xref: /freebsd/sys/vm/vm_pageout.c (revision a18eacbefdfa1085ca3db829e86ece78cd416493)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/signalvar.h>
93 #include <sys/smp.h>
94 #include <sys/vnode.h>
95 #include <sys/vmmeter.h>
96 #include <sys/rwlock.h>
97 #include <sys/sx.h>
98 #include <sys/sysctl.h>
99 
100 #include <vm/vm.h>
101 #include <vm/vm_param.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_pager.h>
107 #include <vm/vm_phys.h>
108 #include <vm/swap_pager.h>
109 #include <vm/vm_extern.h>
110 #include <vm/uma.h>
111 
112 /*
113  * System initialization
114  */
115 
116 /* the kernel process "vm_pageout"*/
117 static void vm_pageout(void);
118 static int vm_pageout_clean(vm_page_t);
119 static void vm_pageout_scan(struct vm_domain *vmd, int pass);
120 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass);
121 
122 struct proc *pageproc;
123 
124 static struct kproc_desc page_kp = {
125 	"pagedaemon",
126 	vm_pageout,
127 	&pageproc
128 };
129 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
130     &page_kp);
131 
132 #if !defined(NO_SWAPPING)
133 /* the kernel process "vm_daemon"*/
134 static void vm_daemon(void);
135 static struct	proc *vmproc;
136 
137 static struct kproc_desc vm_kp = {
138 	"vmdaemon",
139 	vm_daemon,
140 	&vmproc
141 };
142 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
143 #endif
144 
145 
146 int vm_pages_needed;		/* Event on which pageout daemon sleeps */
147 int vm_pageout_deficit;		/* Estimated number of pages deficit */
148 int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
149 int vm_pageout_wakeup_thresh;
150 
151 #if !defined(NO_SWAPPING)
152 static int vm_pageout_req_swapout;	/* XXX */
153 static int vm_daemon_needed;
154 static struct mtx vm_daemon_mtx;
155 /* Allow for use by vm_pageout before vm_daemon is initialized. */
156 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
157 #endif
158 static int vm_max_launder = 32;
159 static int vm_pageout_update_period;
160 static int defer_swap_pageouts;
161 static int disable_swap_pageouts;
162 static int lowmem_period = 10;
163 static int lowmem_ticks;
164 
165 #if defined(NO_SWAPPING)
166 static int vm_swap_enabled = 0;
167 static int vm_swap_idle_enabled = 0;
168 #else
169 static int vm_swap_enabled = 1;
170 static int vm_swap_idle_enabled = 0;
171 #endif
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
174 	CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
175 	"free page threshold for waking up the pageout daemon");
176 
177 SYSCTL_INT(_vm, OID_AUTO, max_launder,
178 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
179 
180 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
181 	CTLFLAG_RW, &vm_pageout_update_period, 0,
182 	"Maximum active LRU update period");
183 
184 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
185 	"Low memory callback period");
186 
187 #if defined(NO_SWAPPING)
188 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189 	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
190 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192 #else
193 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
194 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
195 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
196 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
197 #endif
198 
199 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
200 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
201 
202 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
203 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
204 
205 static int pageout_lock_miss;
206 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
207 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
208 
209 #define VM_PAGEOUT_PAGE_COUNT 16
210 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
211 
212 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
213 SYSCTL_INT(_vm, OID_AUTO, max_wired,
214 	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
215 
216 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
217 static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
218     vm_paddr_t);
219 #if !defined(NO_SWAPPING)
220 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
221 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
222 static void vm_req_vmdaemon(int req);
223 #endif
224 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
225 
226 /*
227  * Initialize a dummy page for marking the caller's place in the specified
228  * paging queue.  In principle, this function only needs to set the flag
229  * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
230  * to one as safety precautions.
231  */
232 static void
233 vm_pageout_init_marker(vm_page_t marker, u_short queue)
234 {
235 
236 	bzero(marker, sizeof(*marker));
237 	marker->flags = PG_MARKER;
238 	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
239 	marker->queue = queue;
240 	marker->hold_count = 1;
241 }
242 
243 /*
244  * vm_pageout_fallback_object_lock:
245  *
246  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
247  * known to have failed and page queue must be either PQ_ACTIVE or
248  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
249  * while locking the vm object.  Use marker page to detect page queue
250  * changes and maintain notion of next page on page queue.  Return
251  * TRUE if no changes were detected, FALSE otherwise.  vm object is
252  * locked on return.
253  *
254  * This function depends on both the lock portion of struct vm_object
255  * and normal struct vm_page being type stable.
256  */
257 static boolean_t
258 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
259 {
260 	struct vm_page marker;
261 	struct vm_pagequeue *pq;
262 	boolean_t unchanged;
263 	u_short queue;
264 	vm_object_t object;
265 
266 	queue = m->queue;
267 	vm_pageout_init_marker(&marker, queue);
268 	pq = vm_page_pagequeue(m);
269 	object = m->object;
270 
271 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
272 	vm_pagequeue_unlock(pq);
273 	vm_page_unlock(m);
274 	VM_OBJECT_WLOCK(object);
275 	vm_page_lock(m);
276 	vm_pagequeue_lock(pq);
277 
278 	/* Page queue might have changed. */
279 	*next = TAILQ_NEXT(&marker, plinks.q);
280 	unchanged = (m->queue == queue &&
281 		     m->object == object &&
282 		     &marker == TAILQ_NEXT(m, plinks.q));
283 	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
284 	return (unchanged);
285 }
286 
287 /*
288  * Lock the page while holding the page queue lock.  Use marker page
289  * to detect page queue changes and maintain notion of next page on
290  * page queue.  Return TRUE if no changes were detected, FALSE
291  * otherwise.  The page is locked on return. The page queue lock might
292  * be dropped and reacquired.
293  *
294  * This function depends on normal struct vm_page being type stable.
295  */
296 static boolean_t
297 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
298 {
299 	struct vm_page marker;
300 	struct vm_pagequeue *pq;
301 	boolean_t unchanged;
302 	u_short queue;
303 
304 	vm_page_lock_assert(m, MA_NOTOWNED);
305 	if (vm_page_trylock(m))
306 		return (TRUE);
307 
308 	queue = m->queue;
309 	vm_pageout_init_marker(&marker, queue);
310 	pq = vm_page_pagequeue(m);
311 
312 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
313 	vm_pagequeue_unlock(pq);
314 	vm_page_lock(m);
315 	vm_pagequeue_lock(pq);
316 
317 	/* Page queue might have changed. */
318 	*next = TAILQ_NEXT(&marker, plinks.q);
319 	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, plinks.q));
320 	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
321 	return (unchanged);
322 }
323 
324 /*
325  * vm_pageout_clean:
326  *
327  * Clean the page and remove it from the laundry.
328  *
329  * We set the busy bit to cause potential page faults on this page to
330  * block.  Note the careful timing, however, the busy bit isn't set till
331  * late and we cannot do anything that will mess with the page.
332  */
333 static int
334 vm_pageout_clean(vm_page_t m)
335 {
336 	vm_object_t object;
337 	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
338 	int pageout_count;
339 	int ib, is, page_base;
340 	vm_pindex_t pindex = m->pindex;
341 
342 	vm_page_lock_assert(m, MA_OWNED);
343 	object = m->object;
344 	VM_OBJECT_ASSERT_WLOCKED(object);
345 
346 	/*
347 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
348 	 * with the new swapper, but we could have serious problems paging
349 	 * out other object types if there is insufficient memory.
350 	 *
351 	 * Unfortunately, checking free memory here is far too late, so the
352 	 * check has been moved up a procedural level.
353 	 */
354 
355 	/*
356 	 * Can't clean the page if it's busy or held.
357 	 */
358 	vm_page_assert_unbusied(m);
359 	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
360 	vm_page_unlock(m);
361 
362 	mc[vm_pageout_page_count] = pb = ps = m;
363 	pageout_count = 1;
364 	page_base = vm_pageout_page_count;
365 	ib = 1;
366 	is = 1;
367 
368 	/*
369 	 * Scan object for clusterable pages.
370 	 *
371 	 * We can cluster ONLY if: ->> the page is NOT
372 	 * clean, wired, busy, held, or mapped into a
373 	 * buffer, and one of the following:
374 	 * 1) The page is inactive, or a seldom used
375 	 *    active page.
376 	 * -or-
377 	 * 2) we force the issue.
378 	 *
379 	 * During heavy mmap/modification loads the pageout
380 	 * daemon can really fragment the underlying file
381 	 * due to flushing pages out of order and not trying
382 	 * align the clusters (which leave sporatic out-of-order
383 	 * holes).  To solve this problem we do the reverse scan
384 	 * first and attempt to align our cluster, then do a
385 	 * forward scan if room remains.
386 	 */
387 more:
388 	while (ib && pageout_count < vm_pageout_page_count) {
389 		vm_page_t p;
390 
391 		if (ib > pindex) {
392 			ib = 0;
393 			break;
394 		}
395 
396 		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
397 			ib = 0;
398 			break;
399 		}
400 		vm_page_lock(p);
401 		vm_page_test_dirty(p);
402 		if (p->dirty == 0 ||
403 		    p->queue != PQ_INACTIVE ||
404 		    p->hold_count != 0) {	/* may be undergoing I/O */
405 			vm_page_unlock(p);
406 			ib = 0;
407 			break;
408 		}
409 		vm_page_unlock(p);
410 		mc[--page_base] = pb = p;
411 		++pageout_count;
412 		++ib;
413 		/*
414 		 * alignment boundry, stop here and switch directions.  Do
415 		 * not clear ib.
416 		 */
417 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
418 			break;
419 	}
420 
421 	while (pageout_count < vm_pageout_page_count &&
422 	    pindex + is < object->size) {
423 		vm_page_t p;
424 
425 		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
426 			break;
427 		vm_page_lock(p);
428 		vm_page_test_dirty(p);
429 		if (p->dirty == 0 ||
430 		    p->queue != PQ_INACTIVE ||
431 		    p->hold_count != 0) {	/* may be undergoing I/O */
432 			vm_page_unlock(p);
433 			break;
434 		}
435 		vm_page_unlock(p);
436 		mc[page_base + pageout_count] = ps = p;
437 		++pageout_count;
438 		++is;
439 	}
440 
441 	/*
442 	 * If we exhausted our forward scan, continue with the reverse scan
443 	 * when possible, even past a page boundry.  This catches boundry
444 	 * conditions.
445 	 */
446 	if (ib && pageout_count < vm_pageout_page_count)
447 		goto more;
448 
449 	/*
450 	 * we allow reads during pageouts...
451 	 */
452 	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
453 	    NULL));
454 }
455 
456 /*
457  * vm_pageout_flush() - launder the given pages
458  *
459  *	The given pages are laundered.  Note that we setup for the start of
460  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
461  *	reference count all in here rather then in the parent.  If we want
462  *	the parent to do more sophisticated things we may have to change
463  *	the ordering.
464  *
465  *	Returned runlen is the count of pages between mreq and first
466  *	page after mreq with status VM_PAGER_AGAIN.
467  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
468  *	for any page in runlen set.
469  */
470 int
471 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
472     boolean_t *eio)
473 {
474 	vm_object_t object = mc[0]->object;
475 	int pageout_status[count];
476 	int numpagedout = 0;
477 	int i, runlen;
478 
479 	VM_OBJECT_ASSERT_WLOCKED(object);
480 
481 	/*
482 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
483 	 * mark the pages read-only.
484 	 *
485 	 * We do not have to fixup the clean/dirty bits here... we can
486 	 * allow the pager to do it after the I/O completes.
487 	 *
488 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
489 	 * edge case with file fragments.
490 	 */
491 	for (i = 0; i < count; i++) {
492 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
493 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
494 			mc[i], i, count));
495 		vm_page_sbusy(mc[i]);
496 		pmap_remove_write(mc[i]);
497 	}
498 	vm_object_pip_add(object, count);
499 
500 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
501 
502 	runlen = count - mreq;
503 	if (eio != NULL)
504 		*eio = FALSE;
505 	for (i = 0; i < count; i++) {
506 		vm_page_t mt = mc[i];
507 
508 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
509 		    !pmap_page_is_write_mapped(mt),
510 		    ("vm_pageout_flush: page %p is not write protected", mt));
511 		switch (pageout_status[i]) {
512 		case VM_PAGER_OK:
513 		case VM_PAGER_PEND:
514 			numpagedout++;
515 			break;
516 		case VM_PAGER_BAD:
517 			/*
518 			 * Page outside of range of object. Right now we
519 			 * essentially lose the changes by pretending it
520 			 * worked.
521 			 */
522 			vm_page_undirty(mt);
523 			break;
524 		case VM_PAGER_ERROR:
525 		case VM_PAGER_FAIL:
526 			/*
527 			 * If page couldn't be paged out, then reactivate the
528 			 * page so it doesn't clog the inactive list.  (We
529 			 * will try paging out it again later).
530 			 */
531 			vm_page_lock(mt);
532 			vm_page_activate(mt);
533 			vm_page_unlock(mt);
534 			if (eio != NULL && i >= mreq && i - mreq < runlen)
535 				*eio = TRUE;
536 			break;
537 		case VM_PAGER_AGAIN:
538 			if (i >= mreq && i - mreq < runlen)
539 				runlen = i - mreq;
540 			break;
541 		}
542 
543 		/*
544 		 * If the operation is still going, leave the page busy to
545 		 * block all other accesses. Also, leave the paging in
546 		 * progress indicator set so that we don't attempt an object
547 		 * collapse.
548 		 */
549 		if (pageout_status[i] != VM_PAGER_PEND) {
550 			vm_object_pip_wakeup(object);
551 			vm_page_sunbusy(mt);
552 			if (vm_page_count_severe()) {
553 				vm_page_lock(mt);
554 				vm_page_try_to_cache(mt);
555 				vm_page_unlock(mt);
556 			}
557 		}
558 	}
559 	if (prunlen != NULL)
560 		*prunlen = runlen;
561 	return (numpagedout);
562 }
563 
564 static boolean_t
565 vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
566     vm_paddr_t high)
567 {
568 	struct mount *mp;
569 	struct vnode *vp;
570 	vm_object_t object;
571 	vm_paddr_t pa;
572 	vm_page_t m, m_tmp, next;
573 	int lockmode;
574 
575 	vm_pagequeue_lock(pq);
576 	TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
577 		if ((m->flags & PG_MARKER) != 0)
578 			continue;
579 		pa = VM_PAGE_TO_PHYS(m);
580 		if (pa < low || pa + PAGE_SIZE > high)
581 			continue;
582 		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
583 			vm_page_unlock(m);
584 			continue;
585 		}
586 		object = m->object;
587 		if ((!VM_OBJECT_TRYWLOCK(object) &&
588 		    (!vm_pageout_fallback_object_lock(m, &next) ||
589 		    m->hold_count != 0)) || vm_page_busied(m)) {
590 			vm_page_unlock(m);
591 			VM_OBJECT_WUNLOCK(object);
592 			continue;
593 		}
594 		vm_page_test_dirty(m);
595 		if (m->dirty == 0 && object->ref_count != 0)
596 			pmap_remove_all(m);
597 		if (m->dirty != 0) {
598 			vm_page_unlock(m);
599 			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
600 				VM_OBJECT_WUNLOCK(object);
601 				continue;
602 			}
603 			if (object->type == OBJT_VNODE) {
604 				vm_pagequeue_unlock(pq);
605 				vp = object->handle;
606 				vm_object_reference_locked(object);
607 				VM_OBJECT_WUNLOCK(object);
608 				(void)vn_start_write(vp, &mp, V_WAIT);
609 				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
610 				    LK_SHARED : LK_EXCLUSIVE;
611 				vn_lock(vp, lockmode | LK_RETRY);
612 				VM_OBJECT_WLOCK(object);
613 				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
614 				VM_OBJECT_WUNLOCK(object);
615 				VOP_UNLOCK(vp, 0);
616 				vm_object_deallocate(object);
617 				vn_finished_write(mp);
618 				return (TRUE);
619 			} else if (object->type == OBJT_SWAP ||
620 			    object->type == OBJT_DEFAULT) {
621 				vm_pagequeue_unlock(pq);
622 				m_tmp = m;
623 				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
624 				    0, NULL, NULL);
625 				VM_OBJECT_WUNLOCK(object);
626 				return (TRUE);
627 			}
628 		} else {
629 			/*
630 			 * Dequeue here to prevent lock recursion in
631 			 * vm_page_cache().
632 			 */
633 			vm_page_dequeue_locked(m);
634 			vm_page_cache(m);
635 			vm_page_unlock(m);
636 		}
637 		VM_OBJECT_WUNLOCK(object);
638 	}
639 	vm_pagequeue_unlock(pq);
640 	return (FALSE);
641 }
642 
643 /*
644  * Increase the number of cached pages.  The specified value, "tries",
645  * determines which categories of pages are cached:
646  *
647  *  0: All clean, inactive pages within the specified physical address range
648  *     are cached.  Will not sleep.
649  *  1: The vm_lowmem handlers are called.  All inactive pages within
650  *     the specified physical address range are cached.  May sleep.
651  *  2: The vm_lowmem handlers are called.  All inactive and active pages
652  *     within the specified physical address range are cached.  May sleep.
653  */
654 void
655 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
656 {
657 	int actl, actmax, inactl, inactmax, dom, initial_dom;
658 	static int start_dom = 0;
659 
660 	if (tries > 0) {
661 		/*
662 		 * Decrease registered cache sizes.  The vm_lowmem handlers
663 		 * may acquire locks and/or sleep, so they can only be invoked
664 		 * when "tries" is greater than zero.
665 		 */
666 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
667 
668 		/*
669 		 * We do this explicitly after the caches have been drained
670 		 * above.
671 		 */
672 		uma_reclaim();
673 	}
674 
675 	/*
676 	 * Make the next scan start on the next domain.
677 	 */
678 	initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
679 
680 	inactl = 0;
681 	inactmax = cnt.v_inactive_count;
682 	actl = 0;
683 	actmax = tries < 2 ? 0 : cnt.v_active_count;
684 	dom = initial_dom;
685 
686 	/*
687 	 * Scan domains in round-robin order, first inactive queues,
688 	 * then active.  Since domain usually owns large physically
689 	 * contiguous chunk of memory, it makes sense to completely
690 	 * exhaust one domain before switching to next, while growing
691 	 * the pool of contiguous physical pages.
692 	 *
693 	 * Do not even start launder a domain which cannot contain
694 	 * the specified address range, as indicated by segments
695 	 * constituting the domain.
696 	 */
697 again:
698 	if (inactl < inactmax) {
699 		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
700 		    low, high) &&
701 		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
702 		    tries, low, high)) {
703 			inactl++;
704 			goto again;
705 		}
706 		if (++dom == vm_ndomains)
707 			dom = 0;
708 		if (dom != initial_dom)
709 			goto again;
710 	}
711 	if (actl < actmax) {
712 		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
713 		    low, high) &&
714 		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
715 		      tries, low, high)) {
716 			actl++;
717 			goto again;
718 		}
719 		if (++dom == vm_ndomains)
720 			dom = 0;
721 		if (dom != initial_dom)
722 			goto again;
723 	}
724 }
725 
726 #if !defined(NO_SWAPPING)
727 /*
728  *	vm_pageout_object_deactivate_pages
729  *
730  *	Deactivate enough pages to satisfy the inactive target
731  *	requirements.
732  *
733  *	The object and map must be locked.
734  */
735 static void
736 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
737     long desired)
738 {
739 	vm_object_t backing_object, object;
740 	vm_page_t p;
741 	int act_delta, remove_mode;
742 
743 	VM_OBJECT_ASSERT_LOCKED(first_object);
744 	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
745 		return;
746 	for (object = first_object;; object = backing_object) {
747 		if (pmap_resident_count(pmap) <= desired)
748 			goto unlock_return;
749 		VM_OBJECT_ASSERT_LOCKED(object);
750 		if ((object->flags & OBJ_UNMANAGED) != 0 ||
751 		    object->paging_in_progress != 0)
752 			goto unlock_return;
753 
754 		remove_mode = 0;
755 		if (object->shadow_count > 1)
756 			remove_mode = 1;
757 		/*
758 		 * Scan the object's entire memory queue.
759 		 */
760 		TAILQ_FOREACH(p, &object->memq, listq) {
761 			if (pmap_resident_count(pmap) <= desired)
762 				goto unlock_return;
763 			if (vm_page_busied(p))
764 				continue;
765 			PCPU_INC(cnt.v_pdpages);
766 			vm_page_lock(p);
767 			if (p->wire_count != 0 || p->hold_count != 0 ||
768 			    !pmap_page_exists_quick(pmap, p)) {
769 				vm_page_unlock(p);
770 				continue;
771 			}
772 			act_delta = pmap_ts_referenced(p);
773 			if ((p->aflags & PGA_REFERENCED) != 0) {
774 				if (act_delta == 0)
775 					act_delta = 1;
776 				vm_page_aflag_clear(p, PGA_REFERENCED);
777 			}
778 			if (p->queue != PQ_ACTIVE && act_delta != 0) {
779 				vm_page_activate(p);
780 				p->act_count += act_delta;
781 			} else if (p->queue == PQ_ACTIVE) {
782 				if (act_delta == 0) {
783 					p->act_count -= min(p->act_count,
784 					    ACT_DECLINE);
785 					if (!remove_mode && p->act_count == 0) {
786 						pmap_remove_all(p);
787 						vm_page_deactivate(p);
788 					} else
789 						vm_page_requeue(p);
790 				} else {
791 					vm_page_activate(p);
792 					if (p->act_count < ACT_MAX -
793 					    ACT_ADVANCE)
794 						p->act_count += ACT_ADVANCE;
795 					vm_page_requeue(p);
796 				}
797 			} else if (p->queue == PQ_INACTIVE)
798 				pmap_remove_all(p);
799 			vm_page_unlock(p);
800 		}
801 		if ((backing_object = object->backing_object) == NULL)
802 			goto unlock_return;
803 		VM_OBJECT_RLOCK(backing_object);
804 		if (object != first_object)
805 			VM_OBJECT_RUNLOCK(object);
806 	}
807 unlock_return:
808 	if (object != first_object)
809 		VM_OBJECT_RUNLOCK(object);
810 }
811 
812 /*
813  * deactivate some number of pages in a map, try to do it fairly, but
814  * that is really hard to do.
815  */
816 static void
817 vm_pageout_map_deactivate_pages(map, desired)
818 	vm_map_t map;
819 	long desired;
820 {
821 	vm_map_entry_t tmpe;
822 	vm_object_t obj, bigobj;
823 	int nothingwired;
824 
825 	if (!vm_map_trylock(map))
826 		return;
827 
828 	bigobj = NULL;
829 	nothingwired = TRUE;
830 
831 	/*
832 	 * first, search out the biggest object, and try to free pages from
833 	 * that.
834 	 */
835 	tmpe = map->header.next;
836 	while (tmpe != &map->header) {
837 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
838 			obj = tmpe->object.vm_object;
839 			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
840 				if (obj->shadow_count <= 1 &&
841 				    (bigobj == NULL ||
842 				     bigobj->resident_page_count < obj->resident_page_count)) {
843 					if (bigobj != NULL)
844 						VM_OBJECT_RUNLOCK(bigobj);
845 					bigobj = obj;
846 				} else
847 					VM_OBJECT_RUNLOCK(obj);
848 			}
849 		}
850 		if (tmpe->wired_count > 0)
851 			nothingwired = FALSE;
852 		tmpe = tmpe->next;
853 	}
854 
855 	if (bigobj != NULL) {
856 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
857 		VM_OBJECT_RUNLOCK(bigobj);
858 	}
859 	/*
860 	 * Next, hunt around for other pages to deactivate.  We actually
861 	 * do this search sort of wrong -- .text first is not the best idea.
862 	 */
863 	tmpe = map->header.next;
864 	while (tmpe != &map->header) {
865 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
866 			break;
867 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
868 			obj = tmpe->object.vm_object;
869 			if (obj != NULL) {
870 				VM_OBJECT_RLOCK(obj);
871 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
872 				VM_OBJECT_RUNLOCK(obj);
873 			}
874 		}
875 		tmpe = tmpe->next;
876 	}
877 
878 	/*
879 	 * Remove all mappings if a process is swapped out, this will free page
880 	 * table pages.
881 	 */
882 	if (desired == 0 && nothingwired) {
883 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
884 		    vm_map_max(map));
885 	}
886 	vm_map_unlock(map);
887 }
888 #endif		/* !defined(NO_SWAPPING) */
889 
890 /*
891  *	vm_pageout_scan does the dirty work for the pageout daemon.
892  *
893  *	pass 0 - Update active LRU/deactivate pages
894  *	pass 1 - Move inactive to cache or free
895  *	pass 2 - Launder dirty pages
896  */
897 static void
898 vm_pageout_scan(struct vm_domain *vmd, int pass)
899 {
900 	vm_page_t m, next;
901 	struct vm_pagequeue *pq;
902 	int page_shortage, maxscan, pcount;
903 	int addl_page_shortage;
904 	vm_object_t object;
905 	int act_delta;
906 	int vnodes_skipped = 0;
907 	int maxlaunder;
908 	int lockmode;
909 	boolean_t queues_locked;
910 
911 	/*
912 	 * If we need to reclaim memory ask kernel caches to return
913 	 * some.  We rate limit to avoid thrashing.
914 	 */
915 	if (vmd == &vm_dom[0] && pass > 0 &&
916 	    lowmem_ticks + (lowmem_period * hz) < ticks) {
917 		/*
918 		 * Decrease registered cache sizes.
919 		 */
920 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
921 		/*
922 		 * We do this explicitly after the caches have been
923 		 * drained above.
924 		 */
925 		uma_reclaim();
926 		lowmem_ticks = ticks;
927 	}
928 
929 	/*
930 	 * The addl_page_shortage is the number of temporarily
931 	 * stuck pages in the inactive queue.  In other words, the
932 	 * number of pages from the inactive count that should be
933 	 * discounted in setting the target for the active queue scan.
934 	 */
935 	addl_page_shortage = atomic_readandclear_int(&vm_pageout_deficit);
936 
937 	/*
938 	 * Calculate the number of pages we want to either free or move
939 	 * to the cache.
940 	 */
941 	page_shortage = vm_paging_target() + addl_page_shortage;
942 
943 	/*
944 	 * maxlaunder limits the number of dirty pages we flush per scan.
945 	 * For most systems a smaller value (16 or 32) is more robust under
946 	 * extreme memory and disk pressure because any unnecessary writes
947 	 * to disk can result in extreme performance degredation.  However,
948 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
949 	 * used) will die horribly with limited laundering.  If the pageout
950 	 * daemon cannot clean enough pages in the first pass, we let it go
951 	 * all out in succeeding passes.
952 	 */
953 	if ((maxlaunder = vm_max_launder) <= 1)
954 		maxlaunder = 1;
955 	if (pass > 1)
956 		maxlaunder = 10000;
957 
958 	/*
959 	 * Start scanning the inactive queue for pages we can move to the
960 	 * cache or free.  The scan will stop when the target is reached or
961 	 * we have scanned the entire inactive queue.  Note that m->act_count
962 	 * is not used to form decisions for the inactive queue, only for the
963 	 * active queue.
964 	 */
965 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
966 	maxscan = pq->pq_cnt;
967 	vm_pagequeue_lock(pq);
968 	queues_locked = TRUE;
969 	for (m = TAILQ_FIRST(&pq->pq_pl);
970 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
971 	     m = next) {
972 		vm_pagequeue_assert_locked(pq);
973 		KASSERT(queues_locked, ("unlocked queues"));
974 		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
975 
976 		PCPU_INC(cnt.v_pdpages);
977 		next = TAILQ_NEXT(m, plinks.q);
978 
979 		/*
980 		 * skip marker pages
981 		 */
982 		if (m->flags & PG_MARKER)
983 			continue;
984 
985 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
986 		    ("Fictitious page %p cannot be in inactive queue", m));
987 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
988 		    ("Unmanaged page %p cannot be in inactive queue", m));
989 
990 		/*
991 		 * The page or object lock acquisitions fail if the
992 		 * page was removed from the queue or moved to a
993 		 * different position within the queue.  In either
994 		 * case, addl_page_shortage should not be incremented.
995 		 */
996 		if (!vm_pageout_page_lock(m, &next)) {
997 			vm_page_unlock(m);
998 			continue;
999 		}
1000 		object = m->object;
1001 		if (!VM_OBJECT_TRYWLOCK(object) &&
1002 		    !vm_pageout_fallback_object_lock(m, &next)) {
1003 			vm_page_unlock(m);
1004 			VM_OBJECT_WUNLOCK(object);
1005 			continue;
1006 		}
1007 
1008 		/*
1009 		 * Don't mess with busy pages, keep them at at the
1010 		 * front of the queue, most likely they are being
1011 		 * paged out.  Increment addl_page_shortage for busy
1012 		 * pages, because they may leave the inactive queue
1013 		 * shortly after page scan is finished.
1014 		 */
1015 		if (vm_page_busied(m)) {
1016 			vm_page_unlock(m);
1017 			VM_OBJECT_WUNLOCK(object);
1018 			addl_page_shortage++;
1019 			continue;
1020 		}
1021 
1022 		/*
1023 		 * We unlock the inactive page queue, invalidating the
1024 		 * 'next' pointer.  Use our marker to remember our
1025 		 * place.
1026 		 */
1027 		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1028 		vm_pagequeue_unlock(pq);
1029 		queues_locked = FALSE;
1030 
1031 		/*
1032 		 * We bump the activation count if the page has been
1033 		 * referenced while in the inactive queue.  This makes
1034 		 * it less likely that the page will be added back to the
1035 		 * inactive queue prematurely again.  Here we check the
1036 		 * page tables (or emulated bits, if any), given the upper
1037 		 * level VM system not knowing anything about existing
1038 		 * references.
1039 		 */
1040 		act_delta = 0;
1041 		if ((m->aflags & PGA_REFERENCED) != 0) {
1042 			vm_page_aflag_clear(m, PGA_REFERENCED);
1043 			act_delta = 1;
1044 		}
1045 		if (object->ref_count != 0) {
1046 			act_delta += pmap_ts_referenced(m);
1047 		} else {
1048 			KASSERT(!pmap_page_is_mapped(m),
1049 			    ("vm_pageout_scan: page %p is mapped", m));
1050 		}
1051 
1052 		/*
1053 		 * If the upper level VM system knows about any page
1054 		 * references, we reactivate the page or requeue it.
1055 		 */
1056 		if (act_delta != 0) {
1057 			if (object->ref_count) {
1058 				vm_page_activate(m);
1059 				m->act_count += act_delta + ACT_ADVANCE;
1060 			} else {
1061 				vm_pagequeue_lock(pq);
1062 				queues_locked = TRUE;
1063 				vm_page_requeue_locked(m);
1064 			}
1065 			VM_OBJECT_WUNLOCK(object);
1066 			vm_page_unlock(m);
1067 			goto relock_queues;
1068 		}
1069 
1070 		if (m->hold_count != 0) {
1071 			vm_page_unlock(m);
1072 			VM_OBJECT_WUNLOCK(object);
1073 
1074 			/*
1075 			 * Held pages are essentially stuck in the
1076 			 * queue.  So, they ought to be discounted
1077 			 * from the inactive count.  See the
1078 			 * calculation of the page_shortage for the
1079 			 * loop over the active queue below.
1080 			 */
1081 			addl_page_shortage++;
1082 			goto relock_queues;
1083 		}
1084 
1085 		/*
1086 		 * If the page appears to be clean at the machine-independent
1087 		 * layer, then remove all of its mappings from the pmap in
1088 		 * anticipation of placing it onto the cache queue.  If,
1089 		 * however, any of the page's mappings allow write access,
1090 		 * then the page may still be modified until the last of those
1091 		 * mappings are removed.
1092 		 */
1093 		vm_page_test_dirty(m);
1094 		if (m->dirty == 0 && object->ref_count != 0)
1095 			pmap_remove_all(m);
1096 
1097 		if (m->valid == 0) {
1098 			/*
1099 			 * Invalid pages can be easily freed
1100 			 */
1101 			vm_page_free(m);
1102 			PCPU_INC(cnt.v_dfree);
1103 			--page_shortage;
1104 		} else if (m->dirty == 0) {
1105 			/*
1106 			 * Clean pages can be placed onto the cache queue.
1107 			 * This effectively frees them.
1108 			 */
1109 			vm_page_cache(m);
1110 			--page_shortage;
1111 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1112 			/*
1113 			 * Dirty pages need to be paged out, but flushing
1114 			 * a page is extremely expensive verses freeing
1115 			 * a clean page.  Rather then artificially limiting
1116 			 * the number of pages we can flush, we instead give
1117 			 * dirty pages extra priority on the inactive queue
1118 			 * by forcing them to be cycled through the queue
1119 			 * twice before being flushed, after which the
1120 			 * (now clean) page will cycle through once more
1121 			 * before being freed.  This significantly extends
1122 			 * the thrash point for a heavily loaded machine.
1123 			 */
1124 			m->flags |= PG_WINATCFLS;
1125 			vm_pagequeue_lock(pq);
1126 			queues_locked = TRUE;
1127 			vm_page_requeue_locked(m);
1128 		} else if (maxlaunder > 0) {
1129 			/*
1130 			 * We always want to try to flush some dirty pages if
1131 			 * we encounter them, to keep the system stable.
1132 			 * Normally this number is small, but under extreme
1133 			 * pressure where there are insufficient clean pages
1134 			 * on the inactive queue, we may have to go all out.
1135 			 */
1136 			int swap_pageouts_ok;
1137 			struct vnode *vp = NULL;
1138 			struct mount *mp = NULL;
1139 
1140 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1141 				swap_pageouts_ok = 1;
1142 			} else {
1143 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1144 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1145 				vm_page_count_min());
1146 
1147 			}
1148 
1149 			/*
1150 			 * We don't bother paging objects that are "dead".
1151 			 * Those objects are in a "rundown" state.
1152 			 */
1153 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1154 				vm_pagequeue_lock(pq);
1155 				vm_page_unlock(m);
1156 				VM_OBJECT_WUNLOCK(object);
1157 				queues_locked = TRUE;
1158 				vm_page_requeue_locked(m);
1159 				goto relock_queues;
1160 			}
1161 
1162 			/*
1163 			 * The object is already known NOT to be dead.   It
1164 			 * is possible for the vget() to block the whole
1165 			 * pageout daemon, but the new low-memory handling
1166 			 * code should prevent it.
1167 			 *
1168 			 * The previous code skipped locked vnodes and, worse,
1169 			 * reordered pages in the queue.  This results in
1170 			 * completely non-deterministic operation and, on a
1171 			 * busy system, can lead to extremely non-optimal
1172 			 * pageouts.  For example, it can cause clean pages
1173 			 * to be freed and dirty pages to be moved to the end
1174 			 * of the queue.  Since dirty pages are also moved to
1175 			 * the end of the queue once-cleaned, this gives
1176 			 * way too large a weighting to defering the freeing
1177 			 * of dirty pages.
1178 			 *
1179 			 * We can't wait forever for the vnode lock, we might
1180 			 * deadlock due to a vn_read() getting stuck in
1181 			 * vm_wait while holding this vnode.  We skip the
1182 			 * vnode if we can't get it in a reasonable amount
1183 			 * of time.
1184 			 */
1185 			if (object->type == OBJT_VNODE) {
1186 				vm_page_unlock(m);
1187 				vp = object->handle;
1188 				if (vp->v_type == VREG &&
1189 				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1190 					mp = NULL;
1191 					++pageout_lock_miss;
1192 					if (object->flags & OBJ_MIGHTBEDIRTY)
1193 						vnodes_skipped++;
1194 					goto unlock_and_continue;
1195 				}
1196 				KASSERT(mp != NULL,
1197 				    ("vp %p with NULL v_mount", vp));
1198 				vm_object_reference_locked(object);
1199 				VM_OBJECT_WUNLOCK(object);
1200 				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
1201 				    LK_SHARED : LK_EXCLUSIVE;
1202 				if (vget(vp, lockmode | LK_TIMELOCK,
1203 				    curthread)) {
1204 					VM_OBJECT_WLOCK(object);
1205 					++pageout_lock_miss;
1206 					if (object->flags & OBJ_MIGHTBEDIRTY)
1207 						vnodes_skipped++;
1208 					vp = NULL;
1209 					goto unlock_and_continue;
1210 				}
1211 				VM_OBJECT_WLOCK(object);
1212 				vm_page_lock(m);
1213 				vm_pagequeue_lock(pq);
1214 				queues_locked = TRUE;
1215 				/*
1216 				 * The page might have been moved to another
1217 				 * queue during potential blocking in vget()
1218 				 * above.  The page might have been freed and
1219 				 * reused for another vnode.
1220 				 */
1221 				if (m->queue != PQ_INACTIVE ||
1222 				    m->object != object ||
1223 				    TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
1224 					vm_page_unlock(m);
1225 					if (object->flags & OBJ_MIGHTBEDIRTY)
1226 						vnodes_skipped++;
1227 					goto unlock_and_continue;
1228 				}
1229 
1230 				/*
1231 				 * The page may have been busied during the
1232 				 * blocking in vget().  We don't move the
1233 				 * page back onto the end of the queue so that
1234 				 * statistics are more correct if we don't.
1235 				 */
1236 				if (vm_page_busied(m)) {
1237 					vm_page_unlock(m);
1238 					goto unlock_and_continue;
1239 				}
1240 
1241 				/*
1242 				 * If the page has become held it might
1243 				 * be undergoing I/O, so skip it
1244 				 */
1245 				if (m->hold_count) {
1246 					vm_page_unlock(m);
1247 					vm_page_requeue_locked(m);
1248 					if (object->flags & OBJ_MIGHTBEDIRTY)
1249 						vnodes_skipped++;
1250 					goto unlock_and_continue;
1251 				}
1252 				vm_pagequeue_unlock(pq);
1253 				queues_locked = FALSE;
1254 			}
1255 
1256 			/*
1257 			 * If a page is dirty, then it is either being washed
1258 			 * (but not yet cleaned) or it is still in the
1259 			 * laundry.  If it is still in the laundry, then we
1260 			 * start the cleaning operation.
1261 			 *
1262 			 * decrement page_shortage on success to account for
1263 			 * the (future) cleaned page.  Otherwise we could wind
1264 			 * up laundering or cleaning too many pages.
1265 			 */
1266 			if (vm_pageout_clean(m) != 0) {
1267 				--page_shortage;
1268 				--maxlaunder;
1269 			}
1270 unlock_and_continue:
1271 			vm_page_lock_assert(m, MA_NOTOWNED);
1272 			VM_OBJECT_WUNLOCK(object);
1273 			if (mp != NULL) {
1274 				if (queues_locked) {
1275 					vm_pagequeue_unlock(pq);
1276 					queues_locked = FALSE;
1277 				}
1278 				if (vp != NULL)
1279 					vput(vp);
1280 				vm_object_deallocate(object);
1281 				vn_finished_write(mp);
1282 			}
1283 			vm_page_lock_assert(m, MA_NOTOWNED);
1284 			goto relock_queues;
1285 		}
1286 		vm_page_unlock(m);
1287 		VM_OBJECT_WUNLOCK(object);
1288 relock_queues:
1289 		if (!queues_locked) {
1290 			vm_pagequeue_lock(pq);
1291 			queues_locked = TRUE;
1292 		}
1293 		next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1294 		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1295 	}
1296 	vm_pagequeue_unlock(pq);
1297 
1298 	/*
1299 	 * Compute the number of pages we want to try to move from the
1300 	 * active queue to the inactive queue.
1301 	 */
1302 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1303 	vm_pagequeue_lock(pq);
1304 	pcount = pq->pq_cnt;
1305 	page_shortage = vm_paging_target() +
1306 	    cnt.v_inactive_target - cnt.v_inactive_count;
1307 	page_shortage += addl_page_shortage;
1308 	/*
1309 	 * If we're just idle polling attempt to visit every
1310 	 * active page within 'update_period' seconds.
1311 	 */
1312 	 if (pass == 0 && vm_pageout_update_period != 0) {
1313 		pcount /= vm_pageout_update_period;
1314 		page_shortage = pcount;
1315 	}
1316 
1317 	/*
1318 	 * Scan the active queue for things we can deactivate. We nominally
1319 	 * track the per-page activity counter and use it to locate
1320 	 * deactivation candidates.
1321 	 */
1322 	m = TAILQ_FIRST(&pq->pq_pl);
1323 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1324 
1325 		KASSERT(m->queue == PQ_ACTIVE,
1326 		    ("vm_pageout_scan: page %p isn't active", m));
1327 
1328 		next = TAILQ_NEXT(m, plinks.q);
1329 		if ((m->flags & PG_MARKER) != 0) {
1330 			m = next;
1331 			continue;
1332 		}
1333 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1334 		    ("Fictitious page %p cannot be in active queue", m));
1335 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1336 		    ("Unmanaged page %p cannot be in active queue", m));
1337 		if (!vm_pageout_page_lock(m, &next)) {
1338 			vm_page_unlock(m);
1339 			m = next;
1340 			continue;
1341 		}
1342 
1343 		/*
1344 		 * The count for pagedaemon pages is done after checking the
1345 		 * page for eligibility...
1346 		 */
1347 		PCPU_INC(cnt.v_pdpages);
1348 
1349 		/*
1350 		 * Check to see "how much" the page has been used.
1351 		 */
1352 		act_delta = 0;
1353 		if (m->aflags & PGA_REFERENCED) {
1354 			vm_page_aflag_clear(m, PGA_REFERENCED);
1355 			act_delta += 1;
1356 		}
1357 		/*
1358 		 * Unlocked object ref count check.  Two races are possible.
1359 		 * 1) The ref was transitioning to zero and we saw non-zero,
1360 		 *    the pmap bits will be checked unnecessarily.
1361 		 * 2) The ref was transitioning to one and we saw zero.
1362 		 *    The page lock prevents a new reference to this page so
1363 		 *    we need not check the reference bits.
1364 		 */
1365 		if (m->object->ref_count != 0)
1366 			act_delta += pmap_ts_referenced(m);
1367 
1368 		/*
1369 		 * Advance or decay the act_count based on recent usage.
1370 		 */
1371 		if (act_delta) {
1372 			m->act_count += ACT_ADVANCE + act_delta;
1373 			if (m->act_count > ACT_MAX)
1374 				m->act_count = ACT_MAX;
1375 		} else {
1376 			m->act_count -= min(m->act_count, ACT_DECLINE);
1377 			act_delta = m->act_count;
1378 		}
1379 
1380 		/*
1381 		 * Move this page to the tail of the active or inactive
1382 		 * queue depending on usage.
1383 		 */
1384 		if (act_delta == 0) {
1385 			/* Dequeue to avoid later lock recursion. */
1386 			vm_page_dequeue_locked(m);
1387 			vm_page_deactivate(m);
1388 			page_shortage--;
1389 		} else
1390 			vm_page_requeue_locked(m);
1391 		vm_page_unlock(m);
1392 		m = next;
1393 	}
1394 	vm_pagequeue_unlock(pq);
1395 #if !defined(NO_SWAPPING)
1396 	/*
1397 	 * Idle process swapout -- run once per second.
1398 	 */
1399 	if (vm_swap_idle_enabled) {
1400 		static long lsec;
1401 		if (time_second != lsec) {
1402 			vm_req_vmdaemon(VM_SWAP_IDLE);
1403 			lsec = time_second;
1404 		}
1405 	}
1406 #endif
1407 
1408 	/*
1409 	 * If we didn't get enough free pages, and we have skipped a vnode
1410 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1411 	 * if we did not get enough free pages.
1412 	 */
1413 	if (vm_paging_target() > 0) {
1414 		if (vnodes_skipped && vm_page_count_min())
1415 			(void) speedup_syncer();
1416 #if !defined(NO_SWAPPING)
1417 		if (vm_swap_enabled && vm_page_count_target())
1418 			vm_req_vmdaemon(VM_SWAP_NORMAL);
1419 #endif
1420 	}
1421 
1422 	/*
1423 	 * If we are critically low on one of RAM or swap and low on
1424 	 * the other, kill the largest process.  However, we avoid
1425 	 * doing this on the first pass in order to give ourselves a
1426 	 * chance to flush out dirty vnode-backed pages and to allow
1427 	 * active pages to be moved to the inactive queue and reclaimed.
1428 	 */
1429 	vm_pageout_mightbe_oom(vmd, pass);
1430 }
1431 
1432 static int vm_pageout_oom_vote;
1433 
1434 /*
1435  * The pagedaemon threads randlomly select one to perform the
1436  * OOM.  Trying to kill processes before all pagedaemons
1437  * failed to reach free target is premature.
1438  */
1439 static void
1440 vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass)
1441 {
1442 	int old_vote;
1443 
1444 	if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) ||
1445 	    (swap_pager_full && vm_paging_target() > 0))) {
1446 		if (vmd->vmd_oom) {
1447 			vmd->vmd_oom = FALSE;
1448 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1449 		}
1450 		return;
1451 	}
1452 
1453 	if (vmd->vmd_oom)
1454 		return;
1455 
1456 	vmd->vmd_oom = TRUE;
1457 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1458 	if (old_vote != vm_ndomains - 1)
1459 		return;
1460 
1461 	/*
1462 	 * The current pagedaemon thread is the last in the quorum to
1463 	 * start OOM.  Initiate the selection and signaling of the
1464 	 * victim.
1465 	 */
1466 	vm_pageout_oom(VM_OOM_MEM);
1467 
1468 	/*
1469 	 * After one round of OOM terror, recall our vote.  On the
1470 	 * next pass, current pagedaemon would vote again if the low
1471 	 * memory condition is still there, due to vmd_oom being
1472 	 * false.
1473 	 */
1474 	vmd->vmd_oom = FALSE;
1475 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1476 }
1477 
1478 void
1479 vm_pageout_oom(int shortage)
1480 {
1481 	struct proc *p, *bigproc;
1482 	vm_offset_t size, bigsize;
1483 	struct thread *td;
1484 	struct vmspace *vm;
1485 
1486 	/*
1487 	 * We keep the process bigproc locked once we find it to keep anyone
1488 	 * from messing with it; however, there is a possibility of
1489 	 * deadlock if process B is bigproc and one of it's child processes
1490 	 * attempts to propagate a signal to B while we are waiting for A's
1491 	 * lock while walking this list.  To avoid this, we don't block on
1492 	 * the process lock but just skip a process if it is already locked.
1493 	 */
1494 	bigproc = NULL;
1495 	bigsize = 0;
1496 	sx_slock(&allproc_lock);
1497 	FOREACH_PROC_IN_SYSTEM(p) {
1498 		int breakout;
1499 
1500 		if (PROC_TRYLOCK(p) == 0)
1501 			continue;
1502 		/*
1503 		 * If this is a system, protected or killed process, skip it.
1504 		 */
1505 		if (p->p_state != PRS_NORMAL ||
1506 		    (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1507 		    (p->p_pid == 1) || P_KILLED(p) ||
1508 		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1509 			PROC_UNLOCK(p);
1510 			continue;
1511 		}
1512 		/*
1513 		 * If the process is in a non-running type state,
1514 		 * don't touch it.  Check all the threads individually.
1515 		 */
1516 		breakout = 0;
1517 		FOREACH_THREAD_IN_PROC(p, td) {
1518 			thread_lock(td);
1519 			if (!TD_ON_RUNQ(td) &&
1520 			    !TD_IS_RUNNING(td) &&
1521 			    !TD_IS_SLEEPING(td) &&
1522 			    !TD_IS_SUSPENDED(td)) {
1523 				thread_unlock(td);
1524 				breakout = 1;
1525 				break;
1526 			}
1527 			thread_unlock(td);
1528 		}
1529 		if (breakout) {
1530 			PROC_UNLOCK(p);
1531 			continue;
1532 		}
1533 		/*
1534 		 * get the process size
1535 		 */
1536 		vm = vmspace_acquire_ref(p);
1537 		if (vm == NULL) {
1538 			PROC_UNLOCK(p);
1539 			continue;
1540 		}
1541 		if (!vm_map_trylock_read(&vm->vm_map)) {
1542 			vmspace_free(vm);
1543 			PROC_UNLOCK(p);
1544 			continue;
1545 		}
1546 		size = vmspace_swap_count(vm);
1547 		vm_map_unlock_read(&vm->vm_map);
1548 		if (shortage == VM_OOM_MEM)
1549 			size += vmspace_resident_count(vm);
1550 		vmspace_free(vm);
1551 		/*
1552 		 * if the this process is bigger than the biggest one
1553 		 * remember it.
1554 		 */
1555 		if (size > bigsize) {
1556 			if (bigproc != NULL)
1557 				PROC_UNLOCK(bigproc);
1558 			bigproc = p;
1559 			bigsize = size;
1560 		} else
1561 			PROC_UNLOCK(p);
1562 	}
1563 	sx_sunlock(&allproc_lock);
1564 	if (bigproc != NULL) {
1565 		killproc(bigproc, "out of swap space");
1566 		sched_nice(bigproc, PRIO_MIN);
1567 		PROC_UNLOCK(bigproc);
1568 		wakeup(&cnt.v_free_count);
1569 	}
1570 }
1571 
1572 static void
1573 vm_pageout_worker(void *arg)
1574 {
1575 	struct vm_domain *domain;
1576 	int domidx;
1577 
1578 	domidx = (uintptr_t)arg;
1579 	domain = &vm_dom[domidx];
1580 
1581 	/*
1582 	 * XXXKIB It could be useful to bind pageout daemon threads to
1583 	 * the cores belonging to the domain, from which vm_page_array
1584 	 * is allocated.
1585 	 */
1586 
1587 	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1588 	vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1589 
1590 	/*
1591 	 * The pageout daemon worker is never done, so loop forever.
1592 	 */
1593 	while (TRUE) {
1594 		/*
1595 		 * If we have enough free memory, wakeup waiters.  Do
1596 		 * not clear vm_pages_needed until we reach our target,
1597 		 * otherwise we may be woken up over and over again and
1598 		 * waste a lot of cpu.
1599 		 */
1600 		mtx_lock(&vm_page_queue_free_mtx);
1601 		if (vm_pages_needed && !vm_page_count_min()) {
1602 			if (!vm_paging_needed())
1603 				vm_pages_needed = 0;
1604 			wakeup(&cnt.v_free_count);
1605 		}
1606 		if (vm_pages_needed) {
1607 			/*
1608 			 * Still not done, take a second pass without waiting
1609 			 * (unlimited dirty cleaning), otherwise sleep a bit
1610 			 * and try again.
1611 			 */
1612 			if (domain->vmd_pass > 1)
1613 				msleep(&vm_pages_needed,
1614 				    &vm_page_queue_free_mtx, PVM, "psleep",
1615 				    hz / 2);
1616 		} else {
1617 			/*
1618 			 * Good enough, sleep until required to refresh
1619 			 * stats.
1620 			 */
1621 			domain->vmd_pass = 0;
1622 			msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1623 			    PVM, "psleep", hz);
1624 
1625 		}
1626 		if (vm_pages_needed) {
1627 			cnt.v_pdwakeups++;
1628 			domain->vmd_pass++;
1629 		}
1630 		mtx_unlock(&vm_page_queue_free_mtx);
1631 		vm_pageout_scan(domain, domain->vmd_pass);
1632 	}
1633 }
1634 
1635 /*
1636  *	vm_pageout is the high level pageout daemon.
1637  */
1638 static void
1639 vm_pageout(void)
1640 {
1641 #if MAXMEMDOM > 1
1642 	int error, i;
1643 #endif
1644 
1645 	/*
1646 	 * Initialize some paging parameters.
1647 	 */
1648 	cnt.v_interrupt_free_min = 2;
1649 	if (cnt.v_page_count < 2000)
1650 		vm_pageout_page_count = 8;
1651 
1652 	/*
1653 	 * v_free_reserved needs to include enough for the largest
1654 	 * swap pager structures plus enough for any pv_entry structs
1655 	 * when paging.
1656 	 */
1657 	if (cnt.v_page_count > 1024)
1658 		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1659 	else
1660 		cnt.v_free_min = 4;
1661 	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1662 	    cnt.v_interrupt_free_min;
1663 	cnt.v_free_reserved = vm_pageout_page_count +
1664 	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1665 	cnt.v_free_severe = cnt.v_free_min / 2;
1666 	cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1667 	cnt.v_free_min += cnt.v_free_reserved;
1668 	cnt.v_free_severe += cnt.v_free_reserved;
1669 	cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1670 	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1671 		cnt.v_inactive_target = cnt.v_free_count / 3;
1672 
1673 	/*
1674 	 * Set the default wakeup threshold to be 10% above the minimum
1675 	 * page limit.  This keeps the steady state out of shortfall.
1676 	 */
1677 	vm_pageout_wakeup_thresh = (cnt.v_free_min / 10) * 11;
1678 
1679 	/*
1680 	 * Set interval in seconds for active scan.  We want to visit each
1681 	 * page at least once every ten minutes.  This is to prevent worst
1682 	 * case paging behaviors with stale active LRU.
1683 	 */
1684 	if (vm_pageout_update_period == 0)
1685 		vm_pageout_update_period = 600;
1686 
1687 	/* XXX does not really belong here */
1688 	if (vm_page_max_wired == 0)
1689 		vm_page_max_wired = cnt.v_free_count / 3;
1690 
1691 	swap_pager_swap_init();
1692 #if MAXMEMDOM > 1
1693 	for (i = 1; i < vm_ndomains; i++) {
1694 		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1695 		    curproc, NULL, 0, 0, "dom%d", i);
1696 		if (error != 0) {
1697 			panic("starting pageout for domain %d, error %d\n",
1698 			    i, error);
1699 		}
1700 	}
1701 #endif
1702 	vm_pageout_worker((uintptr_t)0);
1703 }
1704 
1705 /*
1706  * Unless the free page queue lock is held by the caller, this function
1707  * should be regarded as advisory.  Specifically, the caller should
1708  * not msleep() on &cnt.v_free_count following this function unless
1709  * the free page queue lock is held until the msleep() is performed.
1710  */
1711 void
1712 pagedaemon_wakeup(void)
1713 {
1714 
1715 	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1716 		vm_pages_needed = 1;
1717 		wakeup(&vm_pages_needed);
1718 	}
1719 }
1720 
1721 #if !defined(NO_SWAPPING)
1722 static void
1723 vm_req_vmdaemon(int req)
1724 {
1725 	static int lastrun = 0;
1726 
1727 	mtx_lock(&vm_daemon_mtx);
1728 	vm_pageout_req_swapout |= req;
1729 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1730 		wakeup(&vm_daemon_needed);
1731 		lastrun = ticks;
1732 	}
1733 	mtx_unlock(&vm_daemon_mtx);
1734 }
1735 
1736 static void
1737 vm_daemon(void)
1738 {
1739 	struct rlimit rsslim;
1740 	struct proc *p;
1741 	struct thread *td;
1742 	struct vmspace *vm;
1743 	int breakout, swapout_flags, tryagain, attempts;
1744 #ifdef RACCT
1745 	uint64_t rsize, ravailable;
1746 #endif
1747 
1748 	while (TRUE) {
1749 		mtx_lock(&vm_daemon_mtx);
1750 #ifdef RACCT
1751 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1752 #else
1753 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1754 #endif
1755 		swapout_flags = vm_pageout_req_swapout;
1756 		vm_pageout_req_swapout = 0;
1757 		mtx_unlock(&vm_daemon_mtx);
1758 		if (swapout_flags)
1759 			swapout_procs(swapout_flags);
1760 
1761 		/*
1762 		 * scan the processes for exceeding their rlimits or if
1763 		 * process is swapped out -- deactivate pages
1764 		 */
1765 		tryagain = 0;
1766 		attempts = 0;
1767 again:
1768 		attempts++;
1769 		sx_slock(&allproc_lock);
1770 		FOREACH_PROC_IN_SYSTEM(p) {
1771 			vm_pindex_t limit, size;
1772 
1773 			/*
1774 			 * if this is a system process or if we have already
1775 			 * looked at this process, skip it.
1776 			 */
1777 			PROC_LOCK(p);
1778 			if (p->p_state != PRS_NORMAL ||
1779 			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1780 				PROC_UNLOCK(p);
1781 				continue;
1782 			}
1783 			/*
1784 			 * if the process is in a non-running type state,
1785 			 * don't touch it.
1786 			 */
1787 			breakout = 0;
1788 			FOREACH_THREAD_IN_PROC(p, td) {
1789 				thread_lock(td);
1790 				if (!TD_ON_RUNQ(td) &&
1791 				    !TD_IS_RUNNING(td) &&
1792 				    !TD_IS_SLEEPING(td) &&
1793 				    !TD_IS_SUSPENDED(td)) {
1794 					thread_unlock(td);
1795 					breakout = 1;
1796 					break;
1797 				}
1798 				thread_unlock(td);
1799 			}
1800 			if (breakout) {
1801 				PROC_UNLOCK(p);
1802 				continue;
1803 			}
1804 			/*
1805 			 * get a limit
1806 			 */
1807 			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1808 			limit = OFF_TO_IDX(
1809 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1810 
1811 			/*
1812 			 * let processes that are swapped out really be
1813 			 * swapped out set the limit to nothing (will force a
1814 			 * swap-out.)
1815 			 */
1816 			if ((p->p_flag & P_INMEM) == 0)
1817 				limit = 0;	/* XXX */
1818 			vm = vmspace_acquire_ref(p);
1819 			PROC_UNLOCK(p);
1820 			if (vm == NULL)
1821 				continue;
1822 
1823 			size = vmspace_resident_count(vm);
1824 			if (size >= limit) {
1825 				vm_pageout_map_deactivate_pages(
1826 				    &vm->vm_map, limit);
1827 			}
1828 #ifdef RACCT
1829 			rsize = IDX_TO_OFF(size);
1830 			PROC_LOCK(p);
1831 			racct_set(p, RACCT_RSS, rsize);
1832 			ravailable = racct_get_available(p, RACCT_RSS);
1833 			PROC_UNLOCK(p);
1834 			if (rsize > ravailable) {
1835 				/*
1836 				 * Don't be overly aggressive; this might be
1837 				 * an innocent process, and the limit could've
1838 				 * been exceeded by some memory hog.  Don't
1839 				 * try to deactivate more than 1/4th of process'
1840 				 * resident set size.
1841 				 */
1842 				if (attempts <= 8) {
1843 					if (ravailable < rsize - (rsize / 4))
1844 						ravailable = rsize - (rsize / 4);
1845 				}
1846 				vm_pageout_map_deactivate_pages(
1847 				    &vm->vm_map, OFF_TO_IDX(ravailable));
1848 				/* Update RSS usage after paging out. */
1849 				size = vmspace_resident_count(vm);
1850 				rsize = IDX_TO_OFF(size);
1851 				PROC_LOCK(p);
1852 				racct_set(p, RACCT_RSS, rsize);
1853 				PROC_UNLOCK(p);
1854 				if (rsize > ravailable)
1855 					tryagain = 1;
1856 			}
1857 #endif
1858 			vmspace_free(vm);
1859 		}
1860 		sx_sunlock(&allproc_lock);
1861 		if (tryagain != 0 && attempts <= 10)
1862 			goto again;
1863 	}
1864 }
1865 #endif			/* !defined(NO_SWAPPING) */
1866