1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * 45 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 46 * All rights reserved. 47 * 48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 49 * 50 * Permission to use, copy, modify and distribute this software and 51 * its documentation is hereby granted, provided that both the copyright 52 * notice and this permission notice appear in all copies of the 53 * software, derivative works or modified versions, and any portions 54 * thereof, and that both notices appear in supporting documentation. 55 * 56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 57 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 59 * 60 * Carnegie Mellon requests users of this software to return to 61 * 62 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 63 * School of Computer Science 64 * Carnegie Mellon University 65 * Pittsburgh PA 15213-3890 66 * 67 * any improvements or extensions that they make and grant Carnegie the 68 * rights to redistribute these changes. 69 */ 70 71 /* 72 * The proverbial page-out daemon. 73 */ 74 75 #include <sys/cdefs.h> 76 #include "opt_vm.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/kernel.h> 81 #include <sys/blockcount.h> 82 #include <sys/eventhandler.h> 83 #include <sys/lock.h> 84 #include <sys/mutex.h> 85 #include <sys/proc.h> 86 #include <sys/kthread.h> 87 #include <sys/ktr.h> 88 #include <sys/mount.h> 89 #include <sys/racct.h> 90 #include <sys/resourcevar.h> 91 #include <sys/sched.h> 92 #include <sys/sdt.h> 93 #include <sys/signalvar.h> 94 #include <sys/smp.h> 95 #include <sys/time.h> 96 #include <sys/vnode.h> 97 #include <sys/vmmeter.h> 98 #include <sys/rwlock.h> 99 #include <sys/sx.h> 100 #include <sys/sysctl.h> 101 102 #include <vm/vm.h> 103 #include <vm/vm_param.h> 104 #include <vm/vm_object.h> 105 #include <vm/vm_page.h> 106 #include <vm/vm_map.h> 107 #include <vm/vm_pageout.h> 108 #include <vm/vm_pager.h> 109 #include <vm/vm_phys.h> 110 #include <vm/vm_pagequeue.h> 111 #include <vm/swap_pager.h> 112 #include <vm/vm_extern.h> 113 #include <vm/uma.h> 114 115 /* 116 * System initialization 117 */ 118 119 /* the kernel process "vm_pageout"*/ 120 static void vm_pageout(void); 121 static void vm_pageout_init(void); 122 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 123 static int vm_pageout_cluster(vm_page_t m); 124 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 125 int starting_page_shortage); 126 127 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 128 NULL); 129 130 struct proc *pageproc; 131 132 static struct kproc_desc page_kp = { 133 "pagedaemon", 134 vm_pageout, 135 &pageproc 136 }; 137 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 138 &page_kp); 139 140 SDT_PROVIDER_DEFINE(vm); 141 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 142 143 /* Pagedaemon activity rates, in subdivisions of one second. */ 144 #define VM_LAUNDER_RATE 10 145 #define VM_INACT_SCAN_RATE 10 146 147 static int swapdev_enabled; 148 int vm_pageout_page_count = 32; 149 150 static int vm_panic_on_oom = 0; 151 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 152 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 153 "Panic on the given number of out-of-memory errors instead of " 154 "killing the largest process"); 155 156 static int vm_pageout_update_period; 157 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 158 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 159 "Maximum active LRU update period"); 160 161 static int pageout_cpus_per_thread = 16; 162 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN, 163 &pageout_cpus_per_thread, 0, 164 "Number of CPUs per pagedaemon worker thread"); 165 166 static int lowmem_period = 10; 167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 168 "Low memory callback period"); 169 170 static int disable_swap_pageouts; 171 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 172 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, 173 "Disallow swapout of dirty pages"); 174 175 static int pageout_lock_miss; 176 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 177 CTLFLAG_RD, &pageout_lock_miss, 0, 178 "vget() lock misses during pageout"); 179 180 static int vm_pageout_oom_seq = 12; 181 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 182 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 183 "back-to-back calls to oom detector to start OOM"); 184 185 static int act_scan_laundry_weight = 3; 186 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 187 &act_scan_laundry_weight, 0, 188 "weight given to clean vs. dirty pages in active queue scans"); 189 190 static u_int vm_background_launder_rate = 4096; 191 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 192 &vm_background_launder_rate, 0, 193 "background laundering rate, in kilobytes per second"); 194 195 static u_int vm_background_launder_max = 20 * 1024; 196 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 197 &vm_background_launder_max, 0, 198 "background laundering cap, in kilobytes"); 199 200 u_long vm_page_max_user_wired; 201 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW, 202 &vm_page_max_user_wired, 0, 203 "system-wide limit to user-wired page count"); 204 205 static u_int isqrt(u_int num); 206 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 207 bool in_shortfall); 208 static void vm_pageout_laundry_worker(void *arg); 209 210 struct scan_state { 211 struct vm_batchqueue bq; 212 struct vm_pagequeue *pq; 213 vm_page_t marker; 214 int maxscan; 215 int scanned; 216 }; 217 218 static void 219 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq, 220 vm_page_t marker, vm_page_t after, int maxscan) 221 { 222 223 vm_pagequeue_assert_locked(pq); 224 KASSERT((marker->a.flags & PGA_ENQUEUED) == 0, 225 ("marker %p already enqueued", marker)); 226 227 if (after == NULL) 228 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q); 229 else 230 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q); 231 vm_page_aflag_set(marker, PGA_ENQUEUED); 232 233 vm_batchqueue_init(&ss->bq); 234 ss->pq = pq; 235 ss->marker = marker; 236 ss->maxscan = maxscan; 237 ss->scanned = 0; 238 vm_pagequeue_unlock(pq); 239 } 240 241 static void 242 vm_pageout_end_scan(struct scan_state *ss) 243 { 244 struct vm_pagequeue *pq; 245 246 pq = ss->pq; 247 vm_pagequeue_assert_locked(pq); 248 KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0, 249 ("marker %p not enqueued", ss->marker)); 250 251 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q); 252 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED); 253 pq->pq_pdpages += ss->scanned; 254 } 255 256 /* 257 * Add a small number of queued pages to a batch queue for later processing 258 * without the corresponding queue lock held. The caller must have enqueued a 259 * marker page at the desired start point for the scan. Pages will be 260 * physically dequeued if the caller so requests. Otherwise, the returned 261 * batch may contain marker pages, and it is up to the caller to handle them. 262 * 263 * When processing the batch queue, vm_pageout_defer() must be used to 264 * determine whether the page has been logically dequeued since the batch was 265 * collected. 266 */ 267 static __always_inline void 268 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue) 269 { 270 struct vm_pagequeue *pq; 271 vm_page_t m, marker, n; 272 273 marker = ss->marker; 274 pq = ss->pq; 275 276 KASSERT((marker->a.flags & PGA_ENQUEUED) != 0, 277 ("marker %p not enqueued", ss->marker)); 278 279 vm_pagequeue_lock(pq); 280 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL && 281 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE; 282 m = n, ss->scanned++) { 283 n = TAILQ_NEXT(m, plinks.q); 284 if ((m->flags & PG_MARKER) == 0) { 285 KASSERT((m->a.flags & PGA_ENQUEUED) != 0, 286 ("page %p not enqueued", m)); 287 KASSERT((m->flags & PG_FICTITIOUS) == 0, 288 ("Fictitious page %p cannot be in page queue", m)); 289 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 290 ("Unmanaged page %p cannot be in page queue", m)); 291 } else if (dequeue) 292 continue; 293 294 (void)vm_batchqueue_insert(&ss->bq, m); 295 if (dequeue) { 296 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 297 vm_page_aflag_clear(m, PGA_ENQUEUED); 298 } 299 } 300 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 301 if (__predict_true(m != NULL)) 302 TAILQ_INSERT_BEFORE(m, marker, plinks.q); 303 else 304 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q); 305 if (dequeue) 306 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt); 307 vm_pagequeue_unlock(pq); 308 } 309 310 /* 311 * Return the next page to be scanned, or NULL if the scan is complete. 312 */ 313 static __always_inline vm_page_t 314 vm_pageout_next(struct scan_state *ss, const bool dequeue) 315 { 316 317 if (ss->bq.bq_cnt == 0) 318 vm_pageout_collect_batch(ss, dequeue); 319 return (vm_batchqueue_pop(&ss->bq)); 320 } 321 322 /* 323 * Determine whether processing of a page should be deferred and ensure that any 324 * outstanding queue operations are processed. 325 */ 326 static __always_inline bool 327 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued) 328 { 329 vm_page_astate_t as; 330 331 as = vm_page_astate_load(m); 332 if (__predict_false(as.queue != queue || 333 ((as.flags & PGA_ENQUEUED) != 0) != enqueued)) 334 return (true); 335 if ((as.flags & PGA_QUEUE_OP_MASK) != 0) { 336 vm_page_pqbatch_submit(m, queue); 337 return (true); 338 } 339 return (false); 340 } 341 342 /* 343 * Scan for pages at adjacent offsets within the given page's object that are 344 * eligible for laundering, form a cluster of these pages and the given page, 345 * and launder that cluster. 346 */ 347 static int 348 vm_pageout_cluster(vm_page_t m) 349 { 350 vm_object_t object; 351 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; 352 vm_pindex_t pindex; 353 int ib, is, page_base, pageout_count; 354 355 object = m->object; 356 VM_OBJECT_ASSERT_WLOCKED(object); 357 pindex = m->pindex; 358 359 vm_page_assert_xbusied(m); 360 361 mc[vm_pageout_page_count] = pb = ps = m; 362 pageout_count = 1; 363 page_base = vm_pageout_page_count; 364 ib = 1; 365 is = 1; 366 367 /* 368 * We can cluster only if the page is not clean, busy, or held, and 369 * the page is in the laundry queue. 370 * 371 * During heavy mmap/modification loads the pageout 372 * daemon can really fragment the underlying file 373 * due to flushing pages out of order and not trying to 374 * align the clusters (which leaves sporadic out-of-order 375 * holes). To solve this problem we do the reverse scan 376 * first and attempt to align our cluster, then do a 377 * forward scan if room remains. 378 */ 379 more: 380 while (ib != 0 && pageout_count < vm_pageout_page_count) { 381 if (ib > pindex) { 382 ib = 0; 383 break; 384 } 385 if ((p = vm_page_prev(pb)) == NULL || 386 vm_page_tryxbusy(p) == 0) { 387 ib = 0; 388 break; 389 } 390 if (vm_page_wired(p)) { 391 ib = 0; 392 vm_page_xunbusy(p); 393 break; 394 } 395 vm_page_test_dirty(p); 396 if (p->dirty == 0) { 397 ib = 0; 398 vm_page_xunbusy(p); 399 break; 400 } 401 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) { 402 vm_page_xunbusy(p); 403 ib = 0; 404 break; 405 } 406 mc[--page_base] = pb = p; 407 ++pageout_count; 408 ++ib; 409 410 /* 411 * We are at an alignment boundary. Stop here, and switch 412 * directions. Do not clear ib. 413 */ 414 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 415 break; 416 } 417 while (pageout_count < vm_pageout_page_count && 418 pindex + is < object->size) { 419 if ((p = vm_page_next(ps)) == NULL || 420 vm_page_tryxbusy(p) == 0) 421 break; 422 if (vm_page_wired(p)) { 423 vm_page_xunbusy(p); 424 break; 425 } 426 vm_page_test_dirty(p); 427 if (p->dirty == 0) { 428 vm_page_xunbusy(p); 429 break; 430 } 431 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) { 432 vm_page_xunbusy(p); 433 break; 434 } 435 mc[page_base + pageout_count] = ps = p; 436 ++pageout_count; 437 ++is; 438 } 439 440 /* 441 * If we exhausted our forward scan, continue with the reverse scan 442 * when possible, even past an alignment boundary. This catches 443 * boundary conditions. 444 */ 445 if (ib != 0 && pageout_count < vm_pageout_page_count) 446 goto more; 447 448 return (vm_pageout_flush(&mc[page_base], pageout_count, 449 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 450 } 451 452 /* 453 * vm_pageout_flush() - launder the given pages 454 * 455 * The given pages are laundered. Note that we setup for the start of 456 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 457 * reference count all in here rather then in the parent. If we want 458 * the parent to do more sophisticated things we may have to change 459 * the ordering. 460 * 461 * Returned runlen is the count of pages between mreq and first 462 * page after mreq with status VM_PAGER_AGAIN. 463 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 464 * for any page in runlen set. 465 */ 466 int 467 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 468 boolean_t *eio) 469 { 470 vm_object_t object = mc[0]->object; 471 int pageout_status[count]; 472 int numpagedout = 0; 473 int i, runlen; 474 475 VM_OBJECT_ASSERT_WLOCKED(object); 476 477 /* 478 * Initiate I/O. Mark the pages shared busy and verify that they're 479 * valid and read-only. 480 * 481 * We do not have to fixup the clean/dirty bits here... we can 482 * allow the pager to do it after the I/O completes. 483 * 484 * NOTE! mc[i]->dirty may be partial or fragmented due to an 485 * edge case with file fragments. 486 */ 487 for (i = 0; i < count; i++) { 488 KASSERT(vm_page_all_valid(mc[i]), 489 ("vm_pageout_flush: partially invalid page %p index %d/%d", 490 mc[i], i, count)); 491 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0, 492 ("vm_pageout_flush: writeable page %p", mc[i])); 493 vm_page_busy_downgrade(mc[i]); 494 } 495 vm_object_pip_add(object, count); 496 497 vm_pager_put_pages(object, mc, count, flags, pageout_status); 498 499 runlen = count - mreq; 500 if (eio != NULL) 501 *eio = FALSE; 502 for (i = 0; i < count; i++) { 503 vm_page_t mt = mc[i]; 504 505 KASSERT(pageout_status[i] == VM_PAGER_PEND || 506 !pmap_page_is_write_mapped(mt), 507 ("vm_pageout_flush: page %p is not write protected", mt)); 508 switch (pageout_status[i]) { 509 case VM_PAGER_OK: 510 /* 511 * The page may have moved since laundering started, in 512 * which case it should be left alone. 513 */ 514 if (vm_page_in_laundry(mt)) 515 vm_page_deactivate_noreuse(mt); 516 /* FALLTHROUGH */ 517 case VM_PAGER_PEND: 518 numpagedout++; 519 break; 520 case VM_PAGER_BAD: 521 /* 522 * The page is outside the object's range. We pretend 523 * that the page out worked and clean the page, so the 524 * changes will be lost if the page is reclaimed by 525 * the page daemon. 526 */ 527 vm_page_undirty(mt); 528 if (vm_page_in_laundry(mt)) 529 vm_page_deactivate_noreuse(mt); 530 break; 531 case VM_PAGER_ERROR: 532 case VM_PAGER_FAIL: 533 /* 534 * If the page couldn't be paged out to swap because the 535 * pager wasn't able to find space, place the page in 536 * the PQ_UNSWAPPABLE holding queue. This is an 537 * optimization that prevents the page daemon from 538 * wasting CPU cycles on pages that cannot be reclaimed 539 * because no swap device is configured. 540 * 541 * Otherwise, reactivate the page so that it doesn't 542 * clog the laundry and inactive queues. (We will try 543 * paging it out again later.) 544 */ 545 if ((object->flags & OBJ_SWAP) != 0 && 546 pageout_status[i] == VM_PAGER_FAIL) { 547 vm_page_unswappable(mt); 548 numpagedout++; 549 } else 550 vm_page_activate(mt); 551 if (eio != NULL && i >= mreq && i - mreq < runlen) 552 *eio = TRUE; 553 break; 554 case VM_PAGER_AGAIN: 555 if (i >= mreq && i - mreq < runlen) 556 runlen = i - mreq; 557 break; 558 } 559 560 /* 561 * If the operation is still going, leave the page busy to 562 * block all other accesses. Also, leave the paging in 563 * progress indicator set so that we don't attempt an object 564 * collapse. 565 */ 566 if (pageout_status[i] != VM_PAGER_PEND) { 567 vm_object_pip_wakeup(object); 568 vm_page_sunbusy(mt); 569 } 570 } 571 if (prunlen != NULL) 572 *prunlen = runlen; 573 return (numpagedout); 574 } 575 576 static void 577 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 578 { 579 580 atomic_store_rel_int(&swapdev_enabled, 1); 581 } 582 583 static void 584 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 585 { 586 587 if (swap_pager_nswapdev() == 1) 588 atomic_store_rel_int(&swapdev_enabled, 0); 589 } 590 591 /* 592 * Attempt to acquire all of the necessary locks to launder a page and 593 * then call through the clustering layer to PUTPAGES. Wait a short 594 * time for a vnode lock. 595 * 596 * Requires the page and object lock on entry, releases both before return. 597 * Returns 0 on success and an errno otherwise. 598 */ 599 static int 600 vm_pageout_clean(vm_page_t m, int *numpagedout) 601 { 602 struct vnode *vp; 603 struct mount *mp; 604 vm_object_t object; 605 vm_pindex_t pindex; 606 int error; 607 608 object = m->object; 609 VM_OBJECT_ASSERT_WLOCKED(object); 610 error = 0; 611 vp = NULL; 612 mp = NULL; 613 614 /* 615 * The object is already known NOT to be dead. It 616 * is possible for the vget() to block the whole 617 * pageout daemon, but the new low-memory handling 618 * code should prevent it. 619 * 620 * We can't wait forever for the vnode lock, we might 621 * deadlock due to a vn_read() getting stuck in 622 * vm_wait while holding this vnode. We skip the 623 * vnode if we can't get it in a reasonable amount 624 * of time. 625 */ 626 if (object->type == OBJT_VNODE) { 627 vm_page_xunbusy(m); 628 vp = object->handle; 629 if (vp->v_type == VREG && 630 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 631 mp = NULL; 632 error = EDEADLK; 633 goto unlock_all; 634 } 635 KASSERT(mp != NULL, 636 ("vp %p with NULL v_mount", vp)); 637 vm_object_reference_locked(object); 638 pindex = m->pindex; 639 VM_OBJECT_WUNLOCK(object); 640 if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) { 641 vp = NULL; 642 error = EDEADLK; 643 goto unlock_mp; 644 } 645 VM_OBJECT_WLOCK(object); 646 647 /* 648 * Ensure that the object and vnode were not disassociated 649 * while locks were dropped. 650 */ 651 if (vp->v_object != object) { 652 error = ENOENT; 653 goto unlock_all; 654 } 655 656 /* 657 * While the object was unlocked, the page may have been: 658 * (1) moved to a different queue, 659 * (2) reallocated to a different object, 660 * (3) reallocated to a different offset, or 661 * (4) cleaned. 662 */ 663 if (!vm_page_in_laundry(m) || m->object != object || 664 m->pindex != pindex || m->dirty == 0) { 665 error = ENXIO; 666 goto unlock_all; 667 } 668 669 /* 670 * The page may have been busied while the object lock was 671 * released. 672 */ 673 if (vm_page_tryxbusy(m) == 0) { 674 error = EBUSY; 675 goto unlock_all; 676 } 677 } 678 679 /* 680 * Remove all writeable mappings, failing if the page is wired. 681 */ 682 if (!vm_page_try_remove_write(m)) { 683 vm_page_xunbusy(m); 684 error = EBUSY; 685 goto unlock_all; 686 } 687 688 /* 689 * If a page is dirty, then it is either being washed 690 * (but not yet cleaned) or it is still in the 691 * laundry. If it is still in the laundry, then we 692 * start the cleaning operation. 693 */ 694 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 695 error = EIO; 696 697 unlock_all: 698 VM_OBJECT_WUNLOCK(object); 699 700 unlock_mp: 701 if (mp != NULL) { 702 if (vp != NULL) 703 vput(vp); 704 vm_object_deallocate(object); 705 vn_finished_write(mp); 706 } 707 708 return (error); 709 } 710 711 /* 712 * Attempt to launder the specified number of pages. 713 * 714 * Returns the number of pages successfully laundered. 715 */ 716 static int 717 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 718 { 719 struct scan_state ss; 720 struct vm_pagequeue *pq; 721 vm_object_t object; 722 vm_page_t m, marker; 723 vm_page_astate_t new, old; 724 int act_delta, error, numpagedout, queue, refs, starting_target; 725 int vnodes_skipped; 726 bool pageout_ok; 727 728 object = NULL; 729 starting_target = launder; 730 vnodes_skipped = 0; 731 732 /* 733 * Scan the laundry queues for pages eligible to be laundered. We stop 734 * once the target number of dirty pages have been laundered, or once 735 * we've reached the end of the queue. A single iteration of this loop 736 * may cause more than one page to be laundered because of clustering. 737 * 738 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 739 * swap devices are configured. 740 */ 741 if (atomic_load_acq_int(&swapdev_enabled)) 742 queue = PQ_UNSWAPPABLE; 743 else 744 queue = PQ_LAUNDRY; 745 746 scan: 747 marker = &vmd->vmd_markers[queue]; 748 pq = &vmd->vmd_pagequeues[queue]; 749 vm_pagequeue_lock(pq); 750 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 751 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) { 752 if (__predict_false((m->flags & PG_MARKER) != 0)) 753 continue; 754 755 /* 756 * Don't touch a page that was removed from the queue after the 757 * page queue lock was released. Otherwise, ensure that any 758 * pending queue operations, such as dequeues for wired pages, 759 * are handled. 760 */ 761 if (vm_pageout_defer(m, queue, true)) 762 continue; 763 764 /* 765 * Lock the page's object. 766 */ 767 if (object == NULL || object != m->object) { 768 if (object != NULL) 769 VM_OBJECT_WUNLOCK(object); 770 object = atomic_load_ptr(&m->object); 771 if (__predict_false(object == NULL)) 772 /* The page is being freed by another thread. */ 773 continue; 774 775 /* Depends on type-stability. */ 776 VM_OBJECT_WLOCK(object); 777 if (__predict_false(m->object != object)) { 778 VM_OBJECT_WUNLOCK(object); 779 object = NULL; 780 continue; 781 } 782 } 783 784 if (vm_page_tryxbusy(m) == 0) 785 continue; 786 787 /* 788 * Check for wirings now that we hold the object lock and have 789 * exclusively busied the page. If the page is mapped, it may 790 * still be wired by pmap lookups. The call to 791 * vm_page_try_remove_all() below atomically checks for such 792 * wirings and removes mappings. If the page is unmapped, the 793 * wire count is guaranteed not to increase after this check. 794 */ 795 if (__predict_false(vm_page_wired(m))) 796 goto skip_page; 797 798 /* 799 * Invalid pages can be easily freed. They cannot be 800 * mapped; vm_page_free() asserts this. 801 */ 802 if (vm_page_none_valid(m)) 803 goto free_page; 804 805 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 806 807 for (old = vm_page_astate_load(m);;) { 808 /* 809 * Check to see if the page has been removed from the 810 * queue since the first such check. Leave it alone if 811 * so, discarding any references collected by 812 * pmap_ts_referenced(). 813 */ 814 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) 815 goto skip_page; 816 817 new = old; 818 act_delta = refs; 819 if ((old.flags & PGA_REFERENCED) != 0) { 820 new.flags &= ~PGA_REFERENCED; 821 act_delta++; 822 } 823 if (act_delta == 0) { 824 ; 825 } else if (object->ref_count != 0) { 826 /* 827 * Increase the activation count if the page was 828 * referenced while in the laundry queue. This 829 * makes it less likely that the page will be 830 * returned prematurely to the laundry queue. 831 */ 832 new.act_count += ACT_ADVANCE + 833 act_delta; 834 if (new.act_count > ACT_MAX) 835 new.act_count = ACT_MAX; 836 837 new.flags &= ~PGA_QUEUE_OP_MASK; 838 new.flags |= PGA_REQUEUE; 839 new.queue = PQ_ACTIVE; 840 if (!vm_page_pqstate_commit(m, &old, new)) 841 continue; 842 843 /* 844 * If this was a background laundering, count 845 * activated pages towards our target. The 846 * purpose of background laundering is to ensure 847 * that pages are eventually cycled through the 848 * laundry queue, and an activation is a valid 849 * way out. 850 */ 851 if (!in_shortfall) 852 launder--; 853 VM_CNT_INC(v_reactivated); 854 goto skip_page; 855 } else if ((object->flags & OBJ_DEAD) == 0) { 856 new.flags |= PGA_REQUEUE; 857 if (!vm_page_pqstate_commit(m, &old, new)) 858 continue; 859 goto skip_page; 860 } 861 break; 862 } 863 864 /* 865 * If the page appears to be clean at the machine-independent 866 * layer, then remove all of its mappings from the pmap in 867 * anticipation of freeing it. If, however, any of the page's 868 * mappings allow write access, then the page may still be 869 * modified until the last of those mappings are removed. 870 */ 871 if (object->ref_count != 0) { 872 vm_page_test_dirty(m); 873 if (m->dirty == 0 && !vm_page_try_remove_all(m)) 874 goto skip_page; 875 } 876 877 /* 878 * Clean pages are freed, and dirty pages are paged out unless 879 * they belong to a dead object. Requeueing dirty pages from 880 * dead objects is pointless, as they are being paged out and 881 * freed by the thread that destroyed the object. 882 */ 883 if (m->dirty == 0) { 884 free_page: 885 /* 886 * Now we are guaranteed that no other threads are 887 * manipulating the page, check for a last-second 888 * reference. 889 */ 890 if (vm_pageout_defer(m, queue, true)) 891 goto skip_page; 892 vm_page_free(m); 893 VM_CNT_INC(v_dfree); 894 } else if ((object->flags & OBJ_DEAD) == 0) { 895 if ((object->flags & OBJ_SWAP) != 0) 896 pageout_ok = disable_swap_pageouts == 0; 897 else 898 pageout_ok = true; 899 if (!pageout_ok) { 900 vm_page_launder(m); 901 goto skip_page; 902 } 903 904 /* 905 * Form a cluster with adjacent, dirty pages from the 906 * same object, and page out that entire cluster. 907 * 908 * The adjacent, dirty pages must also be in the 909 * laundry. However, their mappings are not checked 910 * for new references. Consequently, a recently 911 * referenced page may be paged out. However, that 912 * page will not be prematurely reclaimed. After page 913 * out, the page will be placed in the inactive queue, 914 * where any new references will be detected and the 915 * page reactivated. 916 */ 917 error = vm_pageout_clean(m, &numpagedout); 918 if (error == 0) { 919 launder -= numpagedout; 920 ss.scanned += numpagedout; 921 } else if (error == EDEADLK) { 922 pageout_lock_miss++; 923 vnodes_skipped++; 924 } 925 object = NULL; 926 } else { 927 skip_page: 928 vm_page_xunbusy(m); 929 } 930 } 931 if (object != NULL) { 932 VM_OBJECT_WUNLOCK(object); 933 object = NULL; 934 } 935 vm_pagequeue_lock(pq); 936 vm_pageout_end_scan(&ss); 937 vm_pagequeue_unlock(pq); 938 939 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 940 queue = PQ_LAUNDRY; 941 goto scan; 942 } 943 944 /* 945 * Wakeup the sync daemon if we skipped a vnode in a writeable object 946 * and we didn't launder enough pages. 947 */ 948 if (vnodes_skipped > 0 && launder > 0) 949 (void)speedup_syncer(); 950 951 return (starting_target - launder); 952 } 953 954 /* 955 * Compute the integer square root. 956 */ 957 static u_int 958 isqrt(u_int num) 959 { 960 u_int bit, root, tmp; 961 962 bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0; 963 root = 0; 964 while (bit != 0) { 965 tmp = root + bit; 966 root >>= 1; 967 if (num >= tmp) { 968 num -= tmp; 969 root += bit; 970 } 971 bit >>= 2; 972 } 973 return (root); 974 } 975 976 /* 977 * Perform the work of the laundry thread: periodically wake up and determine 978 * whether any pages need to be laundered. If so, determine the number of pages 979 * that need to be laundered, and launder them. 980 */ 981 static void 982 vm_pageout_laundry_worker(void *arg) 983 { 984 struct vm_domain *vmd; 985 struct vm_pagequeue *pq; 986 uint64_t nclean, ndirty, nfreed; 987 int domain, last_target, launder, shortfall, shortfall_cycle, target; 988 bool in_shortfall; 989 990 domain = (uintptr_t)arg; 991 vmd = VM_DOMAIN(domain); 992 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 993 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 994 995 shortfall = 0; 996 in_shortfall = false; 997 shortfall_cycle = 0; 998 last_target = target = 0; 999 nfreed = 0; 1000 1001 /* 1002 * Calls to these handlers are serialized by the swap syscall lock. 1003 */ 1004 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 1005 EVENTHANDLER_PRI_ANY); 1006 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 1007 EVENTHANDLER_PRI_ANY); 1008 1009 /* 1010 * The pageout laundry worker is never done, so loop forever. 1011 */ 1012 for (;;) { 1013 KASSERT(target >= 0, ("negative target %d", target)); 1014 KASSERT(shortfall_cycle >= 0, 1015 ("negative cycle %d", shortfall_cycle)); 1016 launder = 0; 1017 1018 /* 1019 * First determine whether we need to launder pages to meet a 1020 * shortage of free pages. 1021 */ 1022 if (shortfall > 0) { 1023 in_shortfall = true; 1024 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 1025 target = shortfall; 1026 } else if (!in_shortfall) 1027 goto trybackground; 1028 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 1029 /* 1030 * We recently entered shortfall and began laundering 1031 * pages. If we have completed that laundering run 1032 * (and we are no longer in shortfall) or we have met 1033 * our laundry target through other activity, then we 1034 * can stop laundering pages. 1035 */ 1036 in_shortfall = false; 1037 target = 0; 1038 goto trybackground; 1039 } 1040 launder = target / shortfall_cycle--; 1041 goto dolaundry; 1042 1043 /* 1044 * There's no immediate need to launder any pages; see if we 1045 * meet the conditions to perform background laundering: 1046 * 1047 * 1. The ratio of dirty to clean inactive pages exceeds the 1048 * background laundering threshold, or 1049 * 2. we haven't yet reached the target of the current 1050 * background laundering run. 1051 * 1052 * The background laundering threshold is not a constant. 1053 * Instead, it is a slowly growing function of the number of 1054 * clean pages freed by the page daemon since the last 1055 * background laundering. Thus, as the ratio of dirty to 1056 * clean inactive pages grows, the amount of memory pressure 1057 * required to trigger laundering decreases. We ensure 1058 * that the threshold is non-zero after an inactive queue 1059 * scan, even if that scan failed to free a single clean page. 1060 */ 1061 trybackground: 1062 nclean = vmd->vmd_free_count + 1063 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1064 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1065 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1066 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1067 target = vmd->vmd_background_launder_target; 1068 } 1069 1070 /* 1071 * We have a non-zero background laundering target. If we've 1072 * laundered up to our maximum without observing a page daemon 1073 * request, just stop. This is a safety belt that ensures we 1074 * don't launder an excessive amount if memory pressure is low 1075 * and the ratio of dirty to clean pages is large. Otherwise, 1076 * proceed at the background laundering rate. 1077 */ 1078 if (target > 0) { 1079 if (nfreed > 0) { 1080 nfreed = 0; 1081 last_target = target; 1082 } else if (last_target - target >= 1083 vm_background_launder_max * PAGE_SIZE / 1024) { 1084 target = 0; 1085 } 1086 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1087 launder /= VM_LAUNDER_RATE; 1088 if (launder > target) 1089 launder = target; 1090 } 1091 1092 dolaundry: 1093 if (launder > 0) { 1094 /* 1095 * Because of I/O clustering, the number of laundered 1096 * pages could exceed "target" by the maximum size of 1097 * a cluster minus one. 1098 */ 1099 target -= min(vm_pageout_launder(vmd, launder, 1100 in_shortfall), target); 1101 pause("laundp", hz / VM_LAUNDER_RATE); 1102 } 1103 1104 /* 1105 * If we're not currently laundering pages and the page daemon 1106 * hasn't posted a new request, sleep until the page daemon 1107 * kicks us. 1108 */ 1109 vm_pagequeue_lock(pq); 1110 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1111 (void)mtx_sleep(&vmd->vmd_laundry_request, 1112 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1113 1114 /* 1115 * If the pagedaemon has indicated that it's in shortfall, start 1116 * a shortfall laundering unless we're already in the middle of 1117 * one. This may preempt a background laundering. 1118 */ 1119 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1120 (!in_shortfall || shortfall_cycle == 0)) { 1121 shortfall = vm_laundry_target(vmd) + 1122 vmd->vmd_pageout_deficit; 1123 target = 0; 1124 } else 1125 shortfall = 0; 1126 1127 if (target == 0) 1128 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1129 nfreed += vmd->vmd_clean_pages_freed; 1130 vmd->vmd_clean_pages_freed = 0; 1131 vm_pagequeue_unlock(pq); 1132 } 1133 } 1134 1135 /* 1136 * Compute the number of pages we want to try to move from the 1137 * active queue to either the inactive or laundry queue. 1138 * 1139 * When scanning active pages during a shortage, we make clean pages 1140 * count more heavily towards the page shortage than dirty pages. 1141 * This is because dirty pages must be laundered before they can be 1142 * reused and thus have less utility when attempting to quickly 1143 * alleviate a free page shortage. However, this weighting also 1144 * causes the scan to deactivate dirty pages more aggressively, 1145 * improving the effectiveness of clustering. 1146 */ 1147 static int 1148 vm_pageout_active_target(struct vm_domain *vmd) 1149 { 1150 int shortage; 1151 1152 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) - 1153 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt + 1154 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight); 1155 shortage *= act_scan_laundry_weight; 1156 return (shortage); 1157 } 1158 1159 /* 1160 * Scan the active queue. If there is no shortage of inactive pages, scan a 1161 * small portion of the queue in order to maintain quasi-LRU. 1162 */ 1163 static void 1164 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage) 1165 { 1166 struct scan_state ss; 1167 vm_object_t object; 1168 vm_page_t m, marker; 1169 struct vm_pagequeue *pq; 1170 vm_page_astate_t old, new; 1171 long min_scan; 1172 int act_delta, max_scan, ps_delta, refs, scan_tick; 1173 uint8_t nqueue; 1174 1175 marker = &vmd->vmd_markers[PQ_ACTIVE]; 1176 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1177 vm_pagequeue_lock(pq); 1178 1179 /* 1180 * If we're just idle polling attempt to visit every 1181 * active page within 'update_period' seconds. 1182 */ 1183 scan_tick = ticks; 1184 if (vm_pageout_update_period != 0) { 1185 min_scan = pq->pq_cnt; 1186 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1187 min_scan /= hz * vm_pageout_update_period; 1188 } else 1189 min_scan = 0; 1190 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0)) 1191 vmd->vmd_last_active_scan = scan_tick; 1192 1193 /* 1194 * Scan the active queue for pages that can be deactivated. Update 1195 * the per-page activity counter and use it to identify deactivation 1196 * candidates. Held pages may be deactivated. 1197 * 1198 * To avoid requeuing each page that remains in the active queue, we 1199 * implement the CLOCK algorithm. To keep the implementation of the 1200 * enqueue operation consistent for all page queues, we use two hands, 1201 * represented by marker pages. Scans begin at the first hand, which 1202 * precedes the second hand in the queue. When the two hands meet, 1203 * they are moved back to the head and tail of the queue, respectively, 1204 * and scanning resumes. 1205 */ 1206 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan; 1207 act_scan: 1208 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan); 1209 while ((m = vm_pageout_next(&ss, false)) != NULL) { 1210 if (__predict_false(m == &vmd->vmd_clock[1])) { 1211 vm_pagequeue_lock(pq); 1212 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1213 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q); 1214 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0], 1215 plinks.q); 1216 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1], 1217 plinks.q); 1218 max_scan -= ss.scanned; 1219 vm_pageout_end_scan(&ss); 1220 goto act_scan; 1221 } 1222 if (__predict_false((m->flags & PG_MARKER) != 0)) 1223 continue; 1224 1225 /* 1226 * Don't touch a page that was removed from the queue after the 1227 * page queue lock was released. Otherwise, ensure that any 1228 * pending queue operations, such as dequeues for wired pages, 1229 * are handled. 1230 */ 1231 if (vm_pageout_defer(m, PQ_ACTIVE, true)) 1232 continue; 1233 1234 /* 1235 * A page's object pointer may be set to NULL before 1236 * the object lock is acquired. 1237 */ 1238 object = atomic_load_ptr(&m->object); 1239 if (__predict_false(object == NULL)) 1240 /* 1241 * The page has been removed from its object. 1242 */ 1243 continue; 1244 1245 /* Deferred free of swap space. */ 1246 if ((m->a.flags & PGA_SWAP_FREE) != 0 && 1247 VM_OBJECT_TRYWLOCK(object)) { 1248 if (m->object == object) 1249 vm_pager_page_unswapped(m); 1250 VM_OBJECT_WUNLOCK(object); 1251 } 1252 1253 /* 1254 * Check to see "how much" the page has been used. 1255 * 1256 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1257 * that a reference from a concurrently destroyed mapping is 1258 * observed here and now. 1259 * 1260 * Perform an unsynchronized object ref count check. While 1261 * the page lock ensures that the page is not reallocated to 1262 * another object, in particular, one with unmanaged mappings 1263 * that cannot support pmap_ts_referenced(), two races are, 1264 * nonetheless, possible: 1265 * 1) The count was transitioning to zero, but we saw a non- 1266 * zero value. pmap_ts_referenced() will return zero 1267 * because the page is not mapped. 1268 * 2) The count was transitioning to one, but we saw zero. 1269 * This race delays the detection of a new reference. At 1270 * worst, we will deactivate and reactivate the page. 1271 */ 1272 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 1273 1274 old = vm_page_astate_load(m); 1275 do { 1276 /* 1277 * Check to see if the page has been removed from the 1278 * queue since the first such check. Leave it alone if 1279 * so, discarding any references collected by 1280 * pmap_ts_referenced(). 1281 */ 1282 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) { 1283 ps_delta = 0; 1284 break; 1285 } 1286 1287 /* 1288 * Advance or decay the act_count based on recent usage. 1289 */ 1290 new = old; 1291 act_delta = refs; 1292 if ((old.flags & PGA_REFERENCED) != 0) { 1293 new.flags &= ~PGA_REFERENCED; 1294 act_delta++; 1295 } 1296 if (act_delta != 0) { 1297 new.act_count += ACT_ADVANCE + act_delta; 1298 if (new.act_count > ACT_MAX) 1299 new.act_count = ACT_MAX; 1300 } else { 1301 new.act_count -= min(new.act_count, 1302 ACT_DECLINE); 1303 } 1304 1305 if (new.act_count > 0) { 1306 /* 1307 * Adjust the activation count and keep the page 1308 * in the active queue. The count might be left 1309 * unchanged if it is saturated. The page may 1310 * have been moved to a different queue since we 1311 * started the scan, in which case we move it 1312 * back. 1313 */ 1314 ps_delta = 0; 1315 if (old.queue != PQ_ACTIVE) { 1316 new.flags &= ~PGA_QUEUE_OP_MASK; 1317 new.flags |= PGA_REQUEUE; 1318 new.queue = PQ_ACTIVE; 1319 } 1320 } else { 1321 /* 1322 * When not short for inactive pages, let dirty 1323 * pages go through the inactive queue before 1324 * moving to the laundry queue. This gives them 1325 * some extra time to be reactivated, 1326 * potentially avoiding an expensive pageout. 1327 * However, during a page shortage, the inactive 1328 * queue is necessarily small, and so dirty 1329 * pages would only spend a trivial amount of 1330 * time in the inactive queue. Therefore, we 1331 * might as well place them directly in the 1332 * laundry queue to reduce queuing overhead. 1333 * 1334 * Calling vm_page_test_dirty() here would 1335 * require acquisition of the object's write 1336 * lock. However, during a page shortage, 1337 * directing dirty pages into the laundry queue 1338 * is only an optimization and not a 1339 * requirement. Therefore, we simply rely on 1340 * the opportunistic updates to the page's dirty 1341 * field by the pmap. 1342 */ 1343 if (page_shortage <= 0) { 1344 nqueue = PQ_INACTIVE; 1345 ps_delta = 0; 1346 } else if (m->dirty == 0) { 1347 nqueue = PQ_INACTIVE; 1348 ps_delta = act_scan_laundry_weight; 1349 } else { 1350 nqueue = PQ_LAUNDRY; 1351 ps_delta = 1; 1352 } 1353 1354 new.flags &= ~PGA_QUEUE_OP_MASK; 1355 new.flags |= PGA_REQUEUE; 1356 new.queue = nqueue; 1357 } 1358 } while (!vm_page_pqstate_commit(m, &old, new)); 1359 1360 page_shortage -= ps_delta; 1361 } 1362 vm_pagequeue_lock(pq); 1363 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1364 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q); 1365 vm_pageout_end_scan(&ss); 1366 vm_pagequeue_unlock(pq); 1367 } 1368 1369 static int 1370 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker, 1371 vm_page_t m) 1372 { 1373 vm_page_astate_t as; 1374 1375 vm_pagequeue_assert_locked(pq); 1376 1377 as = vm_page_astate_load(m); 1378 if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0) 1379 return (0); 1380 vm_page_aflag_set(m, PGA_ENQUEUED); 1381 TAILQ_INSERT_BEFORE(marker, m, plinks.q); 1382 return (1); 1383 } 1384 1385 /* 1386 * Re-add stuck pages to the inactive queue. We will examine them again 1387 * during the next scan. If the queue state of a page has changed since 1388 * it was physically removed from the page queue in 1389 * vm_pageout_collect_batch(), don't do anything with that page. 1390 */ 1391 static void 1392 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq, 1393 vm_page_t m) 1394 { 1395 struct vm_pagequeue *pq; 1396 vm_page_t marker; 1397 int delta; 1398 1399 delta = 0; 1400 marker = ss->marker; 1401 pq = ss->pq; 1402 1403 if (m != NULL) { 1404 if (vm_batchqueue_insert(bq, m) != 0) 1405 return; 1406 vm_pagequeue_lock(pq); 1407 delta += vm_pageout_reinsert_inactive_page(pq, marker, m); 1408 } else 1409 vm_pagequeue_lock(pq); 1410 while ((m = vm_batchqueue_pop(bq)) != NULL) 1411 delta += vm_pageout_reinsert_inactive_page(pq, marker, m); 1412 vm_pagequeue_cnt_add(pq, delta); 1413 vm_pagequeue_unlock(pq); 1414 vm_batchqueue_init(bq); 1415 } 1416 1417 static void 1418 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage) 1419 { 1420 struct timeval start, end; 1421 struct scan_state ss; 1422 struct vm_batchqueue rq; 1423 struct vm_page marker_page; 1424 vm_page_t m, marker; 1425 struct vm_pagequeue *pq; 1426 vm_object_t object; 1427 vm_page_astate_t old, new; 1428 int act_delta, addl_page_shortage, starting_page_shortage, refs; 1429 1430 object = NULL; 1431 vm_batchqueue_init(&rq); 1432 getmicrouptime(&start); 1433 1434 /* 1435 * The addl_page_shortage is an estimate of the number of temporarily 1436 * stuck pages in the inactive queue. In other words, the 1437 * number of pages from the inactive count that should be 1438 * discounted in setting the target for the active queue scan. 1439 */ 1440 addl_page_shortage = 0; 1441 1442 /* 1443 * Start scanning the inactive queue for pages that we can free. The 1444 * scan will stop when we reach the target or we have scanned the 1445 * entire queue. (Note that m->a.act_count is not used to make 1446 * decisions for the inactive queue, only for the active queue.) 1447 */ 1448 starting_page_shortage = page_shortage; 1449 marker = &marker_page; 1450 vm_page_init_marker(marker, PQ_INACTIVE, 0); 1451 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1452 vm_pagequeue_lock(pq); 1453 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 1454 while (page_shortage > 0) { 1455 /* 1456 * If we need to refill the scan batch queue, release any 1457 * optimistically held object lock. This gives someone else a 1458 * chance to grab the lock, and also avoids holding it while we 1459 * do unrelated work. 1460 */ 1461 if (object != NULL && vm_batchqueue_empty(&ss.bq)) { 1462 VM_OBJECT_WUNLOCK(object); 1463 object = NULL; 1464 } 1465 1466 m = vm_pageout_next(&ss, true); 1467 if (m == NULL) 1468 break; 1469 KASSERT((m->flags & PG_MARKER) == 0, 1470 ("marker page %p was dequeued", m)); 1471 1472 /* 1473 * Don't touch a page that was removed from the queue after the 1474 * page queue lock was released. Otherwise, ensure that any 1475 * pending queue operations, such as dequeues for wired pages, 1476 * are handled. 1477 */ 1478 if (vm_pageout_defer(m, PQ_INACTIVE, false)) 1479 continue; 1480 1481 /* 1482 * Lock the page's object. 1483 */ 1484 if (object == NULL || object != m->object) { 1485 if (object != NULL) 1486 VM_OBJECT_WUNLOCK(object); 1487 object = atomic_load_ptr(&m->object); 1488 if (__predict_false(object == NULL)) 1489 /* The page is being freed by another thread. */ 1490 continue; 1491 1492 /* Depends on type-stability. */ 1493 VM_OBJECT_WLOCK(object); 1494 if (__predict_false(m->object != object)) { 1495 VM_OBJECT_WUNLOCK(object); 1496 object = NULL; 1497 goto reinsert; 1498 } 1499 } 1500 1501 if (vm_page_tryxbusy(m) == 0) { 1502 /* 1503 * Don't mess with busy pages. Leave them at 1504 * the front of the queue. Most likely, they 1505 * are being paged out and will leave the 1506 * queue shortly after the scan finishes. So, 1507 * they ought to be discounted from the 1508 * inactive count. 1509 */ 1510 addl_page_shortage++; 1511 goto reinsert; 1512 } 1513 1514 /* Deferred free of swap space. */ 1515 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1516 vm_pager_page_unswapped(m); 1517 1518 /* 1519 * Check for wirings now that we hold the object lock and have 1520 * exclusively busied the page. If the page is mapped, it may 1521 * still be wired by pmap lookups. The call to 1522 * vm_page_try_remove_all() below atomically checks for such 1523 * wirings and removes mappings. If the page is unmapped, the 1524 * wire count is guaranteed not to increase after this check. 1525 */ 1526 if (__predict_false(vm_page_wired(m))) 1527 goto skip_page; 1528 1529 /* 1530 * Invalid pages can be easily freed. They cannot be 1531 * mapped, vm_page_free() asserts this. 1532 */ 1533 if (vm_page_none_valid(m)) 1534 goto free_page; 1535 1536 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 1537 1538 for (old = vm_page_astate_load(m);;) { 1539 /* 1540 * Check to see if the page has been removed from the 1541 * queue since the first such check. Leave it alone if 1542 * so, discarding any references collected by 1543 * pmap_ts_referenced(). 1544 */ 1545 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) 1546 goto skip_page; 1547 1548 new = old; 1549 act_delta = refs; 1550 if ((old.flags & PGA_REFERENCED) != 0) { 1551 new.flags &= ~PGA_REFERENCED; 1552 act_delta++; 1553 } 1554 if (act_delta == 0) { 1555 ; 1556 } else if (object->ref_count != 0) { 1557 /* 1558 * Increase the activation count if the 1559 * page was referenced while in the 1560 * inactive queue. This makes it less 1561 * likely that the page will be returned 1562 * prematurely to the inactive queue. 1563 */ 1564 new.act_count += ACT_ADVANCE + 1565 act_delta; 1566 if (new.act_count > ACT_MAX) 1567 new.act_count = ACT_MAX; 1568 1569 new.flags &= ~PGA_QUEUE_OP_MASK; 1570 new.flags |= PGA_REQUEUE; 1571 new.queue = PQ_ACTIVE; 1572 if (!vm_page_pqstate_commit(m, &old, new)) 1573 continue; 1574 1575 VM_CNT_INC(v_reactivated); 1576 goto skip_page; 1577 } else if ((object->flags & OBJ_DEAD) == 0) { 1578 new.queue = PQ_INACTIVE; 1579 new.flags |= PGA_REQUEUE; 1580 if (!vm_page_pqstate_commit(m, &old, new)) 1581 continue; 1582 goto skip_page; 1583 } 1584 break; 1585 } 1586 1587 /* 1588 * If the page appears to be clean at the machine-independent 1589 * layer, then remove all of its mappings from the pmap in 1590 * anticipation of freeing it. If, however, any of the page's 1591 * mappings allow write access, then the page may still be 1592 * modified until the last of those mappings are removed. 1593 */ 1594 if (object->ref_count != 0) { 1595 vm_page_test_dirty(m); 1596 if (m->dirty == 0 && !vm_page_try_remove_all(m)) 1597 goto skip_page; 1598 } 1599 1600 /* 1601 * Clean pages can be freed, but dirty pages must be sent back 1602 * to the laundry, unless they belong to a dead object. 1603 * Requeueing dirty pages from dead objects is pointless, as 1604 * they are being paged out and freed by the thread that 1605 * destroyed the object. 1606 */ 1607 if (m->dirty == 0) { 1608 free_page: 1609 /* 1610 * Now we are guaranteed that no other threads are 1611 * manipulating the page, check for a last-second 1612 * reference that would save it from doom. 1613 */ 1614 if (vm_pageout_defer(m, PQ_INACTIVE, false)) 1615 goto skip_page; 1616 1617 /* 1618 * Because we dequeued the page and have already checked 1619 * for pending dequeue and enqueue requests, we can 1620 * safely disassociate the page from the inactive queue 1621 * without holding the queue lock. 1622 */ 1623 m->a.queue = PQ_NONE; 1624 vm_page_free(m); 1625 page_shortage--; 1626 continue; 1627 } 1628 if ((object->flags & OBJ_DEAD) == 0) 1629 vm_page_launder(m); 1630 skip_page: 1631 vm_page_xunbusy(m); 1632 continue; 1633 reinsert: 1634 vm_pageout_reinsert_inactive(&ss, &rq, m); 1635 } 1636 if (object != NULL) 1637 VM_OBJECT_WUNLOCK(object); 1638 vm_pageout_reinsert_inactive(&ss, &rq, NULL); 1639 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL); 1640 vm_pagequeue_lock(pq); 1641 vm_pageout_end_scan(&ss); 1642 vm_pagequeue_unlock(pq); 1643 1644 /* 1645 * Record the remaining shortage and the progress and rate it was made. 1646 */ 1647 atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage); 1648 getmicrouptime(&end); 1649 timevalsub(&end, &start); 1650 atomic_add_int(&vmd->vmd_inactive_us, 1651 end.tv_sec * 1000000 + end.tv_usec); 1652 atomic_add_int(&vmd->vmd_inactive_freed, 1653 starting_page_shortage - page_shortage); 1654 } 1655 1656 /* 1657 * Dispatch a number of inactive threads according to load and collect the 1658 * results to present a coherent view of paging activity on this domain. 1659 */ 1660 static int 1661 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage) 1662 { 1663 u_int freed, pps, slop, threads, us; 1664 1665 vmd->vmd_inactive_shortage = shortage; 1666 slop = 0; 1667 1668 /* 1669 * If we have more work than we can do in a quarter of our interval, we 1670 * fire off multiple threads to process it. 1671 */ 1672 threads = vmd->vmd_inactive_threads; 1673 if (threads > 1 && vmd->vmd_inactive_pps != 0 && 1674 shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) { 1675 vmd->vmd_inactive_shortage /= threads; 1676 slop = shortage % threads; 1677 vm_domain_pageout_lock(vmd); 1678 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1); 1679 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1); 1680 wakeup(&vmd->vmd_inactive_shortage); 1681 vm_domain_pageout_unlock(vmd); 1682 } 1683 1684 /* Run the local thread scan. */ 1685 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop); 1686 1687 /* 1688 * Block until helper threads report results and then accumulate 1689 * totals. 1690 */ 1691 blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM); 1692 freed = atomic_readandclear_int(&vmd->vmd_inactive_freed); 1693 VM_CNT_ADD(v_dfree, freed); 1694 1695 /* 1696 * Calculate the per-thread paging rate with an exponential decay of 1697 * prior results. Careful to avoid integer rounding errors with large 1698 * us values. 1699 */ 1700 us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1); 1701 if (us > 1000000) 1702 /* Keep rounding to tenths */ 1703 pps = (freed * 10) / ((us * 10) / 1000000); 1704 else 1705 pps = (1000000 / us) * freed; 1706 vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2); 1707 1708 return (shortage - freed); 1709 } 1710 1711 /* 1712 * Attempt to reclaim the requested number of pages from the inactive queue. 1713 * Returns true if the shortage was addressed. 1714 */ 1715 static int 1716 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage) 1717 { 1718 struct vm_pagequeue *pq; 1719 u_int addl_page_shortage, deficit, page_shortage; 1720 u_int starting_page_shortage; 1721 1722 /* 1723 * vmd_pageout_deficit counts the number of pages requested in 1724 * allocations that failed because of a free page shortage. We assume 1725 * that the allocations will be reattempted and thus include the deficit 1726 * in our scan target. 1727 */ 1728 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1729 starting_page_shortage = shortage + deficit; 1730 1731 /* 1732 * Run the inactive scan on as many threads as is necessary. 1733 */ 1734 page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage); 1735 addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage); 1736 1737 /* 1738 * Wake up the laundry thread so that it can perform any needed 1739 * laundering. If we didn't meet our target, we're in shortfall and 1740 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1741 * swap devices are configured, the laundry thread has no work to do, so 1742 * don't bother waking it up. 1743 * 1744 * The laundry thread uses the number of inactive queue scans elapsed 1745 * since the last laundering to determine whether to launder again, so 1746 * keep count. 1747 */ 1748 if (starting_page_shortage > 0) { 1749 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1750 vm_pagequeue_lock(pq); 1751 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1752 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1753 if (page_shortage > 0) { 1754 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1755 VM_CNT_INC(v_pdshortfalls); 1756 } else if (vmd->vmd_laundry_request != 1757 VM_LAUNDRY_SHORTFALL) 1758 vmd->vmd_laundry_request = 1759 VM_LAUNDRY_BACKGROUND; 1760 wakeup(&vmd->vmd_laundry_request); 1761 } 1762 vmd->vmd_clean_pages_freed += 1763 starting_page_shortage - page_shortage; 1764 vm_pagequeue_unlock(pq); 1765 } 1766 1767 /* 1768 * Wakeup the swapout daemon if we didn't free the targeted number of 1769 * pages. 1770 */ 1771 if (page_shortage > 0) 1772 vm_swapout_run(); 1773 1774 /* 1775 * If the inactive queue scan fails repeatedly to meet its 1776 * target, kill the largest process. 1777 */ 1778 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1779 1780 /* 1781 * Reclaim pages by swapping out idle processes, if configured to do so. 1782 */ 1783 vm_swapout_run_idle(); 1784 1785 /* 1786 * See the description of addl_page_shortage above. 1787 */ 1788 *addl_shortage = addl_page_shortage + deficit; 1789 1790 return (page_shortage <= 0); 1791 } 1792 1793 static int vm_pageout_oom_vote; 1794 1795 /* 1796 * The pagedaemon threads randlomly select one to perform the 1797 * OOM. Trying to kill processes before all pagedaemons 1798 * failed to reach free target is premature. 1799 */ 1800 static void 1801 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1802 int starting_page_shortage) 1803 { 1804 int old_vote; 1805 1806 if (starting_page_shortage <= 0 || starting_page_shortage != 1807 page_shortage) 1808 vmd->vmd_oom_seq = 0; 1809 else 1810 vmd->vmd_oom_seq++; 1811 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1812 if (vmd->vmd_oom) { 1813 vmd->vmd_oom = FALSE; 1814 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1815 } 1816 return; 1817 } 1818 1819 /* 1820 * Do not follow the call sequence until OOM condition is 1821 * cleared. 1822 */ 1823 vmd->vmd_oom_seq = 0; 1824 1825 if (vmd->vmd_oom) 1826 return; 1827 1828 vmd->vmd_oom = TRUE; 1829 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1830 if (old_vote != vm_ndomains - 1) 1831 return; 1832 1833 /* 1834 * The current pagedaemon thread is the last in the quorum to 1835 * start OOM. Initiate the selection and signaling of the 1836 * victim. 1837 */ 1838 vm_pageout_oom(VM_OOM_MEM); 1839 1840 /* 1841 * After one round of OOM terror, recall our vote. On the 1842 * next pass, current pagedaemon would vote again if the low 1843 * memory condition is still there, due to vmd_oom being 1844 * false. 1845 */ 1846 vmd->vmd_oom = FALSE; 1847 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1848 } 1849 1850 /* 1851 * The OOM killer is the page daemon's action of last resort when 1852 * memory allocation requests have been stalled for a prolonged period 1853 * of time because it cannot reclaim memory. This function computes 1854 * the approximate number of physical pages that could be reclaimed if 1855 * the specified address space is destroyed. 1856 * 1857 * Private, anonymous memory owned by the address space is the 1858 * principal resource that we expect to recover after an OOM kill. 1859 * Since the physical pages mapped by the address space's COW entries 1860 * are typically shared pages, they are unlikely to be released and so 1861 * they are not counted. 1862 * 1863 * To get to the point where the page daemon runs the OOM killer, its 1864 * efforts to write-back vnode-backed pages may have stalled. This 1865 * could be caused by a memory allocation deadlock in the write path 1866 * that might be resolved by an OOM kill. Therefore, physical pages 1867 * belonging to vnode-backed objects are counted, because they might 1868 * be freed without being written out first if the address space holds 1869 * the last reference to an unlinked vnode. 1870 * 1871 * Similarly, physical pages belonging to OBJT_PHYS objects are 1872 * counted because the address space might hold the last reference to 1873 * the object. 1874 */ 1875 static long 1876 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1877 { 1878 vm_map_t map; 1879 vm_map_entry_t entry; 1880 vm_object_t obj; 1881 long res; 1882 1883 map = &vmspace->vm_map; 1884 KASSERT(!map->system_map, ("system map")); 1885 sx_assert(&map->lock, SA_LOCKED); 1886 res = 0; 1887 VM_MAP_ENTRY_FOREACH(entry, map) { 1888 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1889 continue; 1890 obj = entry->object.vm_object; 1891 if (obj == NULL) 1892 continue; 1893 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1894 obj->ref_count != 1) 1895 continue; 1896 if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE || 1897 (obj->flags & OBJ_SWAP) != 0) 1898 res += obj->resident_page_count; 1899 } 1900 return (res); 1901 } 1902 1903 static int vm_oom_ratelim_last; 1904 static int vm_oom_pf_secs = 10; 1905 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0, 1906 ""); 1907 static struct mtx vm_oom_ratelim_mtx; 1908 1909 void 1910 vm_pageout_oom(int shortage) 1911 { 1912 const char *reason; 1913 struct proc *p, *bigproc; 1914 vm_offset_t size, bigsize; 1915 struct thread *td; 1916 struct vmspace *vm; 1917 int now; 1918 bool breakout; 1919 1920 /* 1921 * For OOM requests originating from vm_fault(), there is a high 1922 * chance that a single large process faults simultaneously in 1923 * several threads. Also, on an active system running many 1924 * processes of middle-size, like buildworld, all of them 1925 * could fault almost simultaneously as well. 1926 * 1927 * To avoid killing too many processes, rate-limit OOMs 1928 * initiated by vm_fault() time-outs on the waits for free 1929 * pages. 1930 */ 1931 mtx_lock(&vm_oom_ratelim_mtx); 1932 now = ticks; 1933 if (shortage == VM_OOM_MEM_PF && 1934 (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) { 1935 mtx_unlock(&vm_oom_ratelim_mtx); 1936 return; 1937 } 1938 vm_oom_ratelim_last = now; 1939 mtx_unlock(&vm_oom_ratelim_mtx); 1940 1941 /* 1942 * We keep the process bigproc locked once we find it to keep anyone 1943 * from messing with it; however, there is a possibility of 1944 * deadlock if process B is bigproc and one of its child processes 1945 * attempts to propagate a signal to B while we are waiting for A's 1946 * lock while walking this list. To avoid this, we don't block on 1947 * the process lock but just skip a process if it is already locked. 1948 */ 1949 bigproc = NULL; 1950 bigsize = 0; 1951 sx_slock(&allproc_lock); 1952 FOREACH_PROC_IN_SYSTEM(p) { 1953 PROC_LOCK(p); 1954 1955 /* 1956 * If this is a system, protected or killed process, skip it. 1957 */ 1958 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1959 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1960 p->p_pid == 1 || P_KILLED(p) || 1961 (p->p_pid < 48 && swap_pager_avail != 0)) { 1962 PROC_UNLOCK(p); 1963 continue; 1964 } 1965 /* 1966 * If the process is in a non-running type state, 1967 * don't touch it. Check all the threads individually. 1968 */ 1969 breakout = false; 1970 FOREACH_THREAD_IN_PROC(p, td) { 1971 thread_lock(td); 1972 if (!TD_ON_RUNQ(td) && 1973 !TD_IS_RUNNING(td) && 1974 !TD_IS_SLEEPING(td) && 1975 !TD_IS_SUSPENDED(td) && 1976 !TD_IS_SWAPPED(td)) { 1977 thread_unlock(td); 1978 breakout = true; 1979 break; 1980 } 1981 thread_unlock(td); 1982 } 1983 if (breakout) { 1984 PROC_UNLOCK(p); 1985 continue; 1986 } 1987 /* 1988 * get the process size 1989 */ 1990 vm = vmspace_acquire_ref(p); 1991 if (vm == NULL) { 1992 PROC_UNLOCK(p); 1993 continue; 1994 } 1995 _PHOLD_LITE(p); 1996 PROC_UNLOCK(p); 1997 sx_sunlock(&allproc_lock); 1998 if (!vm_map_trylock_read(&vm->vm_map)) { 1999 vmspace_free(vm); 2000 sx_slock(&allproc_lock); 2001 PRELE(p); 2002 continue; 2003 } 2004 size = vmspace_swap_count(vm); 2005 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF) 2006 size += vm_pageout_oom_pagecount(vm); 2007 vm_map_unlock_read(&vm->vm_map); 2008 vmspace_free(vm); 2009 sx_slock(&allproc_lock); 2010 2011 /* 2012 * If this process is bigger than the biggest one, 2013 * remember it. 2014 */ 2015 if (size > bigsize) { 2016 if (bigproc != NULL) 2017 PRELE(bigproc); 2018 bigproc = p; 2019 bigsize = size; 2020 } else { 2021 PRELE(p); 2022 } 2023 } 2024 sx_sunlock(&allproc_lock); 2025 2026 if (bigproc != NULL) { 2027 switch (shortage) { 2028 case VM_OOM_MEM: 2029 reason = "failed to reclaim memory"; 2030 break; 2031 case VM_OOM_MEM_PF: 2032 reason = "a thread waited too long to allocate a page"; 2033 break; 2034 case VM_OOM_SWAPZ: 2035 reason = "out of swap space"; 2036 break; 2037 default: 2038 panic("unknown OOM reason %d", shortage); 2039 } 2040 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0) 2041 panic("%s", reason); 2042 PROC_LOCK(bigproc); 2043 killproc(bigproc, reason); 2044 sched_nice(bigproc, PRIO_MIN); 2045 _PRELE(bigproc); 2046 PROC_UNLOCK(bigproc); 2047 } 2048 } 2049 2050 /* 2051 * Signal a free page shortage to subsystems that have registered an event 2052 * handler. Reclaim memory from UMA in the event of a severe shortage. 2053 * Return true if the free page count should be re-evaluated. 2054 */ 2055 static bool 2056 vm_pageout_lowmem(void) 2057 { 2058 static int lowmem_ticks = 0; 2059 int last; 2060 bool ret; 2061 2062 ret = false; 2063 2064 last = atomic_load_int(&lowmem_ticks); 2065 while ((u_int)(ticks - last) / hz >= lowmem_period) { 2066 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0) 2067 continue; 2068 2069 /* 2070 * Decrease registered cache sizes. 2071 */ 2072 SDT_PROBE0(vm, , , vm__lowmem_scan); 2073 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 2074 2075 /* 2076 * We do this explicitly after the caches have been 2077 * drained above. 2078 */ 2079 uma_reclaim(UMA_RECLAIM_TRIM); 2080 ret = true; 2081 break; 2082 } 2083 2084 /* 2085 * Kick off an asynchronous reclaim of cached memory if one of the 2086 * page daemons is failing to keep up with demand. Use the "severe" 2087 * threshold instead of "min" to ensure that we do not blow away the 2088 * caches if a subset of the NUMA domains are depleted by kernel memory 2089 * allocations; the domainset iterators automatically skip domains 2090 * below the "min" threshold on the first pass. 2091 * 2092 * UMA reclaim worker has its own rate-limiting mechanism, so don't 2093 * worry about kicking it too often. 2094 */ 2095 if (vm_page_count_severe()) 2096 uma_reclaim_wakeup(); 2097 2098 return (ret); 2099 } 2100 2101 static void 2102 vm_pageout_worker(void *arg) 2103 { 2104 struct vm_domain *vmd; 2105 u_int ofree; 2106 int addl_shortage, domain, shortage; 2107 bool target_met; 2108 2109 domain = (uintptr_t)arg; 2110 vmd = VM_DOMAIN(domain); 2111 shortage = 0; 2112 target_met = true; 2113 2114 /* 2115 * XXXKIB It could be useful to bind pageout daemon threads to 2116 * the cores belonging to the domain, from which vm_page_array 2117 * is allocated. 2118 */ 2119 2120 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 2121 vmd->vmd_last_active_scan = ticks; 2122 2123 /* 2124 * The pageout daemon worker is never done, so loop forever. 2125 */ 2126 while (TRUE) { 2127 vm_domain_pageout_lock(vmd); 2128 2129 /* 2130 * We need to clear wanted before we check the limits. This 2131 * prevents races with wakers who will check wanted after they 2132 * reach the limit. 2133 */ 2134 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 2135 2136 /* 2137 * Might the page daemon need to run again? 2138 */ 2139 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 2140 /* 2141 * Yes. If the scan failed to produce enough free 2142 * pages, sleep uninterruptibly for some time in the 2143 * hope that the laundry thread will clean some pages. 2144 */ 2145 vm_domain_pageout_unlock(vmd); 2146 if (!target_met) 2147 pause("pwait", hz / VM_INACT_SCAN_RATE); 2148 } else { 2149 /* 2150 * No, sleep until the next wakeup or until pages 2151 * need to have their reference stats updated. 2152 */ 2153 if (mtx_sleep(&vmd->vmd_pageout_wanted, 2154 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 2155 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 2156 VM_CNT_INC(v_pdwakeups); 2157 } 2158 2159 /* Prevent spurious wakeups by ensuring that wanted is set. */ 2160 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2161 2162 /* 2163 * Use the controller to calculate how many pages to free in 2164 * this interval, and scan the inactive queue. If the lowmem 2165 * handlers appear to have freed up some pages, subtract the 2166 * difference from the inactive queue scan target. 2167 */ 2168 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 2169 if (shortage > 0) { 2170 ofree = vmd->vmd_free_count; 2171 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree) 2172 shortage -= min(vmd->vmd_free_count - ofree, 2173 (u_int)shortage); 2174 target_met = vm_pageout_inactive(vmd, shortage, 2175 &addl_shortage); 2176 } else 2177 addl_shortage = 0; 2178 2179 /* 2180 * Scan the active queue. A positive value for shortage 2181 * indicates that we must aggressively deactivate pages to avoid 2182 * a shortfall. 2183 */ 2184 shortage = vm_pageout_active_target(vmd) + addl_shortage; 2185 vm_pageout_scan_active(vmd, shortage); 2186 } 2187 } 2188 2189 /* 2190 * vm_pageout_helper runs additional pageout daemons in times of high paging 2191 * activity. 2192 */ 2193 static void 2194 vm_pageout_helper(void *arg) 2195 { 2196 struct vm_domain *vmd; 2197 int domain; 2198 2199 domain = (uintptr_t)arg; 2200 vmd = VM_DOMAIN(domain); 2201 2202 vm_domain_pageout_lock(vmd); 2203 for (;;) { 2204 msleep(&vmd->vmd_inactive_shortage, 2205 vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0); 2206 blockcount_release(&vmd->vmd_inactive_starting, 1); 2207 2208 vm_domain_pageout_unlock(vmd); 2209 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage); 2210 vm_domain_pageout_lock(vmd); 2211 2212 /* 2213 * Release the running count while the pageout lock is held to 2214 * prevent wakeup races. 2215 */ 2216 blockcount_release(&vmd->vmd_inactive_running, 1); 2217 } 2218 } 2219 2220 static int 2221 get_pageout_threads_per_domain(const struct vm_domain *vmd) 2222 { 2223 unsigned total_pageout_threads, eligible_cpus, domain_cpus; 2224 2225 if (VM_DOMAIN_EMPTY(vmd->vmd_domain)) 2226 return (0); 2227 2228 /* 2229 * Semi-arbitrarily constrain pagedaemon threads to less than half the 2230 * total number of CPUs in the system as an upper limit. 2231 */ 2232 if (pageout_cpus_per_thread < 2) 2233 pageout_cpus_per_thread = 2; 2234 else if (pageout_cpus_per_thread > mp_ncpus) 2235 pageout_cpus_per_thread = mp_ncpus; 2236 2237 total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread); 2238 domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]); 2239 2240 /* Pagedaemons are not run in empty domains. */ 2241 eligible_cpus = mp_ncpus; 2242 for (unsigned i = 0; i < vm_ndomains; i++) 2243 if (VM_DOMAIN_EMPTY(i)) 2244 eligible_cpus -= CPU_COUNT(&cpuset_domain[i]); 2245 2246 /* 2247 * Assign a portion of the total pageout threads to this domain 2248 * corresponding to the fraction of pagedaemon-eligible CPUs in the 2249 * domain. In asymmetric NUMA systems, domains with more CPUs may be 2250 * allocated more threads than domains with fewer CPUs. 2251 */ 2252 return (howmany(total_pageout_threads * domain_cpus, eligible_cpus)); 2253 } 2254 2255 /* 2256 * Initialize basic pageout daemon settings. See the comment above the 2257 * definition of vm_domain for some explanation of how these thresholds are 2258 * used. 2259 */ 2260 static void 2261 vm_pageout_init_domain(int domain) 2262 { 2263 struct vm_domain *vmd; 2264 struct sysctl_oid *oid; 2265 2266 vmd = VM_DOMAIN(domain); 2267 vmd->vmd_interrupt_free_min = 2; 2268 2269 /* 2270 * v_free_reserved needs to include enough for the largest 2271 * swap pager structures plus enough for any pv_entry structs 2272 * when paging. 2273 */ 2274 vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE + 2275 vmd->vmd_interrupt_free_min; 2276 vmd->vmd_free_reserved = vm_pageout_page_count + 2277 vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768; 2278 vmd->vmd_free_min = vmd->vmd_page_count / 200; 2279 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 2280 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 2281 vmd->vmd_free_min += vmd->vmd_free_reserved; 2282 vmd->vmd_free_severe += vmd->vmd_free_reserved; 2283 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 2284 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 2285 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 2286 2287 /* 2288 * Set the default wakeup threshold to be 10% below the paging 2289 * target. This keeps the steady state out of shortfall. 2290 */ 2291 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 2292 2293 /* 2294 * Target amount of memory to move out of the laundry queue during a 2295 * background laundering. This is proportional to the amount of system 2296 * memory. 2297 */ 2298 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 2299 vmd->vmd_free_min) / 10; 2300 2301 /* Initialize the pageout daemon pid controller. */ 2302 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 2303 vmd->vmd_free_target, PIDCTRL_BOUND, 2304 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 2305 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 2306 "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2307 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 2308 2309 vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd); 2310 } 2311 2312 static void 2313 vm_pageout_init(void) 2314 { 2315 u_long freecount; 2316 int i; 2317 2318 /* 2319 * Initialize some paging parameters. 2320 */ 2321 if (vm_cnt.v_page_count < 2000) 2322 vm_pageout_page_count = 8; 2323 2324 freecount = 0; 2325 for (i = 0; i < vm_ndomains; i++) { 2326 struct vm_domain *vmd; 2327 2328 vm_pageout_init_domain(i); 2329 vmd = VM_DOMAIN(i); 2330 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 2331 vm_cnt.v_free_target += vmd->vmd_free_target; 2332 vm_cnt.v_free_min += vmd->vmd_free_min; 2333 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 2334 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 2335 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 2336 vm_cnt.v_free_severe += vmd->vmd_free_severe; 2337 freecount += vmd->vmd_free_count; 2338 } 2339 2340 /* 2341 * Set interval in seconds for active scan. We want to visit each 2342 * page at least once every ten minutes. This is to prevent worst 2343 * case paging behaviors with stale active LRU. 2344 */ 2345 if (vm_pageout_update_period == 0) 2346 vm_pageout_update_period = 600; 2347 2348 /* 2349 * Set the maximum number of user-wired virtual pages. Historically the 2350 * main source of such pages was mlock(2) and mlockall(2). Hypervisors 2351 * may also request user-wired memory. 2352 */ 2353 if (vm_page_max_user_wired == 0) 2354 vm_page_max_user_wired = 4 * freecount / 5; 2355 } 2356 2357 /* 2358 * vm_pageout is the high level pageout daemon. 2359 */ 2360 static void 2361 vm_pageout(void) 2362 { 2363 struct proc *p; 2364 struct thread *td; 2365 int error, first, i, j, pageout_threads; 2366 2367 p = curproc; 2368 td = curthread; 2369 2370 mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF); 2371 swap_pager_swap_init(); 2372 for (first = -1, i = 0; i < vm_ndomains; i++) { 2373 if (VM_DOMAIN_EMPTY(i)) { 2374 if (bootverbose) 2375 printf("domain %d empty; skipping pageout\n", 2376 i); 2377 continue; 2378 } 2379 if (first == -1) 2380 first = i; 2381 else { 2382 error = kthread_add(vm_pageout_worker, 2383 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i); 2384 if (error != 0) 2385 panic("starting pageout for domain %d: %d\n", 2386 i, error); 2387 } 2388 pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads; 2389 for (j = 0; j < pageout_threads - 1; j++) { 2390 error = kthread_add(vm_pageout_helper, 2391 (void *)(uintptr_t)i, p, NULL, 0, 0, 2392 "dom%d helper%d", i, j); 2393 if (error != 0) 2394 panic("starting pageout helper %d for domain " 2395 "%d: %d\n", j, i, error); 2396 } 2397 error = kthread_add(vm_pageout_laundry_worker, 2398 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i); 2399 if (error != 0) 2400 panic("starting laundry for domain %d: %d", i, error); 2401 } 2402 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma"); 2403 if (error != 0) 2404 panic("starting uma_reclaim helper, error %d\n", error); 2405 2406 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first); 2407 vm_pageout_worker((void *)(uintptr_t)first); 2408 } 2409 2410 /* 2411 * Perform an advisory wakeup of the page daemon. 2412 */ 2413 void 2414 pagedaemon_wakeup(int domain) 2415 { 2416 struct vm_domain *vmd; 2417 2418 vmd = VM_DOMAIN(domain); 2419 vm_domain_pageout_assert_unlocked(vmd); 2420 if (curproc == pageproc) 2421 return; 2422 2423 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 2424 vm_domain_pageout_lock(vmd); 2425 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2426 wakeup(&vmd->vmd_pageout_wanted); 2427 vm_domain_pageout_unlock(vmd); 2428 } 2429 } 2430