xref: /freebsd/sys/vm/vm_pageout.c (revision 955c8cbb4960e6cf3602de144b1b9154a5092968)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/signalvar.h>
93 #include <sys/vnode.h>
94 #include <sys/vmmeter.h>
95 #include <sys/sx.h>
96 #include <sys/sysctl.h>
97 
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_pager.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_extern.h>
107 #include <vm/uma.h>
108 
109 /*
110  * System initialization
111  */
112 
113 /* the kernel process "vm_pageout"*/
114 static void vm_pageout(void);
115 static int vm_pageout_clean(vm_page_t);
116 static void vm_pageout_scan(int pass);
117 
118 struct proc *pageproc;
119 
120 static struct kproc_desc page_kp = {
121 	"pagedaemon",
122 	vm_pageout,
123 	&pageproc
124 };
125 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
126     &page_kp);
127 
128 #if !defined(NO_SWAPPING)
129 /* the kernel process "vm_daemon"*/
130 static void vm_daemon(void);
131 static struct	proc *vmproc;
132 
133 static struct kproc_desc vm_kp = {
134 	"vmdaemon",
135 	vm_daemon,
136 	&vmproc
137 };
138 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
139 #endif
140 
141 
142 int vm_pages_needed;		/* Event on which pageout daemon sleeps */
143 int vm_pageout_deficit;		/* Estimated number of pages deficit */
144 int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
145 
146 #if !defined(NO_SWAPPING)
147 static int vm_pageout_req_swapout;	/* XXX */
148 static int vm_daemon_needed;
149 static struct mtx vm_daemon_mtx;
150 /* Allow for use by vm_pageout before vm_daemon is initialized. */
151 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
152 #endif
153 static int vm_max_launder = 32;
154 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
155 static int vm_pageout_full_stats_interval = 0;
156 static int vm_pageout_algorithm=0;
157 static int defer_swap_pageouts=0;
158 static int disable_swap_pageouts=0;
159 
160 #if defined(NO_SWAPPING)
161 static int vm_swap_enabled=0;
162 static int vm_swap_idle_enabled=0;
163 #else
164 static int vm_swap_enabled=1;
165 static int vm_swap_idle_enabled=0;
166 #endif
167 
168 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
169 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
170 
171 SYSCTL_INT(_vm, OID_AUTO, max_launder,
172 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
173 
174 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
175 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
176 
177 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
178 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
179 
180 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
181 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
182 
183 #if defined(NO_SWAPPING)
184 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185 	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
186 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188 #else
189 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
190 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
191 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
192 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
193 #endif
194 
195 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
196 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
197 
198 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
199 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
200 
201 static int pageout_lock_miss;
202 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
203 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
204 
205 #define VM_PAGEOUT_PAGE_COUNT 16
206 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
207 
208 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
209 SYSCTL_INT(_vm, OID_AUTO, max_wired,
210 	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
211 
212 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
213 static boolean_t vm_pageout_launder(int, int, vm_paddr_t, vm_paddr_t);
214 #if !defined(NO_SWAPPING)
215 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
216 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
217 static void vm_req_vmdaemon(int req);
218 #endif
219 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
220 static void vm_pageout_page_stats(void);
221 
222 /*
223  * Initialize a dummy page for marking the caller's place in the specified
224  * paging queue.  In principle, this function only needs to set the flag
225  * PG_MARKER.  Nonetheless, it sets the flag VPO_BUSY and initializes the hold
226  * count to one as safety precautions.
227  */
228 static void
229 vm_pageout_init_marker(vm_page_t marker, u_short queue)
230 {
231 
232 	bzero(marker, sizeof(*marker));
233 	marker->flags = PG_MARKER;
234 	marker->oflags = VPO_BUSY;
235 	marker->queue = queue;
236 	marker->hold_count = 1;
237 }
238 
239 /*
240  * vm_pageout_fallback_object_lock:
241  *
242  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
243  * known to have failed and page queue must be either PQ_ACTIVE or
244  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
245  * while locking the vm object.  Use marker page to detect page queue
246  * changes and maintain notion of next page on page queue.  Return
247  * TRUE if no changes were detected, FALSE otherwise.  vm object is
248  * locked on return.
249  *
250  * This function depends on both the lock portion of struct vm_object
251  * and normal struct vm_page being type stable.
252  */
253 static boolean_t
254 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
255 {
256 	struct vm_page marker;
257 	struct vm_pagequeue *pq;
258 	boolean_t unchanged;
259 	u_short queue;
260 	vm_object_t object;
261 
262 	queue = m->queue;
263 	vm_pageout_init_marker(&marker, queue);
264 	pq = &vm_pagequeues[queue];
265 	object = m->object;
266 
267 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, pageq);
268 	vm_pagequeue_unlock(pq);
269 	vm_page_unlock(m);
270 	VM_OBJECT_LOCK(object);
271 	vm_page_lock(m);
272 	vm_pagequeue_lock(pq);
273 
274 	/* Page queue might have changed. */
275 	*next = TAILQ_NEXT(&marker, pageq);
276 	unchanged = (m->queue == queue &&
277 		     m->object == object &&
278 		     &marker == TAILQ_NEXT(m, pageq));
279 	TAILQ_REMOVE(&pq->pq_pl, &marker, pageq);
280 	return (unchanged);
281 }
282 
283 /*
284  * Lock the page while holding the page queue lock.  Use marker page
285  * to detect page queue changes and maintain notion of next page on
286  * page queue.  Return TRUE if no changes were detected, FALSE
287  * otherwise.  The page is locked on return. The page queue lock might
288  * be dropped and reacquired.
289  *
290  * This function depends on normal struct vm_page being type stable.
291  */
292 static boolean_t
293 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
294 {
295 	struct vm_page marker;
296 	struct vm_pagequeue *pq;
297 	boolean_t unchanged;
298 	u_short queue;
299 
300 	vm_page_lock_assert(m, MA_NOTOWNED);
301 	if (vm_page_trylock(m))
302 		return (TRUE);
303 
304 	queue = m->queue;
305 	vm_pageout_init_marker(&marker, queue);
306 	pq = &vm_pagequeues[queue];
307 
308 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, pageq);
309 	vm_pagequeue_unlock(pq);
310 	vm_page_lock(m);
311 	vm_pagequeue_lock(pq);
312 
313 	/* Page queue might have changed. */
314 	*next = TAILQ_NEXT(&marker, pageq);
315 	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
316 	TAILQ_REMOVE(&pq->pq_pl, &marker, pageq);
317 	return (unchanged);
318 }
319 
320 /*
321  * vm_pageout_clean:
322  *
323  * Clean the page and remove it from the laundry.
324  *
325  * We set the busy bit to cause potential page faults on this page to
326  * block.  Note the careful timing, however, the busy bit isn't set till
327  * late and we cannot do anything that will mess with the page.
328  */
329 static int
330 vm_pageout_clean(vm_page_t m)
331 {
332 	vm_object_t object;
333 	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
334 	int pageout_count;
335 	int ib, is, page_base;
336 	vm_pindex_t pindex = m->pindex;
337 
338 	vm_page_lock_assert(m, MA_OWNED);
339 	object = m->object;
340 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
341 
342 	/*
343 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
344 	 * with the new swapper, but we could have serious problems paging
345 	 * out other object types if there is insufficient memory.
346 	 *
347 	 * Unfortunately, checking free memory here is far too late, so the
348 	 * check has been moved up a procedural level.
349 	 */
350 
351 	/*
352 	 * Can't clean the page if it's busy or held.
353 	 */
354 	KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
355 	    ("vm_pageout_clean: page %p is busy", m));
356 	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
357 	vm_page_unlock(m);
358 
359 	mc[vm_pageout_page_count] = pb = ps = m;
360 	pageout_count = 1;
361 	page_base = vm_pageout_page_count;
362 	ib = 1;
363 	is = 1;
364 
365 	/*
366 	 * Scan object for clusterable pages.
367 	 *
368 	 * We can cluster ONLY if: ->> the page is NOT
369 	 * clean, wired, busy, held, or mapped into a
370 	 * buffer, and one of the following:
371 	 * 1) The page is inactive, or a seldom used
372 	 *    active page.
373 	 * -or-
374 	 * 2) we force the issue.
375 	 *
376 	 * During heavy mmap/modification loads the pageout
377 	 * daemon can really fragment the underlying file
378 	 * due to flushing pages out of order and not trying
379 	 * align the clusters (which leave sporatic out-of-order
380 	 * holes).  To solve this problem we do the reverse scan
381 	 * first and attempt to align our cluster, then do a
382 	 * forward scan if room remains.
383 	 */
384 more:
385 	while (ib && pageout_count < vm_pageout_page_count) {
386 		vm_page_t p;
387 
388 		if (ib > pindex) {
389 			ib = 0;
390 			break;
391 		}
392 
393 		if ((p = vm_page_prev(pb)) == NULL ||
394 		    (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
395 			ib = 0;
396 			break;
397 		}
398 		vm_page_lock(p);
399 		vm_page_test_dirty(p);
400 		if (p->dirty == 0 ||
401 		    p->queue != PQ_INACTIVE ||
402 		    p->hold_count != 0) {	/* may be undergoing I/O */
403 			vm_page_unlock(p);
404 			ib = 0;
405 			break;
406 		}
407 		vm_page_unlock(p);
408 		mc[--page_base] = pb = p;
409 		++pageout_count;
410 		++ib;
411 		/*
412 		 * alignment boundry, stop here and switch directions.  Do
413 		 * not clear ib.
414 		 */
415 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
416 			break;
417 	}
418 
419 	while (pageout_count < vm_pageout_page_count &&
420 	    pindex + is < object->size) {
421 		vm_page_t p;
422 
423 		if ((p = vm_page_next(ps)) == NULL ||
424 		    (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
425 			break;
426 		vm_page_lock(p);
427 		vm_page_test_dirty(p);
428 		if (p->dirty == 0 ||
429 		    p->queue != PQ_INACTIVE ||
430 		    p->hold_count != 0) {	/* may be undergoing I/O */
431 			vm_page_unlock(p);
432 			break;
433 		}
434 		vm_page_unlock(p);
435 		mc[page_base + pageout_count] = ps = p;
436 		++pageout_count;
437 		++is;
438 	}
439 
440 	/*
441 	 * If we exhausted our forward scan, continue with the reverse scan
442 	 * when possible, even past a page boundry.  This catches boundry
443 	 * conditions.
444 	 */
445 	if (ib && pageout_count < vm_pageout_page_count)
446 		goto more;
447 
448 	/*
449 	 * we allow reads during pageouts...
450 	 */
451 	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
452 	    NULL));
453 }
454 
455 /*
456  * vm_pageout_flush() - launder the given pages
457  *
458  *	The given pages are laundered.  Note that we setup for the start of
459  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
460  *	reference count all in here rather then in the parent.  If we want
461  *	the parent to do more sophisticated things we may have to change
462  *	the ordering.
463  *
464  *	Returned runlen is the count of pages between mreq and first
465  *	page after mreq with status VM_PAGER_AGAIN.
466  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
467  *	for any page in runlen set.
468  */
469 int
470 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
471     boolean_t *eio)
472 {
473 	vm_object_t object = mc[0]->object;
474 	int pageout_status[count];
475 	int numpagedout = 0;
476 	int i, runlen;
477 
478 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
479 
480 	/*
481 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
482 	 * mark the pages read-only.
483 	 *
484 	 * We do not have to fixup the clean/dirty bits here... we can
485 	 * allow the pager to do it after the I/O completes.
486 	 *
487 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
488 	 * edge case with file fragments.
489 	 */
490 	for (i = 0; i < count; i++) {
491 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
492 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
493 			mc[i], i, count));
494 		vm_page_io_start(mc[i]);
495 		pmap_remove_write(mc[i]);
496 	}
497 	vm_object_pip_add(object, count);
498 
499 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
500 
501 	runlen = count - mreq;
502 	if (eio != NULL)
503 		*eio = FALSE;
504 	for (i = 0; i < count; i++) {
505 		vm_page_t mt = mc[i];
506 
507 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
508 		    !pmap_page_is_write_mapped(mt),
509 		    ("vm_pageout_flush: page %p is not write protected", mt));
510 		switch (pageout_status[i]) {
511 		case VM_PAGER_OK:
512 		case VM_PAGER_PEND:
513 			numpagedout++;
514 			break;
515 		case VM_PAGER_BAD:
516 			/*
517 			 * Page outside of range of object. Right now we
518 			 * essentially lose the changes by pretending it
519 			 * worked.
520 			 */
521 			vm_page_undirty(mt);
522 			break;
523 		case VM_PAGER_ERROR:
524 		case VM_PAGER_FAIL:
525 			/*
526 			 * If page couldn't be paged out, then reactivate the
527 			 * page so it doesn't clog the inactive list.  (We
528 			 * will try paging out it again later).
529 			 */
530 			vm_page_lock(mt);
531 			vm_page_activate(mt);
532 			vm_page_unlock(mt);
533 			if (eio != NULL && i >= mreq && i - mreq < runlen)
534 				*eio = TRUE;
535 			break;
536 		case VM_PAGER_AGAIN:
537 			if (i >= mreq && i - mreq < runlen)
538 				runlen = i - mreq;
539 			break;
540 		}
541 
542 		/*
543 		 * If the operation is still going, leave the page busy to
544 		 * block all other accesses. Also, leave the paging in
545 		 * progress indicator set so that we don't attempt an object
546 		 * collapse.
547 		 */
548 		if (pageout_status[i] != VM_PAGER_PEND) {
549 			vm_object_pip_wakeup(object);
550 			vm_page_io_finish(mt);
551 			if (vm_page_count_severe()) {
552 				vm_page_lock(mt);
553 				vm_page_try_to_cache(mt);
554 				vm_page_unlock(mt);
555 			}
556 		}
557 	}
558 	if (prunlen != NULL)
559 		*prunlen = runlen;
560 	return (numpagedout);
561 }
562 
563 static boolean_t
564 vm_pageout_launder(int queue, int tries, vm_paddr_t low, vm_paddr_t high)
565 {
566 	struct mount *mp;
567 	struct vm_pagequeue *pq;
568 	struct vnode *vp;
569 	vm_object_t object;
570 	vm_paddr_t pa;
571 	vm_page_t m, m_tmp, next;
572 
573 	pq = &vm_pagequeues[queue];
574 	vm_pagequeue_lock(pq);
575 	TAILQ_FOREACH_SAFE(m, &pq->pq_pl, pageq, next) {
576 		KASSERT(m->queue == queue,
577 		    ("vm_pageout_launder: page %p's queue is not %d", m,
578 		    queue));
579 		if ((m->flags & PG_MARKER) != 0)
580 			continue;
581 		pa = VM_PAGE_TO_PHYS(m);
582 		if (pa < low || pa + PAGE_SIZE > high)
583 			continue;
584 		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
585 			vm_page_unlock(m);
586 			continue;
587 		}
588 		object = m->object;
589 		if ((!VM_OBJECT_TRYLOCK(object) &&
590 		    (!vm_pageout_fallback_object_lock(m, &next) ||
591 		    m->hold_count != 0)) || (m->oflags & VPO_BUSY) != 0 ||
592 		    m->busy != 0) {
593 			vm_page_unlock(m);
594 			VM_OBJECT_UNLOCK(object);
595 			continue;
596 		}
597 		vm_page_test_dirty(m);
598 		if (m->dirty == 0 && object->ref_count != 0)
599 			pmap_remove_all(m);
600 		if (m->dirty != 0) {
601 			vm_page_unlock(m);
602 			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
603 				VM_OBJECT_UNLOCK(object);
604 				continue;
605 			}
606 			if (object->type == OBJT_VNODE) {
607 				vm_pagequeue_unlock(pq);
608 				vp = object->handle;
609 				vm_object_reference_locked(object);
610 				VM_OBJECT_UNLOCK(object);
611 				(void)vn_start_write(vp, &mp, V_WAIT);
612 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
613 				VM_OBJECT_LOCK(object);
614 				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
615 				VM_OBJECT_UNLOCK(object);
616 				VOP_UNLOCK(vp, 0);
617 				vm_object_deallocate(object);
618 				vn_finished_write(mp);
619 				return (TRUE);
620 			} else if (object->type == OBJT_SWAP ||
621 			    object->type == OBJT_DEFAULT) {
622 				vm_pagequeue_unlock(pq);
623 				m_tmp = m;
624 				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
625 				    0, NULL, NULL);
626 				VM_OBJECT_UNLOCK(object);
627 				return (TRUE);
628 			}
629 		} else {
630 			/*
631 			 * Dequeue here to prevent lock recursion in
632 			 * vm_page_cache().
633 			 */
634 			vm_page_dequeue_locked(m);
635 			vm_page_cache(m);
636 			vm_page_unlock(m);
637 		}
638 		VM_OBJECT_UNLOCK(object);
639 	}
640 	vm_pagequeue_unlock(pq);
641 	return (FALSE);
642 }
643 
644 /*
645  * Increase the number of cached pages.  The specified value, "tries",
646  * determines which categories of pages are cached:
647  *
648  *  0: All clean, inactive pages within the specified physical address range
649  *     are cached.  Will not sleep.
650  *  1: The vm_lowmem handlers are called.  All inactive pages within
651  *     the specified physical address range are cached.  May sleep.
652  *  2: The vm_lowmem handlers are called.  All inactive and active pages
653  *     within the specified physical address range are cached.  May sleep.
654  */
655 void
656 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
657 {
658 	int actl, actmax, inactl, inactmax;
659 
660 	if (tries > 0) {
661 		/*
662 		 * Decrease registered cache sizes.  The vm_lowmem handlers
663 		 * may acquire locks and/or sleep, so they can only be invoked
664 		 * when "tries" is greater than zero.
665 		 */
666 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
667 
668 		/*
669 		 * We do this explicitly after the caches have been drained
670 		 * above.
671 		 */
672 		uma_reclaim();
673 	}
674 	inactl = 0;
675 	inactmax = cnt.v_inactive_count;
676 	actl = 0;
677 	actmax = tries < 2 ? 0 : cnt.v_active_count;
678 again:
679 	if (inactl < inactmax && vm_pageout_launder(PQ_INACTIVE, tries, low,
680 	    high)) {
681 		inactl++;
682 		goto again;
683 	}
684 	if (actl < actmax && vm_pageout_launder(PQ_ACTIVE, tries, low, high)) {
685 		actl++;
686 		goto again;
687 	}
688 }
689 
690 #if !defined(NO_SWAPPING)
691 /*
692  *	vm_pageout_object_deactivate_pages
693  *
694  *	Deactivate enough pages to satisfy the inactive target
695  *	requirements.
696  *
697  *	The object and map must be locked.
698  */
699 static void
700 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
701     long desired)
702 {
703 	vm_object_t backing_object, object;
704 	vm_page_t p;
705 	int actcount, remove_mode;
706 
707 	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
708 	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
709 		return;
710 	for (object = first_object;; object = backing_object) {
711 		if (pmap_resident_count(pmap) <= desired)
712 			goto unlock_return;
713 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
714 		if ((object->flags & OBJ_UNMANAGED) != 0 ||
715 		    object->paging_in_progress != 0)
716 			goto unlock_return;
717 
718 		remove_mode = 0;
719 		if (object->shadow_count > 1)
720 			remove_mode = 1;
721 		/*
722 		 * Scan the object's entire memory queue.
723 		 */
724 		TAILQ_FOREACH(p, &object->memq, listq) {
725 			if (pmap_resident_count(pmap) <= desired)
726 				goto unlock_return;
727 			if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
728 				continue;
729 			PCPU_INC(cnt.v_pdpages);
730 			vm_page_lock(p);
731 			if (p->wire_count != 0 || p->hold_count != 0 ||
732 			    !pmap_page_exists_quick(pmap, p)) {
733 				vm_page_unlock(p);
734 				continue;
735 			}
736 			actcount = pmap_ts_referenced(p);
737 			if ((p->aflags & PGA_REFERENCED) != 0) {
738 				if (actcount == 0)
739 					actcount = 1;
740 				vm_page_aflag_clear(p, PGA_REFERENCED);
741 			}
742 			if (p->queue != PQ_ACTIVE && actcount != 0) {
743 				vm_page_activate(p);
744 				p->act_count += actcount;
745 			} else if (p->queue == PQ_ACTIVE) {
746 				if (actcount == 0) {
747 					p->act_count -= min(p->act_count,
748 					    ACT_DECLINE);
749 					if (!remove_mode &&
750 					    (vm_pageout_algorithm ||
751 					    p->act_count == 0)) {
752 						pmap_remove_all(p);
753 						vm_page_deactivate(p);
754 					} else
755 						vm_page_requeue(p);
756 				} else {
757 					vm_page_activate(p);
758 					if (p->act_count < ACT_MAX -
759 					    ACT_ADVANCE)
760 						p->act_count += ACT_ADVANCE;
761 					vm_page_requeue(p);
762 				}
763 			} else if (p->queue == PQ_INACTIVE)
764 				pmap_remove_all(p);
765 			vm_page_unlock(p);
766 		}
767 		if ((backing_object = object->backing_object) == NULL)
768 			goto unlock_return;
769 		VM_OBJECT_LOCK(backing_object);
770 		if (object != first_object)
771 			VM_OBJECT_UNLOCK(object);
772 	}
773 unlock_return:
774 	if (object != first_object)
775 		VM_OBJECT_UNLOCK(object);
776 }
777 
778 /*
779  * deactivate some number of pages in a map, try to do it fairly, but
780  * that is really hard to do.
781  */
782 static void
783 vm_pageout_map_deactivate_pages(map, desired)
784 	vm_map_t map;
785 	long desired;
786 {
787 	vm_map_entry_t tmpe;
788 	vm_object_t obj, bigobj;
789 	int nothingwired;
790 
791 	if (!vm_map_trylock(map))
792 		return;
793 
794 	bigobj = NULL;
795 	nothingwired = TRUE;
796 
797 	/*
798 	 * first, search out the biggest object, and try to free pages from
799 	 * that.
800 	 */
801 	tmpe = map->header.next;
802 	while (tmpe != &map->header) {
803 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
804 			obj = tmpe->object.vm_object;
805 			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
806 				if (obj->shadow_count <= 1 &&
807 				    (bigobj == NULL ||
808 				     bigobj->resident_page_count < obj->resident_page_count)) {
809 					if (bigobj != NULL)
810 						VM_OBJECT_UNLOCK(bigobj);
811 					bigobj = obj;
812 				} else
813 					VM_OBJECT_UNLOCK(obj);
814 			}
815 		}
816 		if (tmpe->wired_count > 0)
817 			nothingwired = FALSE;
818 		tmpe = tmpe->next;
819 	}
820 
821 	if (bigobj != NULL) {
822 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
823 		VM_OBJECT_UNLOCK(bigobj);
824 	}
825 	/*
826 	 * Next, hunt around for other pages to deactivate.  We actually
827 	 * do this search sort of wrong -- .text first is not the best idea.
828 	 */
829 	tmpe = map->header.next;
830 	while (tmpe != &map->header) {
831 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
832 			break;
833 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
834 			obj = tmpe->object.vm_object;
835 			if (obj != NULL) {
836 				VM_OBJECT_LOCK(obj);
837 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
838 				VM_OBJECT_UNLOCK(obj);
839 			}
840 		}
841 		tmpe = tmpe->next;
842 	}
843 
844 	/*
845 	 * Remove all mappings if a process is swapped out, this will free page
846 	 * table pages.
847 	 */
848 	if (desired == 0 && nothingwired) {
849 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
850 		    vm_map_max(map));
851 	}
852 	vm_map_unlock(map);
853 }
854 #endif		/* !defined(NO_SWAPPING) */
855 
856 /*
857  *	vm_pageout_scan does the dirty work for the pageout daemon.
858  */
859 static void
860 vm_pageout_scan(int pass)
861 {
862 	vm_page_t m, next;
863 	struct vm_page marker;
864 	struct vm_pagequeue *pq;
865 	int page_shortage, maxscan, pcount;
866 	int addl_page_shortage;
867 	vm_object_t object;
868 	int actcount;
869 	int vnodes_skipped = 0;
870 	int maxlaunder;
871 	boolean_t queues_locked;
872 
873 	vm_pageout_init_marker(&marker, PQ_INACTIVE);
874 
875 	/*
876 	 * Decrease registered cache sizes.
877 	 */
878 	EVENTHANDLER_INVOKE(vm_lowmem, 0);
879 	/*
880 	 * We do this explicitly after the caches have been drained above.
881 	 */
882 	uma_reclaim();
883 
884 	/*
885 	 * The addl_page_shortage is the number of temporarily
886 	 * stuck pages in the inactive queue.  In other words, the
887 	 * number of pages from cnt.v_inactive_count that should be
888 	 * discounted in setting the target for the active queue scan.
889 	 */
890 	addl_page_shortage = atomic_readandclear_int(&vm_pageout_deficit);
891 
892 	/*
893 	 * Calculate the number of pages we want to either free or move
894 	 * to the cache.
895 	 */
896 	page_shortage = vm_paging_target() + addl_page_shortage;
897 
898 	/*
899 	 * maxlaunder limits the number of dirty pages we flush per scan.
900 	 * For most systems a smaller value (16 or 32) is more robust under
901 	 * extreme memory and disk pressure because any unnecessary writes
902 	 * to disk can result in extreme performance degredation.  However,
903 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
904 	 * used) will die horribly with limited laundering.  If the pageout
905 	 * daemon cannot clean enough pages in the first pass, we let it go
906 	 * all out in succeeding passes.
907 	 */
908 	if ((maxlaunder = vm_max_launder) <= 1)
909 		maxlaunder = 1;
910 	if (pass)
911 		maxlaunder = 10000;
912 
913 	maxscan = cnt.v_inactive_count;
914 
915 	/*
916 	 * Start scanning the inactive queue for pages we can move to the
917 	 * cache or free.  The scan will stop when the target is reached or
918 	 * we have scanned the entire inactive queue.  Note that m->act_count
919 	 * is not used to form decisions for the inactive queue, only for the
920 	 * active queue.
921 	 */
922 	pq = &vm_pagequeues[PQ_INACTIVE];
923 	vm_pagequeue_lock(pq);
924 	queues_locked = TRUE;
925 	for (m = TAILQ_FIRST(&pq->pq_pl);
926 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
927 	     m = next) {
928 		vm_pagequeue_assert_locked(pq);
929 		KASSERT(queues_locked, ("unlocked queues"));
930 		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
931 
932 		PCPU_INC(cnt.v_pdpages);
933 		next = TAILQ_NEXT(m, pageq);
934 
935 		/*
936 		 * skip marker pages
937 		 */
938 		if (m->flags & PG_MARKER)
939 			continue;
940 
941 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
942 		    ("Fictitious page %p cannot be in inactive queue", m));
943 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
944 		    ("Unmanaged page %p cannot be in inactive queue", m));
945 
946 		/*
947 		 * The page or object lock acquisitions fail if the
948 		 * page was removed from the queue or moved to a
949 		 * different position within the queue.  In either
950 		 * case, addl_page_shortage should not be incremented.
951 		 */
952 		if (!vm_pageout_page_lock(m, &next)) {
953 			vm_page_unlock(m);
954 			continue;
955 		}
956 		object = m->object;
957 		if (!VM_OBJECT_TRYLOCK(object) &&
958 		    !vm_pageout_fallback_object_lock(m, &next)) {
959 			vm_page_unlock(m);
960 			VM_OBJECT_UNLOCK(object);
961 			continue;
962 		}
963 
964 		/*
965 		 * Don't mess with busy pages, keep them at at the
966 		 * front of the queue, most likely they are being
967 		 * paged out.  Increment addl_page_shortage for busy
968 		 * pages, because they may leave the inactive queue
969 		 * shortly after page scan is finished.
970 		 */
971 		if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0) {
972 			vm_page_unlock(m);
973 			VM_OBJECT_UNLOCK(object);
974 			addl_page_shortage++;
975 			continue;
976 		}
977 
978 		/*
979 		 * We unlock the inactive page queue, invalidating the
980 		 * 'next' pointer.  Use our marker to remember our
981 		 * place.
982 		 */
983 		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, pageq);
984 		vm_pagequeue_unlock(pq);
985 		queues_locked = FALSE;
986 
987 		/*
988 		 * If the object is not being used, we ignore previous
989 		 * references.
990 		 */
991 		if (object->ref_count == 0) {
992 			vm_page_aflag_clear(m, PGA_REFERENCED);
993 			KASSERT(!pmap_page_is_mapped(m),
994 			    ("vm_pageout_scan: page %p is mapped", m));
995 
996 		/*
997 		 * Otherwise, if the page has been referenced while in the
998 		 * inactive queue, we bump the "activation count" upwards,
999 		 * making it less likely that the page will be added back to
1000 		 * the inactive queue prematurely again.  Here we check the
1001 		 * page tables (or emulated bits, if any), given the upper
1002 		 * level VM system not knowing anything about existing
1003 		 * references.
1004 		 */
1005 		} else if ((m->aflags & PGA_REFERENCED) == 0 &&
1006 		    (actcount = pmap_ts_referenced(m)) != 0) {
1007 			vm_page_activate(m);
1008 			vm_page_unlock(m);
1009 			m->act_count += actcount + ACT_ADVANCE;
1010 			VM_OBJECT_UNLOCK(object);
1011 			goto relock_queues;
1012 		}
1013 
1014 		/*
1015 		 * If the upper level VM system knows about any page
1016 		 * references, we activate the page.  We also set the
1017 		 * "activation count" higher than normal so that we will less
1018 		 * likely place pages back onto the inactive queue again.
1019 		 */
1020 		if ((m->aflags & PGA_REFERENCED) != 0) {
1021 			vm_page_aflag_clear(m, PGA_REFERENCED);
1022 			actcount = pmap_ts_referenced(m);
1023 			vm_page_activate(m);
1024 			vm_page_unlock(m);
1025 			m->act_count += actcount + ACT_ADVANCE + 1;
1026 			VM_OBJECT_UNLOCK(object);
1027 			goto relock_queues;
1028 		}
1029 
1030 		if (m->hold_count != 0) {
1031 			vm_page_unlock(m);
1032 			VM_OBJECT_UNLOCK(object);
1033 
1034 			/*
1035 			 * Held pages are essentially stuck in the
1036 			 * queue.  So, they ought to be discounted
1037 			 * from cnt.v_inactive_count.  See the
1038 			 * calculation of the page_shortage for the
1039 			 * loop over the active queue below.
1040 			 */
1041 			addl_page_shortage++;
1042 			goto relock_queues;
1043 		}
1044 
1045 		/*
1046 		 * If the page appears to be clean at the machine-independent
1047 		 * layer, then remove all of its mappings from the pmap in
1048 		 * anticipation of placing it onto the cache queue.  If,
1049 		 * however, any of the page's mappings allow write access,
1050 		 * then the page may still be modified until the last of those
1051 		 * mappings are removed.
1052 		 */
1053 		vm_page_test_dirty(m);
1054 		if (m->dirty == 0 && object->ref_count != 0)
1055 			pmap_remove_all(m);
1056 
1057 		if (m->valid == 0) {
1058 			/*
1059 			 * Invalid pages can be easily freed
1060 			 */
1061 			vm_page_free(m);
1062 			PCPU_INC(cnt.v_dfree);
1063 			--page_shortage;
1064 		} else if (m->dirty == 0) {
1065 			/*
1066 			 * Clean pages can be placed onto the cache queue.
1067 			 * This effectively frees them.
1068 			 */
1069 			vm_page_cache(m);
1070 			--page_shortage;
1071 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
1072 			/*
1073 			 * Dirty pages need to be paged out, but flushing
1074 			 * a page is extremely expensive verses freeing
1075 			 * a clean page.  Rather then artificially limiting
1076 			 * the number of pages we can flush, we instead give
1077 			 * dirty pages extra priority on the inactive queue
1078 			 * by forcing them to be cycled through the queue
1079 			 * twice before being flushed, after which the
1080 			 * (now clean) page will cycle through once more
1081 			 * before being freed.  This significantly extends
1082 			 * the thrash point for a heavily loaded machine.
1083 			 */
1084 			m->flags |= PG_WINATCFLS;
1085 			vm_pagequeue_lock(pq);
1086 			queues_locked = TRUE;
1087 			vm_page_requeue_locked(m);
1088 		} else if (maxlaunder > 0) {
1089 			/*
1090 			 * We always want to try to flush some dirty pages if
1091 			 * we encounter them, to keep the system stable.
1092 			 * Normally this number is small, but under extreme
1093 			 * pressure where there are insufficient clean pages
1094 			 * on the inactive queue, we may have to go all out.
1095 			 */
1096 			int swap_pageouts_ok;
1097 			struct vnode *vp = NULL;
1098 			struct mount *mp = NULL;
1099 
1100 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1101 				swap_pageouts_ok = 1;
1102 			} else {
1103 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1104 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1105 				vm_page_count_min());
1106 
1107 			}
1108 
1109 			/*
1110 			 * We don't bother paging objects that are "dead".
1111 			 * Those objects are in a "rundown" state.
1112 			 */
1113 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1114 				vm_pagequeue_lock(pq);
1115 				vm_page_unlock(m);
1116 				VM_OBJECT_UNLOCK(object);
1117 				queues_locked = TRUE;
1118 				vm_page_requeue_locked(m);
1119 				goto relock_queues;
1120 			}
1121 
1122 			/*
1123 			 * The object is already known NOT to be dead.   It
1124 			 * is possible for the vget() to block the whole
1125 			 * pageout daemon, but the new low-memory handling
1126 			 * code should prevent it.
1127 			 *
1128 			 * The previous code skipped locked vnodes and, worse,
1129 			 * reordered pages in the queue.  This results in
1130 			 * completely non-deterministic operation and, on a
1131 			 * busy system, can lead to extremely non-optimal
1132 			 * pageouts.  For example, it can cause clean pages
1133 			 * to be freed and dirty pages to be moved to the end
1134 			 * of the queue.  Since dirty pages are also moved to
1135 			 * the end of the queue once-cleaned, this gives
1136 			 * way too large a weighting to defering the freeing
1137 			 * of dirty pages.
1138 			 *
1139 			 * We can't wait forever for the vnode lock, we might
1140 			 * deadlock due to a vn_read() getting stuck in
1141 			 * vm_wait while holding this vnode.  We skip the
1142 			 * vnode if we can't get it in a reasonable amount
1143 			 * of time.
1144 			 */
1145 			if (object->type == OBJT_VNODE) {
1146 				vm_page_unlock(m);
1147 				vp = object->handle;
1148 				if (vp->v_type == VREG &&
1149 				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1150 					mp = NULL;
1151 					++pageout_lock_miss;
1152 					if (object->flags & OBJ_MIGHTBEDIRTY)
1153 						vnodes_skipped++;
1154 					goto unlock_and_continue;
1155 				}
1156 				KASSERT(mp != NULL,
1157 				    ("vp %p with NULL v_mount", vp));
1158 				vm_object_reference_locked(object);
1159 				VM_OBJECT_UNLOCK(object);
1160 				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1161 				    curthread)) {
1162 					VM_OBJECT_LOCK(object);
1163 					++pageout_lock_miss;
1164 					if (object->flags & OBJ_MIGHTBEDIRTY)
1165 						vnodes_skipped++;
1166 					vp = NULL;
1167 					goto unlock_and_continue;
1168 				}
1169 				VM_OBJECT_LOCK(object);
1170 				vm_page_lock(m);
1171 				vm_pagequeue_lock(pq);
1172 				queues_locked = TRUE;
1173 				/*
1174 				 * The page might have been moved to another
1175 				 * queue during potential blocking in vget()
1176 				 * above.  The page might have been freed and
1177 				 * reused for another vnode.
1178 				 */
1179 				if (m->queue != PQ_INACTIVE ||
1180 				    m->object != object ||
1181 				    TAILQ_NEXT(m, pageq) != &marker) {
1182 					vm_page_unlock(m);
1183 					if (object->flags & OBJ_MIGHTBEDIRTY)
1184 						vnodes_skipped++;
1185 					goto unlock_and_continue;
1186 				}
1187 
1188 				/*
1189 				 * The page may have been busied during the
1190 				 * blocking in vget().  We don't move the
1191 				 * page back onto the end of the queue so that
1192 				 * statistics are more correct if we don't.
1193 				 */
1194 				if (m->busy || (m->oflags & VPO_BUSY)) {
1195 					vm_page_unlock(m);
1196 					goto unlock_and_continue;
1197 				}
1198 
1199 				/*
1200 				 * If the page has become held it might
1201 				 * be undergoing I/O, so skip it
1202 				 */
1203 				if (m->hold_count) {
1204 					vm_page_unlock(m);
1205 					vm_page_requeue_locked(m);
1206 					if (object->flags & OBJ_MIGHTBEDIRTY)
1207 						vnodes_skipped++;
1208 					goto unlock_and_continue;
1209 				}
1210 				vm_pagequeue_unlock(pq);
1211 				queues_locked = FALSE;
1212 			}
1213 
1214 			/*
1215 			 * If a page is dirty, then it is either being washed
1216 			 * (but not yet cleaned) or it is still in the
1217 			 * laundry.  If it is still in the laundry, then we
1218 			 * start the cleaning operation.
1219 			 *
1220 			 * decrement page_shortage on success to account for
1221 			 * the (future) cleaned page.  Otherwise we could wind
1222 			 * up laundering or cleaning too many pages.
1223 			 */
1224 			if (vm_pageout_clean(m) != 0) {
1225 				--page_shortage;
1226 				--maxlaunder;
1227 			}
1228 unlock_and_continue:
1229 			vm_page_lock_assert(m, MA_NOTOWNED);
1230 			VM_OBJECT_UNLOCK(object);
1231 			if (mp != NULL) {
1232 				if (queues_locked) {
1233 					vm_pagequeue_unlock(pq);
1234 					queues_locked = FALSE;
1235 				}
1236 				if (vp != NULL)
1237 					vput(vp);
1238 				vm_object_deallocate(object);
1239 				vn_finished_write(mp);
1240 			}
1241 			vm_page_lock_assert(m, MA_NOTOWNED);
1242 			goto relock_queues;
1243 		}
1244 		vm_page_unlock(m);
1245 		VM_OBJECT_UNLOCK(object);
1246 relock_queues:
1247 		if (!queues_locked) {
1248 			vm_pagequeue_lock(pq);
1249 			queues_locked = TRUE;
1250 		}
1251 		next = TAILQ_NEXT(&marker, pageq);
1252 		TAILQ_REMOVE(&pq->pq_pl, &marker, pageq);
1253 	}
1254 	vm_pagequeue_unlock(pq);
1255 
1256 	/*
1257 	 * Compute the number of pages we want to try to move from the
1258 	 * active queue to the inactive queue.
1259 	 */
1260 	page_shortage = vm_paging_target() +
1261 		cnt.v_inactive_target - cnt.v_inactive_count;
1262 	page_shortage += addl_page_shortage;
1263 
1264 	/*
1265 	 * Scan the active queue for things we can deactivate. We nominally
1266 	 * track the per-page activity counter and use it to locate
1267 	 * deactivation candidates.
1268 	 */
1269 	pcount = cnt.v_active_count;
1270 	pq = &vm_pagequeues[PQ_ACTIVE];
1271 	vm_pagequeue_lock(pq);
1272 	m = TAILQ_FIRST(&pq->pq_pl);
1273 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1274 
1275 		KASSERT(m->queue == PQ_ACTIVE,
1276 		    ("vm_pageout_scan: page %p isn't active", m));
1277 
1278 		next = TAILQ_NEXT(m, pageq);
1279 		if ((m->flags & PG_MARKER) != 0) {
1280 			m = next;
1281 			continue;
1282 		}
1283 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1284 		    ("Fictitious page %p cannot be in active queue", m));
1285 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1286 		    ("Unmanaged page %p cannot be in active queue", m));
1287 		if (!vm_pageout_page_lock(m, &next)) {
1288 			vm_page_unlock(m);
1289 			m = next;
1290 			continue;
1291 		}
1292 		object = m->object;
1293 		if (!VM_OBJECT_TRYLOCK(object) &&
1294 		    !vm_pageout_fallback_object_lock(m, &next)) {
1295 			VM_OBJECT_UNLOCK(object);
1296 			vm_page_unlock(m);
1297 			m = next;
1298 			continue;
1299 		}
1300 
1301 		/*
1302 		 * Don't deactivate pages that are busy.
1303 		 */
1304 		if ((m->busy != 0) ||
1305 		    (m->oflags & VPO_BUSY) ||
1306 		    (m->hold_count != 0)) {
1307 			vm_page_unlock(m);
1308 			VM_OBJECT_UNLOCK(object);
1309 			vm_page_requeue_locked(m);
1310 			m = next;
1311 			continue;
1312 		}
1313 
1314 		/*
1315 		 * The count for pagedaemon pages is done after checking the
1316 		 * page for eligibility...
1317 		 */
1318 		PCPU_INC(cnt.v_pdpages);
1319 
1320 		/*
1321 		 * Check to see "how much" the page has been used.
1322 		 */
1323 		actcount = 0;
1324 		if (object->ref_count != 0) {
1325 			if (m->aflags & PGA_REFERENCED) {
1326 				actcount += 1;
1327 			}
1328 			actcount += pmap_ts_referenced(m);
1329 			if (actcount) {
1330 				m->act_count += ACT_ADVANCE + actcount;
1331 				if (m->act_count > ACT_MAX)
1332 					m->act_count = ACT_MAX;
1333 			}
1334 		}
1335 
1336 		/*
1337 		 * Since we have "tested" this bit, we need to clear it now.
1338 		 */
1339 		vm_page_aflag_clear(m, PGA_REFERENCED);
1340 
1341 		/*
1342 		 * Only if an object is currently being used, do we use the
1343 		 * page activation count stats.
1344 		 */
1345 		if (actcount != 0 && object->ref_count != 0)
1346 			vm_page_requeue_locked(m);
1347 		else {
1348 			m->act_count -= min(m->act_count, ACT_DECLINE);
1349 			if (vm_pageout_algorithm ||
1350 			    object->ref_count == 0 ||
1351 			    m->act_count == 0) {
1352 				page_shortage--;
1353 				/* Dequeue to avoid later lock recursion. */
1354 				vm_page_dequeue_locked(m);
1355 				if (object->ref_count == 0) {
1356 					KASSERT(!pmap_page_is_mapped(m),
1357 				    ("vm_pageout_scan: page %p is mapped", m));
1358 					if (m->dirty == 0)
1359 						vm_page_cache(m);
1360 					else
1361 						vm_page_deactivate(m);
1362 				} else {
1363 					vm_page_deactivate(m);
1364 				}
1365 			} else
1366 				vm_page_requeue_locked(m);
1367 		}
1368 		vm_page_unlock(m);
1369 		VM_OBJECT_UNLOCK(object);
1370 		m = next;
1371 	}
1372 	vm_pagequeue_unlock(pq);
1373 #if !defined(NO_SWAPPING)
1374 	/*
1375 	 * Idle process swapout -- run once per second.
1376 	 */
1377 	if (vm_swap_idle_enabled) {
1378 		static long lsec;
1379 		if (time_second != lsec) {
1380 			vm_req_vmdaemon(VM_SWAP_IDLE);
1381 			lsec = time_second;
1382 		}
1383 	}
1384 #endif
1385 
1386 	/*
1387 	 * If we didn't get enough free pages, and we have skipped a vnode
1388 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1389 	 * if we did not get enough free pages.
1390 	 */
1391 	if (vm_paging_target() > 0) {
1392 		if (vnodes_skipped && vm_page_count_min())
1393 			(void) speedup_syncer();
1394 #if !defined(NO_SWAPPING)
1395 		if (vm_swap_enabled && vm_page_count_target())
1396 			vm_req_vmdaemon(VM_SWAP_NORMAL);
1397 #endif
1398 	}
1399 
1400 	/*
1401 	 * If we are critically low on one of RAM or swap and low on
1402 	 * the other, kill the largest process.  However, we avoid
1403 	 * doing this on the first pass in order to give ourselves a
1404 	 * chance to flush out dirty vnode-backed pages and to allow
1405 	 * active pages to be moved to the inactive queue and reclaimed.
1406 	 */
1407 	if (pass != 0 &&
1408 	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1409 	     (swap_pager_full && vm_paging_target() > 0)))
1410 		vm_pageout_oom(VM_OOM_MEM);
1411 }
1412 
1413 
1414 void
1415 vm_pageout_oom(int shortage)
1416 {
1417 	struct proc *p, *bigproc;
1418 	vm_offset_t size, bigsize;
1419 	struct thread *td;
1420 	struct vmspace *vm;
1421 
1422 	/*
1423 	 * We keep the process bigproc locked once we find it to keep anyone
1424 	 * from messing with it; however, there is a possibility of
1425 	 * deadlock if process B is bigproc and one of it's child processes
1426 	 * attempts to propagate a signal to B while we are waiting for A's
1427 	 * lock while walking this list.  To avoid this, we don't block on
1428 	 * the process lock but just skip a process if it is already locked.
1429 	 */
1430 	bigproc = NULL;
1431 	bigsize = 0;
1432 	sx_slock(&allproc_lock);
1433 	FOREACH_PROC_IN_SYSTEM(p) {
1434 		int breakout;
1435 
1436 		if (PROC_TRYLOCK(p) == 0)
1437 			continue;
1438 		/*
1439 		 * If this is a system, protected or killed process, skip it.
1440 		 */
1441 		if (p->p_state != PRS_NORMAL ||
1442 		    (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1443 		    (p->p_pid == 1) || P_KILLED(p) ||
1444 		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1445 			PROC_UNLOCK(p);
1446 			continue;
1447 		}
1448 		/*
1449 		 * If the process is in a non-running type state,
1450 		 * don't touch it.  Check all the threads individually.
1451 		 */
1452 		breakout = 0;
1453 		FOREACH_THREAD_IN_PROC(p, td) {
1454 			thread_lock(td);
1455 			if (!TD_ON_RUNQ(td) &&
1456 			    !TD_IS_RUNNING(td) &&
1457 			    !TD_IS_SLEEPING(td) &&
1458 			    !TD_IS_SUSPENDED(td)) {
1459 				thread_unlock(td);
1460 				breakout = 1;
1461 				break;
1462 			}
1463 			thread_unlock(td);
1464 		}
1465 		if (breakout) {
1466 			PROC_UNLOCK(p);
1467 			continue;
1468 		}
1469 		/*
1470 		 * get the process size
1471 		 */
1472 		vm = vmspace_acquire_ref(p);
1473 		if (vm == NULL) {
1474 			PROC_UNLOCK(p);
1475 			continue;
1476 		}
1477 		if (!vm_map_trylock_read(&vm->vm_map)) {
1478 			vmspace_free(vm);
1479 			PROC_UNLOCK(p);
1480 			continue;
1481 		}
1482 		size = vmspace_swap_count(vm);
1483 		vm_map_unlock_read(&vm->vm_map);
1484 		if (shortage == VM_OOM_MEM)
1485 			size += vmspace_resident_count(vm);
1486 		vmspace_free(vm);
1487 		/*
1488 		 * if the this process is bigger than the biggest one
1489 		 * remember it.
1490 		 */
1491 		if (size > bigsize) {
1492 			if (bigproc != NULL)
1493 				PROC_UNLOCK(bigproc);
1494 			bigproc = p;
1495 			bigsize = size;
1496 		} else
1497 			PROC_UNLOCK(p);
1498 	}
1499 	sx_sunlock(&allproc_lock);
1500 	if (bigproc != NULL) {
1501 		killproc(bigproc, "out of swap space");
1502 		sched_nice(bigproc, PRIO_MIN);
1503 		PROC_UNLOCK(bigproc);
1504 		wakeup(&cnt.v_free_count);
1505 	}
1506 }
1507 
1508 /*
1509  * This routine tries to maintain the pseudo LRU active queue,
1510  * so that during long periods of time where there is no paging,
1511  * that some statistic accumulation still occurs.  This code
1512  * helps the situation where paging just starts to occur.
1513  */
1514 static void
1515 vm_pageout_page_stats()
1516 {
1517 	struct vm_pagequeue *pq;
1518 	vm_object_t object;
1519 	vm_page_t m,next;
1520 	int pcount,tpcount;		/* Number of pages to check */
1521 	static int fullintervalcount = 0;
1522 	int page_shortage;
1523 
1524 	page_shortage =
1525 	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1526 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1527 
1528 	if (page_shortage <= 0)
1529 		return;
1530 
1531 	pcount = cnt.v_active_count;
1532 	fullintervalcount += vm_pageout_stats_interval;
1533 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1534 		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1535 		    cnt.v_page_count;
1536 		if (pcount > tpcount)
1537 			pcount = tpcount;
1538 	} else {
1539 		fullintervalcount = 0;
1540 	}
1541 
1542 	pq = &vm_pagequeues[PQ_ACTIVE];
1543 	vm_pagequeue_lock(pq);
1544 	m = TAILQ_FIRST(&pq->pq_pl);
1545 	while ((m != NULL) && (pcount-- > 0)) {
1546 		int actcount;
1547 
1548 		KASSERT(m->queue == PQ_ACTIVE,
1549 		    ("vm_pageout_page_stats: page %p isn't active", m));
1550 
1551 		next = TAILQ_NEXT(m, pageq);
1552 		if ((m->flags & PG_MARKER) != 0) {
1553 			m = next;
1554 			continue;
1555 		}
1556 		vm_page_lock_assert(m, MA_NOTOWNED);
1557 		if (!vm_pageout_page_lock(m, &next)) {
1558 			vm_page_unlock(m);
1559 			m = next;
1560 			continue;
1561 		}
1562 		object = m->object;
1563 		if (!VM_OBJECT_TRYLOCK(object) &&
1564 		    !vm_pageout_fallback_object_lock(m, &next)) {
1565 			VM_OBJECT_UNLOCK(object);
1566 			vm_page_unlock(m);
1567 			m = next;
1568 			continue;
1569 		}
1570 
1571 		/*
1572 		 * Don't deactivate pages that are busy.
1573 		 */
1574 		if ((m->busy != 0) ||
1575 		    (m->oflags & VPO_BUSY) ||
1576 		    (m->hold_count != 0)) {
1577 			vm_page_unlock(m);
1578 			VM_OBJECT_UNLOCK(object);
1579 			vm_page_requeue_locked(m);
1580 			m = next;
1581 			continue;
1582 		}
1583 
1584 		actcount = 0;
1585 		if (m->aflags & PGA_REFERENCED) {
1586 			vm_page_aflag_clear(m, PGA_REFERENCED);
1587 			actcount += 1;
1588 		}
1589 
1590 		actcount += pmap_ts_referenced(m);
1591 		if (actcount) {
1592 			m->act_count += ACT_ADVANCE + actcount;
1593 			if (m->act_count > ACT_MAX)
1594 				m->act_count = ACT_MAX;
1595 			vm_page_requeue_locked(m);
1596 		} else {
1597 			if (m->act_count == 0) {
1598 				/*
1599 				 * We turn off page access, so that we have
1600 				 * more accurate RSS stats.  We don't do this
1601 				 * in the normal page deactivation when the
1602 				 * system is loaded VM wise, because the
1603 				 * cost of the large number of page protect
1604 				 * operations would be higher than the value
1605 				 * of doing the operation.
1606 				 */
1607 				pmap_remove_all(m);
1608 				/* Dequeue to avoid later lock recursion. */
1609 				vm_page_dequeue_locked(m);
1610 				vm_page_deactivate(m);
1611 			} else {
1612 				m->act_count -= min(m->act_count, ACT_DECLINE);
1613 				vm_page_requeue_locked(m);
1614 			}
1615 		}
1616 		vm_page_unlock(m);
1617 		VM_OBJECT_UNLOCK(object);
1618 		m = next;
1619 	}
1620 	vm_pagequeue_unlock(pq);
1621 }
1622 
1623 /*
1624  *	vm_pageout is the high level pageout daemon.
1625  */
1626 static void
1627 vm_pageout()
1628 {
1629 	int error, pass;
1630 
1631 	/*
1632 	 * Initialize some paging parameters.
1633 	 */
1634 	cnt.v_interrupt_free_min = 2;
1635 	if (cnt.v_page_count < 2000)
1636 		vm_pageout_page_count = 8;
1637 
1638 	/*
1639 	 * v_free_reserved needs to include enough for the largest
1640 	 * swap pager structures plus enough for any pv_entry structs
1641 	 * when paging.
1642 	 */
1643 	if (cnt.v_page_count > 1024)
1644 		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1645 	else
1646 		cnt.v_free_min = 4;
1647 	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1648 	    cnt.v_interrupt_free_min;
1649 	cnt.v_free_reserved = vm_pageout_page_count +
1650 	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1651 	cnt.v_free_severe = cnt.v_free_min / 2;
1652 	cnt.v_free_min += cnt.v_free_reserved;
1653 	cnt.v_free_severe += cnt.v_free_reserved;
1654 
1655 	/*
1656 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1657 	 * that these are more a measure of the VM cache queue hysteresis
1658 	 * then the VM free queue.  Specifically, v_free_target is the
1659 	 * high water mark (free+cache pages).
1660 	 *
1661 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1662 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1663 	 * be big enough to handle memory needs while the pageout daemon
1664 	 * is signalled and run to free more pages.
1665 	 */
1666 	if (cnt.v_free_count > 6144)
1667 		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1668 	else
1669 		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1670 
1671 	if (cnt.v_free_count > 2048) {
1672 		cnt.v_cache_min = cnt.v_free_target;
1673 		cnt.v_cache_max = 2 * cnt.v_cache_min;
1674 		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1675 	} else {
1676 		cnt.v_cache_min = 0;
1677 		cnt.v_cache_max = 0;
1678 		cnt.v_inactive_target = cnt.v_free_count / 4;
1679 	}
1680 	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1681 		cnt.v_inactive_target = cnt.v_free_count / 3;
1682 
1683 	/* XXX does not really belong here */
1684 	if (vm_page_max_wired == 0)
1685 		vm_page_max_wired = cnt.v_free_count / 3;
1686 
1687 	if (vm_pageout_stats_max == 0)
1688 		vm_pageout_stats_max = cnt.v_free_target;
1689 
1690 	/*
1691 	 * Set interval in seconds for stats scan.
1692 	 */
1693 	if (vm_pageout_stats_interval == 0)
1694 		vm_pageout_stats_interval = 5;
1695 	if (vm_pageout_full_stats_interval == 0)
1696 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1697 
1698 	swap_pager_swap_init();
1699 	pass = 0;
1700 	/*
1701 	 * The pageout daemon is never done, so loop forever.
1702 	 */
1703 	while (TRUE) {
1704 		/*
1705 		 * If we have enough free memory, wakeup waiters.  Do
1706 		 * not clear vm_pages_needed until we reach our target,
1707 		 * otherwise we may be woken up over and over again and
1708 		 * waste a lot of cpu.
1709 		 */
1710 		mtx_lock(&vm_page_queue_free_mtx);
1711 		if (vm_pages_needed && !vm_page_count_min()) {
1712 			if (!vm_paging_needed())
1713 				vm_pages_needed = 0;
1714 			wakeup(&cnt.v_free_count);
1715 		}
1716 		if (vm_pages_needed) {
1717 			/*
1718 			 * Still not done, take a second pass without waiting
1719 			 * (unlimited dirty cleaning), otherwise sleep a bit
1720 			 * and try again.
1721 			 */
1722 			++pass;
1723 			if (pass > 1)
1724 				msleep(&vm_pages_needed,
1725 				    &vm_page_queue_free_mtx, PVM, "psleep",
1726 				    hz / 2);
1727 		} else {
1728 			/*
1729 			 * Good enough, sleep & handle stats.  Prime the pass
1730 			 * for the next run.
1731 			 */
1732 			if (pass > 1)
1733 				pass = 1;
1734 			else
1735 				pass = 0;
1736 			error = msleep(&vm_pages_needed,
1737 			    &vm_page_queue_free_mtx, PVM, "psleep",
1738 			    vm_pageout_stats_interval * hz);
1739 			if (error && !vm_pages_needed) {
1740 				mtx_unlock(&vm_page_queue_free_mtx);
1741 				pass = 0;
1742 				vm_pageout_page_stats();
1743 				continue;
1744 			}
1745 		}
1746 		if (vm_pages_needed)
1747 			cnt.v_pdwakeups++;
1748 		mtx_unlock(&vm_page_queue_free_mtx);
1749 		vm_pageout_scan(pass);
1750 	}
1751 }
1752 
1753 /*
1754  * Unless the free page queue lock is held by the caller, this function
1755  * should be regarded as advisory.  Specifically, the caller should
1756  * not msleep() on &cnt.v_free_count following this function unless
1757  * the free page queue lock is held until the msleep() is performed.
1758  */
1759 void
1760 pagedaemon_wakeup()
1761 {
1762 
1763 	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1764 		vm_pages_needed = 1;
1765 		wakeup(&vm_pages_needed);
1766 	}
1767 }
1768 
1769 #if !defined(NO_SWAPPING)
1770 static void
1771 vm_req_vmdaemon(int req)
1772 {
1773 	static int lastrun = 0;
1774 
1775 	mtx_lock(&vm_daemon_mtx);
1776 	vm_pageout_req_swapout |= req;
1777 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1778 		wakeup(&vm_daemon_needed);
1779 		lastrun = ticks;
1780 	}
1781 	mtx_unlock(&vm_daemon_mtx);
1782 }
1783 
1784 static void
1785 vm_daemon()
1786 {
1787 	struct rlimit rsslim;
1788 	struct proc *p;
1789 	struct thread *td;
1790 	struct vmspace *vm;
1791 	int breakout, swapout_flags, tryagain, attempts;
1792 #ifdef RACCT
1793 	uint64_t rsize, ravailable;
1794 #endif
1795 
1796 	while (TRUE) {
1797 		mtx_lock(&vm_daemon_mtx);
1798 #ifdef RACCT
1799 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1800 #else
1801 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1802 #endif
1803 		swapout_flags = vm_pageout_req_swapout;
1804 		vm_pageout_req_swapout = 0;
1805 		mtx_unlock(&vm_daemon_mtx);
1806 		if (swapout_flags)
1807 			swapout_procs(swapout_flags);
1808 
1809 		/*
1810 		 * scan the processes for exceeding their rlimits or if
1811 		 * process is swapped out -- deactivate pages
1812 		 */
1813 		tryagain = 0;
1814 		attempts = 0;
1815 again:
1816 		attempts++;
1817 		sx_slock(&allproc_lock);
1818 		FOREACH_PROC_IN_SYSTEM(p) {
1819 			vm_pindex_t limit, size;
1820 
1821 			/*
1822 			 * if this is a system process or if we have already
1823 			 * looked at this process, skip it.
1824 			 */
1825 			PROC_LOCK(p);
1826 			if (p->p_state != PRS_NORMAL ||
1827 			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1828 				PROC_UNLOCK(p);
1829 				continue;
1830 			}
1831 			/*
1832 			 * if the process is in a non-running type state,
1833 			 * don't touch it.
1834 			 */
1835 			breakout = 0;
1836 			FOREACH_THREAD_IN_PROC(p, td) {
1837 				thread_lock(td);
1838 				if (!TD_ON_RUNQ(td) &&
1839 				    !TD_IS_RUNNING(td) &&
1840 				    !TD_IS_SLEEPING(td) &&
1841 				    !TD_IS_SUSPENDED(td)) {
1842 					thread_unlock(td);
1843 					breakout = 1;
1844 					break;
1845 				}
1846 				thread_unlock(td);
1847 			}
1848 			if (breakout) {
1849 				PROC_UNLOCK(p);
1850 				continue;
1851 			}
1852 			/*
1853 			 * get a limit
1854 			 */
1855 			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1856 			limit = OFF_TO_IDX(
1857 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1858 
1859 			/*
1860 			 * let processes that are swapped out really be
1861 			 * swapped out set the limit to nothing (will force a
1862 			 * swap-out.)
1863 			 */
1864 			if ((p->p_flag & P_INMEM) == 0)
1865 				limit = 0;	/* XXX */
1866 			vm = vmspace_acquire_ref(p);
1867 			PROC_UNLOCK(p);
1868 			if (vm == NULL)
1869 				continue;
1870 
1871 			size = vmspace_resident_count(vm);
1872 			if (size >= limit) {
1873 				vm_pageout_map_deactivate_pages(
1874 				    &vm->vm_map, limit);
1875 			}
1876 #ifdef RACCT
1877 			rsize = IDX_TO_OFF(size);
1878 			PROC_LOCK(p);
1879 			racct_set(p, RACCT_RSS, rsize);
1880 			ravailable = racct_get_available(p, RACCT_RSS);
1881 			PROC_UNLOCK(p);
1882 			if (rsize > ravailable) {
1883 				/*
1884 				 * Don't be overly aggressive; this might be
1885 				 * an innocent process, and the limit could've
1886 				 * been exceeded by some memory hog.  Don't
1887 				 * try to deactivate more than 1/4th of process'
1888 				 * resident set size.
1889 				 */
1890 				if (attempts <= 8) {
1891 					if (ravailable < rsize - (rsize / 4))
1892 						ravailable = rsize - (rsize / 4);
1893 				}
1894 				vm_pageout_map_deactivate_pages(
1895 				    &vm->vm_map, OFF_TO_IDX(ravailable));
1896 				/* Update RSS usage after paging out. */
1897 				size = vmspace_resident_count(vm);
1898 				rsize = IDX_TO_OFF(size);
1899 				PROC_LOCK(p);
1900 				racct_set(p, RACCT_RSS, rsize);
1901 				PROC_UNLOCK(p);
1902 				if (rsize > ravailable)
1903 					tryagain = 1;
1904 			}
1905 #endif
1906 			vmspace_free(vm);
1907 		}
1908 		sx_sunlock(&allproc_lock);
1909 		if (tryagain != 0 && attempts <= 10)
1910 			goto again;
1911 	}
1912 }
1913 #endif			/* !defined(NO_SWAPPING) */
1914