xref: /freebsd/sys/vm/vm_pageout.c (revision 8f76bb7dad48538c6832c2fb466a433d2a3f8cd5)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72 
73 /*
74  *	The proverbial page-out daemon.
75  */
76 
77 #include <sys/cdefs.h>
78 #include "opt_vm.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/blockcount.h>
84 #include <sys/eventhandler.h>
85 #include <sys/lock.h>
86 #include <sys/mutex.h>
87 #include <sys/proc.h>
88 #include <sys/kthread.h>
89 #include <sys/ktr.h>
90 #include <sys/mount.h>
91 #include <sys/racct.h>
92 #include <sys/resourcevar.h>
93 #include <sys/sched.h>
94 #include <sys/sdt.h>
95 #include <sys/signalvar.h>
96 #include <sys/smp.h>
97 #include <sys/time.h>
98 #include <sys/vnode.h>
99 #include <sys/vmmeter.h>
100 #include <sys/rwlock.h>
101 #include <sys/sx.h>
102 #include <sys/sysctl.h>
103 
104 #include <vm/vm.h>
105 #include <vm/vm_param.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_pager.h>
111 #include <vm/vm_phys.h>
112 #include <vm/vm_pagequeue.h>
113 #include <vm/swap_pager.h>
114 #include <vm/vm_extern.h>
115 #include <vm/uma.h>
116 
117 /*
118  * System initialization
119  */
120 
121 /* the kernel process "vm_pageout"*/
122 static void vm_pageout(void);
123 static void vm_pageout_init(void);
124 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
125 static int vm_pageout_cluster(vm_page_t m);
126 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
127     int starting_page_shortage);
128 
129 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
130     NULL);
131 
132 struct proc *pageproc;
133 
134 static struct kproc_desc page_kp = {
135 	"pagedaemon",
136 	vm_pageout,
137 	&pageproc
138 };
139 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
140     &page_kp);
141 
142 SDT_PROVIDER_DEFINE(vm);
143 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
144 
145 /* Pagedaemon activity rates, in subdivisions of one second. */
146 #define	VM_LAUNDER_RATE		10
147 #define	VM_INACT_SCAN_RATE	10
148 
149 static int swapdev_enabled;
150 int vm_pageout_page_count = 32;
151 
152 static int vm_panic_on_oom = 0;
153 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
154     CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
155     "Panic on the given number of out-of-memory errors instead of "
156     "killing the largest process");
157 
158 static int vm_pageout_update_period;
159 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
160     CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
161     "Maximum active LRU update period");
162 
163 static int pageout_cpus_per_thread = 16;
164 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
165     &pageout_cpus_per_thread, 0,
166     "Number of CPUs per pagedaemon worker thread");
167 
168 static int lowmem_period = 10;
169 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
170     "Low memory callback period");
171 
172 static int disable_swap_pageouts;
173 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
174     CTLFLAG_RWTUN, &disable_swap_pageouts, 0,
175     "Disallow swapout of dirty pages");
176 
177 static int pageout_lock_miss;
178 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
179     CTLFLAG_RD, &pageout_lock_miss, 0,
180     "vget() lock misses during pageout");
181 
182 static int vm_pageout_oom_seq = 12;
183 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
184     CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
185     "back-to-back calls to oom detector to start OOM");
186 
187 static int act_scan_laundry_weight = 3;
188 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
189     &act_scan_laundry_weight, 0,
190     "weight given to clean vs. dirty pages in active queue scans");
191 
192 static u_int vm_background_launder_rate = 4096;
193 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
194     &vm_background_launder_rate, 0,
195     "background laundering rate, in kilobytes per second");
196 
197 static u_int vm_background_launder_max = 20 * 1024;
198 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
199     &vm_background_launder_max, 0,
200     "background laundering cap, in kilobytes");
201 
202 u_long vm_page_max_user_wired;
203 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
204     &vm_page_max_user_wired, 0,
205     "system-wide limit to user-wired page count");
206 
207 static u_int isqrt(u_int num);
208 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
209     bool in_shortfall);
210 static void vm_pageout_laundry_worker(void *arg);
211 
212 struct scan_state {
213 	struct vm_batchqueue bq;
214 	struct vm_pagequeue *pq;
215 	vm_page_t	marker;
216 	int		maxscan;
217 	int		scanned;
218 };
219 
220 static void
221 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
222     vm_page_t marker, vm_page_t after, int maxscan)
223 {
224 
225 	vm_pagequeue_assert_locked(pq);
226 	KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
227 	    ("marker %p already enqueued", marker));
228 
229 	if (after == NULL)
230 		TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
231 	else
232 		TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
233 	vm_page_aflag_set(marker, PGA_ENQUEUED);
234 
235 	vm_batchqueue_init(&ss->bq);
236 	ss->pq = pq;
237 	ss->marker = marker;
238 	ss->maxscan = maxscan;
239 	ss->scanned = 0;
240 	vm_pagequeue_unlock(pq);
241 }
242 
243 static void
244 vm_pageout_end_scan(struct scan_state *ss)
245 {
246 	struct vm_pagequeue *pq;
247 
248 	pq = ss->pq;
249 	vm_pagequeue_assert_locked(pq);
250 	KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
251 	    ("marker %p not enqueued", ss->marker));
252 
253 	TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
254 	vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
255 	pq->pq_pdpages += ss->scanned;
256 }
257 
258 /*
259  * Add a small number of queued pages to a batch queue for later processing
260  * without the corresponding queue lock held.  The caller must have enqueued a
261  * marker page at the desired start point for the scan.  Pages will be
262  * physically dequeued if the caller so requests.  Otherwise, the returned
263  * batch may contain marker pages, and it is up to the caller to handle them.
264  *
265  * When processing the batch queue, vm_pageout_defer() must be used to
266  * determine whether the page has been logically dequeued since the batch was
267  * collected.
268  */
269 static __always_inline void
270 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
271 {
272 	struct vm_pagequeue *pq;
273 	vm_page_t m, marker, n;
274 
275 	marker = ss->marker;
276 	pq = ss->pq;
277 
278 	KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
279 	    ("marker %p not enqueued", ss->marker));
280 
281 	vm_pagequeue_lock(pq);
282 	for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
283 	    ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
284 	    m = n, ss->scanned++) {
285 		n = TAILQ_NEXT(m, plinks.q);
286 		if ((m->flags & PG_MARKER) == 0) {
287 			KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
288 			    ("page %p not enqueued", m));
289 			KASSERT((m->flags & PG_FICTITIOUS) == 0,
290 			    ("Fictitious page %p cannot be in page queue", m));
291 			KASSERT((m->oflags & VPO_UNMANAGED) == 0,
292 			    ("Unmanaged page %p cannot be in page queue", m));
293 		} else if (dequeue)
294 			continue;
295 
296 		(void)vm_batchqueue_insert(&ss->bq, m);
297 		if (dequeue) {
298 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
299 			vm_page_aflag_clear(m, PGA_ENQUEUED);
300 		}
301 	}
302 	TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
303 	if (__predict_true(m != NULL))
304 		TAILQ_INSERT_BEFORE(m, marker, plinks.q);
305 	else
306 		TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
307 	if (dequeue)
308 		vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
309 	vm_pagequeue_unlock(pq);
310 }
311 
312 /*
313  * Return the next page to be scanned, or NULL if the scan is complete.
314  */
315 static __always_inline vm_page_t
316 vm_pageout_next(struct scan_state *ss, const bool dequeue)
317 {
318 
319 	if (ss->bq.bq_cnt == 0)
320 		vm_pageout_collect_batch(ss, dequeue);
321 	return (vm_batchqueue_pop(&ss->bq));
322 }
323 
324 /*
325  * Determine whether processing of a page should be deferred and ensure that any
326  * outstanding queue operations are processed.
327  */
328 static __always_inline bool
329 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
330 {
331 	vm_page_astate_t as;
332 
333 	as = vm_page_astate_load(m);
334 	if (__predict_false(as.queue != queue ||
335 	    ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
336 		return (true);
337 	if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
338 		vm_page_pqbatch_submit(m, queue);
339 		return (true);
340 	}
341 	return (false);
342 }
343 
344 /*
345  * Scan for pages at adjacent offsets within the given page's object that are
346  * eligible for laundering, form a cluster of these pages and the given page,
347  * and launder that cluster.
348  */
349 static int
350 vm_pageout_cluster(vm_page_t m)
351 {
352 	vm_object_t object;
353 	vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
354 	vm_pindex_t pindex;
355 	int ib, is, page_base, pageout_count;
356 
357 	object = m->object;
358 	VM_OBJECT_ASSERT_WLOCKED(object);
359 	pindex = m->pindex;
360 
361 	vm_page_assert_xbusied(m);
362 
363 	mc[vm_pageout_page_count] = pb = ps = m;
364 	pageout_count = 1;
365 	page_base = vm_pageout_page_count;
366 	ib = 1;
367 	is = 1;
368 
369 	/*
370 	 * We can cluster only if the page is not clean, busy, or held, and
371 	 * the page is in the laundry queue.
372 	 *
373 	 * During heavy mmap/modification loads the pageout
374 	 * daemon can really fragment the underlying file
375 	 * due to flushing pages out of order and not trying to
376 	 * align the clusters (which leaves sporadic out-of-order
377 	 * holes).  To solve this problem we do the reverse scan
378 	 * first and attempt to align our cluster, then do a
379 	 * forward scan if room remains.
380 	 */
381 more:
382 	while (ib != 0 && pageout_count < vm_pageout_page_count) {
383 		if (ib > pindex) {
384 			ib = 0;
385 			break;
386 		}
387 		if ((p = vm_page_prev(pb)) == NULL ||
388 		    vm_page_tryxbusy(p) == 0) {
389 			ib = 0;
390 			break;
391 		}
392 		if (vm_page_wired(p)) {
393 			ib = 0;
394 			vm_page_xunbusy(p);
395 			break;
396 		}
397 		vm_page_test_dirty(p);
398 		if (p->dirty == 0) {
399 			ib = 0;
400 			vm_page_xunbusy(p);
401 			break;
402 		}
403 		if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
404 			vm_page_xunbusy(p);
405 			ib = 0;
406 			break;
407 		}
408 		mc[--page_base] = pb = p;
409 		++pageout_count;
410 		++ib;
411 
412 		/*
413 		 * We are at an alignment boundary.  Stop here, and switch
414 		 * directions.  Do not clear ib.
415 		 */
416 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
417 			break;
418 	}
419 	while (pageout_count < vm_pageout_page_count &&
420 	    pindex + is < object->size) {
421 		if ((p = vm_page_next(ps)) == NULL ||
422 		    vm_page_tryxbusy(p) == 0)
423 			break;
424 		if (vm_page_wired(p)) {
425 			vm_page_xunbusy(p);
426 			break;
427 		}
428 		vm_page_test_dirty(p);
429 		if (p->dirty == 0) {
430 			vm_page_xunbusy(p);
431 			break;
432 		}
433 		if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
434 			vm_page_xunbusy(p);
435 			break;
436 		}
437 		mc[page_base + pageout_count] = ps = p;
438 		++pageout_count;
439 		++is;
440 	}
441 
442 	/*
443 	 * If we exhausted our forward scan, continue with the reverse scan
444 	 * when possible, even past an alignment boundary.  This catches
445 	 * boundary conditions.
446 	 */
447 	if (ib != 0 && pageout_count < vm_pageout_page_count)
448 		goto more;
449 
450 	return (vm_pageout_flush(&mc[page_base], pageout_count,
451 	    VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
452 }
453 
454 /*
455  * vm_pageout_flush() - launder the given pages
456  *
457  *	The given pages are laundered.  Note that we setup for the start of
458  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
459  *	reference count all in here rather then in the parent.  If we want
460  *	the parent to do more sophisticated things we may have to change
461  *	the ordering.
462  *
463  *	Returned runlen is the count of pages between mreq and first
464  *	page after mreq with status VM_PAGER_AGAIN.
465  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
466  *	for any page in runlen set.
467  */
468 int
469 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
470     boolean_t *eio)
471 {
472 	vm_object_t object = mc[0]->object;
473 	int pageout_status[count];
474 	int numpagedout = 0;
475 	int i, runlen;
476 
477 	VM_OBJECT_ASSERT_WLOCKED(object);
478 
479 	/*
480 	 * Initiate I/O.  Mark the pages shared busy and verify that they're
481 	 * valid and read-only.
482 	 *
483 	 * We do not have to fixup the clean/dirty bits here... we can
484 	 * allow the pager to do it after the I/O completes.
485 	 *
486 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
487 	 * edge case with file fragments.
488 	 */
489 	for (i = 0; i < count; i++) {
490 		KASSERT(vm_page_all_valid(mc[i]),
491 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
492 			mc[i], i, count));
493 		KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
494 		    ("vm_pageout_flush: writeable page %p", mc[i]));
495 		vm_page_busy_downgrade(mc[i]);
496 	}
497 	vm_object_pip_add(object, count);
498 
499 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
500 
501 	runlen = count - mreq;
502 	if (eio != NULL)
503 		*eio = FALSE;
504 	for (i = 0; i < count; i++) {
505 		vm_page_t mt = mc[i];
506 
507 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
508 		    !pmap_page_is_write_mapped(mt),
509 		    ("vm_pageout_flush: page %p is not write protected", mt));
510 		switch (pageout_status[i]) {
511 		case VM_PAGER_OK:
512 			/*
513 			 * The page may have moved since laundering started, in
514 			 * which case it should be left alone.
515 			 */
516 			if (vm_page_in_laundry(mt))
517 				vm_page_deactivate_noreuse(mt);
518 			/* FALLTHROUGH */
519 		case VM_PAGER_PEND:
520 			numpagedout++;
521 			break;
522 		case VM_PAGER_BAD:
523 			/*
524 			 * The page is outside the object's range.  We pretend
525 			 * that the page out worked and clean the page, so the
526 			 * changes will be lost if the page is reclaimed by
527 			 * the page daemon.
528 			 */
529 			vm_page_undirty(mt);
530 			if (vm_page_in_laundry(mt))
531 				vm_page_deactivate_noreuse(mt);
532 			break;
533 		case VM_PAGER_ERROR:
534 		case VM_PAGER_FAIL:
535 			/*
536 			 * If the page couldn't be paged out to swap because the
537 			 * pager wasn't able to find space, place the page in
538 			 * the PQ_UNSWAPPABLE holding queue.  This is an
539 			 * optimization that prevents the page daemon from
540 			 * wasting CPU cycles on pages that cannot be reclaimed
541 			 * because no swap device is configured.
542 			 *
543 			 * Otherwise, reactivate the page so that it doesn't
544 			 * clog the laundry and inactive queues.  (We will try
545 			 * paging it out again later.)
546 			 */
547 			if ((object->flags & OBJ_SWAP) != 0 &&
548 			    pageout_status[i] == VM_PAGER_FAIL) {
549 				vm_page_unswappable(mt);
550 				numpagedout++;
551 			} else
552 				vm_page_activate(mt);
553 			if (eio != NULL && i >= mreq && i - mreq < runlen)
554 				*eio = TRUE;
555 			break;
556 		case VM_PAGER_AGAIN:
557 			if (i >= mreq && i - mreq < runlen)
558 				runlen = i - mreq;
559 			break;
560 		}
561 
562 		/*
563 		 * If the operation is still going, leave the page busy to
564 		 * block all other accesses. Also, leave the paging in
565 		 * progress indicator set so that we don't attempt an object
566 		 * collapse.
567 		 */
568 		if (pageout_status[i] != VM_PAGER_PEND) {
569 			vm_object_pip_wakeup(object);
570 			vm_page_sunbusy(mt);
571 		}
572 	}
573 	if (prunlen != NULL)
574 		*prunlen = runlen;
575 	return (numpagedout);
576 }
577 
578 static void
579 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
580 {
581 
582 	atomic_store_rel_int(&swapdev_enabled, 1);
583 }
584 
585 static void
586 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
587 {
588 
589 	if (swap_pager_nswapdev() == 1)
590 		atomic_store_rel_int(&swapdev_enabled, 0);
591 }
592 
593 /*
594  * Attempt to acquire all of the necessary locks to launder a page and
595  * then call through the clustering layer to PUTPAGES.  Wait a short
596  * time for a vnode lock.
597  *
598  * Requires the page and object lock on entry, releases both before return.
599  * Returns 0 on success and an errno otherwise.
600  */
601 static int
602 vm_pageout_clean(vm_page_t m, int *numpagedout)
603 {
604 	struct vnode *vp;
605 	struct mount *mp;
606 	vm_object_t object;
607 	vm_pindex_t pindex;
608 	int error;
609 
610 	object = m->object;
611 	VM_OBJECT_ASSERT_WLOCKED(object);
612 	error = 0;
613 	vp = NULL;
614 	mp = NULL;
615 
616 	/*
617 	 * The object is already known NOT to be dead.   It
618 	 * is possible for the vget() to block the whole
619 	 * pageout daemon, but the new low-memory handling
620 	 * code should prevent it.
621 	 *
622 	 * We can't wait forever for the vnode lock, we might
623 	 * deadlock due to a vn_read() getting stuck in
624 	 * vm_wait while holding this vnode.  We skip the
625 	 * vnode if we can't get it in a reasonable amount
626 	 * of time.
627 	 */
628 	if (object->type == OBJT_VNODE) {
629 		vm_page_xunbusy(m);
630 		vp = object->handle;
631 		if (vp->v_type == VREG &&
632 		    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
633 			mp = NULL;
634 			error = EDEADLK;
635 			goto unlock_all;
636 		}
637 		KASSERT(mp != NULL,
638 		    ("vp %p with NULL v_mount", vp));
639 		vm_object_reference_locked(object);
640 		pindex = m->pindex;
641 		VM_OBJECT_WUNLOCK(object);
642 		if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) {
643 			vp = NULL;
644 			error = EDEADLK;
645 			goto unlock_mp;
646 		}
647 		VM_OBJECT_WLOCK(object);
648 
649 		/*
650 		 * Ensure that the object and vnode were not disassociated
651 		 * while locks were dropped.
652 		 */
653 		if (vp->v_object != object) {
654 			error = ENOENT;
655 			goto unlock_all;
656 		}
657 
658 		/*
659 		 * While the object was unlocked, the page may have been:
660 		 * (1) moved to a different queue,
661 		 * (2) reallocated to a different object,
662 		 * (3) reallocated to a different offset, or
663 		 * (4) cleaned.
664 		 */
665 		if (!vm_page_in_laundry(m) || m->object != object ||
666 		    m->pindex != pindex || m->dirty == 0) {
667 			error = ENXIO;
668 			goto unlock_all;
669 		}
670 
671 		/*
672 		 * The page may have been busied while the object lock was
673 		 * released.
674 		 */
675 		if (vm_page_tryxbusy(m) == 0) {
676 			error = EBUSY;
677 			goto unlock_all;
678 		}
679 	}
680 
681 	/*
682 	 * Remove all writeable mappings, failing if the page is wired.
683 	 */
684 	if (!vm_page_try_remove_write(m)) {
685 		vm_page_xunbusy(m);
686 		error = EBUSY;
687 		goto unlock_all;
688 	}
689 
690 	/*
691 	 * If a page is dirty, then it is either being washed
692 	 * (but not yet cleaned) or it is still in the
693 	 * laundry.  If it is still in the laundry, then we
694 	 * start the cleaning operation.
695 	 */
696 	if ((*numpagedout = vm_pageout_cluster(m)) == 0)
697 		error = EIO;
698 
699 unlock_all:
700 	VM_OBJECT_WUNLOCK(object);
701 
702 unlock_mp:
703 	if (mp != NULL) {
704 		if (vp != NULL)
705 			vput(vp);
706 		vm_object_deallocate(object);
707 		vn_finished_write(mp);
708 	}
709 
710 	return (error);
711 }
712 
713 /*
714  * Attempt to launder the specified number of pages.
715  *
716  * Returns the number of pages successfully laundered.
717  */
718 static int
719 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
720 {
721 	struct scan_state ss;
722 	struct vm_pagequeue *pq;
723 	vm_object_t object;
724 	vm_page_t m, marker;
725 	vm_page_astate_t new, old;
726 	int act_delta, error, numpagedout, queue, refs, starting_target;
727 	int vnodes_skipped;
728 	bool pageout_ok;
729 
730 	object = NULL;
731 	starting_target = launder;
732 	vnodes_skipped = 0;
733 
734 	/*
735 	 * Scan the laundry queues for pages eligible to be laundered.  We stop
736 	 * once the target number of dirty pages have been laundered, or once
737 	 * we've reached the end of the queue.  A single iteration of this loop
738 	 * may cause more than one page to be laundered because of clustering.
739 	 *
740 	 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
741 	 * swap devices are configured.
742 	 */
743 	if (atomic_load_acq_int(&swapdev_enabled))
744 		queue = PQ_UNSWAPPABLE;
745 	else
746 		queue = PQ_LAUNDRY;
747 
748 scan:
749 	marker = &vmd->vmd_markers[queue];
750 	pq = &vmd->vmd_pagequeues[queue];
751 	vm_pagequeue_lock(pq);
752 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
753 	while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
754 		if (__predict_false((m->flags & PG_MARKER) != 0))
755 			continue;
756 
757 		/*
758 		 * Don't touch a page that was removed from the queue after the
759 		 * page queue lock was released.  Otherwise, ensure that any
760 		 * pending queue operations, such as dequeues for wired pages,
761 		 * are handled.
762 		 */
763 		if (vm_pageout_defer(m, queue, true))
764 			continue;
765 
766 		/*
767 		 * Lock the page's object.
768 		 */
769 		if (object == NULL || object != m->object) {
770 			if (object != NULL)
771 				VM_OBJECT_WUNLOCK(object);
772 			object = atomic_load_ptr(&m->object);
773 			if (__predict_false(object == NULL))
774 				/* The page is being freed by another thread. */
775 				continue;
776 
777 			/* Depends on type-stability. */
778 			VM_OBJECT_WLOCK(object);
779 			if (__predict_false(m->object != object)) {
780 				VM_OBJECT_WUNLOCK(object);
781 				object = NULL;
782 				continue;
783 			}
784 		}
785 
786 		if (vm_page_tryxbusy(m) == 0)
787 			continue;
788 
789 		/*
790 		 * Check for wirings now that we hold the object lock and have
791 		 * exclusively busied the page.  If the page is mapped, it may
792 		 * still be wired by pmap lookups.  The call to
793 		 * vm_page_try_remove_all() below atomically checks for such
794 		 * wirings and removes mappings.  If the page is unmapped, the
795 		 * wire count is guaranteed not to increase after this check.
796 		 */
797 		if (__predict_false(vm_page_wired(m)))
798 			goto skip_page;
799 
800 		/*
801 		 * Invalid pages can be easily freed.  They cannot be
802 		 * mapped; vm_page_free() asserts this.
803 		 */
804 		if (vm_page_none_valid(m))
805 			goto free_page;
806 
807 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
808 
809 		for (old = vm_page_astate_load(m);;) {
810 			/*
811 			 * Check to see if the page has been removed from the
812 			 * queue since the first such check.  Leave it alone if
813 			 * so, discarding any references collected by
814 			 * pmap_ts_referenced().
815 			 */
816 			if (__predict_false(_vm_page_queue(old) == PQ_NONE))
817 				goto skip_page;
818 
819 			new = old;
820 			act_delta = refs;
821 			if ((old.flags & PGA_REFERENCED) != 0) {
822 				new.flags &= ~PGA_REFERENCED;
823 				act_delta++;
824 			}
825 			if (act_delta == 0) {
826 				;
827 			} else if (object->ref_count != 0) {
828 				/*
829 				 * Increase the activation count if the page was
830 				 * referenced while in the laundry queue.  This
831 				 * makes it less likely that the page will be
832 				 * returned prematurely to the laundry queue.
833 				 */
834 				new.act_count += ACT_ADVANCE +
835 				    act_delta;
836 				if (new.act_count > ACT_MAX)
837 					new.act_count = ACT_MAX;
838 
839 				new.flags &= ~PGA_QUEUE_OP_MASK;
840 				new.flags |= PGA_REQUEUE;
841 				new.queue = PQ_ACTIVE;
842 				if (!vm_page_pqstate_commit(m, &old, new))
843 					continue;
844 
845 				/*
846 				 * If this was a background laundering, count
847 				 * activated pages towards our target.  The
848 				 * purpose of background laundering is to ensure
849 				 * that pages are eventually cycled through the
850 				 * laundry queue, and an activation is a valid
851 				 * way out.
852 				 */
853 				if (!in_shortfall)
854 					launder--;
855 				VM_CNT_INC(v_reactivated);
856 				goto skip_page;
857 			} else if ((object->flags & OBJ_DEAD) == 0) {
858 				new.flags |= PGA_REQUEUE;
859 				if (!vm_page_pqstate_commit(m, &old, new))
860 					continue;
861 				goto skip_page;
862 			}
863 			break;
864 		}
865 
866 		/*
867 		 * If the page appears to be clean at the machine-independent
868 		 * layer, then remove all of its mappings from the pmap in
869 		 * anticipation of freeing it.  If, however, any of the page's
870 		 * mappings allow write access, then the page may still be
871 		 * modified until the last of those mappings are removed.
872 		 */
873 		if (object->ref_count != 0) {
874 			vm_page_test_dirty(m);
875 			if (m->dirty == 0 && !vm_page_try_remove_all(m))
876 				goto skip_page;
877 		}
878 
879 		/*
880 		 * Clean pages are freed, and dirty pages are paged out unless
881 		 * they belong to a dead object.  Requeueing dirty pages from
882 		 * dead objects is pointless, as they are being paged out and
883 		 * freed by the thread that destroyed the object.
884 		 */
885 		if (m->dirty == 0) {
886 free_page:
887 			/*
888 			 * Now we are guaranteed that no other threads are
889 			 * manipulating the page, check for a last-second
890 			 * reference.
891 			 */
892 			if (vm_pageout_defer(m, queue, true))
893 				goto skip_page;
894 			vm_page_free(m);
895 			VM_CNT_INC(v_dfree);
896 		} else if ((object->flags & OBJ_DEAD) == 0) {
897 			if ((object->flags & OBJ_SWAP) != 0)
898 				pageout_ok = disable_swap_pageouts == 0;
899 			else
900 				pageout_ok = true;
901 			if (!pageout_ok) {
902 				vm_page_launder(m);
903 				goto skip_page;
904 			}
905 
906 			/*
907 			 * Form a cluster with adjacent, dirty pages from the
908 			 * same object, and page out that entire cluster.
909 			 *
910 			 * The adjacent, dirty pages must also be in the
911 			 * laundry.  However, their mappings are not checked
912 			 * for new references.  Consequently, a recently
913 			 * referenced page may be paged out.  However, that
914 			 * page will not be prematurely reclaimed.  After page
915 			 * out, the page will be placed in the inactive queue,
916 			 * where any new references will be detected and the
917 			 * page reactivated.
918 			 */
919 			error = vm_pageout_clean(m, &numpagedout);
920 			if (error == 0) {
921 				launder -= numpagedout;
922 				ss.scanned += numpagedout;
923 			} else if (error == EDEADLK) {
924 				pageout_lock_miss++;
925 				vnodes_skipped++;
926 			}
927 			object = NULL;
928 		} else {
929 skip_page:
930 			vm_page_xunbusy(m);
931 		}
932 	}
933 	if (object != NULL) {
934 		VM_OBJECT_WUNLOCK(object);
935 		object = NULL;
936 	}
937 	vm_pagequeue_lock(pq);
938 	vm_pageout_end_scan(&ss);
939 	vm_pagequeue_unlock(pq);
940 
941 	if (launder > 0 && queue == PQ_UNSWAPPABLE) {
942 		queue = PQ_LAUNDRY;
943 		goto scan;
944 	}
945 
946 	/*
947 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
948 	 * and we didn't launder enough pages.
949 	 */
950 	if (vnodes_skipped > 0 && launder > 0)
951 		(void)speedup_syncer();
952 
953 	return (starting_target - launder);
954 }
955 
956 /*
957  * Compute the integer square root.
958  */
959 static u_int
960 isqrt(u_int num)
961 {
962 	u_int bit, root, tmp;
963 
964 	bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
965 	root = 0;
966 	while (bit != 0) {
967 		tmp = root + bit;
968 		root >>= 1;
969 		if (num >= tmp) {
970 			num -= tmp;
971 			root += bit;
972 		}
973 		bit >>= 2;
974 	}
975 	return (root);
976 }
977 
978 /*
979  * Perform the work of the laundry thread: periodically wake up and determine
980  * whether any pages need to be laundered.  If so, determine the number of pages
981  * that need to be laundered, and launder them.
982  */
983 static void
984 vm_pageout_laundry_worker(void *arg)
985 {
986 	struct vm_domain *vmd;
987 	struct vm_pagequeue *pq;
988 	uint64_t nclean, ndirty, nfreed;
989 	int domain, last_target, launder, shortfall, shortfall_cycle, target;
990 	bool in_shortfall;
991 
992 	domain = (uintptr_t)arg;
993 	vmd = VM_DOMAIN(domain);
994 	pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
995 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
996 
997 	shortfall = 0;
998 	in_shortfall = false;
999 	shortfall_cycle = 0;
1000 	last_target = target = 0;
1001 	nfreed = 0;
1002 
1003 	/*
1004 	 * Calls to these handlers are serialized by the swap syscall lock.
1005 	 */
1006 	(void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1007 	    EVENTHANDLER_PRI_ANY);
1008 	(void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1009 	    EVENTHANDLER_PRI_ANY);
1010 
1011 	/*
1012 	 * The pageout laundry worker is never done, so loop forever.
1013 	 */
1014 	for (;;) {
1015 		KASSERT(target >= 0, ("negative target %d", target));
1016 		KASSERT(shortfall_cycle >= 0,
1017 		    ("negative cycle %d", shortfall_cycle));
1018 		launder = 0;
1019 
1020 		/*
1021 		 * First determine whether we need to launder pages to meet a
1022 		 * shortage of free pages.
1023 		 */
1024 		if (shortfall > 0) {
1025 			in_shortfall = true;
1026 			shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1027 			target = shortfall;
1028 		} else if (!in_shortfall)
1029 			goto trybackground;
1030 		else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1031 			/*
1032 			 * We recently entered shortfall and began laundering
1033 			 * pages.  If we have completed that laundering run
1034 			 * (and we are no longer in shortfall) or we have met
1035 			 * our laundry target through other activity, then we
1036 			 * can stop laundering pages.
1037 			 */
1038 			in_shortfall = false;
1039 			target = 0;
1040 			goto trybackground;
1041 		}
1042 		launder = target / shortfall_cycle--;
1043 		goto dolaundry;
1044 
1045 		/*
1046 		 * There's no immediate need to launder any pages; see if we
1047 		 * meet the conditions to perform background laundering:
1048 		 *
1049 		 * 1. The ratio of dirty to clean inactive pages exceeds the
1050 		 *    background laundering threshold, or
1051 		 * 2. we haven't yet reached the target of the current
1052 		 *    background laundering run.
1053 		 *
1054 		 * The background laundering threshold is not a constant.
1055 		 * Instead, it is a slowly growing function of the number of
1056 		 * clean pages freed by the page daemon since the last
1057 		 * background laundering.  Thus, as the ratio of dirty to
1058 		 * clean inactive pages grows, the amount of memory pressure
1059 		 * required to trigger laundering decreases.  We ensure
1060 		 * that the threshold is non-zero after an inactive queue
1061 		 * scan, even if that scan failed to free a single clean page.
1062 		 */
1063 trybackground:
1064 		nclean = vmd->vmd_free_count +
1065 		    vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1066 		ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1067 		if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1068 		    vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1069 			target = vmd->vmd_background_launder_target;
1070 		}
1071 
1072 		/*
1073 		 * We have a non-zero background laundering target.  If we've
1074 		 * laundered up to our maximum without observing a page daemon
1075 		 * request, just stop.  This is a safety belt that ensures we
1076 		 * don't launder an excessive amount if memory pressure is low
1077 		 * and the ratio of dirty to clean pages is large.  Otherwise,
1078 		 * proceed at the background laundering rate.
1079 		 */
1080 		if (target > 0) {
1081 			if (nfreed > 0) {
1082 				nfreed = 0;
1083 				last_target = target;
1084 			} else if (last_target - target >=
1085 			    vm_background_launder_max * PAGE_SIZE / 1024) {
1086 				target = 0;
1087 			}
1088 			launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1089 			launder /= VM_LAUNDER_RATE;
1090 			if (launder > target)
1091 				launder = target;
1092 		}
1093 
1094 dolaundry:
1095 		if (launder > 0) {
1096 			/*
1097 			 * Because of I/O clustering, the number of laundered
1098 			 * pages could exceed "target" by the maximum size of
1099 			 * a cluster minus one.
1100 			 */
1101 			target -= min(vm_pageout_launder(vmd, launder,
1102 			    in_shortfall), target);
1103 			pause("laundp", hz / VM_LAUNDER_RATE);
1104 		}
1105 
1106 		/*
1107 		 * If we're not currently laundering pages and the page daemon
1108 		 * hasn't posted a new request, sleep until the page daemon
1109 		 * kicks us.
1110 		 */
1111 		vm_pagequeue_lock(pq);
1112 		if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1113 			(void)mtx_sleep(&vmd->vmd_laundry_request,
1114 			    vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1115 
1116 		/*
1117 		 * If the pagedaemon has indicated that it's in shortfall, start
1118 		 * a shortfall laundering unless we're already in the middle of
1119 		 * one.  This may preempt a background laundering.
1120 		 */
1121 		if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1122 		    (!in_shortfall || shortfall_cycle == 0)) {
1123 			shortfall = vm_laundry_target(vmd) +
1124 			    vmd->vmd_pageout_deficit;
1125 			target = 0;
1126 		} else
1127 			shortfall = 0;
1128 
1129 		if (target == 0)
1130 			vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1131 		nfreed += vmd->vmd_clean_pages_freed;
1132 		vmd->vmd_clean_pages_freed = 0;
1133 		vm_pagequeue_unlock(pq);
1134 	}
1135 }
1136 
1137 /*
1138  * Compute the number of pages we want to try to move from the
1139  * active queue to either the inactive or laundry queue.
1140  *
1141  * When scanning active pages during a shortage, we make clean pages
1142  * count more heavily towards the page shortage than dirty pages.
1143  * This is because dirty pages must be laundered before they can be
1144  * reused and thus have less utility when attempting to quickly
1145  * alleviate a free page shortage.  However, this weighting also
1146  * causes the scan to deactivate dirty pages more aggressively,
1147  * improving the effectiveness of clustering.
1148  */
1149 static int
1150 vm_pageout_active_target(struct vm_domain *vmd)
1151 {
1152 	int shortage;
1153 
1154 	shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1155 	    (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1156 	    vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1157 	shortage *= act_scan_laundry_weight;
1158 	return (shortage);
1159 }
1160 
1161 /*
1162  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1163  * small portion of the queue in order to maintain quasi-LRU.
1164  */
1165 static void
1166 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1167 {
1168 	struct scan_state ss;
1169 	vm_object_t object;
1170 	vm_page_t m, marker;
1171 	struct vm_pagequeue *pq;
1172 	vm_page_astate_t old, new;
1173 	long min_scan;
1174 	int act_delta, max_scan, ps_delta, refs, scan_tick;
1175 	uint8_t nqueue;
1176 
1177 	marker = &vmd->vmd_markers[PQ_ACTIVE];
1178 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1179 	vm_pagequeue_lock(pq);
1180 
1181 	/*
1182 	 * If we're just idle polling attempt to visit every
1183 	 * active page within 'update_period' seconds.
1184 	 */
1185 	scan_tick = ticks;
1186 	if (vm_pageout_update_period != 0) {
1187 		min_scan = pq->pq_cnt;
1188 		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1189 		min_scan /= hz * vm_pageout_update_period;
1190 	} else
1191 		min_scan = 0;
1192 	if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1193 		vmd->vmd_last_active_scan = scan_tick;
1194 
1195 	/*
1196 	 * Scan the active queue for pages that can be deactivated.  Update
1197 	 * the per-page activity counter and use it to identify deactivation
1198 	 * candidates.  Held pages may be deactivated.
1199 	 *
1200 	 * To avoid requeuing each page that remains in the active queue, we
1201 	 * implement the CLOCK algorithm.  To keep the implementation of the
1202 	 * enqueue operation consistent for all page queues, we use two hands,
1203 	 * represented by marker pages. Scans begin at the first hand, which
1204 	 * precedes the second hand in the queue.  When the two hands meet,
1205 	 * they are moved back to the head and tail of the queue, respectively,
1206 	 * and scanning resumes.
1207 	 */
1208 	max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1209 act_scan:
1210 	vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1211 	while ((m = vm_pageout_next(&ss, false)) != NULL) {
1212 		if (__predict_false(m == &vmd->vmd_clock[1])) {
1213 			vm_pagequeue_lock(pq);
1214 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1215 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1216 			TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1217 			    plinks.q);
1218 			TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1219 			    plinks.q);
1220 			max_scan -= ss.scanned;
1221 			vm_pageout_end_scan(&ss);
1222 			goto act_scan;
1223 		}
1224 		if (__predict_false((m->flags & PG_MARKER) != 0))
1225 			continue;
1226 
1227 		/*
1228 		 * Don't touch a page that was removed from the queue after the
1229 		 * page queue lock was released.  Otherwise, ensure that any
1230 		 * pending queue operations, such as dequeues for wired pages,
1231 		 * are handled.
1232 		 */
1233 		if (vm_pageout_defer(m, PQ_ACTIVE, true))
1234 			continue;
1235 
1236 		/*
1237 		 * A page's object pointer may be set to NULL before
1238 		 * the object lock is acquired.
1239 		 */
1240 		object = atomic_load_ptr(&m->object);
1241 		if (__predict_false(object == NULL))
1242 			/*
1243 			 * The page has been removed from its object.
1244 			 */
1245 			continue;
1246 
1247 		/* Deferred free of swap space. */
1248 		if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1249 		    VM_OBJECT_TRYWLOCK(object)) {
1250 			if (m->object == object)
1251 				vm_pager_page_unswapped(m);
1252 			VM_OBJECT_WUNLOCK(object);
1253 		}
1254 
1255 		/*
1256 		 * Check to see "how much" the page has been used.
1257 		 *
1258 		 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1259 		 * that a reference from a concurrently destroyed mapping is
1260 		 * observed here and now.
1261 		 *
1262 		 * Perform an unsynchronized object ref count check.  While
1263 		 * the page lock ensures that the page is not reallocated to
1264 		 * another object, in particular, one with unmanaged mappings
1265 		 * that cannot support pmap_ts_referenced(), two races are,
1266 		 * nonetheless, possible:
1267 		 * 1) The count was transitioning to zero, but we saw a non-
1268 		 *    zero value.  pmap_ts_referenced() will return zero
1269 		 *    because the page is not mapped.
1270 		 * 2) The count was transitioning to one, but we saw zero.
1271 		 *    This race delays the detection of a new reference.  At
1272 		 *    worst, we will deactivate and reactivate the page.
1273 		 */
1274 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1275 
1276 		old = vm_page_astate_load(m);
1277 		do {
1278 			/*
1279 			 * Check to see if the page has been removed from the
1280 			 * queue since the first such check.  Leave it alone if
1281 			 * so, discarding any references collected by
1282 			 * pmap_ts_referenced().
1283 			 */
1284 			if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
1285 				ps_delta = 0;
1286 				break;
1287 			}
1288 
1289 			/*
1290 			 * Advance or decay the act_count based on recent usage.
1291 			 */
1292 			new = old;
1293 			act_delta = refs;
1294 			if ((old.flags & PGA_REFERENCED) != 0) {
1295 				new.flags &= ~PGA_REFERENCED;
1296 				act_delta++;
1297 			}
1298 			if (act_delta != 0) {
1299 				new.act_count += ACT_ADVANCE + act_delta;
1300 				if (new.act_count > ACT_MAX)
1301 					new.act_count = ACT_MAX;
1302 			} else {
1303 				new.act_count -= min(new.act_count,
1304 				    ACT_DECLINE);
1305 			}
1306 
1307 			if (new.act_count > 0) {
1308 				/*
1309 				 * Adjust the activation count and keep the page
1310 				 * in the active queue.  The count might be left
1311 				 * unchanged if it is saturated.  The page may
1312 				 * have been moved to a different queue since we
1313 				 * started the scan, in which case we move it
1314 				 * back.
1315 				 */
1316 				ps_delta = 0;
1317 				if (old.queue != PQ_ACTIVE) {
1318 					new.flags &= ~PGA_QUEUE_OP_MASK;
1319 					new.flags |= PGA_REQUEUE;
1320 					new.queue = PQ_ACTIVE;
1321 				}
1322 			} else {
1323 				/*
1324 				 * When not short for inactive pages, let dirty
1325 				 * pages go through the inactive queue before
1326 				 * moving to the laundry queue.  This gives them
1327 				 * some extra time to be reactivated,
1328 				 * potentially avoiding an expensive pageout.
1329 				 * However, during a page shortage, the inactive
1330 				 * queue is necessarily small, and so dirty
1331 				 * pages would only spend a trivial amount of
1332 				 * time in the inactive queue.  Therefore, we
1333 				 * might as well place them directly in the
1334 				 * laundry queue to reduce queuing overhead.
1335 				 *
1336 				 * Calling vm_page_test_dirty() here would
1337 				 * require acquisition of the object's write
1338 				 * lock.  However, during a page shortage,
1339 				 * directing dirty pages into the laundry queue
1340 				 * is only an optimization and not a
1341 				 * requirement.  Therefore, we simply rely on
1342 				 * the opportunistic updates to the page's dirty
1343 				 * field by the pmap.
1344 				 */
1345 				if (page_shortage <= 0) {
1346 					nqueue = PQ_INACTIVE;
1347 					ps_delta = 0;
1348 				} else if (m->dirty == 0) {
1349 					nqueue = PQ_INACTIVE;
1350 					ps_delta = act_scan_laundry_weight;
1351 				} else {
1352 					nqueue = PQ_LAUNDRY;
1353 					ps_delta = 1;
1354 				}
1355 
1356 				new.flags &= ~PGA_QUEUE_OP_MASK;
1357 				new.flags |= PGA_REQUEUE;
1358 				new.queue = nqueue;
1359 			}
1360 		} while (!vm_page_pqstate_commit(m, &old, new));
1361 
1362 		page_shortage -= ps_delta;
1363 	}
1364 	vm_pagequeue_lock(pq);
1365 	TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1366 	TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1367 	vm_pageout_end_scan(&ss);
1368 	vm_pagequeue_unlock(pq);
1369 }
1370 
1371 static int
1372 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1373     vm_page_t m)
1374 {
1375 	vm_page_astate_t as;
1376 
1377 	vm_pagequeue_assert_locked(pq);
1378 
1379 	as = vm_page_astate_load(m);
1380 	if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1381 		return (0);
1382 	vm_page_aflag_set(m, PGA_ENQUEUED);
1383 	TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1384 	return (1);
1385 }
1386 
1387 /*
1388  * Re-add stuck pages to the inactive queue.  We will examine them again
1389  * during the next scan.  If the queue state of a page has changed since
1390  * it was physically removed from the page queue in
1391  * vm_pageout_collect_batch(), don't do anything with that page.
1392  */
1393 static void
1394 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1395     vm_page_t m)
1396 {
1397 	struct vm_pagequeue *pq;
1398 	vm_page_t marker;
1399 	int delta;
1400 
1401 	delta = 0;
1402 	marker = ss->marker;
1403 	pq = ss->pq;
1404 
1405 	if (m != NULL) {
1406 		if (vm_batchqueue_insert(bq, m) != 0)
1407 			return;
1408 		vm_pagequeue_lock(pq);
1409 		delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1410 	} else
1411 		vm_pagequeue_lock(pq);
1412 	while ((m = vm_batchqueue_pop(bq)) != NULL)
1413 		delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1414 	vm_pagequeue_cnt_add(pq, delta);
1415 	vm_pagequeue_unlock(pq);
1416 	vm_batchqueue_init(bq);
1417 }
1418 
1419 static void
1420 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
1421 {
1422 	struct timeval start, end;
1423 	struct scan_state ss;
1424 	struct vm_batchqueue rq;
1425 	struct vm_page marker_page;
1426 	vm_page_t m, marker;
1427 	struct vm_pagequeue *pq;
1428 	vm_object_t object;
1429 	vm_page_astate_t old, new;
1430 	int act_delta, addl_page_shortage, starting_page_shortage, refs;
1431 
1432 	object = NULL;
1433 	vm_batchqueue_init(&rq);
1434 	getmicrouptime(&start);
1435 
1436 	/*
1437 	 * The addl_page_shortage is an estimate of the number of temporarily
1438 	 * stuck pages in the inactive queue.  In other words, the
1439 	 * number of pages from the inactive count that should be
1440 	 * discounted in setting the target for the active queue scan.
1441 	 */
1442 	addl_page_shortage = 0;
1443 
1444 	/*
1445 	 * Start scanning the inactive queue for pages that we can free.  The
1446 	 * scan will stop when we reach the target or we have scanned the
1447 	 * entire queue.  (Note that m->a.act_count is not used to make
1448 	 * decisions for the inactive queue, only for the active queue.)
1449 	 */
1450 	starting_page_shortage = page_shortage;
1451 	marker = &marker_page;
1452 	vm_page_init_marker(marker, PQ_INACTIVE, 0);
1453 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1454 	vm_pagequeue_lock(pq);
1455 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1456 	while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1457 		KASSERT((m->flags & PG_MARKER) == 0,
1458 		    ("marker page %p was dequeued", m));
1459 
1460 		/*
1461 		 * Don't touch a page that was removed from the queue after the
1462 		 * page queue lock was released.  Otherwise, ensure that any
1463 		 * pending queue operations, such as dequeues for wired pages,
1464 		 * are handled.
1465 		 */
1466 		if (vm_pageout_defer(m, PQ_INACTIVE, false))
1467 			continue;
1468 
1469 		/*
1470 		 * Lock the page's object.
1471 		 */
1472 		if (object == NULL || object != m->object) {
1473 			if (object != NULL)
1474 				VM_OBJECT_WUNLOCK(object);
1475 			object = atomic_load_ptr(&m->object);
1476 			if (__predict_false(object == NULL))
1477 				/* The page is being freed by another thread. */
1478 				continue;
1479 
1480 			/* Depends on type-stability. */
1481 			VM_OBJECT_WLOCK(object);
1482 			if (__predict_false(m->object != object)) {
1483 				VM_OBJECT_WUNLOCK(object);
1484 				object = NULL;
1485 				goto reinsert;
1486 			}
1487 		}
1488 
1489 		if (vm_page_tryxbusy(m) == 0) {
1490 			/*
1491 			 * Don't mess with busy pages.  Leave them at
1492 			 * the front of the queue.  Most likely, they
1493 			 * are being paged out and will leave the
1494 			 * queue shortly after the scan finishes.  So,
1495 			 * they ought to be discounted from the
1496 			 * inactive count.
1497 			 */
1498 			addl_page_shortage++;
1499 			goto reinsert;
1500 		}
1501 
1502 		/* Deferred free of swap space. */
1503 		if ((m->a.flags & PGA_SWAP_FREE) != 0)
1504 			vm_pager_page_unswapped(m);
1505 
1506 		/*
1507 		 * Check for wirings now that we hold the object lock and have
1508 		 * exclusively busied the page.  If the page is mapped, it may
1509 		 * still be wired by pmap lookups.  The call to
1510 		 * vm_page_try_remove_all() below atomically checks for such
1511 		 * wirings and removes mappings.  If the page is unmapped, the
1512 		 * wire count is guaranteed not to increase after this check.
1513 		 */
1514 		if (__predict_false(vm_page_wired(m)))
1515 			goto skip_page;
1516 
1517 		/*
1518 		 * Invalid pages can be easily freed. They cannot be
1519 		 * mapped, vm_page_free() asserts this.
1520 		 */
1521 		if (vm_page_none_valid(m))
1522 			goto free_page;
1523 
1524 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1525 
1526 		for (old = vm_page_astate_load(m);;) {
1527 			/*
1528 			 * Check to see if the page has been removed from the
1529 			 * queue since the first such check.  Leave it alone if
1530 			 * so, discarding any references collected by
1531 			 * pmap_ts_referenced().
1532 			 */
1533 			if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1534 				goto skip_page;
1535 
1536 			new = old;
1537 			act_delta = refs;
1538 			if ((old.flags & PGA_REFERENCED) != 0) {
1539 				new.flags &= ~PGA_REFERENCED;
1540 				act_delta++;
1541 			}
1542 			if (act_delta == 0) {
1543 				;
1544 			} else if (object->ref_count != 0) {
1545 				/*
1546 				 * Increase the activation count if the
1547 				 * page was referenced while in the
1548 				 * inactive queue.  This makes it less
1549 				 * likely that the page will be returned
1550 				 * prematurely to the inactive queue.
1551 				 */
1552 				new.act_count += ACT_ADVANCE +
1553 				    act_delta;
1554 				if (new.act_count > ACT_MAX)
1555 					new.act_count = ACT_MAX;
1556 
1557 				new.flags &= ~PGA_QUEUE_OP_MASK;
1558 				new.flags |= PGA_REQUEUE;
1559 				new.queue = PQ_ACTIVE;
1560 				if (!vm_page_pqstate_commit(m, &old, new))
1561 					continue;
1562 
1563 				VM_CNT_INC(v_reactivated);
1564 				goto skip_page;
1565 			} else if ((object->flags & OBJ_DEAD) == 0) {
1566 				new.queue = PQ_INACTIVE;
1567 				new.flags |= PGA_REQUEUE;
1568 				if (!vm_page_pqstate_commit(m, &old, new))
1569 					continue;
1570 				goto skip_page;
1571 			}
1572 			break;
1573 		}
1574 
1575 		/*
1576 		 * If the page appears to be clean at the machine-independent
1577 		 * layer, then remove all of its mappings from the pmap in
1578 		 * anticipation of freeing it.  If, however, any of the page's
1579 		 * mappings allow write access, then the page may still be
1580 		 * modified until the last of those mappings are removed.
1581 		 */
1582 		if (object->ref_count != 0) {
1583 			vm_page_test_dirty(m);
1584 			if (m->dirty == 0 && !vm_page_try_remove_all(m))
1585 				goto skip_page;
1586 		}
1587 
1588 		/*
1589 		 * Clean pages can be freed, but dirty pages must be sent back
1590 		 * to the laundry, unless they belong to a dead object.
1591 		 * Requeueing dirty pages from dead objects is pointless, as
1592 		 * they are being paged out and freed by the thread that
1593 		 * destroyed the object.
1594 		 */
1595 		if (m->dirty == 0) {
1596 free_page:
1597 			/*
1598 			 * Now we are guaranteed that no other threads are
1599 			 * manipulating the page, check for a last-second
1600 			 * reference that would save it from doom.
1601 			 */
1602 			if (vm_pageout_defer(m, PQ_INACTIVE, false))
1603 				goto skip_page;
1604 
1605 			/*
1606 			 * Because we dequeued the page and have already checked
1607 			 * for pending dequeue and enqueue requests, we can
1608 			 * safely disassociate the page from the inactive queue
1609 			 * without holding the queue lock.
1610 			 */
1611 			m->a.queue = PQ_NONE;
1612 			vm_page_free(m);
1613 			page_shortage--;
1614 			continue;
1615 		}
1616 		if ((object->flags & OBJ_DEAD) == 0)
1617 			vm_page_launder(m);
1618 skip_page:
1619 		vm_page_xunbusy(m);
1620 		continue;
1621 reinsert:
1622 		vm_pageout_reinsert_inactive(&ss, &rq, m);
1623 	}
1624 	if (object != NULL)
1625 		VM_OBJECT_WUNLOCK(object);
1626 	vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1627 	vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1628 	vm_pagequeue_lock(pq);
1629 	vm_pageout_end_scan(&ss);
1630 	vm_pagequeue_unlock(pq);
1631 
1632 	/*
1633 	 * Record the remaining shortage and the progress and rate it was made.
1634 	 */
1635 	atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
1636 	getmicrouptime(&end);
1637 	timevalsub(&end, &start);
1638 	atomic_add_int(&vmd->vmd_inactive_us,
1639 	    end.tv_sec * 1000000 + end.tv_usec);
1640 	atomic_add_int(&vmd->vmd_inactive_freed,
1641 	    starting_page_shortage - page_shortage);
1642 }
1643 
1644 /*
1645  * Dispatch a number of inactive threads according to load and collect the
1646  * results to present a coherent view of paging activity on this domain.
1647  */
1648 static int
1649 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
1650 {
1651 	u_int freed, pps, slop, threads, us;
1652 
1653 	vmd->vmd_inactive_shortage = shortage;
1654 	slop = 0;
1655 
1656 	/*
1657 	 * If we have more work than we can do in a quarter of our interval, we
1658 	 * fire off multiple threads to process it.
1659 	 */
1660 	threads = vmd->vmd_inactive_threads;
1661 	if (threads > 1 && vmd->vmd_inactive_pps != 0 &&
1662 	    shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
1663 		vmd->vmd_inactive_shortage /= threads;
1664 		slop = shortage % threads;
1665 		vm_domain_pageout_lock(vmd);
1666 		blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
1667 		blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
1668 		wakeup(&vmd->vmd_inactive_shortage);
1669 		vm_domain_pageout_unlock(vmd);
1670 	}
1671 
1672 	/* Run the local thread scan. */
1673 	vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);
1674 
1675 	/*
1676 	 * Block until helper threads report results and then accumulate
1677 	 * totals.
1678 	 */
1679 	blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
1680 	freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
1681 	VM_CNT_ADD(v_dfree, freed);
1682 
1683 	/*
1684 	 * Calculate the per-thread paging rate with an exponential decay of
1685 	 * prior results.  Careful to avoid integer rounding errors with large
1686 	 * us values.
1687 	 */
1688 	us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
1689 	if (us > 1000000)
1690 		/* Keep rounding to tenths */
1691 		pps = (freed * 10) / ((us * 10) / 1000000);
1692 	else
1693 		pps = (1000000 / us) * freed;
1694 	vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
1695 
1696 	return (shortage - freed);
1697 }
1698 
1699 /*
1700  * Attempt to reclaim the requested number of pages from the inactive queue.
1701  * Returns true if the shortage was addressed.
1702  */
1703 static int
1704 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
1705 {
1706 	struct vm_pagequeue *pq;
1707 	u_int addl_page_shortage, deficit, page_shortage;
1708 	u_int starting_page_shortage;
1709 
1710 	/*
1711 	 * vmd_pageout_deficit counts the number of pages requested in
1712 	 * allocations that failed because of a free page shortage.  We assume
1713 	 * that the allocations will be reattempted and thus include the deficit
1714 	 * in our scan target.
1715 	 */
1716 	deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1717 	starting_page_shortage = shortage + deficit;
1718 
1719 	/*
1720 	 * Run the inactive scan on as many threads as is necessary.
1721 	 */
1722 	page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
1723 	addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
1724 
1725 	/*
1726 	 * Wake up the laundry thread so that it can perform any needed
1727 	 * laundering.  If we didn't meet our target, we're in shortfall and
1728 	 * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1729 	 * swap devices are configured, the laundry thread has no work to do, so
1730 	 * don't bother waking it up.
1731 	 *
1732 	 * The laundry thread uses the number of inactive queue scans elapsed
1733 	 * since the last laundering to determine whether to launder again, so
1734 	 * keep count.
1735 	 */
1736 	if (starting_page_shortage > 0) {
1737 		pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1738 		vm_pagequeue_lock(pq);
1739 		if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1740 		    (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1741 			if (page_shortage > 0) {
1742 				vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1743 				VM_CNT_INC(v_pdshortfalls);
1744 			} else if (vmd->vmd_laundry_request !=
1745 			    VM_LAUNDRY_SHORTFALL)
1746 				vmd->vmd_laundry_request =
1747 				    VM_LAUNDRY_BACKGROUND;
1748 			wakeup(&vmd->vmd_laundry_request);
1749 		}
1750 		vmd->vmd_clean_pages_freed +=
1751 		    starting_page_shortage - page_shortage;
1752 		vm_pagequeue_unlock(pq);
1753 	}
1754 
1755 	/*
1756 	 * Wakeup the swapout daemon if we didn't free the targeted number of
1757 	 * pages.
1758 	 */
1759 	if (page_shortage > 0)
1760 		vm_swapout_run();
1761 
1762 	/*
1763 	 * If the inactive queue scan fails repeatedly to meet its
1764 	 * target, kill the largest process.
1765 	 */
1766 	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1767 
1768 	/*
1769 	 * Reclaim pages by swapping out idle processes, if configured to do so.
1770 	 */
1771 	vm_swapout_run_idle();
1772 
1773 	/*
1774 	 * See the description of addl_page_shortage above.
1775 	 */
1776 	*addl_shortage = addl_page_shortage + deficit;
1777 
1778 	return (page_shortage <= 0);
1779 }
1780 
1781 static int vm_pageout_oom_vote;
1782 
1783 /*
1784  * The pagedaemon threads randlomly select one to perform the
1785  * OOM.  Trying to kill processes before all pagedaemons
1786  * failed to reach free target is premature.
1787  */
1788 static void
1789 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1790     int starting_page_shortage)
1791 {
1792 	int old_vote;
1793 
1794 	if (starting_page_shortage <= 0 || starting_page_shortage !=
1795 	    page_shortage)
1796 		vmd->vmd_oom_seq = 0;
1797 	else
1798 		vmd->vmd_oom_seq++;
1799 	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1800 		if (vmd->vmd_oom) {
1801 			vmd->vmd_oom = FALSE;
1802 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1803 		}
1804 		return;
1805 	}
1806 
1807 	/*
1808 	 * Do not follow the call sequence until OOM condition is
1809 	 * cleared.
1810 	 */
1811 	vmd->vmd_oom_seq = 0;
1812 
1813 	if (vmd->vmd_oom)
1814 		return;
1815 
1816 	vmd->vmd_oom = TRUE;
1817 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1818 	if (old_vote != vm_ndomains - 1)
1819 		return;
1820 
1821 	/*
1822 	 * The current pagedaemon thread is the last in the quorum to
1823 	 * start OOM.  Initiate the selection and signaling of the
1824 	 * victim.
1825 	 */
1826 	vm_pageout_oom(VM_OOM_MEM);
1827 
1828 	/*
1829 	 * After one round of OOM terror, recall our vote.  On the
1830 	 * next pass, current pagedaemon would vote again if the low
1831 	 * memory condition is still there, due to vmd_oom being
1832 	 * false.
1833 	 */
1834 	vmd->vmd_oom = FALSE;
1835 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1836 }
1837 
1838 /*
1839  * The OOM killer is the page daemon's action of last resort when
1840  * memory allocation requests have been stalled for a prolonged period
1841  * of time because it cannot reclaim memory.  This function computes
1842  * the approximate number of physical pages that could be reclaimed if
1843  * the specified address space is destroyed.
1844  *
1845  * Private, anonymous memory owned by the address space is the
1846  * principal resource that we expect to recover after an OOM kill.
1847  * Since the physical pages mapped by the address space's COW entries
1848  * are typically shared pages, they are unlikely to be released and so
1849  * they are not counted.
1850  *
1851  * To get to the point where the page daemon runs the OOM killer, its
1852  * efforts to write-back vnode-backed pages may have stalled.  This
1853  * could be caused by a memory allocation deadlock in the write path
1854  * that might be resolved by an OOM kill.  Therefore, physical pages
1855  * belonging to vnode-backed objects are counted, because they might
1856  * be freed without being written out first if the address space holds
1857  * the last reference to an unlinked vnode.
1858  *
1859  * Similarly, physical pages belonging to OBJT_PHYS objects are
1860  * counted because the address space might hold the last reference to
1861  * the object.
1862  */
1863 static long
1864 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1865 {
1866 	vm_map_t map;
1867 	vm_map_entry_t entry;
1868 	vm_object_t obj;
1869 	long res;
1870 
1871 	map = &vmspace->vm_map;
1872 	KASSERT(!map->system_map, ("system map"));
1873 	sx_assert(&map->lock, SA_LOCKED);
1874 	res = 0;
1875 	VM_MAP_ENTRY_FOREACH(entry, map) {
1876 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1877 			continue;
1878 		obj = entry->object.vm_object;
1879 		if (obj == NULL)
1880 			continue;
1881 		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1882 		    obj->ref_count != 1)
1883 			continue;
1884 		if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE ||
1885 		    (obj->flags & OBJ_SWAP) != 0)
1886 			res += obj->resident_page_count;
1887 	}
1888 	return (res);
1889 }
1890 
1891 static int vm_oom_ratelim_last;
1892 static int vm_oom_pf_secs = 10;
1893 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1894     "");
1895 static struct mtx vm_oom_ratelim_mtx;
1896 
1897 void
1898 vm_pageout_oom(int shortage)
1899 {
1900 	const char *reason;
1901 	struct proc *p, *bigproc;
1902 	vm_offset_t size, bigsize;
1903 	struct thread *td;
1904 	struct vmspace *vm;
1905 	int now;
1906 	bool breakout;
1907 
1908 	/*
1909 	 * For OOM requests originating from vm_fault(), there is a high
1910 	 * chance that a single large process faults simultaneously in
1911 	 * several threads.  Also, on an active system running many
1912 	 * processes of middle-size, like buildworld, all of them
1913 	 * could fault almost simultaneously as well.
1914 	 *
1915 	 * To avoid killing too many processes, rate-limit OOMs
1916 	 * initiated by vm_fault() time-outs on the waits for free
1917 	 * pages.
1918 	 */
1919 	mtx_lock(&vm_oom_ratelim_mtx);
1920 	now = ticks;
1921 	if (shortage == VM_OOM_MEM_PF &&
1922 	    (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1923 		mtx_unlock(&vm_oom_ratelim_mtx);
1924 		return;
1925 	}
1926 	vm_oom_ratelim_last = now;
1927 	mtx_unlock(&vm_oom_ratelim_mtx);
1928 
1929 	/*
1930 	 * We keep the process bigproc locked once we find it to keep anyone
1931 	 * from messing with it; however, there is a possibility of
1932 	 * deadlock if process B is bigproc and one of its child processes
1933 	 * attempts to propagate a signal to B while we are waiting for A's
1934 	 * lock while walking this list.  To avoid this, we don't block on
1935 	 * the process lock but just skip a process if it is already locked.
1936 	 */
1937 	bigproc = NULL;
1938 	bigsize = 0;
1939 	sx_slock(&allproc_lock);
1940 	FOREACH_PROC_IN_SYSTEM(p) {
1941 		PROC_LOCK(p);
1942 
1943 		/*
1944 		 * If this is a system, protected or killed process, skip it.
1945 		 */
1946 		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1947 		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1948 		    p->p_pid == 1 || P_KILLED(p) ||
1949 		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1950 			PROC_UNLOCK(p);
1951 			continue;
1952 		}
1953 		/*
1954 		 * If the process is in a non-running type state,
1955 		 * don't touch it.  Check all the threads individually.
1956 		 */
1957 		breakout = false;
1958 		FOREACH_THREAD_IN_PROC(p, td) {
1959 			thread_lock(td);
1960 			if (!TD_ON_RUNQ(td) &&
1961 			    !TD_IS_RUNNING(td) &&
1962 			    !TD_IS_SLEEPING(td) &&
1963 			    !TD_IS_SUSPENDED(td) &&
1964 			    !TD_IS_SWAPPED(td)) {
1965 				thread_unlock(td);
1966 				breakout = true;
1967 				break;
1968 			}
1969 			thread_unlock(td);
1970 		}
1971 		if (breakout) {
1972 			PROC_UNLOCK(p);
1973 			continue;
1974 		}
1975 		/*
1976 		 * get the process size
1977 		 */
1978 		vm = vmspace_acquire_ref(p);
1979 		if (vm == NULL) {
1980 			PROC_UNLOCK(p);
1981 			continue;
1982 		}
1983 		_PHOLD_LITE(p);
1984 		PROC_UNLOCK(p);
1985 		sx_sunlock(&allproc_lock);
1986 		if (!vm_map_trylock_read(&vm->vm_map)) {
1987 			vmspace_free(vm);
1988 			sx_slock(&allproc_lock);
1989 			PRELE(p);
1990 			continue;
1991 		}
1992 		size = vmspace_swap_count(vm);
1993 		if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1994 			size += vm_pageout_oom_pagecount(vm);
1995 		vm_map_unlock_read(&vm->vm_map);
1996 		vmspace_free(vm);
1997 		sx_slock(&allproc_lock);
1998 
1999 		/*
2000 		 * If this process is bigger than the biggest one,
2001 		 * remember it.
2002 		 */
2003 		if (size > bigsize) {
2004 			if (bigproc != NULL)
2005 				PRELE(bigproc);
2006 			bigproc = p;
2007 			bigsize = size;
2008 		} else {
2009 			PRELE(p);
2010 		}
2011 	}
2012 	sx_sunlock(&allproc_lock);
2013 
2014 	if (bigproc != NULL) {
2015 		switch (shortage) {
2016 		case VM_OOM_MEM:
2017 			reason = "failed to reclaim memory";
2018 			break;
2019 		case VM_OOM_MEM_PF:
2020 			reason = "a thread waited too long to allocate a page";
2021 			break;
2022 		case VM_OOM_SWAPZ:
2023 			reason = "out of swap space";
2024 			break;
2025 		default:
2026 			panic("unknown OOM reason %d", shortage);
2027 		}
2028 		if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
2029 			panic("%s", reason);
2030 		PROC_LOCK(bigproc);
2031 		killproc(bigproc, reason);
2032 		sched_nice(bigproc, PRIO_MIN);
2033 		_PRELE(bigproc);
2034 		PROC_UNLOCK(bigproc);
2035 	}
2036 }
2037 
2038 /*
2039  * Signal a free page shortage to subsystems that have registered an event
2040  * handler.  Reclaim memory from UMA in the event of a severe shortage.
2041  * Return true if the free page count should be re-evaluated.
2042  */
2043 static bool
2044 vm_pageout_lowmem(void)
2045 {
2046 	static int lowmem_ticks = 0;
2047 	int last;
2048 	bool ret;
2049 
2050 	ret = false;
2051 
2052 	last = atomic_load_int(&lowmem_ticks);
2053 	while ((u_int)(ticks - last) / hz >= lowmem_period) {
2054 		if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2055 			continue;
2056 
2057 		/*
2058 		 * Decrease registered cache sizes.
2059 		 */
2060 		SDT_PROBE0(vm, , , vm__lowmem_scan);
2061 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2062 
2063 		/*
2064 		 * We do this explicitly after the caches have been
2065 		 * drained above.
2066 		 */
2067 		uma_reclaim(UMA_RECLAIM_TRIM);
2068 		ret = true;
2069 		break;
2070 	}
2071 
2072 	/*
2073 	 * Kick off an asynchronous reclaim of cached memory if one of the
2074 	 * page daemons is failing to keep up with demand.  Use the "severe"
2075 	 * threshold instead of "min" to ensure that we do not blow away the
2076 	 * caches if a subset of the NUMA domains are depleted by kernel memory
2077 	 * allocations; the domainset iterators automatically skip domains
2078 	 * below the "min" threshold on the first pass.
2079 	 *
2080 	 * UMA reclaim worker has its own rate-limiting mechanism, so don't
2081 	 * worry about kicking it too often.
2082 	 */
2083 	if (vm_page_count_severe())
2084 		uma_reclaim_wakeup();
2085 
2086 	return (ret);
2087 }
2088 
2089 static void
2090 vm_pageout_worker(void *arg)
2091 {
2092 	struct vm_domain *vmd;
2093 	u_int ofree;
2094 	int addl_shortage, domain, shortage;
2095 	bool target_met;
2096 
2097 	domain = (uintptr_t)arg;
2098 	vmd = VM_DOMAIN(domain);
2099 	shortage = 0;
2100 	target_met = true;
2101 
2102 	/*
2103 	 * XXXKIB It could be useful to bind pageout daemon threads to
2104 	 * the cores belonging to the domain, from which vm_page_array
2105 	 * is allocated.
2106 	 */
2107 
2108 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2109 	vmd->vmd_last_active_scan = ticks;
2110 
2111 	/*
2112 	 * The pageout daemon worker is never done, so loop forever.
2113 	 */
2114 	while (TRUE) {
2115 		vm_domain_pageout_lock(vmd);
2116 
2117 		/*
2118 		 * We need to clear wanted before we check the limits.  This
2119 		 * prevents races with wakers who will check wanted after they
2120 		 * reach the limit.
2121 		 */
2122 		atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2123 
2124 		/*
2125 		 * Might the page daemon need to run again?
2126 		 */
2127 		if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2128 			/*
2129 			 * Yes.  If the scan failed to produce enough free
2130 			 * pages, sleep uninterruptibly for some time in the
2131 			 * hope that the laundry thread will clean some pages.
2132 			 */
2133 			vm_domain_pageout_unlock(vmd);
2134 			if (!target_met)
2135 				pause("pwait", hz / VM_INACT_SCAN_RATE);
2136 		} else {
2137 			/*
2138 			 * No, sleep until the next wakeup or until pages
2139 			 * need to have their reference stats updated.
2140 			 */
2141 			if (mtx_sleep(&vmd->vmd_pageout_wanted,
2142 			    vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2143 			    "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2144 				VM_CNT_INC(v_pdwakeups);
2145 		}
2146 
2147 		/* Prevent spurious wakeups by ensuring that wanted is set. */
2148 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2149 
2150 		/*
2151 		 * Use the controller to calculate how many pages to free in
2152 		 * this interval, and scan the inactive queue.  If the lowmem
2153 		 * handlers appear to have freed up some pages, subtract the
2154 		 * difference from the inactive queue scan target.
2155 		 */
2156 		shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2157 		if (shortage > 0) {
2158 			ofree = vmd->vmd_free_count;
2159 			if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2160 				shortage -= min(vmd->vmd_free_count - ofree,
2161 				    (u_int)shortage);
2162 			target_met = vm_pageout_inactive(vmd, shortage,
2163 			    &addl_shortage);
2164 		} else
2165 			addl_shortage = 0;
2166 
2167 		/*
2168 		 * Scan the active queue.  A positive value for shortage
2169 		 * indicates that we must aggressively deactivate pages to avoid
2170 		 * a shortfall.
2171 		 */
2172 		shortage = vm_pageout_active_target(vmd) + addl_shortage;
2173 		vm_pageout_scan_active(vmd, shortage);
2174 	}
2175 }
2176 
2177 /*
2178  * vm_pageout_helper runs additional pageout daemons in times of high paging
2179  * activity.
2180  */
2181 static void
2182 vm_pageout_helper(void *arg)
2183 {
2184 	struct vm_domain *vmd;
2185 	int domain;
2186 
2187 	domain = (uintptr_t)arg;
2188 	vmd = VM_DOMAIN(domain);
2189 
2190 	vm_domain_pageout_lock(vmd);
2191 	for (;;) {
2192 		msleep(&vmd->vmd_inactive_shortage,
2193 		    vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
2194 		blockcount_release(&vmd->vmd_inactive_starting, 1);
2195 
2196 		vm_domain_pageout_unlock(vmd);
2197 		vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
2198 		vm_domain_pageout_lock(vmd);
2199 
2200 		/*
2201 		 * Release the running count while the pageout lock is held to
2202 		 * prevent wakeup races.
2203 		 */
2204 		blockcount_release(&vmd->vmd_inactive_running, 1);
2205 	}
2206 }
2207 
2208 static int
2209 get_pageout_threads_per_domain(const struct vm_domain *vmd)
2210 {
2211 	unsigned total_pageout_threads, eligible_cpus, domain_cpus;
2212 
2213 	if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
2214 		return (0);
2215 
2216 	/*
2217 	 * Semi-arbitrarily constrain pagedaemon threads to less than half the
2218 	 * total number of CPUs in the system as an upper limit.
2219 	 */
2220 	if (pageout_cpus_per_thread < 2)
2221 		pageout_cpus_per_thread = 2;
2222 	else if (pageout_cpus_per_thread > mp_ncpus)
2223 		pageout_cpus_per_thread = mp_ncpus;
2224 
2225 	total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
2226 	domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);
2227 
2228 	/* Pagedaemons are not run in empty domains. */
2229 	eligible_cpus = mp_ncpus;
2230 	for (unsigned i = 0; i < vm_ndomains; i++)
2231 		if (VM_DOMAIN_EMPTY(i))
2232 			eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);
2233 
2234 	/*
2235 	 * Assign a portion of the total pageout threads to this domain
2236 	 * corresponding to the fraction of pagedaemon-eligible CPUs in the
2237 	 * domain.  In asymmetric NUMA systems, domains with more CPUs may be
2238 	 * allocated more threads than domains with fewer CPUs.
2239 	 */
2240 	return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
2241 }
2242 
2243 /*
2244  * Initialize basic pageout daemon settings.  See the comment above the
2245  * definition of vm_domain for some explanation of how these thresholds are
2246  * used.
2247  */
2248 static void
2249 vm_pageout_init_domain(int domain)
2250 {
2251 	struct vm_domain *vmd;
2252 	struct sysctl_oid *oid;
2253 
2254 	vmd = VM_DOMAIN(domain);
2255 	vmd->vmd_interrupt_free_min = 2;
2256 
2257 	/*
2258 	 * v_free_reserved needs to include enough for the largest
2259 	 * swap pager structures plus enough for any pv_entry structs
2260 	 * when paging.
2261 	 */
2262 	vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2263 	    vmd->vmd_interrupt_free_min;
2264 	vmd->vmd_free_reserved = vm_pageout_page_count +
2265 	    vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2266 	vmd->vmd_free_min = vmd->vmd_page_count / 200;
2267 	vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2268 	vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2269 	vmd->vmd_free_min += vmd->vmd_free_reserved;
2270 	vmd->vmd_free_severe += vmd->vmd_free_reserved;
2271 	vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2272 	if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2273 		vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2274 
2275 	/*
2276 	 * Set the default wakeup threshold to be 10% below the paging
2277 	 * target.  This keeps the steady state out of shortfall.
2278 	 */
2279 	vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2280 
2281 	/*
2282 	 * Target amount of memory to move out of the laundry queue during a
2283 	 * background laundering.  This is proportional to the amount of system
2284 	 * memory.
2285 	 */
2286 	vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2287 	    vmd->vmd_free_min) / 10;
2288 
2289 	/* Initialize the pageout daemon pid controller. */
2290 	pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2291 	    vmd->vmd_free_target, PIDCTRL_BOUND,
2292 	    PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2293 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2294 	    "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2295 	pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2296 
2297 	vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
2298 }
2299 
2300 static void
2301 vm_pageout_init(void)
2302 {
2303 	u_long freecount;
2304 	int i;
2305 
2306 	/*
2307 	 * Initialize some paging parameters.
2308 	 */
2309 	if (vm_cnt.v_page_count < 2000)
2310 		vm_pageout_page_count = 8;
2311 
2312 	freecount = 0;
2313 	for (i = 0; i < vm_ndomains; i++) {
2314 		struct vm_domain *vmd;
2315 
2316 		vm_pageout_init_domain(i);
2317 		vmd = VM_DOMAIN(i);
2318 		vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2319 		vm_cnt.v_free_target += vmd->vmd_free_target;
2320 		vm_cnt.v_free_min += vmd->vmd_free_min;
2321 		vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2322 		vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2323 		vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2324 		vm_cnt.v_free_severe += vmd->vmd_free_severe;
2325 		freecount += vmd->vmd_free_count;
2326 	}
2327 
2328 	/*
2329 	 * Set interval in seconds for active scan.  We want to visit each
2330 	 * page at least once every ten minutes.  This is to prevent worst
2331 	 * case paging behaviors with stale active LRU.
2332 	 */
2333 	if (vm_pageout_update_period == 0)
2334 		vm_pageout_update_period = 600;
2335 
2336 	/*
2337 	 * Set the maximum number of user-wired virtual pages.  Historically the
2338 	 * main source of such pages was mlock(2) and mlockall(2).  Hypervisors
2339 	 * may also request user-wired memory.
2340 	 */
2341 	if (vm_page_max_user_wired == 0)
2342 		vm_page_max_user_wired = 4 * freecount / 5;
2343 }
2344 
2345 /*
2346  *     vm_pageout is the high level pageout daemon.
2347  */
2348 static void
2349 vm_pageout(void)
2350 {
2351 	struct proc *p;
2352 	struct thread *td;
2353 	int error, first, i, j, pageout_threads;
2354 
2355 	p = curproc;
2356 	td = curthread;
2357 
2358 	mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2359 	swap_pager_swap_init();
2360 	for (first = -1, i = 0; i < vm_ndomains; i++) {
2361 		if (VM_DOMAIN_EMPTY(i)) {
2362 			if (bootverbose)
2363 				printf("domain %d empty; skipping pageout\n",
2364 				    i);
2365 			continue;
2366 		}
2367 		if (first == -1)
2368 			first = i;
2369 		else {
2370 			error = kthread_add(vm_pageout_worker,
2371 			    (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2372 			if (error != 0)
2373 				panic("starting pageout for domain %d: %d\n",
2374 				    i, error);
2375 		}
2376 		pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
2377 		for (j = 0; j < pageout_threads - 1; j++) {
2378 			error = kthread_add(vm_pageout_helper,
2379 			    (void *)(uintptr_t)i, p, NULL, 0, 0,
2380 			    "dom%d helper%d", i, j);
2381 			if (error != 0)
2382 				panic("starting pageout helper %d for domain "
2383 				    "%d: %d\n", j, i, error);
2384 		}
2385 		error = kthread_add(vm_pageout_laundry_worker,
2386 		    (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2387 		if (error != 0)
2388 			panic("starting laundry for domain %d: %d", i, error);
2389 	}
2390 	error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2391 	if (error != 0)
2392 		panic("starting uma_reclaim helper, error %d\n", error);
2393 
2394 	snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2395 	vm_pageout_worker((void *)(uintptr_t)first);
2396 }
2397 
2398 /*
2399  * Perform an advisory wakeup of the page daemon.
2400  */
2401 void
2402 pagedaemon_wakeup(int domain)
2403 {
2404 	struct vm_domain *vmd;
2405 
2406 	vmd = VM_DOMAIN(domain);
2407 	vm_domain_pageout_assert_unlocked(vmd);
2408 	if (curproc == pageproc)
2409 		return;
2410 
2411 	if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2412 		vm_domain_pageout_lock(vmd);
2413 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2414 		wakeup(&vmd->vmd_pageout_wanted);
2415 		vm_domain_pageout_unlock(vmd);
2416 	}
2417 }
2418