1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 45 * 46 * 47 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 48 * All rights reserved. 49 * 50 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 51 * 52 * Permission to use, copy, modify and distribute this software and 53 * its documentation is hereby granted, provided that both the copyright 54 * notice and this permission notice appear in all copies of the 55 * software, derivative works or modified versions, and any portions 56 * thereof, and that both notices appear in supporting documentation. 57 * 58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 61 * 62 * Carnegie Mellon requests users of this software to return to 63 * 64 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 65 * School of Computer Science 66 * Carnegie Mellon University 67 * Pittsburgh PA 15213-3890 68 * 69 * any improvements or extensions that they make and grant Carnegie the 70 * rights to redistribute these changes. 71 */ 72 73 /* 74 * The proverbial page-out daemon. 75 */ 76 77 #include <sys/cdefs.h> 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/blockcount.h> 84 #include <sys/eventhandler.h> 85 #include <sys/lock.h> 86 #include <sys/mutex.h> 87 #include <sys/proc.h> 88 #include <sys/kthread.h> 89 #include <sys/ktr.h> 90 #include <sys/mount.h> 91 #include <sys/racct.h> 92 #include <sys/resourcevar.h> 93 #include <sys/sched.h> 94 #include <sys/sdt.h> 95 #include <sys/signalvar.h> 96 #include <sys/smp.h> 97 #include <sys/time.h> 98 #include <sys/vnode.h> 99 #include <sys/vmmeter.h> 100 #include <sys/rwlock.h> 101 #include <sys/sx.h> 102 #include <sys/sysctl.h> 103 104 #include <vm/vm.h> 105 #include <vm/vm_param.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_page.h> 108 #include <vm/vm_map.h> 109 #include <vm/vm_pageout.h> 110 #include <vm/vm_pager.h> 111 #include <vm/vm_phys.h> 112 #include <vm/vm_pagequeue.h> 113 #include <vm/swap_pager.h> 114 #include <vm/vm_extern.h> 115 #include <vm/uma.h> 116 117 /* 118 * System initialization 119 */ 120 121 /* the kernel process "vm_pageout"*/ 122 static void vm_pageout(void); 123 static void vm_pageout_init(void); 124 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 125 static int vm_pageout_cluster(vm_page_t m); 126 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 127 int starting_page_shortage); 128 129 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 130 NULL); 131 132 struct proc *pageproc; 133 134 static struct kproc_desc page_kp = { 135 "pagedaemon", 136 vm_pageout, 137 &pageproc 138 }; 139 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 140 &page_kp); 141 142 SDT_PROVIDER_DEFINE(vm); 143 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 144 145 /* Pagedaemon activity rates, in subdivisions of one second. */ 146 #define VM_LAUNDER_RATE 10 147 #define VM_INACT_SCAN_RATE 10 148 149 static int swapdev_enabled; 150 int vm_pageout_page_count = 32; 151 152 static int vm_panic_on_oom = 0; 153 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 154 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 155 "Panic on the given number of out-of-memory errors instead of " 156 "killing the largest process"); 157 158 static int vm_pageout_update_period; 159 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 160 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 161 "Maximum active LRU update period"); 162 163 static int pageout_cpus_per_thread = 16; 164 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN, 165 &pageout_cpus_per_thread, 0, 166 "Number of CPUs per pagedaemon worker thread"); 167 168 static int lowmem_period = 10; 169 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 170 "Low memory callback period"); 171 172 static int disable_swap_pageouts; 173 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 174 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, 175 "Disallow swapout of dirty pages"); 176 177 static int pageout_lock_miss; 178 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 179 CTLFLAG_RD, &pageout_lock_miss, 0, 180 "vget() lock misses during pageout"); 181 182 static int vm_pageout_oom_seq = 12; 183 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 184 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 185 "back-to-back calls to oom detector to start OOM"); 186 187 static int act_scan_laundry_weight = 3; 188 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 189 &act_scan_laundry_weight, 0, 190 "weight given to clean vs. dirty pages in active queue scans"); 191 192 static u_int vm_background_launder_rate = 4096; 193 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 194 &vm_background_launder_rate, 0, 195 "background laundering rate, in kilobytes per second"); 196 197 static u_int vm_background_launder_max = 20 * 1024; 198 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 199 &vm_background_launder_max, 0, 200 "background laundering cap, in kilobytes"); 201 202 u_long vm_page_max_user_wired; 203 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW, 204 &vm_page_max_user_wired, 0, 205 "system-wide limit to user-wired page count"); 206 207 static u_int isqrt(u_int num); 208 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 209 bool in_shortfall); 210 static void vm_pageout_laundry_worker(void *arg); 211 212 struct scan_state { 213 struct vm_batchqueue bq; 214 struct vm_pagequeue *pq; 215 vm_page_t marker; 216 int maxscan; 217 int scanned; 218 }; 219 220 static void 221 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq, 222 vm_page_t marker, vm_page_t after, int maxscan) 223 { 224 225 vm_pagequeue_assert_locked(pq); 226 KASSERT((marker->a.flags & PGA_ENQUEUED) == 0, 227 ("marker %p already enqueued", marker)); 228 229 if (after == NULL) 230 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q); 231 else 232 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q); 233 vm_page_aflag_set(marker, PGA_ENQUEUED); 234 235 vm_batchqueue_init(&ss->bq); 236 ss->pq = pq; 237 ss->marker = marker; 238 ss->maxscan = maxscan; 239 ss->scanned = 0; 240 vm_pagequeue_unlock(pq); 241 } 242 243 static void 244 vm_pageout_end_scan(struct scan_state *ss) 245 { 246 struct vm_pagequeue *pq; 247 248 pq = ss->pq; 249 vm_pagequeue_assert_locked(pq); 250 KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0, 251 ("marker %p not enqueued", ss->marker)); 252 253 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q); 254 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED); 255 pq->pq_pdpages += ss->scanned; 256 } 257 258 /* 259 * Add a small number of queued pages to a batch queue for later processing 260 * without the corresponding queue lock held. The caller must have enqueued a 261 * marker page at the desired start point for the scan. Pages will be 262 * physically dequeued if the caller so requests. Otherwise, the returned 263 * batch may contain marker pages, and it is up to the caller to handle them. 264 * 265 * When processing the batch queue, vm_pageout_defer() must be used to 266 * determine whether the page has been logically dequeued since the batch was 267 * collected. 268 */ 269 static __always_inline void 270 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue) 271 { 272 struct vm_pagequeue *pq; 273 vm_page_t m, marker, n; 274 275 marker = ss->marker; 276 pq = ss->pq; 277 278 KASSERT((marker->a.flags & PGA_ENQUEUED) != 0, 279 ("marker %p not enqueued", ss->marker)); 280 281 vm_pagequeue_lock(pq); 282 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL && 283 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE; 284 m = n, ss->scanned++) { 285 n = TAILQ_NEXT(m, plinks.q); 286 if ((m->flags & PG_MARKER) == 0) { 287 KASSERT((m->a.flags & PGA_ENQUEUED) != 0, 288 ("page %p not enqueued", m)); 289 KASSERT((m->flags & PG_FICTITIOUS) == 0, 290 ("Fictitious page %p cannot be in page queue", m)); 291 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 292 ("Unmanaged page %p cannot be in page queue", m)); 293 } else if (dequeue) 294 continue; 295 296 (void)vm_batchqueue_insert(&ss->bq, m); 297 if (dequeue) { 298 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 299 vm_page_aflag_clear(m, PGA_ENQUEUED); 300 } 301 } 302 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 303 if (__predict_true(m != NULL)) 304 TAILQ_INSERT_BEFORE(m, marker, plinks.q); 305 else 306 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q); 307 if (dequeue) 308 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt); 309 vm_pagequeue_unlock(pq); 310 } 311 312 /* 313 * Return the next page to be scanned, or NULL if the scan is complete. 314 */ 315 static __always_inline vm_page_t 316 vm_pageout_next(struct scan_state *ss, const bool dequeue) 317 { 318 319 if (ss->bq.bq_cnt == 0) 320 vm_pageout_collect_batch(ss, dequeue); 321 return (vm_batchqueue_pop(&ss->bq)); 322 } 323 324 /* 325 * Determine whether processing of a page should be deferred and ensure that any 326 * outstanding queue operations are processed. 327 */ 328 static __always_inline bool 329 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued) 330 { 331 vm_page_astate_t as; 332 333 as = vm_page_astate_load(m); 334 if (__predict_false(as.queue != queue || 335 ((as.flags & PGA_ENQUEUED) != 0) != enqueued)) 336 return (true); 337 if ((as.flags & PGA_QUEUE_OP_MASK) != 0) { 338 vm_page_pqbatch_submit(m, queue); 339 return (true); 340 } 341 return (false); 342 } 343 344 /* 345 * Scan for pages at adjacent offsets within the given page's object that are 346 * eligible for laundering, form a cluster of these pages and the given page, 347 * and launder that cluster. 348 */ 349 static int 350 vm_pageout_cluster(vm_page_t m) 351 { 352 vm_object_t object; 353 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; 354 vm_pindex_t pindex; 355 int ib, is, page_base, pageout_count; 356 357 object = m->object; 358 VM_OBJECT_ASSERT_WLOCKED(object); 359 pindex = m->pindex; 360 361 vm_page_assert_xbusied(m); 362 363 mc[vm_pageout_page_count] = pb = ps = m; 364 pageout_count = 1; 365 page_base = vm_pageout_page_count; 366 ib = 1; 367 is = 1; 368 369 /* 370 * We can cluster only if the page is not clean, busy, or held, and 371 * the page is in the laundry queue. 372 * 373 * During heavy mmap/modification loads the pageout 374 * daemon can really fragment the underlying file 375 * due to flushing pages out of order and not trying to 376 * align the clusters (which leaves sporadic out-of-order 377 * holes). To solve this problem we do the reverse scan 378 * first and attempt to align our cluster, then do a 379 * forward scan if room remains. 380 */ 381 more: 382 while (ib != 0 && pageout_count < vm_pageout_page_count) { 383 if (ib > pindex) { 384 ib = 0; 385 break; 386 } 387 if ((p = vm_page_prev(pb)) == NULL || 388 vm_page_tryxbusy(p) == 0) { 389 ib = 0; 390 break; 391 } 392 if (vm_page_wired(p)) { 393 ib = 0; 394 vm_page_xunbusy(p); 395 break; 396 } 397 vm_page_test_dirty(p); 398 if (p->dirty == 0) { 399 ib = 0; 400 vm_page_xunbusy(p); 401 break; 402 } 403 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) { 404 vm_page_xunbusy(p); 405 ib = 0; 406 break; 407 } 408 mc[--page_base] = pb = p; 409 ++pageout_count; 410 ++ib; 411 412 /* 413 * We are at an alignment boundary. Stop here, and switch 414 * directions. Do not clear ib. 415 */ 416 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 417 break; 418 } 419 while (pageout_count < vm_pageout_page_count && 420 pindex + is < object->size) { 421 if ((p = vm_page_next(ps)) == NULL || 422 vm_page_tryxbusy(p) == 0) 423 break; 424 if (vm_page_wired(p)) { 425 vm_page_xunbusy(p); 426 break; 427 } 428 vm_page_test_dirty(p); 429 if (p->dirty == 0) { 430 vm_page_xunbusy(p); 431 break; 432 } 433 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) { 434 vm_page_xunbusy(p); 435 break; 436 } 437 mc[page_base + pageout_count] = ps = p; 438 ++pageout_count; 439 ++is; 440 } 441 442 /* 443 * If we exhausted our forward scan, continue with the reverse scan 444 * when possible, even past an alignment boundary. This catches 445 * boundary conditions. 446 */ 447 if (ib != 0 && pageout_count < vm_pageout_page_count) 448 goto more; 449 450 return (vm_pageout_flush(&mc[page_base], pageout_count, 451 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 452 } 453 454 /* 455 * vm_pageout_flush() - launder the given pages 456 * 457 * The given pages are laundered. Note that we setup for the start of 458 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 459 * reference count all in here rather then in the parent. If we want 460 * the parent to do more sophisticated things we may have to change 461 * the ordering. 462 * 463 * Returned runlen is the count of pages between mreq and first 464 * page after mreq with status VM_PAGER_AGAIN. 465 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 466 * for any page in runlen set. 467 */ 468 int 469 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 470 boolean_t *eio) 471 { 472 vm_object_t object = mc[0]->object; 473 int pageout_status[count]; 474 int numpagedout = 0; 475 int i, runlen; 476 477 VM_OBJECT_ASSERT_WLOCKED(object); 478 479 /* 480 * Initiate I/O. Mark the pages shared busy and verify that they're 481 * valid and read-only. 482 * 483 * We do not have to fixup the clean/dirty bits here... we can 484 * allow the pager to do it after the I/O completes. 485 * 486 * NOTE! mc[i]->dirty may be partial or fragmented due to an 487 * edge case with file fragments. 488 */ 489 for (i = 0; i < count; i++) { 490 KASSERT(vm_page_all_valid(mc[i]), 491 ("vm_pageout_flush: partially invalid page %p index %d/%d", 492 mc[i], i, count)); 493 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0, 494 ("vm_pageout_flush: writeable page %p", mc[i])); 495 vm_page_busy_downgrade(mc[i]); 496 } 497 vm_object_pip_add(object, count); 498 499 vm_pager_put_pages(object, mc, count, flags, pageout_status); 500 501 runlen = count - mreq; 502 if (eio != NULL) 503 *eio = FALSE; 504 for (i = 0; i < count; i++) { 505 vm_page_t mt = mc[i]; 506 507 KASSERT(pageout_status[i] == VM_PAGER_PEND || 508 !pmap_page_is_write_mapped(mt), 509 ("vm_pageout_flush: page %p is not write protected", mt)); 510 switch (pageout_status[i]) { 511 case VM_PAGER_OK: 512 /* 513 * The page may have moved since laundering started, in 514 * which case it should be left alone. 515 */ 516 if (vm_page_in_laundry(mt)) 517 vm_page_deactivate_noreuse(mt); 518 /* FALLTHROUGH */ 519 case VM_PAGER_PEND: 520 numpagedout++; 521 break; 522 case VM_PAGER_BAD: 523 /* 524 * The page is outside the object's range. We pretend 525 * that the page out worked and clean the page, so the 526 * changes will be lost if the page is reclaimed by 527 * the page daemon. 528 */ 529 vm_page_undirty(mt); 530 if (vm_page_in_laundry(mt)) 531 vm_page_deactivate_noreuse(mt); 532 break; 533 case VM_PAGER_ERROR: 534 case VM_PAGER_FAIL: 535 /* 536 * If the page couldn't be paged out to swap because the 537 * pager wasn't able to find space, place the page in 538 * the PQ_UNSWAPPABLE holding queue. This is an 539 * optimization that prevents the page daemon from 540 * wasting CPU cycles on pages that cannot be reclaimed 541 * because no swap device is configured. 542 * 543 * Otherwise, reactivate the page so that it doesn't 544 * clog the laundry and inactive queues. (We will try 545 * paging it out again later.) 546 */ 547 if ((object->flags & OBJ_SWAP) != 0 && 548 pageout_status[i] == VM_PAGER_FAIL) { 549 vm_page_unswappable(mt); 550 numpagedout++; 551 } else 552 vm_page_activate(mt); 553 if (eio != NULL && i >= mreq && i - mreq < runlen) 554 *eio = TRUE; 555 break; 556 case VM_PAGER_AGAIN: 557 if (i >= mreq && i - mreq < runlen) 558 runlen = i - mreq; 559 break; 560 } 561 562 /* 563 * If the operation is still going, leave the page busy to 564 * block all other accesses. Also, leave the paging in 565 * progress indicator set so that we don't attempt an object 566 * collapse. 567 */ 568 if (pageout_status[i] != VM_PAGER_PEND) { 569 vm_object_pip_wakeup(object); 570 vm_page_sunbusy(mt); 571 } 572 } 573 if (prunlen != NULL) 574 *prunlen = runlen; 575 return (numpagedout); 576 } 577 578 static void 579 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 580 { 581 582 atomic_store_rel_int(&swapdev_enabled, 1); 583 } 584 585 static void 586 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 587 { 588 589 if (swap_pager_nswapdev() == 1) 590 atomic_store_rel_int(&swapdev_enabled, 0); 591 } 592 593 /* 594 * Attempt to acquire all of the necessary locks to launder a page and 595 * then call through the clustering layer to PUTPAGES. Wait a short 596 * time for a vnode lock. 597 * 598 * Requires the page and object lock on entry, releases both before return. 599 * Returns 0 on success and an errno otherwise. 600 */ 601 static int 602 vm_pageout_clean(vm_page_t m, int *numpagedout) 603 { 604 struct vnode *vp; 605 struct mount *mp; 606 vm_object_t object; 607 vm_pindex_t pindex; 608 int error; 609 610 object = m->object; 611 VM_OBJECT_ASSERT_WLOCKED(object); 612 error = 0; 613 vp = NULL; 614 mp = NULL; 615 616 /* 617 * The object is already known NOT to be dead. It 618 * is possible for the vget() to block the whole 619 * pageout daemon, but the new low-memory handling 620 * code should prevent it. 621 * 622 * We can't wait forever for the vnode lock, we might 623 * deadlock due to a vn_read() getting stuck in 624 * vm_wait while holding this vnode. We skip the 625 * vnode if we can't get it in a reasonable amount 626 * of time. 627 */ 628 if (object->type == OBJT_VNODE) { 629 vm_page_xunbusy(m); 630 vp = object->handle; 631 if (vp->v_type == VREG && 632 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 633 mp = NULL; 634 error = EDEADLK; 635 goto unlock_all; 636 } 637 KASSERT(mp != NULL, 638 ("vp %p with NULL v_mount", vp)); 639 vm_object_reference_locked(object); 640 pindex = m->pindex; 641 VM_OBJECT_WUNLOCK(object); 642 if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) { 643 vp = NULL; 644 error = EDEADLK; 645 goto unlock_mp; 646 } 647 VM_OBJECT_WLOCK(object); 648 649 /* 650 * Ensure that the object and vnode were not disassociated 651 * while locks were dropped. 652 */ 653 if (vp->v_object != object) { 654 error = ENOENT; 655 goto unlock_all; 656 } 657 658 /* 659 * While the object was unlocked, the page may have been: 660 * (1) moved to a different queue, 661 * (2) reallocated to a different object, 662 * (3) reallocated to a different offset, or 663 * (4) cleaned. 664 */ 665 if (!vm_page_in_laundry(m) || m->object != object || 666 m->pindex != pindex || m->dirty == 0) { 667 error = ENXIO; 668 goto unlock_all; 669 } 670 671 /* 672 * The page may have been busied while the object lock was 673 * released. 674 */ 675 if (vm_page_tryxbusy(m) == 0) { 676 error = EBUSY; 677 goto unlock_all; 678 } 679 } 680 681 /* 682 * Remove all writeable mappings, failing if the page is wired. 683 */ 684 if (!vm_page_try_remove_write(m)) { 685 vm_page_xunbusy(m); 686 error = EBUSY; 687 goto unlock_all; 688 } 689 690 /* 691 * If a page is dirty, then it is either being washed 692 * (but not yet cleaned) or it is still in the 693 * laundry. If it is still in the laundry, then we 694 * start the cleaning operation. 695 */ 696 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 697 error = EIO; 698 699 unlock_all: 700 VM_OBJECT_WUNLOCK(object); 701 702 unlock_mp: 703 if (mp != NULL) { 704 if (vp != NULL) 705 vput(vp); 706 vm_object_deallocate(object); 707 vn_finished_write(mp); 708 } 709 710 return (error); 711 } 712 713 /* 714 * Attempt to launder the specified number of pages. 715 * 716 * Returns the number of pages successfully laundered. 717 */ 718 static int 719 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 720 { 721 struct scan_state ss; 722 struct vm_pagequeue *pq; 723 vm_object_t object; 724 vm_page_t m, marker; 725 vm_page_astate_t new, old; 726 int act_delta, error, numpagedout, queue, refs, starting_target; 727 int vnodes_skipped; 728 bool pageout_ok; 729 730 object = NULL; 731 starting_target = launder; 732 vnodes_skipped = 0; 733 734 /* 735 * Scan the laundry queues for pages eligible to be laundered. We stop 736 * once the target number of dirty pages have been laundered, or once 737 * we've reached the end of the queue. A single iteration of this loop 738 * may cause more than one page to be laundered because of clustering. 739 * 740 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 741 * swap devices are configured. 742 */ 743 if (atomic_load_acq_int(&swapdev_enabled)) 744 queue = PQ_UNSWAPPABLE; 745 else 746 queue = PQ_LAUNDRY; 747 748 scan: 749 marker = &vmd->vmd_markers[queue]; 750 pq = &vmd->vmd_pagequeues[queue]; 751 vm_pagequeue_lock(pq); 752 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 753 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) { 754 if (__predict_false((m->flags & PG_MARKER) != 0)) 755 continue; 756 757 /* 758 * Don't touch a page that was removed from the queue after the 759 * page queue lock was released. Otherwise, ensure that any 760 * pending queue operations, such as dequeues for wired pages, 761 * are handled. 762 */ 763 if (vm_pageout_defer(m, queue, true)) 764 continue; 765 766 /* 767 * Lock the page's object. 768 */ 769 if (object == NULL || object != m->object) { 770 if (object != NULL) 771 VM_OBJECT_WUNLOCK(object); 772 object = atomic_load_ptr(&m->object); 773 if (__predict_false(object == NULL)) 774 /* The page is being freed by another thread. */ 775 continue; 776 777 /* Depends on type-stability. */ 778 VM_OBJECT_WLOCK(object); 779 if (__predict_false(m->object != object)) { 780 VM_OBJECT_WUNLOCK(object); 781 object = NULL; 782 continue; 783 } 784 } 785 786 if (vm_page_tryxbusy(m) == 0) 787 continue; 788 789 /* 790 * Check for wirings now that we hold the object lock and have 791 * exclusively busied the page. If the page is mapped, it may 792 * still be wired by pmap lookups. The call to 793 * vm_page_try_remove_all() below atomically checks for such 794 * wirings and removes mappings. If the page is unmapped, the 795 * wire count is guaranteed not to increase after this check. 796 */ 797 if (__predict_false(vm_page_wired(m))) 798 goto skip_page; 799 800 /* 801 * Invalid pages can be easily freed. They cannot be 802 * mapped; vm_page_free() asserts this. 803 */ 804 if (vm_page_none_valid(m)) 805 goto free_page; 806 807 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 808 809 for (old = vm_page_astate_load(m);;) { 810 /* 811 * Check to see if the page has been removed from the 812 * queue since the first such check. Leave it alone if 813 * so, discarding any references collected by 814 * pmap_ts_referenced(). 815 */ 816 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) 817 goto skip_page; 818 819 new = old; 820 act_delta = refs; 821 if ((old.flags & PGA_REFERENCED) != 0) { 822 new.flags &= ~PGA_REFERENCED; 823 act_delta++; 824 } 825 if (act_delta == 0) { 826 ; 827 } else if (object->ref_count != 0) { 828 /* 829 * Increase the activation count if the page was 830 * referenced while in the laundry queue. This 831 * makes it less likely that the page will be 832 * returned prematurely to the laundry queue. 833 */ 834 new.act_count += ACT_ADVANCE + 835 act_delta; 836 if (new.act_count > ACT_MAX) 837 new.act_count = ACT_MAX; 838 839 new.flags &= ~PGA_QUEUE_OP_MASK; 840 new.flags |= PGA_REQUEUE; 841 new.queue = PQ_ACTIVE; 842 if (!vm_page_pqstate_commit(m, &old, new)) 843 continue; 844 845 /* 846 * If this was a background laundering, count 847 * activated pages towards our target. The 848 * purpose of background laundering is to ensure 849 * that pages are eventually cycled through the 850 * laundry queue, and an activation is a valid 851 * way out. 852 */ 853 if (!in_shortfall) 854 launder--; 855 VM_CNT_INC(v_reactivated); 856 goto skip_page; 857 } else if ((object->flags & OBJ_DEAD) == 0) { 858 new.flags |= PGA_REQUEUE; 859 if (!vm_page_pqstate_commit(m, &old, new)) 860 continue; 861 goto skip_page; 862 } 863 break; 864 } 865 866 /* 867 * If the page appears to be clean at the machine-independent 868 * layer, then remove all of its mappings from the pmap in 869 * anticipation of freeing it. If, however, any of the page's 870 * mappings allow write access, then the page may still be 871 * modified until the last of those mappings are removed. 872 */ 873 if (object->ref_count != 0) { 874 vm_page_test_dirty(m); 875 if (m->dirty == 0 && !vm_page_try_remove_all(m)) 876 goto skip_page; 877 } 878 879 /* 880 * Clean pages are freed, and dirty pages are paged out unless 881 * they belong to a dead object. Requeueing dirty pages from 882 * dead objects is pointless, as they are being paged out and 883 * freed by the thread that destroyed the object. 884 */ 885 if (m->dirty == 0) { 886 free_page: 887 /* 888 * Now we are guaranteed that no other threads are 889 * manipulating the page, check for a last-second 890 * reference. 891 */ 892 if (vm_pageout_defer(m, queue, true)) 893 goto skip_page; 894 vm_page_free(m); 895 VM_CNT_INC(v_dfree); 896 } else if ((object->flags & OBJ_DEAD) == 0) { 897 if ((object->flags & OBJ_SWAP) != 0) 898 pageout_ok = disable_swap_pageouts == 0; 899 else 900 pageout_ok = true; 901 if (!pageout_ok) { 902 vm_page_launder(m); 903 goto skip_page; 904 } 905 906 /* 907 * Form a cluster with adjacent, dirty pages from the 908 * same object, and page out that entire cluster. 909 * 910 * The adjacent, dirty pages must also be in the 911 * laundry. However, their mappings are not checked 912 * for new references. Consequently, a recently 913 * referenced page may be paged out. However, that 914 * page will not be prematurely reclaimed. After page 915 * out, the page will be placed in the inactive queue, 916 * where any new references will be detected and the 917 * page reactivated. 918 */ 919 error = vm_pageout_clean(m, &numpagedout); 920 if (error == 0) { 921 launder -= numpagedout; 922 ss.scanned += numpagedout; 923 } else if (error == EDEADLK) { 924 pageout_lock_miss++; 925 vnodes_skipped++; 926 } 927 object = NULL; 928 } else { 929 skip_page: 930 vm_page_xunbusy(m); 931 } 932 } 933 if (object != NULL) { 934 VM_OBJECT_WUNLOCK(object); 935 object = NULL; 936 } 937 vm_pagequeue_lock(pq); 938 vm_pageout_end_scan(&ss); 939 vm_pagequeue_unlock(pq); 940 941 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 942 queue = PQ_LAUNDRY; 943 goto scan; 944 } 945 946 /* 947 * Wakeup the sync daemon if we skipped a vnode in a writeable object 948 * and we didn't launder enough pages. 949 */ 950 if (vnodes_skipped > 0 && launder > 0) 951 (void)speedup_syncer(); 952 953 return (starting_target - launder); 954 } 955 956 /* 957 * Compute the integer square root. 958 */ 959 static u_int 960 isqrt(u_int num) 961 { 962 u_int bit, root, tmp; 963 964 bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0; 965 root = 0; 966 while (bit != 0) { 967 tmp = root + bit; 968 root >>= 1; 969 if (num >= tmp) { 970 num -= tmp; 971 root += bit; 972 } 973 bit >>= 2; 974 } 975 return (root); 976 } 977 978 /* 979 * Perform the work of the laundry thread: periodically wake up and determine 980 * whether any pages need to be laundered. If so, determine the number of pages 981 * that need to be laundered, and launder them. 982 */ 983 static void 984 vm_pageout_laundry_worker(void *arg) 985 { 986 struct vm_domain *vmd; 987 struct vm_pagequeue *pq; 988 uint64_t nclean, ndirty, nfreed; 989 int domain, last_target, launder, shortfall, shortfall_cycle, target; 990 bool in_shortfall; 991 992 domain = (uintptr_t)arg; 993 vmd = VM_DOMAIN(domain); 994 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 995 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 996 997 shortfall = 0; 998 in_shortfall = false; 999 shortfall_cycle = 0; 1000 last_target = target = 0; 1001 nfreed = 0; 1002 1003 /* 1004 * Calls to these handlers are serialized by the swap syscall lock. 1005 */ 1006 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 1007 EVENTHANDLER_PRI_ANY); 1008 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 1009 EVENTHANDLER_PRI_ANY); 1010 1011 /* 1012 * The pageout laundry worker is never done, so loop forever. 1013 */ 1014 for (;;) { 1015 KASSERT(target >= 0, ("negative target %d", target)); 1016 KASSERT(shortfall_cycle >= 0, 1017 ("negative cycle %d", shortfall_cycle)); 1018 launder = 0; 1019 1020 /* 1021 * First determine whether we need to launder pages to meet a 1022 * shortage of free pages. 1023 */ 1024 if (shortfall > 0) { 1025 in_shortfall = true; 1026 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 1027 target = shortfall; 1028 } else if (!in_shortfall) 1029 goto trybackground; 1030 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 1031 /* 1032 * We recently entered shortfall and began laundering 1033 * pages. If we have completed that laundering run 1034 * (and we are no longer in shortfall) or we have met 1035 * our laundry target through other activity, then we 1036 * can stop laundering pages. 1037 */ 1038 in_shortfall = false; 1039 target = 0; 1040 goto trybackground; 1041 } 1042 launder = target / shortfall_cycle--; 1043 goto dolaundry; 1044 1045 /* 1046 * There's no immediate need to launder any pages; see if we 1047 * meet the conditions to perform background laundering: 1048 * 1049 * 1. The ratio of dirty to clean inactive pages exceeds the 1050 * background laundering threshold, or 1051 * 2. we haven't yet reached the target of the current 1052 * background laundering run. 1053 * 1054 * The background laundering threshold is not a constant. 1055 * Instead, it is a slowly growing function of the number of 1056 * clean pages freed by the page daemon since the last 1057 * background laundering. Thus, as the ratio of dirty to 1058 * clean inactive pages grows, the amount of memory pressure 1059 * required to trigger laundering decreases. We ensure 1060 * that the threshold is non-zero after an inactive queue 1061 * scan, even if that scan failed to free a single clean page. 1062 */ 1063 trybackground: 1064 nclean = vmd->vmd_free_count + 1065 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1066 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1067 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1068 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1069 target = vmd->vmd_background_launder_target; 1070 } 1071 1072 /* 1073 * We have a non-zero background laundering target. If we've 1074 * laundered up to our maximum without observing a page daemon 1075 * request, just stop. This is a safety belt that ensures we 1076 * don't launder an excessive amount if memory pressure is low 1077 * and the ratio of dirty to clean pages is large. Otherwise, 1078 * proceed at the background laundering rate. 1079 */ 1080 if (target > 0) { 1081 if (nfreed > 0) { 1082 nfreed = 0; 1083 last_target = target; 1084 } else if (last_target - target >= 1085 vm_background_launder_max * PAGE_SIZE / 1024) { 1086 target = 0; 1087 } 1088 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1089 launder /= VM_LAUNDER_RATE; 1090 if (launder > target) 1091 launder = target; 1092 } 1093 1094 dolaundry: 1095 if (launder > 0) { 1096 /* 1097 * Because of I/O clustering, the number of laundered 1098 * pages could exceed "target" by the maximum size of 1099 * a cluster minus one. 1100 */ 1101 target -= min(vm_pageout_launder(vmd, launder, 1102 in_shortfall), target); 1103 pause("laundp", hz / VM_LAUNDER_RATE); 1104 } 1105 1106 /* 1107 * If we're not currently laundering pages and the page daemon 1108 * hasn't posted a new request, sleep until the page daemon 1109 * kicks us. 1110 */ 1111 vm_pagequeue_lock(pq); 1112 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1113 (void)mtx_sleep(&vmd->vmd_laundry_request, 1114 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1115 1116 /* 1117 * If the pagedaemon has indicated that it's in shortfall, start 1118 * a shortfall laundering unless we're already in the middle of 1119 * one. This may preempt a background laundering. 1120 */ 1121 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1122 (!in_shortfall || shortfall_cycle == 0)) { 1123 shortfall = vm_laundry_target(vmd) + 1124 vmd->vmd_pageout_deficit; 1125 target = 0; 1126 } else 1127 shortfall = 0; 1128 1129 if (target == 0) 1130 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1131 nfreed += vmd->vmd_clean_pages_freed; 1132 vmd->vmd_clean_pages_freed = 0; 1133 vm_pagequeue_unlock(pq); 1134 } 1135 } 1136 1137 /* 1138 * Compute the number of pages we want to try to move from the 1139 * active queue to either the inactive or laundry queue. 1140 * 1141 * When scanning active pages during a shortage, we make clean pages 1142 * count more heavily towards the page shortage than dirty pages. 1143 * This is because dirty pages must be laundered before they can be 1144 * reused and thus have less utility when attempting to quickly 1145 * alleviate a free page shortage. However, this weighting also 1146 * causes the scan to deactivate dirty pages more aggressively, 1147 * improving the effectiveness of clustering. 1148 */ 1149 static int 1150 vm_pageout_active_target(struct vm_domain *vmd) 1151 { 1152 int shortage; 1153 1154 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) - 1155 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt + 1156 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight); 1157 shortage *= act_scan_laundry_weight; 1158 return (shortage); 1159 } 1160 1161 /* 1162 * Scan the active queue. If there is no shortage of inactive pages, scan a 1163 * small portion of the queue in order to maintain quasi-LRU. 1164 */ 1165 static void 1166 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage) 1167 { 1168 struct scan_state ss; 1169 vm_object_t object; 1170 vm_page_t m, marker; 1171 struct vm_pagequeue *pq; 1172 vm_page_astate_t old, new; 1173 long min_scan; 1174 int act_delta, max_scan, ps_delta, refs, scan_tick; 1175 uint8_t nqueue; 1176 1177 marker = &vmd->vmd_markers[PQ_ACTIVE]; 1178 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1179 vm_pagequeue_lock(pq); 1180 1181 /* 1182 * If we're just idle polling attempt to visit every 1183 * active page within 'update_period' seconds. 1184 */ 1185 scan_tick = ticks; 1186 if (vm_pageout_update_period != 0) { 1187 min_scan = pq->pq_cnt; 1188 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1189 min_scan /= hz * vm_pageout_update_period; 1190 } else 1191 min_scan = 0; 1192 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0)) 1193 vmd->vmd_last_active_scan = scan_tick; 1194 1195 /* 1196 * Scan the active queue for pages that can be deactivated. Update 1197 * the per-page activity counter and use it to identify deactivation 1198 * candidates. Held pages may be deactivated. 1199 * 1200 * To avoid requeuing each page that remains in the active queue, we 1201 * implement the CLOCK algorithm. To keep the implementation of the 1202 * enqueue operation consistent for all page queues, we use two hands, 1203 * represented by marker pages. Scans begin at the first hand, which 1204 * precedes the second hand in the queue. When the two hands meet, 1205 * they are moved back to the head and tail of the queue, respectively, 1206 * and scanning resumes. 1207 */ 1208 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan; 1209 act_scan: 1210 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan); 1211 while ((m = vm_pageout_next(&ss, false)) != NULL) { 1212 if (__predict_false(m == &vmd->vmd_clock[1])) { 1213 vm_pagequeue_lock(pq); 1214 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1215 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q); 1216 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0], 1217 plinks.q); 1218 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1], 1219 plinks.q); 1220 max_scan -= ss.scanned; 1221 vm_pageout_end_scan(&ss); 1222 goto act_scan; 1223 } 1224 if (__predict_false((m->flags & PG_MARKER) != 0)) 1225 continue; 1226 1227 /* 1228 * Don't touch a page that was removed from the queue after the 1229 * page queue lock was released. Otherwise, ensure that any 1230 * pending queue operations, such as dequeues for wired pages, 1231 * are handled. 1232 */ 1233 if (vm_pageout_defer(m, PQ_ACTIVE, true)) 1234 continue; 1235 1236 /* 1237 * A page's object pointer may be set to NULL before 1238 * the object lock is acquired. 1239 */ 1240 object = atomic_load_ptr(&m->object); 1241 if (__predict_false(object == NULL)) 1242 /* 1243 * The page has been removed from its object. 1244 */ 1245 continue; 1246 1247 /* Deferred free of swap space. */ 1248 if ((m->a.flags & PGA_SWAP_FREE) != 0 && 1249 VM_OBJECT_TRYWLOCK(object)) { 1250 if (m->object == object) 1251 vm_pager_page_unswapped(m); 1252 VM_OBJECT_WUNLOCK(object); 1253 } 1254 1255 /* 1256 * Check to see "how much" the page has been used. 1257 * 1258 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1259 * that a reference from a concurrently destroyed mapping is 1260 * observed here and now. 1261 * 1262 * Perform an unsynchronized object ref count check. While 1263 * the page lock ensures that the page is not reallocated to 1264 * another object, in particular, one with unmanaged mappings 1265 * that cannot support pmap_ts_referenced(), two races are, 1266 * nonetheless, possible: 1267 * 1) The count was transitioning to zero, but we saw a non- 1268 * zero value. pmap_ts_referenced() will return zero 1269 * because the page is not mapped. 1270 * 2) The count was transitioning to one, but we saw zero. 1271 * This race delays the detection of a new reference. At 1272 * worst, we will deactivate and reactivate the page. 1273 */ 1274 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 1275 1276 old = vm_page_astate_load(m); 1277 do { 1278 /* 1279 * Check to see if the page has been removed from the 1280 * queue since the first such check. Leave it alone if 1281 * so, discarding any references collected by 1282 * pmap_ts_referenced(). 1283 */ 1284 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) { 1285 ps_delta = 0; 1286 break; 1287 } 1288 1289 /* 1290 * Advance or decay the act_count based on recent usage. 1291 */ 1292 new = old; 1293 act_delta = refs; 1294 if ((old.flags & PGA_REFERENCED) != 0) { 1295 new.flags &= ~PGA_REFERENCED; 1296 act_delta++; 1297 } 1298 if (act_delta != 0) { 1299 new.act_count += ACT_ADVANCE + act_delta; 1300 if (new.act_count > ACT_MAX) 1301 new.act_count = ACT_MAX; 1302 } else { 1303 new.act_count -= min(new.act_count, 1304 ACT_DECLINE); 1305 } 1306 1307 if (new.act_count > 0) { 1308 /* 1309 * Adjust the activation count and keep the page 1310 * in the active queue. The count might be left 1311 * unchanged if it is saturated. The page may 1312 * have been moved to a different queue since we 1313 * started the scan, in which case we move it 1314 * back. 1315 */ 1316 ps_delta = 0; 1317 if (old.queue != PQ_ACTIVE) { 1318 new.flags &= ~PGA_QUEUE_OP_MASK; 1319 new.flags |= PGA_REQUEUE; 1320 new.queue = PQ_ACTIVE; 1321 } 1322 } else { 1323 /* 1324 * When not short for inactive pages, let dirty 1325 * pages go through the inactive queue before 1326 * moving to the laundry queue. This gives them 1327 * some extra time to be reactivated, 1328 * potentially avoiding an expensive pageout. 1329 * However, during a page shortage, the inactive 1330 * queue is necessarily small, and so dirty 1331 * pages would only spend a trivial amount of 1332 * time in the inactive queue. Therefore, we 1333 * might as well place them directly in the 1334 * laundry queue to reduce queuing overhead. 1335 * 1336 * Calling vm_page_test_dirty() here would 1337 * require acquisition of the object's write 1338 * lock. However, during a page shortage, 1339 * directing dirty pages into the laundry queue 1340 * is only an optimization and not a 1341 * requirement. Therefore, we simply rely on 1342 * the opportunistic updates to the page's dirty 1343 * field by the pmap. 1344 */ 1345 if (page_shortage <= 0) { 1346 nqueue = PQ_INACTIVE; 1347 ps_delta = 0; 1348 } else if (m->dirty == 0) { 1349 nqueue = PQ_INACTIVE; 1350 ps_delta = act_scan_laundry_weight; 1351 } else { 1352 nqueue = PQ_LAUNDRY; 1353 ps_delta = 1; 1354 } 1355 1356 new.flags &= ~PGA_QUEUE_OP_MASK; 1357 new.flags |= PGA_REQUEUE; 1358 new.queue = nqueue; 1359 } 1360 } while (!vm_page_pqstate_commit(m, &old, new)); 1361 1362 page_shortage -= ps_delta; 1363 } 1364 vm_pagequeue_lock(pq); 1365 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1366 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q); 1367 vm_pageout_end_scan(&ss); 1368 vm_pagequeue_unlock(pq); 1369 } 1370 1371 static int 1372 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker, 1373 vm_page_t m) 1374 { 1375 vm_page_astate_t as; 1376 1377 vm_pagequeue_assert_locked(pq); 1378 1379 as = vm_page_astate_load(m); 1380 if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0) 1381 return (0); 1382 vm_page_aflag_set(m, PGA_ENQUEUED); 1383 TAILQ_INSERT_BEFORE(marker, m, plinks.q); 1384 return (1); 1385 } 1386 1387 /* 1388 * Re-add stuck pages to the inactive queue. We will examine them again 1389 * during the next scan. If the queue state of a page has changed since 1390 * it was physically removed from the page queue in 1391 * vm_pageout_collect_batch(), don't do anything with that page. 1392 */ 1393 static void 1394 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq, 1395 vm_page_t m) 1396 { 1397 struct vm_pagequeue *pq; 1398 vm_page_t marker; 1399 int delta; 1400 1401 delta = 0; 1402 marker = ss->marker; 1403 pq = ss->pq; 1404 1405 if (m != NULL) { 1406 if (vm_batchqueue_insert(bq, m) != 0) 1407 return; 1408 vm_pagequeue_lock(pq); 1409 delta += vm_pageout_reinsert_inactive_page(pq, marker, m); 1410 } else 1411 vm_pagequeue_lock(pq); 1412 while ((m = vm_batchqueue_pop(bq)) != NULL) 1413 delta += vm_pageout_reinsert_inactive_page(pq, marker, m); 1414 vm_pagequeue_cnt_add(pq, delta); 1415 vm_pagequeue_unlock(pq); 1416 vm_batchqueue_init(bq); 1417 } 1418 1419 static void 1420 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage) 1421 { 1422 struct timeval start, end; 1423 struct scan_state ss; 1424 struct vm_batchqueue rq; 1425 struct vm_page marker_page; 1426 vm_page_t m, marker; 1427 struct vm_pagequeue *pq; 1428 vm_object_t object; 1429 vm_page_astate_t old, new; 1430 int act_delta, addl_page_shortage, starting_page_shortage, refs; 1431 1432 object = NULL; 1433 vm_batchqueue_init(&rq); 1434 getmicrouptime(&start); 1435 1436 /* 1437 * The addl_page_shortage is an estimate of the number of temporarily 1438 * stuck pages in the inactive queue. In other words, the 1439 * number of pages from the inactive count that should be 1440 * discounted in setting the target for the active queue scan. 1441 */ 1442 addl_page_shortage = 0; 1443 1444 /* 1445 * Start scanning the inactive queue for pages that we can free. The 1446 * scan will stop when we reach the target or we have scanned the 1447 * entire queue. (Note that m->a.act_count is not used to make 1448 * decisions for the inactive queue, only for the active queue.) 1449 */ 1450 starting_page_shortage = page_shortage; 1451 marker = &marker_page; 1452 vm_page_init_marker(marker, PQ_INACTIVE, 0); 1453 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1454 vm_pagequeue_lock(pq); 1455 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 1456 while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) { 1457 KASSERT((m->flags & PG_MARKER) == 0, 1458 ("marker page %p was dequeued", m)); 1459 1460 /* 1461 * Don't touch a page that was removed from the queue after the 1462 * page queue lock was released. Otherwise, ensure that any 1463 * pending queue operations, such as dequeues for wired pages, 1464 * are handled. 1465 */ 1466 if (vm_pageout_defer(m, PQ_INACTIVE, false)) 1467 continue; 1468 1469 /* 1470 * Lock the page's object. 1471 */ 1472 if (object == NULL || object != m->object) { 1473 if (object != NULL) 1474 VM_OBJECT_WUNLOCK(object); 1475 object = atomic_load_ptr(&m->object); 1476 if (__predict_false(object == NULL)) 1477 /* The page is being freed by another thread. */ 1478 continue; 1479 1480 /* Depends on type-stability. */ 1481 VM_OBJECT_WLOCK(object); 1482 if (__predict_false(m->object != object)) { 1483 VM_OBJECT_WUNLOCK(object); 1484 object = NULL; 1485 goto reinsert; 1486 } 1487 } 1488 1489 if (vm_page_tryxbusy(m) == 0) { 1490 /* 1491 * Don't mess with busy pages. Leave them at 1492 * the front of the queue. Most likely, they 1493 * are being paged out and will leave the 1494 * queue shortly after the scan finishes. So, 1495 * they ought to be discounted from the 1496 * inactive count. 1497 */ 1498 addl_page_shortage++; 1499 goto reinsert; 1500 } 1501 1502 /* Deferred free of swap space. */ 1503 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1504 vm_pager_page_unswapped(m); 1505 1506 /* 1507 * Check for wirings now that we hold the object lock and have 1508 * exclusively busied the page. If the page is mapped, it may 1509 * still be wired by pmap lookups. The call to 1510 * vm_page_try_remove_all() below atomically checks for such 1511 * wirings and removes mappings. If the page is unmapped, the 1512 * wire count is guaranteed not to increase after this check. 1513 */ 1514 if (__predict_false(vm_page_wired(m))) 1515 goto skip_page; 1516 1517 /* 1518 * Invalid pages can be easily freed. They cannot be 1519 * mapped, vm_page_free() asserts this. 1520 */ 1521 if (vm_page_none_valid(m)) 1522 goto free_page; 1523 1524 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 1525 1526 for (old = vm_page_astate_load(m);;) { 1527 /* 1528 * Check to see if the page has been removed from the 1529 * queue since the first such check. Leave it alone if 1530 * so, discarding any references collected by 1531 * pmap_ts_referenced(). 1532 */ 1533 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) 1534 goto skip_page; 1535 1536 new = old; 1537 act_delta = refs; 1538 if ((old.flags & PGA_REFERENCED) != 0) { 1539 new.flags &= ~PGA_REFERENCED; 1540 act_delta++; 1541 } 1542 if (act_delta == 0) { 1543 ; 1544 } else if (object->ref_count != 0) { 1545 /* 1546 * Increase the activation count if the 1547 * page was referenced while in the 1548 * inactive queue. This makes it less 1549 * likely that the page will be returned 1550 * prematurely to the inactive queue. 1551 */ 1552 new.act_count += ACT_ADVANCE + 1553 act_delta; 1554 if (new.act_count > ACT_MAX) 1555 new.act_count = ACT_MAX; 1556 1557 new.flags &= ~PGA_QUEUE_OP_MASK; 1558 new.flags |= PGA_REQUEUE; 1559 new.queue = PQ_ACTIVE; 1560 if (!vm_page_pqstate_commit(m, &old, new)) 1561 continue; 1562 1563 VM_CNT_INC(v_reactivated); 1564 goto skip_page; 1565 } else if ((object->flags & OBJ_DEAD) == 0) { 1566 new.queue = PQ_INACTIVE; 1567 new.flags |= PGA_REQUEUE; 1568 if (!vm_page_pqstate_commit(m, &old, new)) 1569 continue; 1570 goto skip_page; 1571 } 1572 break; 1573 } 1574 1575 /* 1576 * If the page appears to be clean at the machine-independent 1577 * layer, then remove all of its mappings from the pmap in 1578 * anticipation of freeing it. If, however, any of the page's 1579 * mappings allow write access, then the page may still be 1580 * modified until the last of those mappings are removed. 1581 */ 1582 if (object->ref_count != 0) { 1583 vm_page_test_dirty(m); 1584 if (m->dirty == 0 && !vm_page_try_remove_all(m)) 1585 goto skip_page; 1586 } 1587 1588 /* 1589 * Clean pages can be freed, but dirty pages must be sent back 1590 * to the laundry, unless they belong to a dead object. 1591 * Requeueing dirty pages from dead objects is pointless, as 1592 * they are being paged out and freed by the thread that 1593 * destroyed the object. 1594 */ 1595 if (m->dirty == 0) { 1596 free_page: 1597 /* 1598 * Now we are guaranteed that no other threads are 1599 * manipulating the page, check for a last-second 1600 * reference that would save it from doom. 1601 */ 1602 if (vm_pageout_defer(m, PQ_INACTIVE, false)) 1603 goto skip_page; 1604 1605 /* 1606 * Because we dequeued the page and have already checked 1607 * for pending dequeue and enqueue requests, we can 1608 * safely disassociate the page from the inactive queue 1609 * without holding the queue lock. 1610 */ 1611 m->a.queue = PQ_NONE; 1612 vm_page_free(m); 1613 page_shortage--; 1614 continue; 1615 } 1616 if ((object->flags & OBJ_DEAD) == 0) 1617 vm_page_launder(m); 1618 skip_page: 1619 vm_page_xunbusy(m); 1620 continue; 1621 reinsert: 1622 vm_pageout_reinsert_inactive(&ss, &rq, m); 1623 } 1624 if (object != NULL) 1625 VM_OBJECT_WUNLOCK(object); 1626 vm_pageout_reinsert_inactive(&ss, &rq, NULL); 1627 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL); 1628 vm_pagequeue_lock(pq); 1629 vm_pageout_end_scan(&ss); 1630 vm_pagequeue_unlock(pq); 1631 1632 /* 1633 * Record the remaining shortage and the progress and rate it was made. 1634 */ 1635 atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage); 1636 getmicrouptime(&end); 1637 timevalsub(&end, &start); 1638 atomic_add_int(&vmd->vmd_inactive_us, 1639 end.tv_sec * 1000000 + end.tv_usec); 1640 atomic_add_int(&vmd->vmd_inactive_freed, 1641 starting_page_shortage - page_shortage); 1642 } 1643 1644 /* 1645 * Dispatch a number of inactive threads according to load and collect the 1646 * results to present a coherent view of paging activity on this domain. 1647 */ 1648 static int 1649 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage) 1650 { 1651 u_int freed, pps, slop, threads, us; 1652 1653 vmd->vmd_inactive_shortage = shortage; 1654 slop = 0; 1655 1656 /* 1657 * If we have more work than we can do in a quarter of our interval, we 1658 * fire off multiple threads to process it. 1659 */ 1660 threads = vmd->vmd_inactive_threads; 1661 if (threads > 1 && vmd->vmd_inactive_pps != 0 && 1662 shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) { 1663 vmd->vmd_inactive_shortage /= threads; 1664 slop = shortage % threads; 1665 vm_domain_pageout_lock(vmd); 1666 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1); 1667 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1); 1668 wakeup(&vmd->vmd_inactive_shortage); 1669 vm_domain_pageout_unlock(vmd); 1670 } 1671 1672 /* Run the local thread scan. */ 1673 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop); 1674 1675 /* 1676 * Block until helper threads report results and then accumulate 1677 * totals. 1678 */ 1679 blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM); 1680 freed = atomic_readandclear_int(&vmd->vmd_inactive_freed); 1681 VM_CNT_ADD(v_dfree, freed); 1682 1683 /* 1684 * Calculate the per-thread paging rate with an exponential decay of 1685 * prior results. Careful to avoid integer rounding errors with large 1686 * us values. 1687 */ 1688 us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1); 1689 if (us > 1000000) 1690 /* Keep rounding to tenths */ 1691 pps = (freed * 10) / ((us * 10) / 1000000); 1692 else 1693 pps = (1000000 / us) * freed; 1694 vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2); 1695 1696 return (shortage - freed); 1697 } 1698 1699 /* 1700 * Attempt to reclaim the requested number of pages from the inactive queue. 1701 * Returns true if the shortage was addressed. 1702 */ 1703 static int 1704 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage) 1705 { 1706 struct vm_pagequeue *pq; 1707 u_int addl_page_shortage, deficit, page_shortage; 1708 u_int starting_page_shortage; 1709 1710 /* 1711 * vmd_pageout_deficit counts the number of pages requested in 1712 * allocations that failed because of a free page shortage. We assume 1713 * that the allocations will be reattempted and thus include the deficit 1714 * in our scan target. 1715 */ 1716 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1717 starting_page_shortage = shortage + deficit; 1718 1719 /* 1720 * Run the inactive scan on as many threads as is necessary. 1721 */ 1722 page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage); 1723 addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage); 1724 1725 /* 1726 * Wake up the laundry thread so that it can perform any needed 1727 * laundering. If we didn't meet our target, we're in shortfall and 1728 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1729 * swap devices are configured, the laundry thread has no work to do, so 1730 * don't bother waking it up. 1731 * 1732 * The laundry thread uses the number of inactive queue scans elapsed 1733 * since the last laundering to determine whether to launder again, so 1734 * keep count. 1735 */ 1736 if (starting_page_shortage > 0) { 1737 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1738 vm_pagequeue_lock(pq); 1739 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1740 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1741 if (page_shortage > 0) { 1742 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1743 VM_CNT_INC(v_pdshortfalls); 1744 } else if (vmd->vmd_laundry_request != 1745 VM_LAUNDRY_SHORTFALL) 1746 vmd->vmd_laundry_request = 1747 VM_LAUNDRY_BACKGROUND; 1748 wakeup(&vmd->vmd_laundry_request); 1749 } 1750 vmd->vmd_clean_pages_freed += 1751 starting_page_shortage - page_shortage; 1752 vm_pagequeue_unlock(pq); 1753 } 1754 1755 /* 1756 * Wakeup the swapout daemon if we didn't free the targeted number of 1757 * pages. 1758 */ 1759 if (page_shortage > 0) 1760 vm_swapout_run(); 1761 1762 /* 1763 * If the inactive queue scan fails repeatedly to meet its 1764 * target, kill the largest process. 1765 */ 1766 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1767 1768 /* 1769 * Reclaim pages by swapping out idle processes, if configured to do so. 1770 */ 1771 vm_swapout_run_idle(); 1772 1773 /* 1774 * See the description of addl_page_shortage above. 1775 */ 1776 *addl_shortage = addl_page_shortage + deficit; 1777 1778 return (page_shortage <= 0); 1779 } 1780 1781 static int vm_pageout_oom_vote; 1782 1783 /* 1784 * The pagedaemon threads randlomly select one to perform the 1785 * OOM. Trying to kill processes before all pagedaemons 1786 * failed to reach free target is premature. 1787 */ 1788 static void 1789 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1790 int starting_page_shortage) 1791 { 1792 int old_vote; 1793 1794 if (starting_page_shortage <= 0 || starting_page_shortage != 1795 page_shortage) 1796 vmd->vmd_oom_seq = 0; 1797 else 1798 vmd->vmd_oom_seq++; 1799 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1800 if (vmd->vmd_oom) { 1801 vmd->vmd_oom = FALSE; 1802 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1803 } 1804 return; 1805 } 1806 1807 /* 1808 * Do not follow the call sequence until OOM condition is 1809 * cleared. 1810 */ 1811 vmd->vmd_oom_seq = 0; 1812 1813 if (vmd->vmd_oom) 1814 return; 1815 1816 vmd->vmd_oom = TRUE; 1817 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1818 if (old_vote != vm_ndomains - 1) 1819 return; 1820 1821 /* 1822 * The current pagedaemon thread is the last in the quorum to 1823 * start OOM. Initiate the selection and signaling of the 1824 * victim. 1825 */ 1826 vm_pageout_oom(VM_OOM_MEM); 1827 1828 /* 1829 * After one round of OOM terror, recall our vote. On the 1830 * next pass, current pagedaemon would vote again if the low 1831 * memory condition is still there, due to vmd_oom being 1832 * false. 1833 */ 1834 vmd->vmd_oom = FALSE; 1835 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1836 } 1837 1838 /* 1839 * The OOM killer is the page daemon's action of last resort when 1840 * memory allocation requests have been stalled for a prolonged period 1841 * of time because it cannot reclaim memory. This function computes 1842 * the approximate number of physical pages that could be reclaimed if 1843 * the specified address space is destroyed. 1844 * 1845 * Private, anonymous memory owned by the address space is the 1846 * principal resource that we expect to recover after an OOM kill. 1847 * Since the physical pages mapped by the address space's COW entries 1848 * are typically shared pages, they are unlikely to be released and so 1849 * they are not counted. 1850 * 1851 * To get to the point where the page daemon runs the OOM killer, its 1852 * efforts to write-back vnode-backed pages may have stalled. This 1853 * could be caused by a memory allocation deadlock in the write path 1854 * that might be resolved by an OOM kill. Therefore, physical pages 1855 * belonging to vnode-backed objects are counted, because they might 1856 * be freed without being written out first if the address space holds 1857 * the last reference to an unlinked vnode. 1858 * 1859 * Similarly, physical pages belonging to OBJT_PHYS objects are 1860 * counted because the address space might hold the last reference to 1861 * the object. 1862 */ 1863 static long 1864 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1865 { 1866 vm_map_t map; 1867 vm_map_entry_t entry; 1868 vm_object_t obj; 1869 long res; 1870 1871 map = &vmspace->vm_map; 1872 KASSERT(!map->system_map, ("system map")); 1873 sx_assert(&map->lock, SA_LOCKED); 1874 res = 0; 1875 VM_MAP_ENTRY_FOREACH(entry, map) { 1876 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1877 continue; 1878 obj = entry->object.vm_object; 1879 if (obj == NULL) 1880 continue; 1881 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1882 obj->ref_count != 1) 1883 continue; 1884 if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE || 1885 (obj->flags & OBJ_SWAP) != 0) 1886 res += obj->resident_page_count; 1887 } 1888 return (res); 1889 } 1890 1891 static int vm_oom_ratelim_last; 1892 static int vm_oom_pf_secs = 10; 1893 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0, 1894 ""); 1895 static struct mtx vm_oom_ratelim_mtx; 1896 1897 void 1898 vm_pageout_oom(int shortage) 1899 { 1900 const char *reason; 1901 struct proc *p, *bigproc; 1902 vm_offset_t size, bigsize; 1903 struct thread *td; 1904 struct vmspace *vm; 1905 int now; 1906 bool breakout; 1907 1908 /* 1909 * For OOM requests originating from vm_fault(), there is a high 1910 * chance that a single large process faults simultaneously in 1911 * several threads. Also, on an active system running many 1912 * processes of middle-size, like buildworld, all of them 1913 * could fault almost simultaneously as well. 1914 * 1915 * To avoid killing too many processes, rate-limit OOMs 1916 * initiated by vm_fault() time-outs on the waits for free 1917 * pages. 1918 */ 1919 mtx_lock(&vm_oom_ratelim_mtx); 1920 now = ticks; 1921 if (shortage == VM_OOM_MEM_PF && 1922 (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) { 1923 mtx_unlock(&vm_oom_ratelim_mtx); 1924 return; 1925 } 1926 vm_oom_ratelim_last = now; 1927 mtx_unlock(&vm_oom_ratelim_mtx); 1928 1929 /* 1930 * We keep the process bigproc locked once we find it to keep anyone 1931 * from messing with it; however, there is a possibility of 1932 * deadlock if process B is bigproc and one of its child processes 1933 * attempts to propagate a signal to B while we are waiting for A's 1934 * lock while walking this list. To avoid this, we don't block on 1935 * the process lock but just skip a process if it is already locked. 1936 */ 1937 bigproc = NULL; 1938 bigsize = 0; 1939 sx_slock(&allproc_lock); 1940 FOREACH_PROC_IN_SYSTEM(p) { 1941 PROC_LOCK(p); 1942 1943 /* 1944 * If this is a system, protected or killed process, skip it. 1945 */ 1946 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1947 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1948 p->p_pid == 1 || P_KILLED(p) || 1949 (p->p_pid < 48 && swap_pager_avail != 0)) { 1950 PROC_UNLOCK(p); 1951 continue; 1952 } 1953 /* 1954 * If the process is in a non-running type state, 1955 * don't touch it. Check all the threads individually. 1956 */ 1957 breakout = false; 1958 FOREACH_THREAD_IN_PROC(p, td) { 1959 thread_lock(td); 1960 if (!TD_ON_RUNQ(td) && 1961 !TD_IS_RUNNING(td) && 1962 !TD_IS_SLEEPING(td) && 1963 !TD_IS_SUSPENDED(td) && 1964 !TD_IS_SWAPPED(td)) { 1965 thread_unlock(td); 1966 breakout = true; 1967 break; 1968 } 1969 thread_unlock(td); 1970 } 1971 if (breakout) { 1972 PROC_UNLOCK(p); 1973 continue; 1974 } 1975 /* 1976 * get the process size 1977 */ 1978 vm = vmspace_acquire_ref(p); 1979 if (vm == NULL) { 1980 PROC_UNLOCK(p); 1981 continue; 1982 } 1983 _PHOLD_LITE(p); 1984 PROC_UNLOCK(p); 1985 sx_sunlock(&allproc_lock); 1986 if (!vm_map_trylock_read(&vm->vm_map)) { 1987 vmspace_free(vm); 1988 sx_slock(&allproc_lock); 1989 PRELE(p); 1990 continue; 1991 } 1992 size = vmspace_swap_count(vm); 1993 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF) 1994 size += vm_pageout_oom_pagecount(vm); 1995 vm_map_unlock_read(&vm->vm_map); 1996 vmspace_free(vm); 1997 sx_slock(&allproc_lock); 1998 1999 /* 2000 * If this process is bigger than the biggest one, 2001 * remember it. 2002 */ 2003 if (size > bigsize) { 2004 if (bigproc != NULL) 2005 PRELE(bigproc); 2006 bigproc = p; 2007 bigsize = size; 2008 } else { 2009 PRELE(p); 2010 } 2011 } 2012 sx_sunlock(&allproc_lock); 2013 2014 if (bigproc != NULL) { 2015 switch (shortage) { 2016 case VM_OOM_MEM: 2017 reason = "failed to reclaim memory"; 2018 break; 2019 case VM_OOM_MEM_PF: 2020 reason = "a thread waited too long to allocate a page"; 2021 break; 2022 case VM_OOM_SWAPZ: 2023 reason = "out of swap space"; 2024 break; 2025 default: 2026 panic("unknown OOM reason %d", shortage); 2027 } 2028 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0) 2029 panic("%s", reason); 2030 PROC_LOCK(bigproc); 2031 killproc(bigproc, reason); 2032 sched_nice(bigproc, PRIO_MIN); 2033 _PRELE(bigproc); 2034 PROC_UNLOCK(bigproc); 2035 } 2036 } 2037 2038 /* 2039 * Signal a free page shortage to subsystems that have registered an event 2040 * handler. Reclaim memory from UMA in the event of a severe shortage. 2041 * Return true if the free page count should be re-evaluated. 2042 */ 2043 static bool 2044 vm_pageout_lowmem(void) 2045 { 2046 static int lowmem_ticks = 0; 2047 int last; 2048 bool ret; 2049 2050 ret = false; 2051 2052 last = atomic_load_int(&lowmem_ticks); 2053 while ((u_int)(ticks - last) / hz >= lowmem_period) { 2054 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0) 2055 continue; 2056 2057 /* 2058 * Decrease registered cache sizes. 2059 */ 2060 SDT_PROBE0(vm, , , vm__lowmem_scan); 2061 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 2062 2063 /* 2064 * We do this explicitly after the caches have been 2065 * drained above. 2066 */ 2067 uma_reclaim(UMA_RECLAIM_TRIM); 2068 ret = true; 2069 break; 2070 } 2071 2072 /* 2073 * Kick off an asynchronous reclaim of cached memory if one of the 2074 * page daemons is failing to keep up with demand. Use the "severe" 2075 * threshold instead of "min" to ensure that we do not blow away the 2076 * caches if a subset of the NUMA domains are depleted by kernel memory 2077 * allocations; the domainset iterators automatically skip domains 2078 * below the "min" threshold on the first pass. 2079 * 2080 * UMA reclaim worker has its own rate-limiting mechanism, so don't 2081 * worry about kicking it too often. 2082 */ 2083 if (vm_page_count_severe()) 2084 uma_reclaim_wakeup(); 2085 2086 return (ret); 2087 } 2088 2089 static void 2090 vm_pageout_worker(void *arg) 2091 { 2092 struct vm_domain *vmd; 2093 u_int ofree; 2094 int addl_shortage, domain, shortage; 2095 bool target_met; 2096 2097 domain = (uintptr_t)arg; 2098 vmd = VM_DOMAIN(domain); 2099 shortage = 0; 2100 target_met = true; 2101 2102 /* 2103 * XXXKIB It could be useful to bind pageout daemon threads to 2104 * the cores belonging to the domain, from which vm_page_array 2105 * is allocated. 2106 */ 2107 2108 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 2109 vmd->vmd_last_active_scan = ticks; 2110 2111 /* 2112 * The pageout daemon worker is never done, so loop forever. 2113 */ 2114 while (TRUE) { 2115 vm_domain_pageout_lock(vmd); 2116 2117 /* 2118 * We need to clear wanted before we check the limits. This 2119 * prevents races with wakers who will check wanted after they 2120 * reach the limit. 2121 */ 2122 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 2123 2124 /* 2125 * Might the page daemon need to run again? 2126 */ 2127 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 2128 /* 2129 * Yes. If the scan failed to produce enough free 2130 * pages, sleep uninterruptibly for some time in the 2131 * hope that the laundry thread will clean some pages. 2132 */ 2133 vm_domain_pageout_unlock(vmd); 2134 if (!target_met) 2135 pause("pwait", hz / VM_INACT_SCAN_RATE); 2136 } else { 2137 /* 2138 * No, sleep until the next wakeup or until pages 2139 * need to have their reference stats updated. 2140 */ 2141 if (mtx_sleep(&vmd->vmd_pageout_wanted, 2142 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 2143 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 2144 VM_CNT_INC(v_pdwakeups); 2145 } 2146 2147 /* Prevent spurious wakeups by ensuring that wanted is set. */ 2148 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2149 2150 /* 2151 * Use the controller to calculate how many pages to free in 2152 * this interval, and scan the inactive queue. If the lowmem 2153 * handlers appear to have freed up some pages, subtract the 2154 * difference from the inactive queue scan target. 2155 */ 2156 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 2157 if (shortage > 0) { 2158 ofree = vmd->vmd_free_count; 2159 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree) 2160 shortage -= min(vmd->vmd_free_count - ofree, 2161 (u_int)shortage); 2162 target_met = vm_pageout_inactive(vmd, shortage, 2163 &addl_shortage); 2164 } else 2165 addl_shortage = 0; 2166 2167 /* 2168 * Scan the active queue. A positive value for shortage 2169 * indicates that we must aggressively deactivate pages to avoid 2170 * a shortfall. 2171 */ 2172 shortage = vm_pageout_active_target(vmd) + addl_shortage; 2173 vm_pageout_scan_active(vmd, shortage); 2174 } 2175 } 2176 2177 /* 2178 * vm_pageout_helper runs additional pageout daemons in times of high paging 2179 * activity. 2180 */ 2181 static void 2182 vm_pageout_helper(void *arg) 2183 { 2184 struct vm_domain *vmd; 2185 int domain; 2186 2187 domain = (uintptr_t)arg; 2188 vmd = VM_DOMAIN(domain); 2189 2190 vm_domain_pageout_lock(vmd); 2191 for (;;) { 2192 msleep(&vmd->vmd_inactive_shortage, 2193 vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0); 2194 blockcount_release(&vmd->vmd_inactive_starting, 1); 2195 2196 vm_domain_pageout_unlock(vmd); 2197 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage); 2198 vm_domain_pageout_lock(vmd); 2199 2200 /* 2201 * Release the running count while the pageout lock is held to 2202 * prevent wakeup races. 2203 */ 2204 blockcount_release(&vmd->vmd_inactive_running, 1); 2205 } 2206 } 2207 2208 static int 2209 get_pageout_threads_per_domain(const struct vm_domain *vmd) 2210 { 2211 unsigned total_pageout_threads, eligible_cpus, domain_cpus; 2212 2213 if (VM_DOMAIN_EMPTY(vmd->vmd_domain)) 2214 return (0); 2215 2216 /* 2217 * Semi-arbitrarily constrain pagedaemon threads to less than half the 2218 * total number of CPUs in the system as an upper limit. 2219 */ 2220 if (pageout_cpus_per_thread < 2) 2221 pageout_cpus_per_thread = 2; 2222 else if (pageout_cpus_per_thread > mp_ncpus) 2223 pageout_cpus_per_thread = mp_ncpus; 2224 2225 total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread); 2226 domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]); 2227 2228 /* Pagedaemons are not run in empty domains. */ 2229 eligible_cpus = mp_ncpus; 2230 for (unsigned i = 0; i < vm_ndomains; i++) 2231 if (VM_DOMAIN_EMPTY(i)) 2232 eligible_cpus -= CPU_COUNT(&cpuset_domain[i]); 2233 2234 /* 2235 * Assign a portion of the total pageout threads to this domain 2236 * corresponding to the fraction of pagedaemon-eligible CPUs in the 2237 * domain. In asymmetric NUMA systems, domains with more CPUs may be 2238 * allocated more threads than domains with fewer CPUs. 2239 */ 2240 return (howmany(total_pageout_threads * domain_cpus, eligible_cpus)); 2241 } 2242 2243 /* 2244 * Initialize basic pageout daemon settings. See the comment above the 2245 * definition of vm_domain for some explanation of how these thresholds are 2246 * used. 2247 */ 2248 static void 2249 vm_pageout_init_domain(int domain) 2250 { 2251 struct vm_domain *vmd; 2252 struct sysctl_oid *oid; 2253 2254 vmd = VM_DOMAIN(domain); 2255 vmd->vmd_interrupt_free_min = 2; 2256 2257 /* 2258 * v_free_reserved needs to include enough for the largest 2259 * swap pager structures plus enough for any pv_entry structs 2260 * when paging. 2261 */ 2262 vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE + 2263 vmd->vmd_interrupt_free_min; 2264 vmd->vmd_free_reserved = vm_pageout_page_count + 2265 vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768; 2266 vmd->vmd_free_min = vmd->vmd_page_count / 200; 2267 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 2268 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 2269 vmd->vmd_free_min += vmd->vmd_free_reserved; 2270 vmd->vmd_free_severe += vmd->vmd_free_reserved; 2271 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 2272 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 2273 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 2274 2275 /* 2276 * Set the default wakeup threshold to be 10% below the paging 2277 * target. This keeps the steady state out of shortfall. 2278 */ 2279 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 2280 2281 /* 2282 * Target amount of memory to move out of the laundry queue during a 2283 * background laundering. This is proportional to the amount of system 2284 * memory. 2285 */ 2286 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 2287 vmd->vmd_free_min) / 10; 2288 2289 /* Initialize the pageout daemon pid controller. */ 2290 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 2291 vmd->vmd_free_target, PIDCTRL_BOUND, 2292 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 2293 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 2294 "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2295 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 2296 2297 vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd); 2298 } 2299 2300 static void 2301 vm_pageout_init(void) 2302 { 2303 u_long freecount; 2304 int i; 2305 2306 /* 2307 * Initialize some paging parameters. 2308 */ 2309 if (vm_cnt.v_page_count < 2000) 2310 vm_pageout_page_count = 8; 2311 2312 freecount = 0; 2313 for (i = 0; i < vm_ndomains; i++) { 2314 struct vm_domain *vmd; 2315 2316 vm_pageout_init_domain(i); 2317 vmd = VM_DOMAIN(i); 2318 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 2319 vm_cnt.v_free_target += vmd->vmd_free_target; 2320 vm_cnt.v_free_min += vmd->vmd_free_min; 2321 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 2322 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 2323 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 2324 vm_cnt.v_free_severe += vmd->vmd_free_severe; 2325 freecount += vmd->vmd_free_count; 2326 } 2327 2328 /* 2329 * Set interval in seconds for active scan. We want to visit each 2330 * page at least once every ten minutes. This is to prevent worst 2331 * case paging behaviors with stale active LRU. 2332 */ 2333 if (vm_pageout_update_period == 0) 2334 vm_pageout_update_period = 600; 2335 2336 /* 2337 * Set the maximum number of user-wired virtual pages. Historically the 2338 * main source of such pages was mlock(2) and mlockall(2). Hypervisors 2339 * may also request user-wired memory. 2340 */ 2341 if (vm_page_max_user_wired == 0) 2342 vm_page_max_user_wired = 4 * freecount / 5; 2343 } 2344 2345 /* 2346 * vm_pageout is the high level pageout daemon. 2347 */ 2348 static void 2349 vm_pageout(void) 2350 { 2351 struct proc *p; 2352 struct thread *td; 2353 int error, first, i, j, pageout_threads; 2354 2355 p = curproc; 2356 td = curthread; 2357 2358 mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF); 2359 swap_pager_swap_init(); 2360 for (first = -1, i = 0; i < vm_ndomains; i++) { 2361 if (VM_DOMAIN_EMPTY(i)) { 2362 if (bootverbose) 2363 printf("domain %d empty; skipping pageout\n", 2364 i); 2365 continue; 2366 } 2367 if (first == -1) 2368 first = i; 2369 else { 2370 error = kthread_add(vm_pageout_worker, 2371 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i); 2372 if (error != 0) 2373 panic("starting pageout for domain %d: %d\n", 2374 i, error); 2375 } 2376 pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads; 2377 for (j = 0; j < pageout_threads - 1; j++) { 2378 error = kthread_add(vm_pageout_helper, 2379 (void *)(uintptr_t)i, p, NULL, 0, 0, 2380 "dom%d helper%d", i, j); 2381 if (error != 0) 2382 panic("starting pageout helper %d for domain " 2383 "%d: %d\n", j, i, error); 2384 } 2385 error = kthread_add(vm_pageout_laundry_worker, 2386 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i); 2387 if (error != 0) 2388 panic("starting laundry for domain %d: %d", i, error); 2389 } 2390 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma"); 2391 if (error != 0) 2392 panic("starting uma_reclaim helper, error %d\n", error); 2393 2394 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first); 2395 vm_pageout_worker((void *)(uintptr_t)first); 2396 } 2397 2398 /* 2399 * Perform an advisory wakeup of the page daemon. 2400 */ 2401 void 2402 pagedaemon_wakeup(int domain) 2403 { 2404 struct vm_domain *vmd; 2405 2406 vmd = VM_DOMAIN(domain); 2407 vm_domain_pageout_assert_unlocked(vmd); 2408 if (curproc == pageproc) 2409 return; 2410 2411 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 2412 vm_domain_pageout_lock(vmd); 2413 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2414 wakeup(&vmd->vmd_pageout_wanted); 2415 vm_domain_pageout_unlock(vmd); 2416 } 2417 } 2418