
430 
431 	while (pageout_count < vm_pageout_page_count &&
432 	    pindex + is < object->size) {
433 		vm_page_t p;
434 
435 		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
436 			break;
437 		vm_page_lock(p);
438 		vm_page_test_dirty(p);
439 		if (p->dirty == 0 ||
440 		    p->queue != PQ_INACTIVE ||
441 		    p->hold_count != 0) {	/* may be undergoing I/O */
442 			vm_page_unlock(p);
443 			break;
444 		}
445 		vm_page_unlock(p);
446 		mc[page_base + pageout_count] = ps = p;
447 		++pageout_count;
448 		++is;
449 	}
450 
451 	/*
452 	 * If we exhausted our forward scan, continue with the reverse scan
453 	 * when possible, even past a page boundry.  This catches boundry
454 	 * conditions.
455 	 */
456 	if (ib && pageout_count < vm_pageout_page_count)
457 		goto more;
458 
459 	/*
460 	 * we allow reads during pageouts...
461 	 */
462 	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
463 	    NULL));
464 }
465 
466 /*
467  * vm_pageout_flush() - launder the given pages
468  *
469  *	The given pages are laundered.  Note that we setup for the start of
470  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
471  *	reference count all in here rather then in the parent.  If we want
472  *	the parent to do more sophisticated things we may have to change
473  *	the ordering.
474  *
475  *	Returned runlen is the count of pages between mreq and first
476  *	page after mreq with status VM_PAGER_AGAIN.
477  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
478  *	for any page in runlen set.
479  */
480 int
481 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
482     boolean_t *eio)
483 {
484 	vm_object_t object = mc[0]->object;
485 	int pageout_status[count];
486 	int numpagedout = 0;
487 	int i, runlen;
488 
489 	VM_OBJECT_ASSERT_WLOCKED(object);
490 
491 	/*
492 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
493 	 * mark the pages read-only.
494 	 *
495 	 * We do not have to fixup the clean/dirty bits here... we can
496 	 * allow the pager to do it after the I/O completes.
497 	 *
498 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
499 	 * edge case with file fragments.
500 	 */
501 	for (i = 0; i < count; i++) {
502 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
503 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
504 			mc[i], i, count));
505 		vm_page_sbusy(mc[i]);
506 		pmap_remove_write(mc[i]);
507 	}
508 	vm_object_pip_add(object, count);
509 
510 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
511 
512 	runlen = count - mreq;
513 	if (eio != NULL)
514 		*eio = FALSE;
515 	for (i = 0; i < count; i++) {
516 		vm_page_t mt = mc[i];
517 
518 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
519 		    !pmap_page_is_write_mapped(mt),
520 		    ("vm_pageout_flush: page %p is not write protected", mt));
521 		switch (pageout_status[i]) {
522 		case VM_PAGER_OK:
523 		case VM_PAGER_PEND:
524 			numpagedout++;
525 			break;
526 		case VM_PAGER_BAD:
527 			/*
528 			 * Page outside of range of object. Right now we
529 			 * essentially lose the changes by pretending it
530 			 * worked.
531 			 */
532 			vm_page_undirty(mt);
533 			break;
534 		case VM_PAGER_ERROR:
535 		case VM_PAGER_FAIL:
536 			/*
537 			 * If page couldn't be paged out, then reactivate the
538 			 * page so it doesn't clog the inactive list.  (We
539 			 * will try paging out it again later).
540 			 */
541 			vm_page_lock(mt);
542 			vm_page_activate(mt);
543 			vm_page_unlock(mt);
544 			if (eio != NULL && i >= mreq && i - mreq < runlen)
545 				*eio = TRUE;
546 			break;
547 		case VM_PAGER_AGAIN:
548 			if (i >= mreq && i - mreq < runlen)
549 				runlen = i - mreq;
550 			break;
551 		}
552 
553 		/*
554 		 * If the operation is still going, leave the page busy to
555 		 * block all other accesses. Also, leave the paging in
556 		 * progress indicator set so that we don't attempt an object
557 		 * collapse.
558 		 */
559 		if (pageout_status[i] != VM_PAGER_PEND) {
560 			vm_object_pip_wakeup(object);
561 			vm_page_sunbusy(mt);
562 			if (vm_page_count_severe()) {
563 				vm_page_lock(mt);
564 				vm_page_try_to_cache(mt);
565 				vm_page_unlock(mt);
566 			}
567 		}
568 	}
569 	if (prunlen != NULL)
570 		*prunlen = runlen;
571 	return (numpagedout);
572 }
573 
574 static boolean_t
575 vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
576     vm_paddr_t high)
577 {
578 	struct mount *mp;
579 	struct vnode *vp;
580 	vm_object_t object;
581 	vm_paddr_t pa;
582 	vm_page_t m, m_tmp, next;
583 	int lockmode;
584 
585 	vm_pagequeue_lock(pq);
586 	TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
587 		if ((m->flags & PG_MARKER) != 0)
588 			continue;
589 		pa = VM_PAGE_TO_PHYS(m);
590 		if (pa < low || pa + PAGE_SIZE > high)
591 			continue;
592 		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
593 			vm_page_unlock(m);
594 			continue;
595 		}
596 		object = m->object;
597 		if ((!VM_OBJECT_TRYWLOCK(object) &&
598 		    (!vm_pageout_fallback_object_lock(m, &next) ||
599 		    m->hold_count != 0)) || vm_page_busied(m)) {
600 			vm_page_unlock(m);
601 			VM_OBJECT_WUNLOCK(object);
602 			continue;
603 		}
604 		vm_page_test_dirty(m);
605 		if (m->dirty == 0 && object->ref_count != 0)
606 			pmap_remove_all(m);
607 		if (m->dirty != 0) {
608 			vm_page_unlock(m);
609 			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
610 				VM_OBJECT_WUNLOCK(object);
611 				continue;
612 			}
613 			if (object->type == OBJT_VNODE) {
614 				vm_pagequeue_unlock(pq);
615 				vp = object->handle;
616 				vm_object_reference_locked(object);
617 				VM_OBJECT_WUNLOCK(object);
618 				(void)vn_start_write(vp, &mp, V_WAIT);
619 				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
620 				    LK_SHARED : LK_EXCLUSIVE;
621 				vn_lock(vp, lockmode | LK_RETRY);
622 				VM_OBJECT_WLOCK(object);
623 				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
624 				VM_OBJECT_WUNLOCK(object);
625 				VOP_UNLOCK(vp, 0);
626 				vm_object_deallocate(object);
627 				vn_finished_write(mp);
628 				return (TRUE);
629 			} else if (object->type == OBJT_SWAP ||
630 			    object->type == OBJT_DEFAULT) {
631 				vm_pagequeue_unlock(pq);
632 				m_tmp = m;
633 				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
634 				    0, NULL, NULL);
635 				VM_OBJECT_WUNLOCK(object);
636 				return (TRUE);
637 			}
638 		} else {
639 			/*
640 			 * Dequeue here to prevent lock recursion in
641 			 * vm_page_cache().
642 			 */
643 			vm_page_dequeue_locked(m);
644 			vm_page_cache(m);
645 			vm_page_unlock(m);
646 		}
647 		VM_OBJECT_WUNLOCK(object);
648 	}
649 	vm_pagequeue_unlock(pq);
650 	return (FALSE);
651 }
652 
653 /*
654  * Increase the number of cached pages.  The specified value, "tries",
655  * determines which categories of pages are cached:
656  *
657  *  0: All clean, inactive pages within the specified physical address range
658  *     are cached.  Will not sleep.
659  *  1: The vm_lowmem handlers are called.  All inactive pages within
660  *     the specified physical address range are cached.  May sleep.
661  *  2: The vm_lowmem handlers are called.  All inactive and active pages
662  *     within the specified physical address range are cached.  May sleep.
663  */
664 void
665 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
666 {
667 	int actl, actmax, inactl, inactmax, dom, initial_dom;
668 	static int start_dom = 0;
669 
670 	if (tries > 0) {
671 		/*
672 		 * Decrease registered cache sizes.  The vm_lowmem handlers
673 		 * may acquire locks and/or sleep, so they can only be invoked
674 		 * when "tries" is greater than zero.
675 		 */
676 		SDT_PROBE0(vm, , , vm__lowmem_cache);
677 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
678 
679 		/*
680 		 * We do this explicitly after the caches have been drained
681 		 * above.
682 		 */
683 		uma_reclaim();
684 	}
685 
686 	/*
687 	 * Make the next scan start on the next domain.
688 	 */
689 	initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
690 
691 	inactl = 0;
692 	inactmax = vm_cnt.v_inactive_count;
693 	actl = 0;
694 	actmax = tries < 2 ? 0 : vm_cnt.v_active_count;
695 	dom = initial_dom;
696 
697 	/*
698 	 * Scan domains in round-robin order, first inactive queues,
699 	 * then active.  Since domain usually owns large physically
700 	 * contiguous chunk of memory, it makes sense to completely
701 	 * exhaust one domain before switching to next, while growing
702 	 * the pool of contiguous physical pages.
703 	 *
704 	 * Do not even start launder a domain which cannot contain
705 	 * the specified address range, as indicated by segments
706 	 * constituting the domain.
707 	 */
708 again:
709 	if (inactl < inactmax) {
710 		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
711 		    low, high) &&
712 		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
713 		    tries, low, high)) {
714 			inactl++;
715 			goto again;
716 		}
717 		if (++dom == vm_ndomains)
718 			dom = 0;
719 		if (dom != initial_dom)
720 			goto again;
721 	}
722 	if (actl < actmax) {
723 		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
724 		    low, high) &&
725 		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
726 		      tries, low, high)) {
727 			actl++;
728 			goto again;
729 		}
730 		if (++dom == vm_ndomains)
731 			dom = 0;
732 		if (dom != initial_dom)
733 			goto again;
734 	}
735 }
736 
737 #if !defined(NO_SWAPPING)
738 /*
739  *	vm_pageout_object_deactivate_pages
740  *
741  *	Deactivate enough pages to satisfy the inactive target
742  *	requirements.
743  *
744  *	The object and map must be locked.
745  */
746 static void
747 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
748     long desired)
749 {
750 	vm_object_t backing_object, object;
751 	vm_page_t p;
752 	int act_delta, remove_mode;
753 
754 	VM_OBJECT_ASSERT_LOCKED(first_object);
755 	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
756 		return;
757 	for (object = first_object;; object = backing_object) {
758 		if (pmap_resident_count(pmap) <= desired)
759 			goto unlock_return;
760 		VM_OBJECT_ASSERT_LOCKED(object);
761 		if ((object->flags & OBJ_UNMANAGED) != 0 ||
762 		    object->paging_in_progress != 0)
763 			goto unlock_return;
764 
765 		remove_mode = 0;
766 		if (object->shadow_count > 1)
767 			remove_mode = 1;
768 		/*
769 		 * Scan the object's entire memory queue.
770 		 */
771 		TAILQ_FOREACH(p, &object->memq, listq) {
772 			if (pmap_resident_count(pmap) <= desired)
773 				goto unlock_return;
774 			if (vm_page_busied(p))
775 				continue;
776 			PCPU_INC(cnt.v_pdpages);
777 			vm_page_lock(p);
778 			if (p->wire_count != 0 || p->hold_count != 0 ||
779 			    !pmap_page_exists_quick(pmap, p)) {
780 				vm_page_unlock(p);
781 				continue;
782 			}
783 			act_delta = pmap_ts_referenced(p);
784 			if ((p->aflags & PGA_REFERENCED) != 0) {
785 				if (act_delta == 0)
786 					act_delta = 1;
787 				vm_page_aflag_clear(p, PGA_REFERENCED);
788 			}
789 			if (p->queue != PQ_ACTIVE && act_delta != 0) {
790 				vm_page_activate(p);
791 				p->act_count += act_delta;
792 			} else if (p->queue == PQ_ACTIVE) {
793 				if (act_delta == 0) {
794 					p->act_count -= min(p->act_count,
795 					    ACT_DECLINE);
796 					if (!remove_mode && p->act_count == 0) {
797 						pmap_remove_all(p);
798 						vm_page_deactivate(p);
799 					} else
800 						vm_page_requeue(p);
801 				} else {
802 					vm_page_activate(p);
803 					if (p->act_count < ACT_MAX -
804 					    ACT_ADVANCE)
805 						p->act_count += ACT_ADVANCE;
806 					vm_page_requeue(p);
807 				}
808 			} else if (p->queue == PQ_INACTIVE)
809 				pmap_remove_all(p);
810 			vm_page_unlock(p);
811 		}
812 		if ((backing_object = object->backing_object) == NULL)
813 			goto unlock_return;
814 		VM_OBJECT_RLOCK(backing_object);
815 		if (object != first_object)
816 			VM_OBJECT_RUNLOCK(object);
817 	}
818 unlock_return:
819 	if (object != first_object)
820 		VM_OBJECT_RUNLOCK(object);
821 }
822 
823 /*
824  * deactivate some number of pages in a map, try to do it fairly, but
825  * that is really hard to do.
826  */
827 static void
828 vm_pageout_map_deactivate_pages(map, desired)
829 	vm_map_t map;
830 	long desired;
831 {
832 	vm_map_entry_t tmpe;
833 	vm_object_t obj, bigobj;
834 	int nothingwired;
835 
836 	if (!vm_map_trylock(map))
837 		return;
838 
839 	bigobj = NULL;
840 	nothingwired = TRUE;
841 
842 	/*
843 	 * first, search out the biggest object, and try to free pages from
844 	 * that.
845 	 */
846 	tmpe = map->header.next;
847 	while (tmpe != &map->header) {
848 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
849 			obj = tmpe->object.vm_object;
850 			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
851 				if (obj->shadow_count <= 1 &&
852 				    (bigobj == NULL ||
853 				     bigobj->resident_page_count < obj->resident_page_count)) {
854 					if (bigobj != NULL)
855 						VM_OBJECT_RUNLOCK(bigobj);
856 					bigobj = obj;
857 				} else
858 					VM_OBJECT_RUNLOCK(obj);
859 			}
860 		}
861 		if (tmpe->wired_count > 0)
862 			nothingwired = FALSE;
863 		tmpe = tmpe->next;
864 	}
865 
866 	if (bigobj != NULL) {
867 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
868 		VM_OBJECT_RUNLOCK(bigobj);
869 	}
870 	/*
871 	 * Next, hunt around for other pages to deactivate.  We actually
872 	 * do this search sort of wrong -- .text first is not the best idea.
873 	 */
874 	tmpe = map->header.next;
875 	while (tmpe != &map->header) {
876 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
877 			break;
878 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
879 			obj = tmpe->object.vm_object;
880 			if (obj != NULL) {
881 				VM_OBJECT_RLOCK(obj);
882 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
883 				VM_OBJECT_RUNLOCK(obj);
884 			}
885 		}
886 		tmpe = tmpe->next;
887 	}
888 
889 	/*
890 	 * Remove all mappings if a process is swapped out, this will free page
891 	 * table pages.
892 	 */
893 	if (desired == 0 && nothingwired) {
894 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
895 		    vm_map_max(map));
896 	}
897 
898 	vm_map_unlock(map);
899 }
900 #endif		/* !defined(NO_SWAPPING) */
901 
902 /*
903  *	vm_pageout_scan does the dirty work for the pageout daemon.
904  *
905  *	pass 0 - Update active LRU/deactivate pages
906  *	pass 1 - Move inactive to cache or free
907  *	pass 2 - Launder dirty pages
908  */
909 static void
910 vm_pageout_scan(struct vm_domain *vmd, int pass)
911 {
912 	vm_page_t m, next;
913 	struct vm_pagequeue *pq;
914 	vm_object_t object;
915 	int act_delta, addl_page_shortage, deficit, maxscan, page_shortage;
916 	int vnodes_skipped = 0;
917 	int maxlaunder;
918 	int lockmode;
919 	boolean_t queues_locked;
920 
921 	/*
922 	 * If we need to reclaim memory ask kernel caches to return
923 	 * some.  We rate limit to avoid thrashing.
924 	 */
925 	if (vmd == &vm_dom[0] && pass > 0 &&
926 	    (ticks - lowmem_ticks) / hz >= lowmem_period) {
927 		/*
928 		 * Decrease registered cache sizes.
929 		 */
930 		SDT_PROBE0(vm, , , vm__lowmem_scan);
931 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
932 		/*
933 		 * We do this explicitly after the caches have been
934 		 * drained above.
935 		 */
936 		uma_reclaim();
937 		lowmem_ticks = ticks;
938 	}
939 
940 	/*
941 	 * The addl_page_shortage is the number of temporarily
942 	 * stuck pages in the inactive queue.  In other words, the
943 	 * number of pages from the inactive count that should be
944 	 * discounted in setting the target for the active queue scan.
945 	 */
946 	addl_page_shortage = 0;
947 
948 	/*
949 	 * Calculate the number of pages we want to either free or move
950 	 * to the cache.
951 	 */
952 	if (pass > 0) {
953 		deficit = atomic_readandclear_int(&vm_pageout_deficit);
954 		page_shortage = vm_paging_target() + deficit;
955 	} else
956 		page_shortage = deficit = 0;
957 
958 	/*
959 	 * maxlaunder limits the number of dirty pages we flush per scan.
960 	 * For most systems a smaller value (16 or 32) is more robust under
961 	 * extreme memory and disk pressure because any unnecessary writes
962 	 * to disk can result in extreme performance degredation.  However,
963 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
964 	 * used) will die horribly with limited laundering.  If the pageout
965 	 * daemon cannot clean enough pages in the first pass, we let it go
966 	 * all out in succeeding passes.
967 	 */
968 	if ((maxlaunder = vm_max_launder) <= 1)
969 		maxlaunder = 1;
970 	if (pass > 1)
971 		maxlaunder = 10000;
972 
973 	/*
974 	 * Start scanning the inactive queue for pages we can move to the
975 	 * cache or free.  The scan will stop when the target is reached or
976 	 * we have scanned the entire inactive queue.  Note that m->act_count
977 	 * is not used to form decisions for the inactive queue, only for the
978 	 * active queue.
979 	 */
980 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
981 	maxscan = pq->pq_cnt;
982 	vm_pagequeue_lock(pq);
983 	queues_locked = TRUE;
984 	for (m = TAILQ_FIRST(&pq->pq_pl);
985 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
986 	     m = next) {
987 		vm_pagequeue_assert_locked(pq);
988 		KASSERT(queues_locked, ("unlocked queues"));
989 		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
990 
991 		PCPU_INC(cnt.v_pdpages);
992 		next = TAILQ_NEXT(m, plinks.q);
993 
994 		/*
995 		 * skip marker pages
996 		 */
997 		if (m->flags & PG_MARKER)
998 			continue;
999 
1000 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1001 		    ("Fictitious page %p cannot be in inactive queue", m));
1002 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1003 		    ("Unmanaged page %p cannot be in inactive queue", m));
1004 
1005 		/*
1006 		 * The page or object lock acquisitions fail if the
1007 		 * page was removed from the queue or moved to a
1008 		 * different position within the queue.  In either
1009 		 * case, addl_page_shortage should not be incremented.
1010 		 */
1011 		if (!vm_pageout_page_lock(m, &next)) {
1012 			vm_page_unlock(m);
1013 			continue;
1014 		}
1015 		object = m->object;
1016 		if (!VM_OBJECT_TRYWLOCK(object) &&
1017 		    !vm_pageout_fallback_object_lock(m, &next)) {
1018 			vm_page_unlock(m);
1019 			VM_OBJECT_WUNLOCK(object);
1020 			continue;
1021 		}
1022 
1023 		/*
1024 		 * Don't mess with busy pages, keep them at at the
1025 		 * front of the queue, most likely they are being
1026 		 * paged out.  Increment addl_page_shortage for busy
1027 		 * pages, because they may leave the inactive queue
1028 		 * shortly after page scan is finished.
1029 		 */
1030 		if (vm_page_busied(m)) {
1031 			vm_page_unlock(m);
1032 			VM_OBJECT_WUNLOCK(object);
1033 			addl_page_shortage++;
1034 			continue;
1035 		}
1036 
1037 		/*
1038 		 * We unlock the inactive page queue, invalidating the
1039 		 * 'next' pointer.  Use our marker to remember our
1040 		 * place.
1041 		 */
1042 		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1043 		vm_pagequeue_unlock(pq);
1044 		queues_locked = FALSE;
1045 
1046 		/*
1047 		 * We bump the activation count if the page has been
1048 		 * referenced while in the inactive queue.  This makes
1049 		 * it less likely that the page will be added back to the
1050 		 * inactive queue prematurely again.  Here we check the
1051 		 * page tables (or emulated bits, if any), given the upper
1052 		 * level VM system not knowing anything about existing
1053 		 * references.
1054 		 */
1055 		if ((m->aflags & PGA_REFERENCED) != 0) {
1056 			vm_page_aflag_clear(m, PGA_REFERENCED);
1057 			act_delta = 1;
1058 		} else
1059 			act_delta = 0;
1060 		if (object->ref_count != 0) {
1061 			act_delta += pmap_ts_referenced(m);
1062 		} else {
1063 			KASSERT(!pmap_page_is_mapped(m),
1064 			    ("vm_pageout_scan: page %p is mapped", m));
1065 		}
1066 
1067 		/*
1068 		 * If the upper level VM system knows about any page
1069 		 * references, we reactivate the page or requeue it.
1070 		 */
1071 		if (act_delta != 0) {
1072 			if (object->ref_count != 0) {
1073 				vm_page_activate(m);
1074 				m->act_count += act_delta + ACT_ADVANCE;
1075 			} else {
1076 				vm_pagequeue_lock(pq);
1077 				queues_locked = TRUE;
1078 				vm_page_requeue_locked(m);
1079 			}
1080 			VM_OBJECT_WUNLOCK(object);
1081 			vm_page_unlock(m);
1082 			goto relock_queues;
1083 		}
1084 
1085 		if (m->hold_count != 0) {
1086 			vm_page_unlock(m);
1087 			VM_OBJECT_WUNLOCK(object);
1088 
1089 			/*
1090 			 * Held pages are essentially stuck in the
1091 			 * queue.  So, they ought to be discounted
1092 			 * from the inactive count.  See the
1093 			 * calculation of the page_shortage for the
1094 			 * loop over the active queue below.
1095 			 */
1096 			addl_page_shortage++;
1097 			goto relock_queues;
1098 		}
1099 
1100 		/*
1101 		 * If the page appears to be clean at the machine-independent
1102 		 * layer, then remove all of its mappings from the pmap in
1103 		 * anticipation of placing it onto the cache queue.  If,
1104 		 * however, any of the page's mappings allow write access,
1105 		 * then the page may still be modified until the last of those
1106 		 * mappings are removed.
1107 		 */
1108 		vm_page_test_dirty(m);
1109 		if (m->dirty == 0 && object->ref_count != 0)
1110 			pmap_remove_all(m);
1111 
1112 		if (m->valid == 0) {
1113 			/*
1114 			 * Invalid pages can be easily freed
1115 			 */
1116 			vm_page_free(m);
1117 			PCPU_INC(cnt.v_dfree);
1118 			--page_shortage;
1119 		} else if (m->dirty == 0) {
1120 			/*
1121 			 * Clean pages can be placed onto the cache queue.
1122 			 * This effectively frees them.
1123 			 */
1124 			vm_page_cache(m);
1125 			--page_shortage;
1126 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1127 			/*
1128 			 * Dirty pages need to be paged out, but flushing
1129 			 * a page is extremely expensive versus freeing
1130 			 * a clean page.  Rather then artificially limiting
1131 			 * the number of pages we can flush, we instead give
1132 			 * dirty pages extra priority on the inactive queue
1133 			 * by forcing them to be cycled through the queue
1134 			 * twice before being flushed, after which the
1135 			 * (now clean) page will cycle through once more
1136 			 * before being freed.  This significantly extends
1137 			 * the thrash point for a heavily loaded machine.
1138 			 */
1139 			m->flags |= PG_WINATCFLS;
1140 			vm_pagequeue_lock(pq);
1141 			queues_locked = TRUE;
1142 			vm_page_requeue_locked(m);
1143 		} else if (maxlaunder > 0) {
1144 			/*
1145 			 * We always want to try to flush some dirty pages if
1146 			 * we encounter them, to keep the system stable.
1147 			 * Normally this number is small, but under extreme
1148 			 * pressure where there are insufficient clean pages
1149 			 * on the inactive queue, we may have to go all out.
1150 			 */
1151 			int swap_pageouts_ok;
1152 			struct vnode *vp = NULL;
1153 			struct mount *mp = NULL;
1154 
1155 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1156 				swap_pageouts_ok = 1;
1157 			} else {
1158 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1159 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1160 				vm_page_count_min());
1161 
1162 			}
1163 
1164 			/*
1165 			 * We don't bother paging objects that are "dead".
1166 			 * Those objects are in a "rundown" state.
1167 			 */
1168 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1169 				vm_pagequeue_lock(pq);
1170 				vm_page_unlock(m);
1171 				VM_OBJECT_WUNLOCK(object);
1172 				queues_locked = TRUE;
1173 				vm_page_requeue_locked(m);
1174 				goto relock_queues;
1175 			}
1176 
1177 			/*
1178 			 * The object is already known NOT to be dead.   It
1179 			 * is possible for the vget() to block the whole
1180 			 * pageout daemon, but the new low-memory handling
1181 			 * code should prevent it.
1182 			 *
1183 			 * The previous code skipped locked vnodes and, worse,
1184 			 * reordered pages in the queue.  This results in
1185 			 * completely non-deterministic operation and, on a
1186 			 * busy system, can lead to extremely non-optimal
1187 			 * pageouts.  For example, it can cause clean pages
1188 			 * to be freed and dirty pages to be moved to the end
1189 			 * of the queue.  Since dirty pages are also moved to
1190 			 * the end of the queue once-cleaned, this gives
1191 			 * way too large a weighting to deferring the freeing
1192 			 * of dirty pages.
1193 			 *
1194 			 * We can't wait forever for the vnode lock, we might
1195 			 * deadlock due to a vn_read() getting stuck in
1196 			 * vm_wait while holding this vnode.  We skip the
1197 			 * vnode if we can't get it in a reasonable amount
1198 			 * of time.
1199 			 */
1200 			if (object->type == OBJT_VNODE) {
1201 				vm_page_unlock(m);
1202 				vp = object->handle;
1203 				if (vp->v_type == VREG &&
1204 				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1205 					mp = NULL;
1206 					++pageout_lock_miss;
1207 					if (object->flags & OBJ_MIGHTBEDIRTY)
1208 						vnodes_skipped++;
1209 					goto unlock_and_continue;
1210 				}
1211 				KASSERT(mp != NULL,
1212 				    ("vp %p with NULL v_mount", vp));
1213 				vm_object_reference_locked(object);
1214 				VM_OBJECT_WUNLOCK(object);
1215 				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
1216 				    LK_SHARED : LK_EXCLUSIVE;
1217 				if (vget(vp, lockmode | LK_TIMELOCK,
1218 				    curthread)) {
1219 					VM_OBJECT_WLOCK(object);
1220 					++pageout_lock_miss;
1221 					if (object->flags & OBJ_MIGHTBEDIRTY)
1222 						vnodes_skipped++;
1223 					vp = NULL;
1224 					goto unlock_and_continue;
1225 				}
1226 				VM_OBJECT_WLOCK(object);
1227 				vm_page_lock(m);
1228 				vm_pagequeue_lock(pq);
1229 				queues_locked = TRUE;
1230 				/*
1231 				 * The page might have been moved to another
1232 				 * queue during potential blocking in vget()
1233 				 * above.  The page might have been freed and
1234 				 * reused for another vnode.
1235 				 */
1236 				if (m->queue != PQ_INACTIVE ||
1237 				    m->object != object ||
1238 				    TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
1239 					vm_page_unlock(m);
1240 					if (object->flags & OBJ_MIGHTBEDIRTY)
1241 						vnodes_skipped++;
1242 					goto unlock_and_continue;
1243 				}
1244 
1245 				/*
1246 				 * The page may have been busied during the
1247 				 * blocking in vget().  We don't move the
1248 				 * page back onto the end of the queue so that
1249 				 * statistics are more correct if we don't.
1250 				 */
1251 				if (vm_page_busied(m)) {
1252 					vm_page_unlock(m);
1253 					addl_page_shortage++;
1254 					goto unlock_and_continue;
1255 				}
1256 
1257 				/*
1258 				 * If the page has become held it might
1259 				 * be undergoing I/O, so skip it
1260 				 */
1261 				if (m->hold_count != 0) {
1262 					vm_page_unlock(m);
1263 					addl_page_shortage++;
1264 					if (object->flags & OBJ_MIGHTBEDIRTY)
1265 						vnodes_skipped++;
1266 					goto unlock_and_continue;
1267 				}
1268 				vm_pagequeue_unlock(pq);
1269 				queues_locked = FALSE;
1270 			}
1271 
1272 			/*
1273 			 * If a page is dirty, then it is either being washed
1274 			 * (but not yet cleaned) or it is still in the
1275 			 * laundry.  If it is still in the laundry, then we
1276 			 * start the cleaning operation.
1277 			 *
1278 			 * decrement page_shortage on success to account for
1279 			 * the (future) cleaned page.  Otherwise we could wind
1280 			 * up laundering or cleaning too many pages.
1281 			 */
1282 			if (vm_pageout_clean(m) != 0) {
1283 				--page_shortage;
1284 				--maxlaunder;
1285 			}
1286 unlock_and_continue:
1287 			vm_page_lock_assert(m, MA_NOTOWNED);
1288 			VM_OBJECT_WUNLOCK(object);
1289 			if (mp != NULL) {
1290 				if (queues_locked) {
1291 					vm_pagequeue_unlock(pq);
1292 					queues_locked = FALSE;
1293 				}
1294 				if (vp != NULL)
1295 					vput(vp);
1296 				vm_object_deallocate(object);
1297 				vn_finished_write(mp);
1298 			}
1299 			vm_page_lock_assert(m, MA_NOTOWNED);
1300 			goto relock_queues;
1301 		}
1302 		vm_page_unlock(m);
1303 		VM_OBJECT_WUNLOCK(object);
1304 relock_queues:
1305 		if (!queues_locked) {
1306 			vm_pagequeue_lock(pq);
1307 			queues_locked = TRUE;
1308 		}
1309 		next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1310 		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1311 	}
1312 	vm_pagequeue_unlock(pq);
1313 
1314 #if !defined(NO_SWAPPING)
1315 	/*
1316 	 * Wakeup the swapout daemon if we didn't cache or free the targeted
1317 	 * number of pages.
1318 	 */
1319 	if (vm_swap_enabled && page_shortage > 0)
1320 		vm_req_vmdaemon(VM_SWAP_NORMAL);
1321 #endif
1322 
1323 	/*
1324 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
1325 	 * and we didn't cache or free enough pages.
1326 	 */
1327 	if (vnodes_skipped > 0 && page_shortage > vm_cnt.v_free_target -
1328 	    vm_cnt.v_free_min)
1329 		(void)speedup_syncer();
1330 
1331 	/*
1332 	 * Compute the number of pages we want to try to move from the
1333 	 * active queue to the inactive queue.
1334 	 */
1335 	page_shortage = vm_cnt.v_inactive_target - vm_cnt.v_inactive_count +
1336 	    vm_paging_target() + deficit + addl_page_shortage;
1337 
1338 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1339 	vm_pagequeue_lock(pq);
1340 	maxscan = pq->pq_cnt;
1341 
1342 	/*
1343 	 * If we're just idle polling attempt to visit every
1344 	 * active page within 'update_period' seconds.
1345 	 */
1346 	if (pass == 0 && vm_pageout_update_period != 0) {
1347 		maxscan /= vm_pageout_update_period;
1348 		page_shortage = maxscan;
1349 	}
1350 
1351 	/*
1352 	 * Scan the active queue for things we can deactivate. We nominally
1353 	 * track the per-page activity counter and use it to locate
1354 	 * deactivation candidates.
1355 	 */
1356 	m = TAILQ_FIRST(&pq->pq_pl);
1357 	while (m != NULL && maxscan-- > 0 && page_shortage > 0) {
1358 
1359 		KASSERT(m->queue == PQ_ACTIVE,
1360 		    ("vm_pageout_scan: page %p isn't active", m));
1361 
1362 		next = TAILQ_NEXT(m, plinks.q);
1363 		if ((m->flags & PG_MARKER) != 0) {
1364 			m = next;
1365 			continue;
1366 		}
1367 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1368 		    ("Fictitious page %p cannot be in active queue", m));
1369 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1370 		    ("Unmanaged page %p cannot be in active queue", m));
1371 		if (!vm_pageout_page_lock(m, &next)) {
1372 			vm_page_unlock(m);
1373 			m = next;
1374 			continue;
1375 		}
1376 
1377 		/*
1378 		 * The count for pagedaemon pages is done after checking the
1379 		 * page for eligibility...
1380 		 */
1381 		PCPU_INC(cnt.v_pdpages);
1382 
1383 		/*
1384 		 * Check to see "how much" the page has been used.
1385 		 */
1386 		if ((m->aflags & PGA_REFERENCED) != 0) {
1387 			vm_page_aflag_clear(m, PGA_REFERENCED);
1388 			act_delta = 1;
1389 		} else
1390 			act_delta = 0;
1391 
1392 		/*
1393 		 * Unlocked object ref count check.  Two races are possible.
1394 		 * 1) The ref was transitioning to zero and we saw non-zero,
1395 		 *    the pmap bits will be checked unnecessarily.
1396 		 * 2) The ref was transitioning to one and we saw zero.
1397 		 *    The page lock prevents a new reference to this page so
1398 		 *    we need not check the reference bits.
1399 		 */
1400 		if (m->object->ref_count != 0)
1401 			act_delta += pmap_ts_referenced(m);
1402 
1403 		/*
1404 		 * Advance or decay the act_count based on recent usage.
1405 		 */
1406 		if (act_delta != 0) {
1407 			m->act_count += ACT_ADVANCE + act_delta;
1408 			if (m->act_count > ACT_MAX)
1409 				m->act_count = ACT_MAX;
1410 		} else
1411 			m->act_count -= min(m->act_count, ACT_DECLINE);
1412 
1413 		/*
1414 		 * Move this page to the tail of the active or inactive
1415 		 * queue depending on usage.
1416 		 */
1417 		if (m->act_count == 0) {
1418 			/* Dequeue to avoid later lock recursion. */
1419 			vm_page_dequeue_locked(m);
1420 			vm_page_deactivate(m);
1421 			page_shortage--;
1422 		} else
1423 			vm_page_requeue_locked(m);
1424 		vm_page_unlock(m);
1425 		m = next;
1426 	}
1427 	vm_pagequeue_unlock(pq);
1428 #if !defined(NO_SWAPPING)
1429 	/*
1430 	 * Idle process swapout -- run once per second.
1431 	 */
1432 	if (vm_swap_idle_enabled) {
1433 		static long lsec;
1434 		if (time_second != lsec) {
1435 			vm_req_vmdaemon(VM_SWAP_IDLE);
1436 			lsec = time_second;
1437 		}
1438 	}
1439 #endif
1440 
1441 	/*
1442 	 * If we are critically low on one of RAM or swap and low on
1443 	 * the other, kill the largest process.  However, we avoid
1444 	 * doing this on the first pass in order to give ourselves a
1445 	 * chance to flush out dirty vnode-backed pages and to allow
1446 	 * active pages to be moved to the inactive queue and reclaimed.
1447 	 */
1448 	vm_pageout_mightbe_oom(vmd, pass);
1449 }
1450 
1451 static int vm_pageout_oom_vote;
1452 
1453 /*
1454  * The pagedaemon threads randlomly select one to perform the
1455  * OOM.  Trying to kill processes before all pagedaemons
1456  * failed to reach free target is premature.
1457  */
1458 static void
1459 vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass)
1460 {
1461 	int old_vote;
1462 
1463 	if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) ||
1464 	    (swap_pager_full && vm_paging_target() > 0))) {
1465 		if (vmd->vmd_oom) {
1466 			vmd->vmd_oom = FALSE;
1467 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1468 		}
1469 		return;
1470 	}
1471 
1472 	if (vmd->vmd_oom)
1473 		return;
1474 
1475 	vmd->vmd_oom = TRUE;
1476 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1477 	if (old_vote != vm_ndomains - 1)
1478 		return;
1479 
1480 	/*
1481 	 * The current pagedaemon thread is the last in the quorum to
1482 	 * start OOM.  Initiate the selection and signaling of the
1483 	 * victim.
1484 	 */
1485 	vm_pageout_oom(VM_OOM_MEM);
1486 
1487 	/*
1488 	 * After one round of OOM terror, recall our vote.  On the
1489 	 * next pass, current pagedaemon would vote again if the low
1490 	 * memory condition is still there, due to vmd_oom being
1491 	 * false.
1492 	 */
1493 	vmd->vmd_oom = FALSE;
1494 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1495 }
1496 
1497 void
1498 vm_pageout_oom(int shortage)
1499 {
1500 	struct proc *p, *bigproc;
1501 	vm_offset_t size, bigsize;
1502 	struct thread *td;
1503 	struct vmspace *vm;
1504 
1505 	/*
1506 	 * We keep the process bigproc locked once we find it to keep anyone
1507 	 * from messing with it; however, there is a possibility of
1508 	 * deadlock if process B is bigproc and one of it's child processes
1509 	 * attempts to propagate a signal to B while we are waiting for A's
1510 	 * lock while walking this list.  To avoid this, we don't block on
1511 	 * the process lock but just skip a process if it is already locked.
1512 	 */
1513 	bigproc = NULL;
1514 	bigsize = 0;
1515 	sx_slock(&allproc_lock);
1516 	FOREACH_PROC_IN_SYSTEM(p) {
1517 		int breakout;
1518 
1519 		if (PROC_TRYLOCK(p) == 0)
1520 			continue;
1521 		/*
1522 		 * If this is a system, protected or killed process, skip it.
1523 		 */
1524 		if (p->p_state != PRS_NORMAL ||
1525 		    (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1526 		    (p->p_pid == 1) || P_KILLED(p) ||
1527 		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1528 			PROC_UNLOCK(p);
1529 			continue;
1530 		}
1531 		/*
1532 		 * If the process is in a non-running type state,
1533 		 * don't touch it.  Check all the threads individually.
1534 		 */
1535 		breakout = 0;
1536 		FOREACH_THREAD_IN_PROC(p, td) {
1537 			thread_lock(td);
1538 			if (!TD_ON_RUNQ(td) &&
1539 			    !TD_IS_RUNNING(td) &&
1540 			    !TD_IS_SLEEPING(td) &&
1541 			    !TD_IS_SUSPENDED(td)) {
1542 				thread_unlock(td);
1543 				breakout = 1;
1544 				break;
1545 			}
1546 			thread_unlock(td);
1547 		}
1548 		if (breakout) {
1549 			PROC_UNLOCK(p);
1550 			continue;
1551 		}
1552 		/*
1553 		 * get the process size
1554 		 */
1555 		vm = vmspace_acquire_ref(p);
1556 		if (vm == NULL) {
1557 			PROC_UNLOCK(p);
1558 			continue;
1559 		}
1560 		if (!vm_map_trylock_read(&vm->vm_map)) {
1561 			vmspace_free(vm);
1562 			PROC_UNLOCK(p);
1563 			continue;
1564 		}
1565 		size = vmspace_swap_count(vm);
1566 		vm_map_unlock_read(&vm->vm_map);
1567 		if (shortage == VM_OOM_MEM)
1568 			size += vmspace_resident_count(vm);
1569 		vmspace_free(vm);
1570 		/*
1571 		 * if the this process is bigger than the biggest one
1572 		 * remember it.
1573 		 */
1574 		if (size > bigsize) {
1575 			if (bigproc != NULL)
1576 				PROC_UNLOCK(bigproc);
1577 			bigproc = p;
1578 			bigsize = size;
1579 		} else
1580 			PROC_UNLOCK(p);
1581 	}
1582 	sx_sunlock(&allproc_lock);
1583 	if (bigproc != NULL) {
1584 		killproc(bigproc, "out of swap space");
1585 		sched_nice(bigproc, PRIO_MIN);
1586 		PROC_UNLOCK(bigproc);
1587 		wakeup(&vm_cnt.v_free_count);
1588 	}
1589 }
1590 
1591 static void
1592 vm_pageout_worker(void *arg)
1593 {
1594 	struct vm_domain *domain;
1595 	int domidx;
1596 
1597 	domidx = (uintptr_t)arg;
1598 	domain = &vm_dom[domidx];
1599 
1600 	/*
1601 	 * XXXKIB It could be useful to bind pageout daemon threads to
1602 	 * the cores belonging to the domain, from which vm_page_array
1603 	 * is allocated.
1604 	 */
1605 
1606 	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1607 	vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1608 
1609 	/*
1610 	 * The pageout daemon worker is never done, so loop forever.
1611 	 */
1612 	while (TRUE) {
1613 		/*
1614 		 * If we have enough free memory, wakeup waiters.  Do
1615 		 * not clear vm_pages_needed until we reach our target,
1616 		 * otherwise we may be woken up over and over again and
1617 		 * waste a lot of cpu.
1618 		 */
1619 		mtx_lock(&vm_page_queue_free_mtx);
1620 		if (vm_pages_needed && !vm_page_count_min()) {
1621 			if (!vm_paging_needed())
1622 				vm_pages_needed = 0;
1623 			wakeup(&vm_cnt.v_free_count);
1624 		}
1625 		if (vm_pages_needed) {
1626 			/*
1627 			 * Still not done, take a second pass without waiting
1628 			 * (unlimited dirty cleaning), otherwise sleep a bit
1629 			 * and try again.
1630 			 */
1631 			if (domain->vmd_pass > 1)
1632 				msleep(&vm_pages_needed,
1633 				    &vm_page_queue_free_mtx, PVM, "psleep",
1634 				    hz / 2);
1635 		} else {
1636 			/*
1637 			 * Good enough, sleep until required to refresh
1638 			 * stats.
1639 			 */
1640 			domain->vmd_pass = 0;
1641 			msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1642 			    PVM, "psleep", hz);
1643 
1644 		}
1645 		if (vm_pages_needed) {
1646 			vm_cnt.v_pdwakeups++;
1647 			domain->vmd_pass++;
1648 		}
1649 		mtx_unlock(&vm_page_queue_free_mtx);
1650 		vm_pageout_scan(domain, domain->vmd_pass);
1651 	}
1652 }
1653 
1654 /*
1655  *	vm_pageout_init initialises basic pageout daemon settings.
1656  */
1657 static void
1658 vm_pageout_init(void)
1659 {
1660 	/*
1661 	 * Initialize some paging parameters.
1662 	 */
1663 	vm_cnt.v_interrupt_free_min = 2;
1664 	if (vm_cnt.v_page_count < 2000)
1665 		vm_pageout_page_count = 8;
1666 
1667 	/*
1668 	 * v_free_reserved needs to include enough for the largest
1669 	 * swap pager structures plus enough for any pv_entry structs
1670 	 * when paging.
1671 	 */
1672 	if (vm_cnt.v_page_count > 1024)
1673 		vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200;
1674 	else
1675 		vm_cnt.v_free_min = 4;
1676 	vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1677 	    vm_cnt.v_interrupt_free_min;
1678 	vm_cnt.v_free_reserved = vm_pageout_page_count +
1679 	    vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768);
1680 	vm_cnt.v_free_severe = vm_cnt.v_free_min / 2;
1681 	vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved;
1682 	vm_cnt.v_free_min += vm_cnt.v_free_reserved;
1683 	vm_cnt.v_free_severe += vm_cnt.v_free_reserved;
1684 	vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2;
1685 	if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3)
1686 		vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3;
1687 
1688 	/*
1689 	 * Set the default wakeup threshold to be 10% above the minimum
1690 	 * page limit.  This keeps the steady state out of shortfall.
1691 	 */
1692 	vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11;
1693 
1694 	/*
1695 	 * Set interval in seconds for active scan.  We want to visit each
1696 	 * page at least once every ten minutes.  This is to prevent worst
1697 	 * case paging behaviors with stale active LRU.
1698 	 */
1699 	if (vm_pageout_update_period == 0)
1700 		vm_pageout_update_period = 600;
1701 
1702 	/* XXX does not really belong here */
1703 	if (vm_page_max_wired == 0)
1704 		vm_page_max_wired = vm_cnt.v_free_count / 3;
1705 }
1706 
1707 /*
1708  *     vm_pageout is the high level pageout daemon.
1709  */
1710 static void
1711 vm_pageout(void)
1712 {
1713 #if MAXMEMDOM > 1
1714 	int error, i;
1715 #endif
1716 
1717 	swap_pager_swap_init();
1718 #if MAXMEMDOM > 1
1719 	for (i = 1; i < vm_ndomains; i++) {
1720 		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1721 		    curproc, NULL, 0, 0, "dom%d", i);
1722 		if (error != 0) {
1723 			panic("starting pageout for domain %d, error %d\n",
1724 			    i, error);
1725 		}
1726 	}
1727 #endif
1728 	vm_pageout_worker((void *)(uintptr_t)0);
1729 }
1730 
1731 /*
1732  * Unless the free page queue lock is held by the caller, this function
1733  * should be regarded as advisory.  Specifically, the caller should
1734  * not msleep() on &vm_cnt.v_free_count following this function unless
1735  * the free page queue lock is held until the msleep() is performed.
1736  */
1737 void
1738 pagedaemon_wakeup(void)
1739 {
1740 
1741 	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1742 		vm_pages_needed = 1;
1743 		wakeup(&vm_pages_needed);
1744 	}
1745 }
1746 
1747 #if !defined(NO_SWAPPING)
1748 static void
1749 vm_req_vmdaemon(int req)
1750 {
1751 	static int lastrun = 0;
1752 
1753 	mtx_lock(&vm_daemon_mtx);
1754 	vm_pageout_req_swapout |= req;
1755 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1756 		wakeup(&vm_daemon_needed);
1757 		lastrun = ticks;
1758 	}
1759 	mtx_unlock(&vm_daemon_mtx);
1760 }
1761 
1762 static void
1763 vm_daemon(void)
1764 {
1765 	struct rlimit rsslim;
1766 	struct proc *p;
1767 	struct thread *td;
1768 	struct vmspace *vm;
1769 	int breakout, swapout_flags, tryagain, attempts;
1770 #ifdef RACCT
1771 	uint64_t rsize, ravailable;
1772 #endif
1773 
1774 	while (TRUE) {
1775 		mtx_lock(&vm_daemon_mtx);
1776 #ifdef RACCT
1777 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1778 #else
1779 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1780 #endif
1781 		swapout_flags = vm_pageout_req_swapout;
1782 		vm_pageout_req_swapout = 0;
1783 		mtx_unlock(&vm_daemon_mtx);
1784 		if (swapout_flags)
1785 			swapout_procs(swapout_flags);
1786 
1787 		/*
1788 		 * scan the processes for exceeding their rlimits or if
1789 		 * process is swapped out -- deactivate pages
1790 		 */
1791 		tryagain = 0;
1792 		attempts = 0;
1793 again:
1794 		attempts++;
1795 		sx_slock(&allproc_lock);
1796 		FOREACH_PROC_IN_SYSTEM(p) {
1797 			vm_pindex_t limit, size;
1798 
1799 			/*
1800 			 * if this is a system process or if we have already
1801 			 * looked at this process, skip it.
1802 			 */
1803 			PROC_LOCK(p);
1804 			if (p->p_state != PRS_NORMAL ||
1805 			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1806 				PROC_UNLOCK(p);
1807 				continue;
1808 			}
1809 			/*
1810 			 * if the process is in a non-running type state,
1811 			 * don't touch it.
1812 			 */
1813 			breakout = 0;
1814 			FOREACH_THREAD_IN_PROC(p, td) {
1815 				thread_lock(td);
1816 				if (!TD_ON_RUNQ(td) &&
1817 				    !TD_IS_RUNNING(td) &&
1818 				    !TD_IS_SLEEPING(td) &&
1819 				    !TD_IS_SUSPENDED(td)) {
1820 					thread_unlock(td);
1821 					breakout = 1;
1822 					break;
1823 				}
1824 				thread_unlock(td);
1825 			}
1826 			if (breakout) {
1827 				PROC_UNLOCK(p);
1828 				continue;
1829 			}
1830 			/*
1831 			 * get a limit
1832 			 */
1833 			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1834 			limit = OFF_TO_IDX(
1835 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1836 
1837 			/*
1838 			 * let processes that are swapped out really be
1839 			 * swapped out set the limit to nothing (will force a
1840 			 * swap-out.)
1841 			 */
1842 			if ((p->p_flag & P_INMEM) == 0)
1843 				limit = 0;	/* XXX */
1844 			vm = vmspace_acquire_ref(p);
1845 			PROC_UNLOCK(p);
1846 			if (vm == NULL)
1847 				continue;
1848 
1849 			size = vmspace_resident_count(vm);
1850 			if (size >= limit) {
1851 				vm_pageout_map_deactivate_pages(
1852 				    &vm->vm_map, limit);
1853 			}
1854 #ifdef RACCT
1855 			rsize = IDX_TO_OFF(size);
1856 			PROC_LOCK(p);
1857 			racct_set(p, RACCT_RSS, rsize);
1858 			ravailable = racct_get_available(p, RACCT_RSS);
1859 			PROC_UNLOCK(p);
1860 			if (rsize > ravailable) {
1861 				/*
1862 				 * Don't be overly aggressive; this might be
1863 				 * an innocent process, and the limit could've
1864 				 * been exceeded by some memory hog.  Don't
1865 				 * try to deactivate more than 1/4th of process'
1866 				 * resident set size.
1867 				 */
1868 				if (attempts <= 8) {
1869 					if (ravailable < rsize - (rsize / 4))
1870 						ravailable = rsize - (rsize / 4);
1871 				}
1872 				vm_pageout_map_deactivate_pages(
1873 				    &vm->vm_map, OFF_TO_IDX(ravailable));
1874 				/* Update RSS usage after paging out. */
1875 				size = vmspace_resident_count(vm);
1876 				rsize = IDX_TO_OFF(size);
1877 				PROC_LOCK(p);
1878 				racct_set(p, RACCT_RSS, rsize);
1879 				PROC_UNLOCK(p);
1880 				if (rsize > ravailable)
1881 					tryagain = 1;
1882 			}
1883 #endif
1884 			vmspace_free(vm);
1885 		}
1886 		sx_sunlock(&allproc_lock);
1887 		if (tryagain != 0 && attempts <= 10)
1888 			goto again;
1889 	}
1890 }
1891 #endif			/* !defined(NO_SWAPPING) */
1892