xref: /freebsd/sys/vm/vm_pageout.c (revision a14a0223ae1b172e96dd2a1d849e22026a98b692)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD$
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include "opt_vm.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/kthread.h>
81 #include <sys/resourcevar.h>
82 #include <sys/signalvar.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sysctl.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <sys/lock.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_extern.h>
97 
98 /*
99  * System initialization
100  */
101 
102 /* the kernel process "vm_pageout"*/
103 static void vm_pageout __P((void));
104 static int vm_pageout_clean __P((vm_page_t));
105 static int vm_pageout_scan __P((void));
106 static int vm_pageout_free_page_calc __P((vm_size_t count));
107 struct proc *pageproc;
108 
109 static struct kproc_desc page_kp = {
110 	"pagedaemon",
111 	vm_pageout,
112 	&pageproc
113 };
114 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
115 
116 #if !defined(NO_SWAPPING)
117 /* the kernel process "vm_daemon"*/
118 static void vm_daemon __P((void));
119 static struct	proc *vmproc;
120 
121 static struct kproc_desc vm_kp = {
122 	"vmdaemon",
123 	vm_daemon,
124 	&vmproc
125 };
126 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
127 #endif
128 
129 
130 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
131 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
132 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
133 
134 #if !defined(NO_SWAPPING)
135 static int vm_pageout_req_swapout;	/* XXX */
136 static int vm_daemon_needed;
137 #endif
138 extern int vm_swap_size;
139 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
140 static int vm_pageout_full_stats_interval = 0;
141 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm_lru=0;
142 static int defer_swap_pageouts=0;
143 static int disable_swap_pageouts=0;
144 
145 static int max_page_launder=100;
146 #if defined(NO_SWAPPING)
147 static int vm_swap_enabled=0;
148 static int vm_swap_idle_enabled=0;
149 #else
150 static int vm_swap_enabled=1;
151 static int vm_swap_idle_enabled=0;
152 #endif
153 
154 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
155 	CTLFLAG_RW, &vm_pageout_algorithm_lru, 0, "LRU page mgmt");
156 
157 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
158 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
159 
160 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
161 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
162 
163 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
164 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
165 
166 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
167 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
168 
169 #if defined(NO_SWAPPING)
170 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
171 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
172 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
173 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
174 #else
175 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
176 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
177 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
178 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
179 #endif
180 
181 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
182 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
183 
184 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
185 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
186 
187 SYSCTL_INT(_vm, OID_AUTO, max_page_launder,
188 	CTLFLAG_RW, &max_page_launder, 0, "Maximum number of pages to clean per pass");
189 
190 
191 #define VM_PAGEOUT_PAGE_COUNT 16
192 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
193 
194 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
195 
196 #if !defined(NO_SWAPPING)
197 typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
198 static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
199 static freeer_fcn_t vm_pageout_object_deactivate_pages;
200 static void vm_req_vmdaemon __P((void));
201 #endif
202 static void vm_pageout_page_stats(void);
203 
204 /*
205  * vm_pageout_clean:
206  *
207  * Clean the page and remove it from the laundry.
208  *
209  * We set the busy bit to cause potential page faults on this page to
210  * block.  Note the careful timing, however, the busy bit isn't set till
211  * late and we cannot do anything that will mess with the page.
212  */
213 
214 static int
215 vm_pageout_clean(m)
216 	vm_page_t m;
217 {
218 	register vm_object_t object;
219 	vm_page_t mc[2*vm_pageout_page_count];
220 	int pageout_count;
221 	int ib, is, page_base;
222 	vm_pindex_t pindex = m->pindex;
223 
224 	object = m->object;
225 
226 	/*
227 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
228 	 * with the new swapper, but we could have serious problems paging
229 	 * out other object types if there is insufficient memory.
230 	 *
231 	 * Unfortunately, checking free memory here is far too late, so the
232 	 * check has been moved up a procedural level.
233 	 */
234 
235 	/*
236 	 * Don't mess with the page if it's busy.
237 	 */
238 	if ((m->hold_count != 0) ||
239 	    ((m->busy != 0) || (m->flags & PG_BUSY)))
240 		return 0;
241 
242 	mc[vm_pageout_page_count] = m;
243 	pageout_count = 1;
244 	page_base = vm_pageout_page_count;
245 	ib = 1;
246 	is = 1;
247 
248 	/*
249 	 * Scan object for clusterable pages.
250 	 *
251 	 * We can cluster ONLY if: ->> the page is NOT
252 	 * clean, wired, busy, held, or mapped into a
253 	 * buffer, and one of the following:
254 	 * 1) The page is inactive, or a seldom used
255 	 *    active page.
256 	 * -or-
257 	 * 2) we force the issue.
258 	 *
259 	 * During heavy mmap/modification loads the pageout
260 	 * daemon can really fragment the underlying file
261 	 * due to flushing pages out of order and not trying
262 	 * align the clusters (which leave sporatic out-of-order
263 	 * holes).  To solve this problem we do the reverse scan
264 	 * first and attempt to align our cluster, then do a
265 	 * forward scan if room remains.
266 	 */
267 
268 more:
269 	while (ib && pageout_count < vm_pageout_page_count) {
270 		vm_page_t p;
271 
272 		if (ib > pindex) {
273 			ib = 0;
274 			break;
275 		}
276 
277 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
278 			ib = 0;
279 			break;
280 		}
281 		if (((p->queue - p->pc) == PQ_CACHE) ||
282 		    (p->flags & PG_BUSY) || p->busy) {
283 			ib = 0;
284 			break;
285 		}
286 		vm_page_test_dirty(p);
287 		if ((p->dirty & p->valid) == 0 ||
288 		    p->queue != PQ_INACTIVE ||
289 		    p->wire_count != 0 ||
290 		    p->hold_count != 0) {
291 			ib = 0;
292 			break;
293 		}
294 		mc[--page_base] = p;
295 		++pageout_count;
296 		++ib;
297 		/*
298 		 * alignment boundry, stop here and switch directions.  Do
299 		 * not clear ib.
300 		 */
301 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
302 			break;
303 	}
304 
305 	while (pageout_count < vm_pageout_page_count &&
306 	    pindex + is < object->size) {
307 		vm_page_t p;
308 
309 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
310 			break;
311 		if (((p->queue - p->pc) == PQ_CACHE) ||
312 		    (p->flags & PG_BUSY) || p->busy) {
313 			break;
314 		}
315 		vm_page_test_dirty(p);
316 		if ((p->dirty & p->valid) == 0 ||
317 		    p->queue != PQ_INACTIVE ||
318 		    p->wire_count != 0 ||
319 		    p->hold_count != 0) {
320 			break;
321 		}
322 		mc[page_base + pageout_count] = p;
323 		++pageout_count;
324 		++is;
325 	}
326 
327 	/*
328 	 * If we exhausted our forward scan, continue with the reverse scan
329 	 * when possible, even past a page boundry.  This catches boundry
330 	 * conditions.
331 	 */
332 	if (ib && pageout_count < vm_pageout_page_count)
333 		goto more;
334 
335 	/*
336 	 * we allow reads during pageouts...
337 	 */
338 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
339 }
340 
341 /*
342  * vm_pageout_flush() - launder the given pages
343  *
344  *	The given pages are laundered.  Note that we setup for the start of
345  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
346  *	reference count all in here rather then in the parent.  If we want
347  *	the parent to do more sophisticated things we may have to change
348  *	the ordering.
349  */
350 
351 int
352 vm_pageout_flush(mc, count, flags)
353 	vm_page_t *mc;
354 	int count;
355 	int flags;
356 {
357 	register vm_object_t object;
358 	int pageout_status[count];
359 	int numpagedout = 0;
360 	int i;
361 
362 	/*
363 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
364 	 * mark the pages read-only.
365 	 *
366 	 * We do not have to fixup the clean/dirty bits here... we can
367 	 * allow the pager to do it after the I/O completes.
368 	 */
369 
370 	for (i = 0; i < count; i++) {
371 		vm_page_io_start(mc[i]);
372 		vm_page_protect(mc[i], VM_PROT_READ);
373 	}
374 
375 	object = mc[0]->object;
376 	vm_object_pip_add(object, count);
377 
378 	vm_pager_put_pages(object, mc, count,
379 	    (flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
380 	    pageout_status);
381 
382 	for (i = 0; i < count; i++) {
383 		vm_page_t mt = mc[i];
384 
385 		switch (pageout_status[i]) {
386 		case VM_PAGER_OK:
387 			numpagedout++;
388 			break;
389 		case VM_PAGER_PEND:
390 			numpagedout++;
391 			break;
392 		case VM_PAGER_BAD:
393 			/*
394 			 * Page outside of range of object. Right now we
395 			 * essentially lose the changes by pretending it
396 			 * worked.
397 			 */
398 			pmap_clear_modify(VM_PAGE_TO_PHYS(mt));
399 			vm_page_undirty(mt);
400 			break;
401 		case VM_PAGER_ERROR:
402 		case VM_PAGER_FAIL:
403 			/*
404 			 * If page couldn't be paged out, then reactivate the
405 			 * page so it doesn't clog the inactive list.  (We
406 			 * will try paging out it again later).
407 			 */
408 			vm_page_activate(mt);
409 			break;
410 		case VM_PAGER_AGAIN:
411 			break;
412 		}
413 
414 		/*
415 		 * If the operation is still going, leave the page busy to
416 		 * block all other accesses. Also, leave the paging in
417 		 * progress indicator set so that we don't attempt an object
418 		 * collapse.
419 		 */
420 		if (pageout_status[i] != VM_PAGER_PEND) {
421 			vm_object_pip_wakeup(object);
422 			vm_page_io_finish(mt);
423 		}
424 	}
425 	return numpagedout;
426 }
427 
428 #if !defined(NO_SWAPPING)
429 /*
430  *	vm_pageout_object_deactivate_pages
431  *
432  *	deactivate enough pages to satisfy the inactive target
433  *	requirements or if vm_page_proc_limit is set, then
434  *	deactivate all of the pages in the object and its
435  *	backing_objects.
436  *
437  *	The object and map must be locked.
438  */
439 static void
440 vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
441 	vm_map_t map;
442 	vm_object_t object;
443 	vm_pindex_t desired;
444 	int map_remove_only;
445 {
446 	register vm_page_t p, next;
447 	int rcount;
448 	int remove_mode;
449 	int s;
450 
451 	if (object->type == OBJT_DEVICE)
452 		return;
453 
454 	while (object) {
455 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
456 			return;
457 		if (object->paging_in_progress)
458 			return;
459 
460 		remove_mode = map_remove_only;
461 		if (object->shadow_count > 1)
462 			remove_mode = 1;
463 	/*
464 	 * scan the objects entire memory queue
465 	 */
466 		rcount = object->resident_page_count;
467 		p = TAILQ_FIRST(&object->memq);
468 		while (p && (rcount-- > 0)) {
469 			int actcount;
470 			if (pmap_resident_count(vm_map_pmap(map)) <= desired)
471 				return;
472 			next = TAILQ_NEXT(p, listq);
473 			cnt.v_pdpages++;
474 			if (p->wire_count != 0 ||
475 			    p->hold_count != 0 ||
476 			    p->busy != 0 ||
477 			    (p->flags & PG_BUSY) ||
478 			    !pmap_page_exists(vm_map_pmap(map), VM_PAGE_TO_PHYS(p))) {
479 				p = next;
480 				continue;
481 			}
482 
483 			actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(p));
484 			if (actcount) {
485 				vm_page_flag_set(p, PG_REFERENCED);
486 			} else if (p->flags & PG_REFERENCED) {
487 				actcount = 1;
488 			}
489 
490 			if ((p->queue != PQ_ACTIVE) &&
491 				(p->flags & PG_REFERENCED)) {
492 				vm_page_activate(p);
493 				p->act_count += actcount;
494 				vm_page_flag_clear(p, PG_REFERENCED);
495 			} else if (p->queue == PQ_ACTIVE) {
496 				if ((p->flags & PG_REFERENCED) == 0) {
497 					p->act_count -= min(p->act_count, ACT_DECLINE);
498 					if (!remove_mode && (vm_pageout_algorithm_lru || (p->act_count == 0))) {
499 						vm_page_protect(p, VM_PROT_NONE);
500 						vm_page_deactivate(p);
501 					} else {
502 						s = splvm();
503 						TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
504 						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
505 						splx(s);
506 					}
507 				} else {
508 					vm_page_activate(p);
509 					vm_page_flag_clear(p, PG_REFERENCED);
510 					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
511 						p->act_count += ACT_ADVANCE;
512 					s = splvm();
513 					TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
514 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
515 					splx(s);
516 				}
517 			} else if (p->queue == PQ_INACTIVE) {
518 				vm_page_protect(p, VM_PROT_NONE);
519 			}
520 			p = next;
521 		}
522 		object = object->backing_object;
523 	}
524 	return;
525 }
526 
527 /*
528  * deactivate some number of pages in a map, try to do it fairly, but
529  * that is really hard to do.
530  */
531 static void
532 vm_pageout_map_deactivate_pages(map, desired)
533 	vm_map_t map;
534 	vm_pindex_t desired;
535 {
536 	vm_map_entry_t tmpe;
537 	vm_object_t obj, bigobj;
538 
539 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curproc)) {
540 		return;
541 	}
542 
543 	bigobj = NULL;
544 
545 	/*
546 	 * first, search out the biggest object, and try to free pages from
547 	 * that.
548 	 */
549 	tmpe = map->header.next;
550 	while (tmpe != &map->header) {
551 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
552 			obj = tmpe->object.vm_object;
553 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
554 				((bigobj == NULL) ||
555 				 (bigobj->resident_page_count < obj->resident_page_count))) {
556 				bigobj = obj;
557 			}
558 		}
559 		tmpe = tmpe->next;
560 	}
561 
562 	if (bigobj)
563 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
564 
565 	/*
566 	 * Next, hunt around for other pages to deactivate.  We actually
567 	 * do this search sort of wrong -- .text first is not the best idea.
568 	 */
569 	tmpe = map->header.next;
570 	while (tmpe != &map->header) {
571 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
572 			break;
573 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
574 			obj = tmpe->object.vm_object;
575 			if (obj)
576 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
577 		}
578 		tmpe = tmpe->next;
579 	};
580 
581 	/*
582 	 * Remove all mappings if a process is swapped out, this will free page
583 	 * table pages.
584 	 */
585 	if (desired == 0)
586 		pmap_remove(vm_map_pmap(map),
587 			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
588 	vm_map_unlock(map);
589 	return;
590 }
591 #endif
592 
593 /*
594  * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
595  * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
596  * which we know can be trivially freed.
597  */
598 
599 void
600 vm_pageout_page_free(vm_page_t m) {
601 	vm_object_t object = m->object;
602 	int type = object->type;
603 
604 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
605 		vm_object_reference(object);
606 	vm_page_busy(m);
607 	vm_page_protect(m, VM_PROT_NONE);
608 	vm_page_free(m);
609 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
610 		vm_object_deallocate(object);
611 }
612 
613 /*
614  *	vm_pageout_scan does the dirty work for the pageout daemon.
615  */
616 static int
617 vm_pageout_scan()
618 {
619 	vm_page_t m, next;
620 	int page_shortage, maxscan, pcount;
621 	int addl_page_shortage, addl_page_shortage_init;
622 	int maxlaunder;
623 	int launder_loop = 0;
624 	struct proc *p, *bigproc;
625 	vm_offset_t size, bigsize;
626 	vm_object_t object;
627 	int force_wakeup = 0;
628 	int actcount;
629 	int vnodes_skipped = 0;
630 	int s;
631 
632 	/*
633 	 * Do whatever cleanup that the pmap code can.
634 	 */
635 	pmap_collect();
636 
637 	addl_page_shortage_init = vm_pageout_deficit;
638 	vm_pageout_deficit = 0;
639 
640 	if (max_page_launder == 0)
641 		max_page_launder = 1;
642 
643 	/*
644 	 * Calculate the number of pages we want to either free or move
645 	 * to the cache.
646 	 */
647 
648 	page_shortage = vm_paging_target() + addl_page_shortage_init;
649 
650 	/*
651 	 * Figure out what to do with dirty pages when they are encountered.
652 	 * Assume that 1/3 of the pages on the inactive list are clean.  If
653 	 * we think we can reach our target, disable laundering (do not
654 	 * clean any dirty pages).  If we miss the target we will loop back
655 	 * up and do a laundering run.
656 	 */
657 
658 	if (cnt.v_inactive_count / 3 > page_shortage) {
659 		maxlaunder = 0;
660 		launder_loop = 0;
661 	} else {
662 		maxlaunder =
663 		    (cnt.v_inactive_target > max_page_launder) ?
664 		    max_page_launder : cnt.v_inactive_target;
665 		launder_loop = 1;
666 	}
667 
668 	/*
669 	 * Start scanning the inactive queue for pages we can move to the
670 	 * cache or free.  The scan will stop when the target is reached or
671 	 * we have scanned the entire inactive queue.
672 	 */
673 
674 rescan0:
675 	addl_page_shortage = addl_page_shortage_init;
676 	maxscan = cnt.v_inactive_count;
677 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
678 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
679 	     m = next) {
680 
681 		cnt.v_pdpages++;
682 
683 		if (m->queue != PQ_INACTIVE) {
684 			goto rescan0;
685 		}
686 
687 		next = TAILQ_NEXT(m, pageq);
688 
689 		if (m->hold_count) {
690 			s = splvm();
691 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
692 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
693 			splx(s);
694 			addl_page_shortage++;
695 			continue;
696 		}
697 		/*
698 		 * Dont mess with busy pages, keep in the front of the
699 		 * queue, most likely are being paged out.
700 		 */
701 		if (m->busy || (m->flags & PG_BUSY)) {
702 			addl_page_shortage++;
703 			continue;
704 		}
705 
706 		/*
707 		 * If the object is not being used, we ignore previous
708 		 * references.
709 		 */
710 		if (m->object->ref_count == 0) {
711 			vm_page_flag_clear(m, PG_REFERENCED);
712 			pmap_clear_reference(VM_PAGE_TO_PHYS(m));
713 
714 		/*
715 		 * Otherwise, if the page has been referenced while in the
716 		 * inactive queue, we bump the "activation count" upwards,
717 		 * making it less likely that the page will be added back to
718 		 * the inactive queue prematurely again.  Here we check the
719 		 * page tables (or emulated bits, if any), given the upper
720 		 * level VM system not knowing anything about existing
721 		 * references.
722 		 */
723 		} else if (((m->flags & PG_REFERENCED) == 0) &&
724 			(actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(m)))) {
725 			vm_page_activate(m);
726 			m->act_count += (actcount + ACT_ADVANCE);
727 			continue;
728 		}
729 
730 		/*
731 		 * If the upper level VM system knows about any page
732 		 * references, we activate the page.  We also set the
733 		 * "activation count" higher than normal so that we will less
734 		 * likely place pages back onto the inactive queue again.
735 		 */
736 		if ((m->flags & PG_REFERENCED) != 0) {
737 			vm_page_flag_clear(m, PG_REFERENCED);
738 			actcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
739 			vm_page_activate(m);
740 			m->act_count += (actcount + ACT_ADVANCE + 1);
741 			continue;
742 		}
743 
744 		/*
745 		 * If the upper level VM system doesn't know anything about
746 		 * the page being dirty, we have to check for it again.  As
747 		 * far as the VM code knows, any partially dirty pages are
748 		 * fully dirty.
749 		 */
750 		if (m->dirty == 0) {
751 			vm_page_test_dirty(m);
752 		} else {
753 			vm_page_dirty(m);
754 		}
755 
756 		/*
757 		 * Invalid pages can be easily freed
758 		 */
759 		if (m->valid == 0) {
760 			vm_pageout_page_free(m);
761 			cnt.v_dfree++;
762 			--page_shortage;
763 
764 		/*
765 		 * Clean pages can be placed onto the cache queue.
766 		 */
767 		} else if (m->dirty == 0) {
768 			vm_page_cache(m);
769 			--page_shortage;
770 
771 		/*
772 		 * Dirty pages need to be paged out.  Note that we clean
773 		 * only a limited number of pages per pagedaemon pass.
774 		 */
775 		} else if (maxlaunder > 0) {
776 			int written;
777 			int swap_pageouts_ok;
778 			struct vnode *vp = NULL;
779 
780 			object = m->object;
781 
782 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
783 				swap_pageouts_ok = 1;
784 			} else {
785 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
786 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
787 				vm_page_count_min());
788 
789 			}
790 
791 			/*
792 			 * We don't bother paging objects that are "dead".
793 			 * Those objects are in a "rundown" state.
794 			 */
795 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
796 				s = splvm();
797 				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
798 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
799 				splx(s);
800 				continue;
801 			}
802 
803 			/*
804 			 * For now we protect against potential memory
805 			 * deadlocks by requiring significant memory to be
806 			 * free if the object is not OBJT_DEFAULT or OBJT_SWAP.
807 			 * We do not 'trust' any other object type to operate
808 			 * with low memory, not even OBJT_DEVICE.  The VM
809 			 * allocator will special case allocations done by
810 			 * the pageout daemon so the check below actually
811 			 * does have some hysteresis in it.  It isn't the best
812 			 * solution, though.
813 			 */
814 
815 			if (object->type != OBJT_DEFAULT &&
816 			    object->type != OBJT_SWAP &&
817 			    cnt.v_free_count < cnt.v_free_reserved) {
818 				s = splvm();
819 				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
820 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
821 				    pageq);
822 				splx(s);
823 				continue;
824 			}
825 
826 			/*
827 			 * Presumably we have sufficient free memory to do
828 			 * the more sophisticated checks and locking required
829 			 * for vnodes.
830 			 *
831 			 * The object is already known NOT to be dead.  The
832 			 * vget() may still block, though, because
833 			 * VOP_ISLOCKED() doesn't check to see if an inode
834 			 * (v_data) is associated with the vnode.  If it isn't,
835 			 * vget() will load in it from disk.  Worse, vget()
836 			 * may actually get stuck waiting on "inode" if another
837 			 * process is in the process of bringing the inode in.
838 			 * This is bad news for us either way.
839 			 *
840 			 * So for the moment we check v_data == NULL as a
841 			 * workaround.  This means that vnodes which do not
842 			 * use v_data in the way we expect probably will not
843 			 * wind up being paged out by the pager and it will be
844 			 * up to the syncer to get them.  That's better then
845 			 * us blocking here.
846 			 *
847 			 * This whole code section is bogus - we need to fix
848 			 * the vnode pager to handle vm_page_t's without us
849 			 * having to do any sophisticated VOP tests.
850 			 */
851 
852 			if (object->type == OBJT_VNODE) {
853 				vp = object->handle;
854 
855 				if (VOP_ISLOCKED(vp) ||
856 				    vp->v_data == NULL ||
857 				    vget(vp, LK_EXCLUSIVE|LK_NOOBJ, curproc)) {
858 					if ((m->queue == PQ_INACTIVE) &&
859 						(m->hold_count == 0) &&
860 						(m->busy == 0) &&
861 						(m->flags & PG_BUSY) == 0) {
862 						s = splvm();
863 						TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
864 						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
865 						splx(s);
866 					}
867 					if (object->flags & OBJ_MIGHTBEDIRTY)
868 						vnodes_skipped++;
869 					continue;
870 				}
871 
872 				/*
873 				 * The page might have been moved to another queue
874 				 * during potential blocking in vget() above.
875 				 */
876 				if (m->queue != PQ_INACTIVE) {
877 					if (object->flags & OBJ_MIGHTBEDIRTY)
878 						vnodes_skipped++;
879 					vput(vp);
880 					continue;
881 				}
882 
883 				/*
884 				 * The page may have been busied during the blocking in
885 				 * vput();  We don't move the page back onto the end of
886 				 * the queue so that statistics are more correct if we don't.
887 				 */
888 				if (m->busy || (m->flags & PG_BUSY)) {
889 					vput(vp);
890 					continue;
891 				}
892 
893 				/*
894 				 * If the page has become held, then skip it
895 				 */
896 				if (m->hold_count) {
897 					s = splvm();
898 					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
899 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
900 					splx(s);
901 					if (object->flags & OBJ_MIGHTBEDIRTY)
902 						vnodes_skipped++;
903 					vput(vp);
904 					continue;
905 				}
906 			}
907 
908 			/*
909 			 * If a page is dirty, then it is either being washed
910 			 * (but not yet cleaned) or it is still in the
911 			 * laundry.  If it is still in the laundry, then we
912 			 * start the cleaning operation.
913 			 */
914 			written = vm_pageout_clean(m);
915 			if (vp)
916 				vput(vp);
917 
918 			maxlaunder -= written;
919 		}
920 	}
921 
922 	/*
923 	 * If we still have a page shortage and we didn't launder anything,
924 	 * run the inactive scan again and launder something this time.
925 	 */
926 
927 	if (launder_loop == 0 && page_shortage > 0) {
928 		launder_loop = 1;
929 		maxlaunder =
930 		    (cnt.v_inactive_target > max_page_launder) ?
931 		    max_page_launder : cnt.v_inactive_target;
932 		goto rescan0;
933 	}
934 
935 	/*
936 	 * Compute the page shortage from the point of view of having to
937 	 * move pages from the active queue to the inactive queue.
938 	 */
939 
940 	page_shortage = (cnt.v_inactive_target + cnt.v_cache_min) -
941 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
942 	page_shortage += addl_page_shortage;
943 
944 	/*
945 	 * Scan the active queue for things we can deactivate
946 	 */
947 
948 	pcount = cnt.v_active_count;
949 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
950 
951 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
952 
953 		/*
954 		 * This is a consistancy check, and should likely be a panic
955 		 * or warning.
956 		 */
957 		if (m->queue != PQ_ACTIVE) {
958 			break;
959 		}
960 
961 		next = TAILQ_NEXT(m, pageq);
962 		/*
963 		 * Don't deactivate pages that are busy.
964 		 */
965 		if ((m->busy != 0) ||
966 		    (m->flags & PG_BUSY) ||
967 		    (m->hold_count != 0)) {
968 			s = splvm();
969 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
970 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
971 			splx(s);
972 			m = next;
973 			continue;
974 		}
975 
976 		/*
977 		 * The count for pagedaemon pages is done after checking the
978 		 * page for eligbility...
979 		 */
980 		cnt.v_pdpages++;
981 
982 		/*
983 		 * Check to see "how much" the page has been used.
984 		 */
985 		actcount = 0;
986 		if (m->object->ref_count != 0) {
987 			if (m->flags & PG_REFERENCED) {
988 				actcount += 1;
989 			}
990 			actcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
991 			if (actcount) {
992 				m->act_count += ACT_ADVANCE + actcount;
993 				if (m->act_count > ACT_MAX)
994 					m->act_count = ACT_MAX;
995 			}
996 		}
997 
998 		/*
999 		 * Since we have "tested" this bit, we need to clear it now.
1000 		 */
1001 		vm_page_flag_clear(m, PG_REFERENCED);
1002 
1003 		/*
1004 		 * Only if an object is currently being used, do we use the
1005 		 * page activation count stats.
1006 		 */
1007 		if (actcount && (m->object->ref_count != 0)) {
1008 			s = splvm();
1009 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1010 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1011 			splx(s);
1012 		} else {
1013 			m->act_count -= min(m->act_count, ACT_DECLINE);
1014 			if (vm_pageout_algorithm_lru ||
1015 				(m->object->ref_count == 0) || (m->act_count == 0)) {
1016 				page_shortage--;
1017 				if (m->object->ref_count == 0) {
1018 					vm_page_protect(m, VM_PROT_NONE);
1019 					if (m->dirty == 0)
1020 						vm_page_cache(m);
1021 					else
1022 						vm_page_deactivate(m);
1023 				} else {
1024 					vm_page_deactivate(m);
1025 				}
1026 			} else {
1027 				s = splvm();
1028 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1029 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1030 				splx(s);
1031 			}
1032 		}
1033 		m = next;
1034 	}
1035 
1036 	s = splvm();
1037 
1038 	/*
1039 	 * We try to maintain some *really* free pages, this allows interrupt
1040 	 * code to be guaranteed space.  Since both cache and free queues
1041 	 * are considered basically 'free', moving pages from cache to free
1042 	 * does not effect other calculations.
1043 	 */
1044 
1045 	while (cnt.v_free_count < cnt.v_free_reserved) {
1046 		static int cache_rover = 0;
1047 		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1048 		if (!m)
1049 			break;
1050 		if ((m->flags & PG_BUSY) || m->busy || m->hold_count || m->wire_count) {
1051 #ifdef INVARIANTS
1052 			printf("Warning: busy page %p found in cache\n", m);
1053 #endif
1054 			vm_page_deactivate(m);
1055 			continue;
1056 		}
1057 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1058 		vm_pageout_page_free(m);
1059 		cnt.v_dfree++;
1060 	}
1061 	splx(s);
1062 
1063 #if !defined(NO_SWAPPING)
1064 	/*
1065 	 * Idle process swapout -- run once per second.
1066 	 */
1067 	if (vm_swap_idle_enabled) {
1068 		static long lsec;
1069 		if (time_second != lsec) {
1070 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1071 			vm_req_vmdaemon();
1072 			lsec = time_second;
1073 		}
1074 	}
1075 #endif
1076 
1077 	/*
1078 	 * If we didn't get enough free pages, and we have skipped a vnode
1079 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1080 	 * if we did not get enough free pages.
1081 	 */
1082 	if (vm_paging_target() > 0) {
1083 		if (vnodes_skipped && vm_page_count_min())
1084 			(void) speedup_syncer();
1085 #if !defined(NO_SWAPPING)
1086 		if (vm_swap_enabled && vm_page_count_target()) {
1087 			vm_req_vmdaemon();
1088 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1089 		}
1090 #endif
1091 	}
1092 
1093 	/*
1094 	 * make sure that we have swap space -- if we are low on memory and
1095 	 * swap -- then kill the biggest process.
1096 	 */
1097 	if ((vm_swap_size == 0 || swap_pager_full) && vm_page_count_min()) {
1098 		bigproc = NULL;
1099 		bigsize = 0;
1100 		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1101 			/*
1102 			 * if this is a system process, skip it
1103 			 */
1104 			if ((p->p_flag & P_SYSTEM) || (p->p_lock > 0) ||
1105 			    (p->p_pid == 1) ||
1106 			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1107 				continue;
1108 			}
1109 			/*
1110 			 * if the process is in a non-running type state,
1111 			 * don't touch it.
1112 			 */
1113 			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1114 				continue;
1115 			}
1116 			/*
1117 			 * get the process size
1118 			 */
1119 			size = vmspace_resident_count(p->p_vmspace);
1120 			/*
1121 			 * if the this process is bigger than the biggest one
1122 			 * remember it.
1123 			 */
1124 			if (size > bigsize) {
1125 				bigproc = p;
1126 				bigsize = size;
1127 			}
1128 		}
1129 		if (bigproc != NULL) {
1130 			killproc(bigproc, "out of swap space");
1131 			bigproc->p_estcpu = 0;
1132 			bigproc->p_nice = PRIO_MIN;
1133 			resetpriority(bigproc);
1134 			wakeup(&cnt.v_free_count);
1135 		}
1136 	}
1137 	return force_wakeup;
1138 }
1139 
1140 /*
1141  * This routine tries to maintain the pseudo LRU active queue,
1142  * so that during long periods of time where there is no paging,
1143  * that some statistic accumlation still occurs.  This code
1144  * helps the situation where paging just starts to occur.
1145  */
1146 static void
1147 vm_pageout_page_stats()
1148 {
1149 	int s;
1150 	vm_page_t m,next;
1151 	int pcount,tpcount;		/* Number of pages to check */
1152 	static int fullintervalcount = 0;
1153 	int page_shortage;
1154 
1155 	page_shortage =
1156 	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1157 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1158 
1159 	if (page_shortage <= 0)
1160 		return;
1161 
1162 	pcount = cnt.v_active_count;
1163 	fullintervalcount += vm_pageout_stats_interval;
1164 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1165 		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1166 		if (pcount > tpcount)
1167 			pcount = tpcount;
1168 	}
1169 
1170 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1171 	while ((m != NULL) && (pcount-- > 0)) {
1172 		int actcount;
1173 
1174 		if (m->queue != PQ_ACTIVE) {
1175 			break;
1176 		}
1177 
1178 		next = TAILQ_NEXT(m, pageq);
1179 		/*
1180 		 * Don't deactivate pages that are busy.
1181 		 */
1182 		if ((m->busy != 0) ||
1183 		    (m->flags & PG_BUSY) ||
1184 		    (m->hold_count != 0)) {
1185 			s = splvm();
1186 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1187 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1188 			splx(s);
1189 			m = next;
1190 			continue;
1191 		}
1192 
1193 		actcount = 0;
1194 		if (m->flags & PG_REFERENCED) {
1195 			vm_page_flag_clear(m, PG_REFERENCED);
1196 			actcount += 1;
1197 		}
1198 
1199 		actcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m));
1200 		if (actcount) {
1201 			m->act_count += ACT_ADVANCE + actcount;
1202 			if (m->act_count > ACT_MAX)
1203 				m->act_count = ACT_MAX;
1204 			s = splvm();
1205 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1206 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1207 			splx(s);
1208 		} else {
1209 			if (m->act_count == 0) {
1210 				/*
1211 				 * We turn off page access, so that we have more accurate
1212 				 * RSS stats.  We don't do this in the normal page deactivation
1213 				 * when the system is loaded VM wise, because the cost of
1214 				 * the large number of page protect operations would be higher
1215 				 * than the value of doing the operation.
1216 				 */
1217 				vm_page_protect(m, VM_PROT_NONE);
1218 				vm_page_deactivate(m);
1219 			} else {
1220 				m->act_count -= min(m->act_count, ACT_DECLINE);
1221 				s = splvm();
1222 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1223 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1224 				splx(s);
1225 			}
1226 		}
1227 
1228 		m = next;
1229 	}
1230 }
1231 
1232 static int
1233 vm_pageout_free_page_calc(count)
1234 vm_size_t count;
1235 {
1236 	if (count < cnt.v_page_count)
1237 		 return 0;
1238 	/*
1239 	 * free_reserved needs to include enough for the largest swap pager
1240 	 * structures plus enough for any pv_entry structs when paging.
1241 	 */
1242 	if (cnt.v_page_count > 1024)
1243 		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1244 	else
1245 		cnt.v_free_min = 4;
1246 	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1247 		cnt.v_interrupt_free_min;
1248 	cnt.v_free_reserved = vm_pageout_page_count +
1249 		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1250 	cnt.v_free_severe = cnt.v_free_min / 2;
1251 	cnt.v_free_min += cnt.v_free_reserved;
1252 	cnt.v_free_severe += cnt.v_free_reserved;
1253 	return 1;
1254 }
1255 
1256 
1257 /*
1258  *	vm_pageout is the high level pageout daemon.
1259  */
1260 static void
1261 vm_pageout()
1262 {
1263 	/*
1264 	 * Initialize some paging parameters.
1265 	 */
1266 
1267 	cnt.v_interrupt_free_min = 2;
1268 	if (cnt.v_page_count < 2000)
1269 		vm_pageout_page_count = 8;
1270 
1271 	vm_pageout_free_page_calc(cnt.v_page_count);
1272 	/*
1273 	 * free_reserved needs to include enough for the largest swap pager
1274 	 * structures plus enough for any pv_entry structs when paging.
1275 	 */
1276 	if (cnt.v_free_count > 6144)
1277 		cnt.v_free_target = 3 * cnt.v_free_min + cnt.v_free_reserved;
1278 	else
1279 		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1280 
1281 	if (cnt.v_free_count > 2048) {
1282 		cnt.v_cache_min = cnt.v_free_target;
1283 		cnt.v_cache_max = 2 * cnt.v_cache_min;
1284 		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1285 	} else {
1286 		cnt.v_cache_min = 0;
1287 		cnt.v_cache_max = 0;
1288 		cnt.v_inactive_target = cnt.v_free_count / 4;
1289 	}
1290 	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1291 		cnt.v_inactive_target = cnt.v_free_count / 3;
1292 
1293 	/* XXX does not really belong here */
1294 	if (vm_page_max_wired == 0)
1295 		vm_page_max_wired = cnt.v_free_count / 3;
1296 
1297 	if (vm_pageout_stats_max == 0)
1298 		vm_pageout_stats_max = cnt.v_free_target;
1299 
1300 	/*
1301 	 * Set interval in seconds for stats scan.
1302 	 */
1303 	if (vm_pageout_stats_interval == 0)
1304 		vm_pageout_stats_interval = 5;
1305 	if (vm_pageout_full_stats_interval == 0)
1306 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1307 
1308 
1309 	/*
1310 	 * Set maximum free per pass
1311 	 */
1312 	if (vm_pageout_stats_free_max == 0)
1313 		vm_pageout_stats_free_max = 5;
1314 
1315 	max_page_launder = (cnt.v_page_count > 1800 ? 32 : 16);
1316 
1317 	curproc->p_flag |= P_BUFEXHAUST;
1318 	swap_pager_swap_init();
1319 	/*
1320 	 * The pageout daemon is never done, so loop forever.
1321 	 */
1322 	while (TRUE) {
1323 		int error;
1324 		int s = splvm();
1325 
1326 		if (vm_pages_needed && vm_page_count_min()) {
1327 			/*
1328 			 * Still not done, sleep a bit and go again
1329 			 */
1330 			vm_pages_needed = 0;
1331 			tsleep(&vm_pages_needed, PVM, "psleep", hz/2);
1332 		} else {
1333 			/*
1334 			 * Good enough, sleep & handle stats
1335 			 */
1336 			vm_pages_needed = 0;
1337 			error = tsleep(&vm_pages_needed,
1338 				PVM, "psleep", vm_pageout_stats_interval * hz);
1339 			if (error && !vm_pages_needed) {
1340 				splx(s);
1341 				vm_pageout_page_stats();
1342 				continue;
1343 			}
1344 		}
1345 
1346 		if (vm_pages_needed)
1347 			cnt.v_pdwakeups++;
1348 		vm_pages_needed = 0;
1349 		splx(s);
1350 		vm_pageout_scan();
1351 		vm_pageout_deficit = 0;
1352 		wakeup(&cnt.v_free_count);
1353 	}
1354 }
1355 
1356 void
1357 pagedaemon_wakeup()
1358 {
1359 	if (!vm_pages_needed && curproc != pageproc) {
1360 		vm_pages_needed++;
1361 		wakeup(&vm_pages_needed);
1362 	}
1363 }
1364 
1365 #if !defined(NO_SWAPPING)
1366 static void
1367 vm_req_vmdaemon()
1368 {
1369 	static int lastrun = 0;
1370 
1371 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1372 		wakeup(&vm_daemon_needed);
1373 		lastrun = ticks;
1374 	}
1375 }
1376 
1377 static void
1378 vm_daemon()
1379 {
1380 	struct proc *p;
1381 
1382 	while (TRUE) {
1383 		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1384 		if (vm_pageout_req_swapout) {
1385 			swapout_procs(vm_pageout_req_swapout);
1386 			vm_pageout_req_swapout = 0;
1387 		}
1388 		/*
1389 		 * scan the processes for exceeding their rlimits or if
1390 		 * process is swapped out -- deactivate pages
1391 		 */
1392 
1393 		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1394 			vm_pindex_t limit, size;
1395 
1396 			/*
1397 			 * if this is a system process or if we have already
1398 			 * looked at this process, skip it.
1399 			 */
1400 			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1401 				continue;
1402 			}
1403 			/*
1404 			 * if the process is in a non-running type state,
1405 			 * don't touch it.
1406 			 */
1407 			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1408 				continue;
1409 			}
1410 			/*
1411 			 * get a limit
1412 			 */
1413 			limit = OFF_TO_IDX(
1414 			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1415 				p->p_rlimit[RLIMIT_RSS].rlim_max));
1416 
1417 			/*
1418 			 * let processes that are swapped out really be
1419 			 * swapped out set the limit to nothing (will force a
1420 			 * swap-out.)
1421 			 */
1422 			if ((p->p_flag & P_INMEM) == 0)
1423 				limit = 0;	/* XXX */
1424 
1425 			size = vmspace_resident_count(p->p_vmspace);
1426 			if (limit >= 0 && size >= limit) {
1427 				vm_pageout_map_deactivate_pages(
1428 				    &p->p_vmspace->vm_map, limit);
1429 			}
1430 		}
1431 	}
1432 }
1433 #endif
1434