xref: /freebsd/sys/vm/vm_pageout.c (revision 780fb4a2fa9a9aee5ac48a60b790f567c0dc13e9)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72 
73 /*
74  *	The proverbial page-out daemon.
75  */
76 
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79 
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104 
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117 
118 /*
119  * System initialization
120  */
121 
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
128     int starting_page_shortage);
129 
130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
131     NULL);
132 
133 struct proc *pageproc;
134 
135 static struct kproc_desc page_kp = {
136 	"pagedaemon",
137 	vm_pageout,
138 	&pageproc
139 };
140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
141     &page_kp);
142 
143 SDT_PROVIDER_DEFINE(vm);
144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
145 
146 /* Pagedaemon activity rates, in subdivisions of one second. */
147 #define	VM_LAUNDER_RATE		10
148 #define	VM_INACT_SCAN_RATE	10
149 
150 static int vm_pageout_oom_seq = 12;
151 
152 static int vm_pageout_update_period;
153 static int disable_swap_pageouts;
154 static int lowmem_period = 10;
155 static time_t lowmem_uptime;
156 static int swapdev_enabled;
157 
158 static int vm_panic_on_oom = 0;
159 
160 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
161 	CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
162 	"panic on out of memory instead of killing the largest process");
163 
164 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
165 	CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
166 	"Maximum active LRU update period");
167 
168 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
169 	"Low memory callback period");
170 
171 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
172 	CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
173 
174 static int pageout_lock_miss;
175 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
176 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
177 
178 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
179 	CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
180 	"back-to-back calls to oom detector to start OOM");
181 
182 static int act_scan_laundry_weight = 3;
183 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
184     &act_scan_laundry_weight, 0,
185     "weight given to clean vs. dirty pages in active queue scans");
186 
187 static u_int vm_background_launder_rate = 4096;
188 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
189     &vm_background_launder_rate, 0,
190     "background laundering rate, in kilobytes per second");
191 
192 static u_int vm_background_launder_max = 20 * 1024;
193 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
194     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
195 
196 int vm_pageout_page_count = 32;
197 
198 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
199 SYSCTL_INT(_vm, OID_AUTO, max_wired,
200 	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
201 
202 static u_int isqrt(u_int num);
203 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
204     bool in_shortfall);
205 static void vm_pageout_laundry_worker(void *arg);
206 
207 struct scan_state {
208 	struct vm_batchqueue bq;
209 	struct vm_pagequeue *pq;
210 	vm_page_t	marker;
211 	int		maxscan;
212 	int		scanned;
213 };
214 
215 static void
216 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
217     vm_page_t marker, vm_page_t after, int maxscan)
218 {
219 
220 	vm_pagequeue_assert_locked(pq);
221 	KASSERT((marker->aflags & PGA_ENQUEUED) == 0,
222 	    ("marker %p already enqueued", marker));
223 
224 	if (after == NULL)
225 		TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
226 	else
227 		TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
228 	vm_page_aflag_set(marker, PGA_ENQUEUED);
229 
230 	vm_batchqueue_init(&ss->bq);
231 	ss->pq = pq;
232 	ss->marker = marker;
233 	ss->maxscan = maxscan;
234 	ss->scanned = 0;
235 	vm_pagequeue_unlock(pq);
236 }
237 
238 static void
239 vm_pageout_end_scan(struct scan_state *ss)
240 {
241 	struct vm_pagequeue *pq;
242 
243 	pq = ss->pq;
244 	vm_pagequeue_assert_locked(pq);
245 	KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0,
246 	    ("marker %p not enqueued", ss->marker));
247 
248 	TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
249 	vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
250 	VM_CNT_ADD(v_pdpages, ss->scanned);
251 }
252 
253 /*
254  * Add a small number of queued pages to a batch queue for later processing
255  * without the corresponding queue lock held.  The caller must have enqueued a
256  * marker page at the desired start point for the scan.  Pages will be
257  * physically dequeued if the caller so requests.  Otherwise, the returned
258  * batch may contain marker pages, and it is up to the caller to handle them.
259  *
260  * When processing the batch queue, vm_page_queue() must be used to
261  * determine whether the page has been logically dequeued by another thread.
262  * Once this check is performed, the page lock guarantees that the page will
263  * not be disassociated from the queue.
264  */
265 static __always_inline void
266 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
267 {
268 	struct vm_pagequeue *pq;
269 	vm_page_t m, marker;
270 
271 	marker = ss->marker;
272 	pq = ss->pq;
273 
274 	KASSERT((marker->aflags & PGA_ENQUEUED) != 0,
275 	    ("marker %p not enqueued", ss->marker));
276 
277 	vm_pagequeue_lock(pq);
278 	for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
279 	    ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
280 	    m = TAILQ_NEXT(m, plinks.q), ss->scanned++) {
281 		if ((m->flags & PG_MARKER) == 0) {
282 			KASSERT((m->aflags & PGA_ENQUEUED) != 0,
283 			    ("page %p not enqueued", m));
284 			KASSERT((m->flags & PG_FICTITIOUS) == 0,
285 			    ("Fictitious page %p cannot be in page queue", m));
286 			KASSERT((m->oflags & VPO_UNMANAGED) == 0,
287 			    ("Unmanaged page %p cannot be in page queue", m));
288 		} else if (dequeue)
289 			continue;
290 
291 		(void)vm_batchqueue_insert(&ss->bq, m);
292 		if (dequeue) {
293 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
294 			vm_page_aflag_clear(m, PGA_ENQUEUED);
295 		}
296 	}
297 	TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
298 	if (__predict_true(m != NULL))
299 		TAILQ_INSERT_BEFORE(m, marker, plinks.q);
300 	else
301 		TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
302 	if (dequeue)
303 		vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
304 	vm_pagequeue_unlock(pq);
305 }
306 
307 /* Return the next page to be scanned, or NULL if the scan is complete. */
308 static __always_inline vm_page_t
309 vm_pageout_next(struct scan_state *ss, const bool dequeue)
310 {
311 
312 	if (ss->bq.bq_cnt == 0)
313 		vm_pageout_collect_batch(ss, dequeue);
314 	return (vm_batchqueue_pop(&ss->bq));
315 }
316 
317 /*
318  * Scan for pages at adjacent offsets within the given page's object that are
319  * eligible for laundering, form a cluster of these pages and the given page,
320  * and launder that cluster.
321  */
322 static int
323 vm_pageout_cluster(vm_page_t m)
324 {
325 	vm_object_t object;
326 	vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
327 	vm_pindex_t pindex;
328 	int ib, is, page_base, pageout_count;
329 
330 	vm_page_assert_locked(m);
331 	object = m->object;
332 	VM_OBJECT_ASSERT_WLOCKED(object);
333 	pindex = m->pindex;
334 
335 	vm_page_assert_unbusied(m);
336 	KASSERT(!vm_page_held(m), ("page %p is held", m));
337 
338 	pmap_remove_write(m);
339 	vm_page_unlock(m);
340 
341 	mc[vm_pageout_page_count] = pb = ps = m;
342 	pageout_count = 1;
343 	page_base = vm_pageout_page_count;
344 	ib = 1;
345 	is = 1;
346 
347 	/*
348 	 * We can cluster only if the page is not clean, busy, or held, and
349 	 * the page is in the laundry queue.
350 	 *
351 	 * During heavy mmap/modification loads the pageout
352 	 * daemon can really fragment the underlying file
353 	 * due to flushing pages out of order and not trying to
354 	 * align the clusters (which leaves sporadic out-of-order
355 	 * holes).  To solve this problem we do the reverse scan
356 	 * first and attempt to align our cluster, then do a
357 	 * forward scan if room remains.
358 	 */
359 more:
360 	while (ib != 0 && pageout_count < vm_pageout_page_count) {
361 		if (ib > pindex) {
362 			ib = 0;
363 			break;
364 		}
365 		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
366 			ib = 0;
367 			break;
368 		}
369 		vm_page_test_dirty(p);
370 		if (p->dirty == 0) {
371 			ib = 0;
372 			break;
373 		}
374 		vm_page_lock(p);
375 		if (vm_page_held(p) || !vm_page_in_laundry(p)) {
376 			vm_page_unlock(p);
377 			ib = 0;
378 			break;
379 		}
380 		pmap_remove_write(p);
381 		vm_page_unlock(p);
382 		mc[--page_base] = pb = p;
383 		++pageout_count;
384 		++ib;
385 
386 		/*
387 		 * We are at an alignment boundary.  Stop here, and switch
388 		 * directions.  Do not clear ib.
389 		 */
390 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
391 			break;
392 	}
393 	while (pageout_count < vm_pageout_page_count &&
394 	    pindex + is < object->size) {
395 		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
396 			break;
397 		vm_page_test_dirty(p);
398 		if (p->dirty == 0)
399 			break;
400 		vm_page_lock(p);
401 		if (vm_page_held(p) || !vm_page_in_laundry(p)) {
402 			vm_page_unlock(p);
403 			break;
404 		}
405 		pmap_remove_write(p);
406 		vm_page_unlock(p);
407 		mc[page_base + pageout_count] = ps = p;
408 		++pageout_count;
409 		++is;
410 	}
411 
412 	/*
413 	 * If we exhausted our forward scan, continue with the reverse scan
414 	 * when possible, even past an alignment boundary.  This catches
415 	 * boundary conditions.
416 	 */
417 	if (ib != 0 && pageout_count < vm_pageout_page_count)
418 		goto more;
419 
420 	return (vm_pageout_flush(&mc[page_base], pageout_count,
421 	    VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
422 }
423 
424 /*
425  * vm_pageout_flush() - launder the given pages
426  *
427  *	The given pages are laundered.  Note that we setup for the start of
428  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
429  *	reference count all in here rather then in the parent.  If we want
430  *	the parent to do more sophisticated things we may have to change
431  *	the ordering.
432  *
433  *	Returned runlen is the count of pages between mreq and first
434  *	page after mreq with status VM_PAGER_AGAIN.
435  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
436  *	for any page in runlen set.
437  */
438 int
439 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
440     boolean_t *eio)
441 {
442 	vm_object_t object = mc[0]->object;
443 	int pageout_status[count];
444 	int numpagedout = 0;
445 	int i, runlen;
446 
447 	VM_OBJECT_ASSERT_WLOCKED(object);
448 
449 	/*
450 	 * Initiate I/O.  Mark the pages busy and verify that they're valid
451 	 * and read-only.
452 	 *
453 	 * We do not have to fixup the clean/dirty bits here... we can
454 	 * allow the pager to do it after the I/O completes.
455 	 *
456 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
457 	 * edge case with file fragments.
458 	 */
459 	for (i = 0; i < count; i++) {
460 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
461 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
462 			mc[i], i, count));
463 		KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0,
464 		    ("vm_pageout_flush: writeable page %p", mc[i]));
465 		vm_page_sbusy(mc[i]);
466 	}
467 	vm_object_pip_add(object, count);
468 
469 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
470 
471 	runlen = count - mreq;
472 	if (eio != NULL)
473 		*eio = FALSE;
474 	for (i = 0; i < count; i++) {
475 		vm_page_t mt = mc[i];
476 
477 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
478 		    !pmap_page_is_write_mapped(mt),
479 		    ("vm_pageout_flush: page %p is not write protected", mt));
480 		switch (pageout_status[i]) {
481 		case VM_PAGER_OK:
482 			vm_page_lock(mt);
483 			if (vm_page_in_laundry(mt))
484 				vm_page_deactivate_noreuse(mt);
485 			vm_page_unlock(mt);
486 			/* FALLTHROUGH */
487 		case VM_PAGER_PEND:
488 			numpagedout++;
489 			break;
490 		case VM_PAGER_BAD:
491 			/*
492 			 * The page is outside the object's range.  We pretend
493 			 * that the page out worked and clean the page, so the
494 			 * changes will be lost if the page is reclaimed by
495 			 * the page daemon.
496 			 */
497 			vm_page_undirty(mt);
498 			vm_page_lock(mt);
499 			if (vm_page_in_laundry(mt))
500 				vm_page_deactivate_noreuse(mt);
501 			vm_page_unlock(mt);
502 			break;
503 		case VM_PAGER_ERROR:
504 		case VM_PAGER_FAIL:
505 			/*
506 			 * If the page couldn't be paged out to swap because the
507 			 * pager wasn't able to find space, place the page in
508 			 * the PQ_UNSWAPPABLE holding queue.  This is an
509 			 * optimization that prevents the page daemon from
510 			 * wasting CPU cycles on pages that cannot be reclaimed
511 			 * becase no swap device is configured.
512 			 *
513 			 * Otherwise, reactivate the page so that it doesn't
514 			 * clog the laundry and inactive queues.  (We will try
515 			 * paging it out again later.)
516 			 */
517 			vm_page_lock(mt);
518 			if (object->type == OBJT_SWAP &&
519 			    pageout_status[i] == VM_PAGER_FAIL) {
520 				vm_page_unswappable(mt);
521 				numpagedout++;
522 			} else
523 				vm_page_activate(mt);
524 			vm_page_unlock(mt);
525 			if (eio != NULL && i >= mreq && i - mreq < runlen)
526 				*eio = TRUE;
527 			break;
528 		case VM_PAGER_AGAIN:
529 			if (i >= mreq && i - mreq < runlen)
530 				runlen = i - mreq;
531 			break;
532 		}
533 
534 		/*
535 		 * If the operation is still going, leave the page busy to
536 		 * block all other accesses. Also, leave the paging in
537 		 * progress indicator set so that we don't attempt an object
538 		 * collapse.
539 		 */
540 		if (pageout_status[i] != VM_PAGER_PEND) {
541 			vm_object_pip_wakeup(object);
542 			vm_page_sunbusy(mt);
543 		}
544 	}
545 	if (prunlen != NULL)
546 		*prunlen = runlen;
547 	return (numpagedout);
548 }
549 
550 static void
551 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
552 {
553 
554 	atomic_store_rel_int(&swapdev_enabled, 1);
555 }
556 
557 static void
558 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
559 {
560 
561 	if (swap_pager_nswapdev() == 1)
562 		atomic_store_rel_int(&swapdev_enabled, 0);
563 }
564 
565 /*
566  * Attempt to acquire all of the necessary locks to launder a page and
567  * then call through the clustering layer to PUTPAGES.  Wait a short
568  * time for a vnode lock.
569  *
570  * Requires the page and object lock on entry, releases both before return.
571  * Returns 0 on success and an errno otherwise.
572  */
573 static int
574 vm_pageout_clean(vm_page_t m, int *numpagedout)
575 {
576 	struct vnode *vp;
577 	struct mount *mp;
578 	vm_object_t object;
579 	vm_pindex_t pindex;
580 	int error, lockmode;
581 
582 	vm_page_assert_locked(m);
583 	object = m->object;
584 	VM_OBJECT_ASSERT_WLOCKED(object);
585 	error = 0;
586 	vp = NULL;
587 	mp = NULL;
588 
589 	/*
590 	 * The object is already known NOT to be dead.   It
591 	 * is possible for the vget() to block the whole
592 	 * pageout daemon, but the new low-memory handling
593 	 * code should prevent it.
594 	 *
595 	 * We can't wait forever for the vnode lock, we might
596 	 * deadlock due to a vn_read() getting stuck in
597 	 * vm_wait while holding this vnode.  We skip the
598 	 * vnode if we can't get it in a reasonable amount
599 	 * of time.
600 	 */
601 	if (object->type == OBJT_VNODE) {
602 		vm_page_unlock(m);
603 		vp = object->handle;
604 		if (vp->v_type == VREG &&
605 		    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
606 			mp = NULL;
607 			error = EDEADLK;
608 			goto unlock_all;
609 		}
610 		KASSERT(mp != NULL,
611 		    ("vp %p with NULL v_mount", vp));
612 		vm_object_reference_locked(object);
613 		pindex = m->pindex;
614 		VM_OBJECT_WUNLOCK(object);
615 		lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
616 		    LK_SHARED : LK_EXCLUSIVE;
617 		if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
618 			vp = NULL;
619 			error = EDEADLK;
620 			goto unlock_mp;
621 		}
622 		VM_OBJECT_WLOCK(object);
623 
624 		/*
625 		 * Ensure that the object and vnode were not disassociated
626 		 * while locks were dropped.
627 		 */
628 		if (vp->v_object != object) {
629 			error = ENOENT;
630 			goto unlock_all;
631 		}
632 		vm_page_lock(m);
633 
634 		/*
635 		 * While the object and page were unlocked, the page
636 		 * may have been:
637 		 * (1) moved to a different queue,
638 		 * (2) reallocated to a different object,
639 		 * (3) reallocated to a different offset, or
640 		 * (4) cleaned.
641 		 */
642 		if (!vm_page_in_laundry(m) || m->object != object ||
643 		    m->pindex != pindex || m->dirty == 0) {
644 			vm_page_unlock(m);
645 			error = ENXIO;
646 			goto unlock_all;
647 		}
648 
649 		/*
650 		 * The page may have been busied or referenced while the object
651 		 * and page locks were released.
652 		 */
653 		if (vm_page_busied(m) || vm_page_held(m)) {
654 			vm_page_unlock(m);
655 			error = EBUSY;
656 			goto unlock_all;
657 		}
658 	}
659 
660 	/*
661 	 * If a page is dirty, then it is either being washed
662 	 * (but not yet cleaned) or it is still in the
663 	 * laundry.  If it is still in the laundry, then we
664 	 * start the cleaning operation.
665 	 */
666 	if ((*numpagedout = vm_pageout_cluster(m)) == 0)
667 		error = EIO;
668 
669 unlock_all:
670 	VM_OBJECT_WUNLOCK(object);
671 
672 unlock_mp:
673 	vm_page_lock_assert(m, MA_NOTOWNED);
674 	if (mp != NULL) {
675 		if (vp != NULL)
676 			vput(vp);
677 		vm_object_deallocate(object);
678 		vn_finished_write(mp);
679 	}
680 
681 	return (error);
682 }
683 
684 /*
685  * Attempt to launder the specified number of pages.
686  *
687  * Returns the number of pages successfully laundered.
688  */
689 static int
690 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
691 {
692 	struct scan_state ss;
693 	struct vm_pagequeue *pq;
694 	struct mtx *mtx;
695 	vm_object_t object;
696 	vm_page_t m, marker;
697 	int act_delta, error, numpagedout, queue, starting_target;
698 	int vnodes_skipped;
699 	bool obj_locked, pageout_ok;
700 
701 	mtx = NULL;
702 	obj_locked = false;
703 	object = NULL;
704 	starting_target = launder;
705 	vnodes_skipped = 0;
706 
707 	/*
708 	 * Scan the laundry queues for pages eligible to be laundered.  We stop
709 	 * once the target number of dirty pages have been laundered, or once
710 	 * we've reached the end of the queue.  A single iteration of this loop
711 	 * may cause more than one page to be laundered because of clustering.
712 	 *
713 	 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
714 	 * swap devices are configured.
715 	 */
716 	if (atomic_load_acq_int(&swapdev_enabled))
717 		queue = PQ_UNSWAPPABLE;
718 	else
719 		queue = PQ_LAUNDRY;
720 
721 scan:
722 	marker = &vmd->vmd_markers[queue];
723 	pq = &vmd->vmd_pagequeues[queue];
724 	vm_pagequeue_lock(pq);
725 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
726 	while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
727 		if (__predict_false((m->flags & PG_MARKER) != 0))
728 			continue;
729 
730 		vm_page_change_lock(m, &mtx);
731 
732 recheck:
733 		/*
734 		 * The page may have been disassociated from the queue
735 		 * while locks were dropped.
736 		 */
737 		if (vm_page_queue(m) != queue)
738 			continue;
739 
740 		/*
741 		 * A requeue was requested, so this page gets a second
742 		 * chance.
743 		 */
744 		if ((m->aflags & PGA_REQUEUE) != 0) {
745 			vm_page_requeue(m);
746 			continue;
747 		}
748 
749 		/*
750 		 * Held pages are essentially stuck in the queue.
751 		 *
752 		 * Wired pages may not be freed.  Complete their removal
753 		 * from the queue now to avoid needless revisits during
754 		 * future scans.
755 		 */
756 		if (m->hold_count != 0)
757 			continue;
758 		if (m->wire_count != 0) {
759 			vm_page_dequeue_deferred(m);
760 			continue;
761 		}
762 
763 		if (object != m->object) {
764 			if (obj_locked) {
765 				VM_OBJECT_WUNLOCK(object);
766 				obj_locked = false;
767 			}
768 			object = m->object;
769 		}
770 		if (!obj_locked) {
771 			if (!VM_OBJECT_TRYWLOCK(object)) {
772 				mtx_unlock(mtx);
773 				/* Depends on type-stability. */
774 				VM_OBJECT_WLOCK(object);
775 				obj_locked = true;
776 				mtx_lock(mtx);
777 				goto recheck;
778 			} else
779 				obj_locked = true;
780 		}
781 
782 		if (vm_page_busied(m))
783 			continue;
784 
785 		/*
786 		 * Invalid pages can be easily freed.  They cannot be
787 		 * mapped; vm_page_free() asserts this.
788 		 */
789 		if (m->valid == 0)
790 			goto free_page;
791 
792 		/*
793 		 * If the page has been referenced and the object is not dead,
794 		 * reactivate or requeue the page depending on whether the
795 		 * object is mapped.
796 		 */
797 		if ((m->aflags & PGA_REFERENCED) != 0) {
798 			vm_page_aflag_clear(m, PGA_REFERENCED);
799 			act_delta = 1;
800 		} else
801 			act_delta = 0;
802 		if (object->ref_count != 0)
803 			act_delta += pmap_ts_referenced(m);
804 		else {
805 			KASSERT(!pmap_page_is_mapped(m),
806 			    ("page %p is mapped", m));
807 		}
808 		if (act_delta != 0) {
809 			if (object->ref_count != 0) {
810 				VM_CNT_INC(v_reactivated);
811 				vm_page_activate(m);
812 
813 				/*
814 				 * Increase the activation count if the page
815 				 * was referenced while in the laundry queue.
816 				 * This makes it less likely that the page will
817 				 * be returned prematurely to the inactive
818 				 * queue.
819  				 */
820 				m->act_count += act_delta + ACT_ADVANCE;
821 
822 				/*
823 				 * If this was a background laundering, count
824 				 * activated pages towards our target.  The
825 				 * purpose of background laundering is to ensure
826 				 * that pages are eventually cycled through the
827 				 * laundry queue, and an activation is a valid
828 				 * way out.
829 				 */
830 				if (!in_shortfall)
831 					launder--;
832 				continue;
833 			} else if ((object->flags & OBJ_DEAD) == 0) {
834 				vm_page_requeue(m);
835 				continue;
836 			}
837 		}
838 
839 		/*
840 		 * If the page appears to be clean at the machine-independent
841 		 * layer, then remove all of its mappings from the pmap in
842 		 * anticipation of freeing it.  If, however, any of the page's
843 		 * mappings allow write access, then the page may still be
844 		 * modified until the last of those mappings are removed.
845 		 */
846 		if (object->ref_count != 0) {
847 			vm_page_test_dirty(m);
848 			if (m->dirty == 0)
849 				pmap_remove_all(m);
850 		}
851 
852 		/*
853 		 * Clean pages are freed, and dirty pages are paged out unless
854 		 * they belong to a dead object.  Requeueing dirty pages from
855 		 * dead objects is pointless, as they are being paged out and
856 		 * freed by the thread that destroyed the object.
857 		 */
858 		if (m->dirty == 0) {
859 free_page:
860 			vm_page_free(m);
861 			VM_CNT_INC(v_dfree);
862 		} else if ((object->flags & OBJ_DEAD) == 0) {
863 			if (object->type != OBJT_SWAP &&
864 			    object->type != OBJT_DEFAULT)
865 				pageout_ok = true;
866 			else if (disable_swap_pageouts)
867 				pageout_ok = false;
868 			else
869 				pageout_ok = true;
870 			if (!pageout_ok) {
871 				vm_page_requeue(m);
872 				continue;
873 			}
874 
875 			/*
876 			 * Form a cluster with adjacent, dirty pages from the
877 			 * same object, and page out that entire cluster.
878 			 *
879 			 * The adjacent, dirty pages must also be in the
880 			 * laundry.  However, their mappings are not checked
881 			 * for new references.  Consequently, a recently
882 			 * referenced page may be paged out.  However, that
883 			 * page will not be prematurely reclaimed.  After page
884 			 * out, the page will be placed in the inactive queue,
885 			 * where any new references will be detected and the
886 			 * page reactivated.
887 			 */
888 			error = vm_pageout_clean(m, &numpagedout);
889 			if (error == 0) {
890 				launder -= numpagedout;
891 				ss.scanned += numpagedout;
892 			} else if (error == EDEADLK) {
893 				pageout_lock_miss++;
894 				vnodes_skipped++;
895 			}
896 			mtx = NULL;
897 			obj_locked = false;
898 		}
899 	}
900 	if (mtx != NULL) {
901 		mtx_unlock(mtx);
902 		mtx = NULL;
903 	}
904 	if (obj_locked) {
905 		VM_OBJECT_WUNLOCK(object);
906 		obj_locked = false;
907 	}
908 	vm_pagequeue_lock(pq);
909 	vm_pageout_end_scan(&ss);
910 	vm_pagequeue_unlock(pq);
911 
912 	if (launder > 0 && queue == PQ_UNSWAPPABLE) {
913 		queue = PQ_LAUNDRY;
914 		goto scan;
915 	}
916 
917 	/*
918 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
919 	 * and we didn't launder enough pages.
920 	 */
921 	if (vnodes_skipped > 0 && launder > 0)
922 		(void)speedup_syncer();
923 
924 	return (starting_target - launder);
925 }
926 
927 /*
928  * Compute the integer square root.
929  */
930 static u_int
931 isqrt(u_int num)
932 {
933 	u_int bit, root, tmp;
934 
935 	bit = 1u << ((NBBY * sizeof(u_int)) - 2);
936 	while (bit > num)
937 		bit >>= 2;
938 	root = 0;
939 	while (bit != 0) {
940 		tmp = root + bit;
941 		root >>= 1;
942 		if (num >= tmp) {
943 			num -= tmp;
944 			root += bit;
945 		}
946 		bit >>= 2;
947 	}
948 	return (root);
949 }
950 
951 /*
952  * Perform the work of the laundry thread: periodically wake up and determine
953  * whether any pages need to be laundered.  If so, determine the number of pages
954  * that need to be laundered, and launder them.
955  */
956 static void
957 vm_pageout_laundry_worker(void *arg)
958 {
959 	struct vm_domain *vmd;
960 	struct vm_pagequeue *pq;
961 	uint64_t nclean, ndirty, nfreed;
962 	int domain, last_target, launder, shortfall, shortfall_cycle, target;
963 	bool in_shortfall;
964 
965 	domain = (uintptr_t)arg;
966 	vmd = VM_DOMAIN(domain);
967 	pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
968 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
969 
970 	shortfall = 0;
971 	in_shortfall = false;
972 	shortfall_cycle = 0;
973 	target = 0;
974 	nfreed = 0;
975 
976 	/*
977 	 * Calls to these handlers are serialized by the swap syscall lock.
978 	 */
979 	(void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
980 	    EVENTHANDLER_PRI_ANY);
981 	(void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
982 	    EVENTHANDLER_PRI_ANY);
983 
984 	/*
985 	 * The pageout laundry worker is never done, so loop forever.
986 	 */
987 	for (;;) {
988 		KASSERT(target >= 0, ("negative target %d", target));
989 		KASSERT(shortfall_cycle >= 0,
990 		    ("negative cycle %d", shortfall_cycle));
991 		launder = 0;
992 
993 		/*
994 		 * First determine whether we need to launder pages to meet a
995 		 * shortage of free pages.
996 		 */
997 		if (shortfall > 0) {
998 			in_shortfall = true;
999 			shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1000 			target = shortfall;
1001 		} else if (!in_shortfall)
1002 			goto trybackground;
1003 		else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1004 			/*
1005 			 * We recently entered shortfall and began laundering
1006 			 * pages.  If we have completed that laundering run
1007 			 * (and we are no longer in shortfall) or we have met
1008 			 * our laundry target through other activity, then we
1009 			 * can stop laundering pages.
1010 			 */
1011 			in_shortfall = false;
1012 			target = 0;
1013 			goto trybackground;
1014 		}
1015 		launder = target / shortfall_cycle--;
1016 		goto dolaundry;
1017 
1018 		/*
1019 		 * There's no immediate need to launder any pages; see if we
1020 		 * meet the conditions to perform background laundering:
1021 		 *
1022 		 * 1. The ratio of dirty to clean inactive pages exceeds the
1023 		 *    background laundering threshold, or
1024 		 * 2. we haven't yet reached the target of the current
1025 		 *    background laundering run.
1026 		 *
1027 		 * The background laundering threshold is not a constant.
1028 		 * Instead, it is a slowly growing function of the number of
1029 		 * clean pages freed by the page daemon since the last
1030 		 * background laundering.  Thus, as the ratio of dirty to
1031 		 * clean inactive pages grows, the amount of memory pressure
1032 		 * required to trigger laundering decreases.  We ensure
1033 		 * that the threshold is non-zero after an inactive queue
1034 		 * scan, even if that scan failed to free a single clean page.
1035 		 */
1036 trybackground:
1037 		nclean = vmd->vmd_free_count +
1038 		    vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1039 		ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1040 		if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1041 		    vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1042 			target = vmd->vmd_background_launder_target;
1043 		}
1044 
1045 		/*
1046 		 * We have a non-zero background laundering target.  If we've
1047 		 * laundered up to our maximum without observing a page daemon
1048 		 * request, just stop.  This is a safety belt that ensures we
1049 		 * don't launder an excessive amount if memory pressure is low
1050 		 * and the ratio of dirty to clean pages is large.  Otherwise,
1051 		 * proceed at the background laundering rate.
1052 		 */
1053 		if (target > 0) {
1054 			if (nfreed > 0) {
1055 				nfreed = 0;
1056 				last_target = target;
1057 			} else if (last_target - target >=
1058 			    vm_background_launder_max * PAGE_SIZE / 1024) {
1059 				target = 0;
1060 			}
1061 			launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1062 			launder /= VM_LAUNDER_RATE;
1063 			if (launder > target)
1064 				launder = target;
1065 		}
1066 
1067 dolaundry:
1068 		if (launder > 0) {
1069 			/*
1070 			 * Because of I/O clustering, the number of laundered
1071 			 * pages could exceed "target" by the maximum size of
1072 			 * a cluster minus one.
1073 			 */
1074 			target -= min(vm_pageout_launder(vmd, launder,
1075 			    in_shortfall), target);
1076 			pause("laundp", hz / VM_LAUNDER_RATE);
1077 		}
1078 
1079 		/*
1080 		 * If we're not currently laundering pages and the page daemon
1081 		 * hasn't posted a new request, sleep until the page daemon
1082 		 * kicks us.
1083 		 */
1084 		vm_pagequeue_lock(pq);
1085 		if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1086 			(void)mtx_sleep(&vmd->vmd_laundry_request,
1087 			    vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1088 
1089 		/*
1090 		 * If the pagedaemon has indicated that it's in shortfall, start
1091 		 * a shortfall laundering unless we're already in the middle of
1092 		 * one.  This may preempt a background laundering.
1093 		 */
1094 		if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1095 		    (!in_shortfall || shortfall_cycle == 0)) {
1096 			shortfall = vm_laundry_target(vmd) +
1097 			    vmd->vmd_pageout_deficit;
1098 			target = 0;
1099 		} else
1100 			shortfall = 0;
1101 
1102 		if (target == 0)
1103 			vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1104 		nfreed += vmd->vmd_clean_pages_freed;
1105 		vmd->vmd_clean_pages_freed = 0;
1106 		vm_pagequeue_unlock(pq);
1107 	}
1108 }
1109 
1110 /*
1111  * Compute the number of pages we want to try to move from the
1112  * active queue to either the inactive or laundry queue.
1113  *
1114  * When scanning active pages during a shortage, we make clean pages
1115  * count more heavily towards the page shortage than dirty pages.
1116  * This is because dirty pages must be laundered before they can be
1117  * reused and thus have less utility when attempting to quickly
1118  * alleviate a free page shortage.  However, this weighting also
1119  * causes the scan to deactivate dirty pages more aggressively,
1120  * improving the effectiveness of clustering.
1121  */
1122 static int
1123 vm_pageout_active_target(struct vm_domain *vmd)
1124 {
1125 	int shortage;
1126 
1127 	shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1128 	    (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1129 	    vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1130 	shortage *= act_scan_laundry_weight;
1131 	return (shortage);
1132 }
1133 
1134 /*
1135  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1136  * small portion of the queue in order to maintain quasi-LRU.
1137  */
1138 static void
1139 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1140 {
1141 	struct scan_state ss;
1142 	struct mtx *mtx;
1143 	vm_page_t m, marker;
1144 	struct vm_pagequeue *pq;
1145 	long min_scan;
1146 	int act_delta, max_scan, scan_tick;
1147 
1148 	marker = &vmd->vmd_markers[PQ_ACTIVE];
1149 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1150 	vm_pagequeue_lock(pq);
1151 
1152 	/*
1153 	 * If we're just idle polling attempt to visit every
1154 	 * active page within 'update_period' seconds.
1155 	 */
1156 	scan_tick = ticks;
1157 	if (vm_pageout_update_period != 0) {
1158 		min_scan = pq->pq_cnt;
1159 		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1160 		min_scan /= hz * vm_pageout_update_period;
1161 	} else
1162 		min_scan = 0;
1163 	if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1164 		vmd->vmd_last_active_scan = scan_tick;
1165 
1166 	/*
1167 	 * Scan the active queue for pages that can be deactivated.  Update
1168 	 * the per-page activity counter and use it to identify deactivation
1169 	 * candidates.  Held pages may be deactivated.
1170 	 *
1171 	 * To avoid requeuing each page that remains in the active queue, we
1172 	 * implement the CLOCK algorithm.  To keep the implementation of the
1173 	 * enqueue operation consistent for all page queues, we use two hands,
1174 	 * represented by marker pages. Scans begin at the first hand, which
1175 	 * precedes the second hand in the queue.  When the two hands meet,
1176 	 * they are moved back to the head and tail of the queue, respectively,
1177 	 * and scanning resumes.
1178 	 */
1179 	max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1180 	mtx = NULL;
1181 act_scan:
1182 	vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1183 	while ((m = vm_pageout_next(&ss, false)) != NULL) {
1184 		if (__predict_false(m == &vmd->vmd_clock[1])) {
1185 			vm_pagequeue_lock(pq);
1186 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1187 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1188 			TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1189 			    plinks.q);
1190 			TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1191 			    plinks.q);
1192 			max_scan -= ss.scanned;
1193 			vm_pageout_end_scan(&ss);
1194 			goto act_scan;
1195 		}
1196 		if (__predict_false((m->flags & PG_MARKER) != 0))
1197 			continue;
1198 
1199 		vm_page_change_lock(m, &mtx);
1200 
1201 		/*
1202 		 * The page may have been disassociated from the queue
1203 		 * while locks were dropped.
1204 		 */
1205 		if (vm_page_queue(m) != PQ_ACTIVE)
1206 			continue;
1207 
1208 		/*
1209 		 * Wired pages are dequeued lazily.
1210 		 */
1211 		if (m->wire_count != 0) {
1212 			vm_page_dequeue_deferred(m);
1213 			continue;
1214 		}
1215 
1216 		/*
1217 		 * Check to see "how much" the page has been used.
1218 		 */
1219 		if ((m->aflags & PGA_REFERENCED) != 0) {
1220 			vm_page_aflag_clear(m, PGA_REFERENCED);
1221 			act_delta = 1;
1222 		} else
1223 			act_delta = 0;
1224 
1225 		/*
1226 		 * Perform an unsynchronized object ref count check.  While
1227 		 * the page lock ensures that the page is not reallocated to
1228 		 * another object, in particular, one with unmanaged mappings
1229 		 * that cannot support pmap_ts_referenced(), two races are,
1230 		 * nonetheless, possible:
1231 		 * 1) The count was transitioning to zero, but we saw a non-
1232 		 *    zero value.  pmap_ts_referenced() will return zero
1233 		 *    because the page is not mapped.
1234 		 * 2) The count was transitioning to one, but we saw zero.
1235 		 *    This race delays the detection of a new reference.  At
1236 		 *    worst, we will deactivate and reactivate the page.
1237 		 */
1238 		if (m->object->ref_count != 0)
1239 			act_delta += pmap_ts_referenced(m);
1240 
1241 		/*
1242 		 * Advance or decay the act_count based on recent usage.
1243 		 */
1244 		if (act_delta != 0) {
1245 			m->act_count += ACT_ADVANCE + act_delta;
1246 			if (m->act_count > ACT_MAX)
1247 				m->act_count = ACT_MAX;
1248 		} else
1249 			m->act_count -= min(m->act_count, ACT_DECLINE);
1250 
1251 		if (m->act_count == 0) {
1252 			/*
1253 			 * When not short for inactive pages, let dirty pages go
1254 			 * through the inactive queue before moving to the
1255 			 * laundry queues.  This gives them some extra time to
1256 			 * be reactivated, potentially avoiding an expensive
1257 			 * pageout.  However, during a page shortage, the
1258 			 * inactive queue is necessarily small, and so dirty
1259 			 * pages would only spend a trivial amount of time in
1260 			 * the inactive queue.  Therefore, we might as well
1261 			 * place them directly in the laundry queue to reduce
1262 			 * queuing overhead.
1263 			 */
1264 			if (page_shortage <= 0)
1265 				vm_page_deactivate(m);
1266 			else {
1267 				/*
1268 				 * Calling vm_page_test_dirty() here would
1269 				 * require acquisition of the object's write
1270 				 * lock.  However, during a page shortage,
1271 				 * directing dirty pages into the laundry
1272 				 * queue is only an optimization and not a
1273 				 * requirement.  Therefore, we simply rely on
1274 				 * the opportunistic updates to the page's
1275 				 * dirty field by the pmap.
1276 				 */
1277 				if (m->dirty == 0) {
1278 					vm_page_deactivate(m);
1279 					page_shortage -=
1280 					    act_scan_laundry_weight;
1281 				} else {
1282 					vm_page_launder(m);
1283 					page_shortage--;
1284 				}
1285 			}
1286 		}
1287 	}
1288 	if (mtx != NULL) {
1289 		mtx_unlock(mtx);
1290 		mtx = NULL;
1291 	}
1292 	vm_pagequeue_lock(pq);
1293 	TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1294 	TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1295 	vm_pageout_end_scan(&ss);
1296 	vm_pagequeue_unlock(pq);
1297 }
1298 
1299 static int
1300 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m)
1301 {
1302 	struct vm_domain *vmd;
1303 
1304 	if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0)
1305 		return (0);
1306 	vm_page_aflag_set(m, PGA_ENQUEUED);
1307 	if ((m->aflags & PGA_REQUEUE_HEAD) != 0) {
1308 		vmd = vm_pagequeue_domain(m);
1309 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
1310 		vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1311 	} else if ((m->aflags & PGA_REQUEUE) != 0) {
1312 		TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q);
1313 		vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1314 	} else
1315 		TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q);
1316 	return (1);
1317 }
1318 
1319 /*
1320  * Re-add stuck pages to the inactive queue.  We will examine them again
1321  * during the next scan.  If the queue state of a page has changed since
1322  * it was physically removed from the page queue in
1323  * vm_pageout_collect_batch(), don't do anything with that page.
1324  */
1325 static void
1326 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1327     vm_page_t m)
1328 {
1329 	struct vm_pagequeue *pq;
1330 	int delta;
1331 
1332 	delta = 0;
1333 	pq = ss->pq;
1334 
1335 	if (m != NULL) {
1336 		if (vm_batchqueue_insert(bq, m))
1337 			return;
1338 		vm_pagequeue_lock(pq);
1339 		delta += vm_pageout_reinsert_inactive_page(ss, m);
1340 	} else
1341 		vm_pagequeue_lock(pq);
1342 	while ((m = vm_batchqueue_pop(bq)) != NULL)
1343 		delta += vm_pageout_reinsert_inactive_page(ss, m);
1344 	vm_pagequeue_cnt_add(pq, delta);
1345 	vm_pagequeue_unlock(pq);
1346 	vm_batchqueue_init(bq);
1347 }
1348 
1349 /*
1350  * Attempt to reclaim the requested number of pages from the inactive queue.
1351  * Returns true if the shortage was addressed.
1352  */
1353 static int
1354 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
1355     int *addl_shortage)
1356 {
1357 	struct scan_state ss;
1358 	struct vm_batchqueue rq;
1359 	struct mtx *mtx;
1360 	vm_page_t m, marker;
1361 	struct vm_pagequeue *pq;
1362 	vm_object_t object;
1363 	int act_delta, addl_page_shortage, deficit, page_shortage;
1364 	int starting_page_shortage;
1365 	bool obj_locked;
1366 
1367 	/*
1368 	 * The addl_page_shortage is an estimate of the number of temporarily
1369 	 * stuck pages in the inactive queue.  In other words, the
1370 	 * number of pages from the inactive count that should be
1371 	 * discounted in setting the target for the active queue scan.
1372 	 */
1373 	addl_page_shortage = 0;
1374 
1375 	/*
1376 	 * vmd_pageout_deficit counts the number of pages requested in
1377 	 * allocations that failed because of a free page shortage.  We assume
1378 	 * that the allocations will be reattempted and thus include the deficit
1379 	 * in our scan target.
1380 	 */
1381 	deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1382 	starting_page_shortage = page_shortage = shortage + deficit;
1383 
1384 	mtx = NULL;
1385 	obj_locked = false;
1386 	object = NULL;
1387 	vm_batchqueue_init(&rq);
1388 
1389 	/*
1390 	 * Start scanning the inactive queue for pages that we can free.  The
1391 	 * scan will stop when we reach the target or we have scanned the
1392 	 * entire queue.  (Note that m->act_count is not used to make
1393 	 * decisions for the inactive queue, only for the active queue.)
1394 	 */
1395 	marker = &vmd->vmd_markers[PQ_INACTIVE];
1396 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1397 	vm_pagequeue_lock(pq);
1398 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1399 	while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1400 		KASSERT((m->flags & PG_MARKER) == 0,
1401 		    ("marker page %p was dequeued", m));
1402 
1403 		vm_page_change_lock(m, &mtx);
1404 
1405 recheck:
1406 		/*
1407 		 * The page may have been disassociated from the queue
1408 		 * while locks were dropped.
1409 		 */
1410 		if (vm_page_queue(m) != PQ_INACTIVE) {
1411 			addl_page_shortage++;
1412 			continue;
1413 		}
1414 
1415 		/*
1416 		 * The page was re-enqueued after the page queue lock was
1417 		 * dropped, or a requeue was requested.  This page gets a second
1418 		 * chance.
1419 		 */
1420 		if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE |
1421 		    PGA_REQUEUE_HEAD)) != 0)
1422 			goto reinsert;
1423 
1424 		/*
1425 		 * Held pages are essentially stuck in the queue.  So,
1426 		 * they ought to be discounted from the inactive count.
1427 		 * See the description of addl_page_shortage above.
1428 		 *
1429 		 * Wired pages may not be freed.  Complete their removal
1430 		 * from the queue now to avoid needless revisits during
1431 		 * future scans.
1432 		 */
1433 		if (m->hold_count != 0) {
1434 			addl_page_shortage++;
1435 			goto reinsert;
1436 		}
1437 		if (m->wire_count != 0) {
1438 			vm_page_dequeue_deferred(m);
1439 			continue;
1440 		}
1441 
1442 		if (object != m->object) {
1443 			if (obj_locked) {
1444 				VM_OBJECT_WUNLOCK(object);
1445 				obj_locked = false;
1446 			}
1447 			object = m->object;
1448 		}
1449 		if (!obj_locked) {
1450 			if (!VM_OBJECT_TRYWLOCK(object)) {
1451 				mtx_unlock(mtx);
1452 				/* Depends on type-stability. */
1453 				VM_OBJECT_WLOCK(object);
1454 				obj_locked = true;
1455 				mtx_lock(mtx);
1456 				goto recheck;
1457 			} else
1458 				obj_locked = true;
1459 		}
1460 
1461 		if (vm_page_busied(m)) {
1462 			/*
1463 			 * Don't mess with busy pages.  Leave them at
1464 			 * the front of the queue.  Most likely, they
1465 			 * are being paged out and will leave the
1466 			 * queue shortly after the scan finishes.  So,
1467 			 * they ought to be discounted from the
1468 			 * inactive count.
1469 			 */
1470 			addl_page_shortage++;
1471 			goto reinsert;
1472 		}
1473 
1474 		/*
1475 		 * Invalid pages can be easily freed. They cannot be
1476 		 * mapped, vm_page_free() asserts this.
1477 		 */
1478 		if (m->valid == 0)
1479 			goto free_page;
1480 
1481 		/*
1482 		 * If the page has been referenced and the object is not dead,
1483 		 * reactivate or requeue the page depending on whether the
1484 		 * object is mapped.
1485 		 */
1486 		if ((m->aflags & PGA_REFERENCED) != 0) {
1487 			vm_page_aflag_clear(m, PGA_REFERENCED);
1488 			act_delta = 1;
1489 		} else
1490 			act_delta = 0;
1491 		if (object->ref_count != 0) {
1492 			act_delta += pmap_ts_referenced(m);
1493 		} else {
1494 			KASSERT(!pmap_page_is_mapped(m),
1495 			    ("page %p is mapped", m));
1496 		}
1497 		if (act_delta != 0) {
1498 			if (object->ref_count != 0) {
1499 				VM_CNT_INC(v_reactivated);
1500 				vm_page_activate(m);
1501 
1502 				/*
1503 				 * Increase the activation count if the page
1504 				 * was referenced while in the inactive queue.
1505 				 * This makes it less likely that the page will
1506 				 * be returned prematurely to the inactive
1507 				 * queue.
1508  				 */
1509 				m->act_count += act_delta + ACT_ADVANCE;
1510 				continue;
1511 			} else if ((object->flags & OBJ_DEAD) == 0) {
1512 				vm_page_aflag_set(m, PGA_REQUEUE);
1513 				goto reinsert;
1514 			}
1515 		}
1516 
1517 		/*
1518 		 * If the page appears to be clean at the machine-independent
1519 		 * layer, then remove all of its mappings from the pmap in
1520 		 * anticipation of freeing it.  If, however, any of the page's
1521 		 * mappings allow write access, then the page may still be
1522 		 * modified until the last of those mappings are removed.
1523 		 */
1524 		if (object->ref_count != 0) {
1525 			vm_page_test_dirty(m);
1526 			if (m->dirty == 0)
1527 				pmap_remove_all(m);
1528 		}
1529 
1530 		/*
1531 		 * Clean pages can be freed, but dirty pages must be sent back
1532 		 * to the laundry, unless they belong to a dead object.
1533 		 * Requeueing dirty pages from dead objects is pointless, as
1534 		 * they are being paged out and freed by the thread that
1535 		 * destroyed the object.
1536 		 */
1537 		if (m->dirty == 0) {
1538 free_page:
1539 			/*
1540 			 * Because we dequeued the page and have already
1541 			 * checked for concurrent dequeue and enqueue
1542 			 * requests, we can safely disassociate the page
1543 			 * from the inactive queue.
1544 			 */
1545 			KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0,
1546 			    ("page %p has queue state", m));
1547 			m->queue = PQ_NONE;
1548 			vm_page_free(m);
1549 			page_shortage--;
1550 		} else if ((object->flags & OBJ_DEAD) == 0)
1551 			vm_page_launder(m);
1552 		continue;
1553 reinsert:
1554 		vm_pageout_reinsert_inactive(&ss, &rq, m);
1555 	}
1556 	if (mtx != NULL) {
1557 		mtx_unlock(mtx);
1558 		mtx = NULL;
1559 	}
1560 	if (obj_locked) {
1561 		VM_OBJECT_WUNLOCK(object);
1562 		obj_locked = false;
1563 	}
1564 	vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1565 	vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1566 	vm_pagequeue_lock(pq);
1567 	vm_pageout_end_scan(&ss);
1568 	vm_pagequeue_unlock(pq);
1569 
1570 	VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1571 
1572 	/*
1573 	 * Wake up the laundry thread so that it can perform any needed
1574 	 * laundering.  If we didn't meet our target, we're in shortfall and
1575 	 * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1576 	 * swap devices are configured, the laundry thread has no work to do, so
1577 	 * don't bother waking it up.
1578 	 *
1579 	 * The laundry thread uses the number of inactive queue scans elapsed
1580 	 * since the last laundering to determine whether to launder again, so
1581 	 * keep count.
1582 	 */
1583 	if (starting_page_shortage > 0) {
1584 		pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1585 		vm_pagequeue_lock(pq);
1586 		if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1587 		    (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1588 			if (page_shortage > 0) {
1589 				vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1590 				VM_CNT_INC(v_pdshortfalls);
1591 			} else if (vmd->vmd_laundry_request !=
1592 			    VM_LAUNDRY_SHORTFALL)
1593 				vmd->vmd_laundry_request =
1594 				    VM_LAUNDRY_BACKGROUND;
1595 			wakeup(&vmd->vmd_laundry_request);
1596 		}
1597 		vmd->vmd_clean_pages_freed +=
1598 		    starting_page_shortage - page_shortage;
1599 		vm_pagequeue_unlock(pq);
1600 	}
1601 
1602 	/*
1603 	 * Wakeup the swapout daemon if we didn't free the targeted number of
1604 	 * pages.
1605 	 */
1606 	if (page_shortage > 0)
1607 		vm_swapout_run();
1608 
1609 	/*
1610 	 * If the inactive queue scan fails repeatedly to meet its
1611 	 * target, kill the largest process.
1612 	 */
1613 	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1614 
1615 	/*
1616 	 * Reclaim pages by swapping out idle processes, if configured to do so.
1617 	 */
1618 	vm_swapout_run_idle();
1619 
1620 	/*
1621 	 * See the description of addl_page_shortage above.
1622 	 */
1623 	*addl_shortage = addl_page_shortage + deficit;
1624 
1625 	return (page_shortage <= 0);
1626 }
1627 
1628 static int vm_pageout_oom_vote;
1629 
1630 /*
1631  * The pagedaemon threads randlomly select one to perform the
1632  * OOM.  Trying to kill processes before all pagedaemons
1633  * failed to reach free target is premature.
1634  */
1635 static void
1636 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1637     int starting_page_shortage)
1638 {
1639 	int old_vote;
1640 
1641 	if (starting_page_shortage <= 0 || starting_page_shortage !=
1642 	    page_shortage)
1643 		vmd->vmd_oom_seq = 0;
1644 	else
1645 		vmd->vmd_oom_seq++;
1646 	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1647 		if (vmd->vmd_oom) {
1648 			vmd->vmd_oom = FALSE;
1649 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1650 		}
1651 		return;
1652 	}
1653 
1654 	/*
1655 	 * Do not follow the call sequence until OOM condition is
1656 	 * cleared.
1657 	 */
1658 	vmd->vmd_oom_seq = 0;
1659 
1660 	if (vmd->vmd_oom)
1661 		return;
1662 
1663 	vmd->vmd_oom = TRUE;
1664 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1665 	if (old_vote != vm_ndomains - 1)
1666 		return;
1667 
1668 	/*
1669 	 * The current pagedaemon thread is the last in the quorum to
1670 	 * start OOM.  Initiate the selection and signaling of the
1671 	 * victim.
1672 	 */
1673 	vm_pageout_oom(VM_OOM_MEM);
1674 
1675 	/*
1676 	 * After one round of OOM terror, recall our vote.  On the
1677 	 * next pass, current pagedaemon would vote again if the low
1678 	 * memory condition is still there, due to vmd_oom being
1679 	 * false.
1680 	 */
1681 	vmd->vmd_oom = FALSE;
1682 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1683 }
1684 
1685 /*
1686  * The OOM killer is the page daemon's action of last resort when
1687  * memory allocation requests have been stalled for a prolonged period
1688  * of time because it cannot reclaim memory.  This function computes
1689  * the approximate number of physical pages that could be reclaimed if
1690  * the specified address space is destroyed.
1691  *
1692  * Private, anonymous memory owned by the address space is the
1693  * principal resource that we expect to recover after an OOM kill.
1694  * Since the physical pages mapped by the address space's COW entries
1695  * are typically shared pages, they are unlikely to be released and so
1696  * they are not counted.
1697  *
1698  * To get to the point where the page daemon runs the OOM killer, its
1699  * efforts to write-back vnode-backed pages may have stalled.  This
1700  * could be caused by a memory allocation deadlock in the write path
1701  * that might be resolved by an OOM kill.  Therefore, physical pages
1702  * belonging to vnode-backed objects are counted, because they might
1703  * be freed without being written out first if the address space holds
1704  * the last reference to an unlinked vnode.
1705  *
1706  * Similarly, physical pages belonging to OBJT_PHYS objects are
1707  * counted because the address space might hold the last reference to
1708  * the object.
1709  */
1710 static long
1711 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1712 {
1713 	vm_map_t map;
1714 	vm_map_entry_t entry;
1715 	vm_object_t obj;
1716 	long res;
1717 
1718 	map = &vmspace->vm_map;
1719 	KASSERT(!map->system_map, ("system map"));
1720 	sx_assert(&map->lock, SA_LOCKED);
1721 	res = 0;
1722 	for (entry = map->header.next; entry != &map->header;
1723 	    entry = entry->next) {
1724 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1725 			continue;
1726 		obj = entry->object.vm_object;
1727 		if (obj == NULL)
1728 			continue;
1729 		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1730 		    obj->ref_count != 1)
1731 			continue;
1732 		switch (obj->type) {
1733 		case OBJT_DEFAULT:
1734 		case OBJT_SWAP:
1735 		case OBJT_PHYS:
1736 		case OBJT_VNODE:
1737 			res += obj->resident_page_count;
1738 			break;
1739 		}
1740 	}
1741 	return (res);
1742 }
1743 
1744 void
1745 vm_pageout_oom(int shortage)
1746 {
1747 	struct proc *p, *bigproc;
1748 	vm_offset_t size, bigsize;
1749 	struct thread *td;
1750 	struct vmspace *vm;
1751 	bool breakout;
1752 
1753 	/*
1754 	 * We keep the process bigproc locked once we find it to keep anyone
1755 	 * from messing with it; however, there is a possibility of
1756 	 * deadlock if process B is bigproc and one of its child processes
1757 	 * attempts to propagate a signal to B while we are waiting for A's
1758 	 * lock while walking this list.  To avoid this, we don't block on
1759 	 * the process lock but just skip a process if it is already locked.
1760 	 */
1761 	bigproc = NULL;
1762 	bigsize = 0;
1763 	sx_slock(&allproc_lock);
1764 	FOREACH_PROC_IN_SYSTEM(p) {
1765 		PROC_LOCK(p);
1766 
1767 		/*
1768 		 * If this is a system, protected or killed process, skip it.
1769 		 */
1770 		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1771 		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1772 		    p->p_pid == 1 || P_KILLED(p) ||
1773 		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1774 			PROC_UNLOCK(p);
1775 			continue;
1776 		}
1777 		/*
1778 		 * If the process is in a non-running type state,
1779 		 * don't touch it.  Check all the threads individually.
1780 		 */
1781 		breakout = false;
1782 		FOREACH_THREAD_IN_PROC(p, td) {
1783 			thread_lock(td);
1784 			if (!TD_ON_RUNQ(td) &&
1785 			    !TD_IS_RUNNING(td) &&
1786 			    !TD_IS_SLEEPING(td) &&
1787 			    !TD_IS_SUSPENDED(td) &&
1788 			    !TD_IS_SWAPPED(td)) {
1789 				thread_unlock(td);
1790 				breakout = true;
1791 				break;
1792 			}
1793 			thread_unlock(td);
1794 		}
1795 		if (breakout) {
1796 			PROC_UNLOCK(p);
1797 			continue;
1798 		}
1799 		/*
1800 		 * get the process size
1801 		 */
1802 		vm = vmspace_acquire_ref(p);
1803 		if (vm == NULL) {
1804 			PROC_UNLOCK(p);
1805 			continue;
1806 		}
1807 		_PHOLD_LITE(p);
1808 		PROC_UNLOCK(p);
1809 		sx_sunlock(&allproc_lock);
1810 		if (!vm_map_trylock_read(&vm->vm_map)) {
1811 			vmspace_free(vm);
1812 			sx_slock(&allproc_lock);
1813 			PRELE(p);
1814 			continue;
1815 		}
1816 		size = vmspace_swap_count(vm);
1817 		if (shortage == VM_OOM_MEM)
1818 			size += vm_pageout_oom_pagecount(vm);
1819 		vm_map_unlock_read(&vm->vm_map);
1820 		vmspace_free(vm);
1821 		sx_slock(&allproc_lock);
1822 
1823 		/*
1824 		 * If this process is bigger than the biggest one,
1825 		 * remember it.
1826 		 */
1827 		if (size > bigsize) {
1828 			if (bigproc != NULL)
1829 				PRELE(bigproc);
1830 			bigproc = p;
1831 			bigsize = size;
1832 		} else {
1833 			PRELE(p);
1834 		}
1835 	}
1836 	sx_sunlock(&allproc_lock);
1837 	if (bigproc != NULL) {
1838 		if (vm_panic_on_oom != 0)
1839 			panic("out of swap space");
1840 		PROC_LOCK(bigproc);
1841 		killproc(bigproc, "out of swap space");
1842 		sched_nice(bigproc, PRIO_MIN);
1843 		_PRELE(bigproc);
1844 		PROC_UNLOCK(bigproc);
1845 	}
1846 }
1847 
1848 static void
1849 vm_pageout_lowmem(struct vm_domain *vmd)
1850 {
1851 
1852 	if (vmd == VM_DOMAIN(0) &&
1853 	    time_uptime - lowmem_uptime >= lowmem_period) {
1854 		/*
1855 		 * Decrease registered cache sizes.
1856 		 */
1857 		SDT_PROBE0(vm, , , vm__lowmem_scan);
1858 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1859 
1860 		/*
1861 		 * We do this explicitly after the caches have been
1862 		 * drained above.
1863 		 */
1864 		uma_reclaim();
1865 		lowmem_uptime = time_uptime;
1866 	}
1867 }
1868 
1869 static void
1870 vm_pageout_worker(void *arg)
1871 {
1872 	struct vm_domain *vmd;
1873 	int addl_shortage, domain, shortage;
1874 	bool target_met;
1875 
1876 	domain = (uintptr_t)arg;
1877 	vmd = VM_DOMAIN(domain);
1878 	shortage = 0;
1879 	target_met = true;
1880 
1881 	/*
1882 	 * XXXKIB It could be useful to bind pageout daemon threads to
1883 	 * the cores belonging to the domain, from which vm_page_array
1884 	 * is allocated.
1885 	 */
1886 
1887 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1888 	vmd->vmd_last_active_scan = ticks;
1889 
1890 	/*
1891 	 * The pageout daemon worker is never done, so loop forever.
1892 	 */
1893 	while (TRUE) {
1894 		vm_domain_pageout_lock(vmd);
1895 
1896 		/*
1897 		 * We need to clear wanted before we check the limits.  This
1898 		 * prevents races with wakers who will check wanted after they
1899 		 * reach the limit.
1900 		 */
1901 		atomic_store_int(&vmd->vmd_pageout_wanted, 0);
1902 
1903 		/*
1904 		 * Might the page daemon need to run again?
1905 		 */
1906 		if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
1907 			/*
1908 			 * Yes.  If the scan failed to produce enough free
1909 			 * pages, sleep uninterruptibly for some time in the
1910 			 * hope that the laundry thread will clean some pages.
1911 			 */
1912 			vm_domain_pageout_unlock(vmd);
1913 			if (!target_met)
1914 				pause("pwait", hz / VM_INACT_SCAN_RATE);
1915 		} else {
1916 			/*
1917 			 * No, sleep until the next wakeup or until pages
1918 			 * need to have their reference stats updated.
1919 			 */
1920 			if (mtx_sleep(&vmd->vmd_pageout_wanted,
1921 			    vm_domain_pageout_lockptr(vmd), PDROP | PVM,
1922 			    "psleep", hz / VM_INACT_SCAN_RATE) == 0)
1923 				VM_CNT_INC(v_pdwakeups);
1924 		}
1925 
1926 		/* Prevent spurious wakeups by ensuring that wanted is set. */
1927 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
1928 
1929 		/*
1930 		 * Use the controller to calculate how many pages to free in
1931 		 * this interval, and scan the inactive queue.
1932 		 */
1933 		shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
1934 		if (shortage > 0) {
1935 			vm_pageout_lowmem(vmd);
1936 			target_met = vm_pageout_scan_inactive(vmd, shortage,
1937 			    &addl_shortage);
1938 		} else
1939 			addl_shortage = 0;
1940 
1941 		/*
1942 		 * Scan the active queue.  A positive value for shortage
1943 		 * indicates that we must aggressively deactivate pages to avoid
1944 		 * a shortfall.
1945 		 */
1946 		shortage = vm_pageout_active_target(vmd) + addl_shortage;
1947 		vm_pageout_scan_active(vmd, shortage);
1948 	}
1949 }
1950 
1951 /*
1952  *	vm_pageout_init initialises basic pageout daemon settings.
1953  */
1954 static void
1955 vm_pageout_init_domain(int domain)
1956 {
1957 	struct vm_domain *vmd;
1958 	struct sysctl_oid *oid;
1959 
1960 	vmd = VM_DOMAIN(domain);
1961 	vmd->vmd_interrupt_free_min = 2;
1962 
1963 	/*
1964 	 * v_free_reserved needs to include enough for the largest
1965 	 * swap pager structures plus enough for any pv_entry structs
1966 	 * when paging.
1967 	 */
1968 	if (vmd->vmd_page_count > 1024)
1969 		vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200;
1970 	else
1971 		vmd->vmd_free_min = 4;
1972 	vmd->vmd_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1973 	    vmd->vmd_interrupt_free_min;
1974 	vmd->vmd_free_reserved = vm_pageout_page_count +
1975 	    vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768);
1976 	vmd->vmd_free_severe = vmd->vmd_free_min / 2;
1977 	vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
1978 	vmd->vmd_free_min += vmd->vmd_free_reserved;
1979 	vmd->vmd_free_severe += vmd->vmd_free_reserved;
1980 	vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
1981 	if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
1982 		vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
1983 
1984 	/*
1985 	 * Set the default wakeup threshold to be 10% below the paging
1986 	 * target.  This keeps the steady state out of shortfall.
1987 	 */
1988 	vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
1989 
1990 	/*
1991 	 * Target amount of memory to move out of the laundry queue during a
1992 	 * background laundering.  This is proportional to the amount of system
1993 	 * memory.
1994 	 */
1995 	vmd->vmd_background_launder_target = (vmd->vmd_free_target -
1996 	    vmd->vmd_free_min) / 10;
1997 
1998 	/* Initialize the pageout daemon pid controller. */
1999 	pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2000 	    vmd->vmd_free_target, PIDCTRL_BOUND,
2001 	    PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2002 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2003 	    "pidctrl", CTLFLAG_RD, NULL, "");
2004 	pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2005 }
2006 
2007 static void
2008 vm_pageout_init(void)
2009 {
2010 	u_int freecount;
2011 	int i;
2012 
2013 	/*
2014 	 * Initialize some paging parameters.
2015 	 */
2016 	if (vm_cnt.v_page_count < 2000)
2017 		vm_pageout_page_count = 8;
2018 
2019 	freecount = 0;
2020 	for (i = 0; i < vm_ndomains; i++) {
2021 		struct vm_domain *vmd;
2022 
2023 		vm_pageout_init_domain(i);
2024 		vmd = VM_DOMAIN(i);
2025 		vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2026 		vm_cnt.v_free_target += vmd->vmd_free_target;
2027 		vm_cnt.v_free_min += vmd->vmd_free_min;
2028 		vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2029 		vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2030 		vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2031 		vm_cnt.v_free_severe += vmd->vmd_free_severe;
2032 		freecount += vmd->vmd_free_count;
2033 	}
2034 
2035 	/*
2036 	 * Set interval in seconds for active scan.  We want to visit each
2037 	 * page at least once every ten minutes.  This is to prevent worst
2038 	 * case paging behaviors with stale active LRU.
2039 	 */
2040 	if (vm_pageout_update_period == 0)
2041 		vm_pageout_update_period = 600;
2042 
2043 	if (vm_page_max_wired == 0)
2044 		vm_page_max_wired = freecount / 3;
2045 }
2046 
2047 /*
2048  *     vm_pageout is the high level pageout daemon.
2049  */
2050 static void
2051 vm_pageout(void)
2052 {
2053 	int error;
2054 	int i;
2055 
2056 	swap_pager_swap_init();
2057 	snprintf(curthread->td_name, sizeof(curthread->td_name), "dom0");
2058 	error = kthread_add(vm_pageout_laundry_worker, NULL, curproc, NULL,
2059 	    0, 0, "laundry: dom0");
2060 	if (error != 0)
2061 		panic("starting laundry for domain 0, error %d", error);
2062 	for (i = 1; i < vm_ndomains; i++) {
2063 		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
2064 		    curproc, NULL, 0, 0, "dom%d", i);
2065 		if (error != 0) {
2066 			panic("starting pageout for domain %d, error %d\n",
2067 			    i, error);
2068 		}
2069 		error = kthread_add(vm_pageout_laundry_worker,
2070 		    (void *)(uintptr_t)i, curproc, NULL, 0, 0,
2071 		    "laundry: dom%d", i);
2072 		if (error != 0)
2073 			panic("starting laundry for domain %d, error %d",
2074 			    i, error);
2075 	}
2076 	error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
2077 	    0, 0, "uma");
2078 	if (error != 0)
2079 		panic("starting uma_reclaim helper, error %d\n", error);
2080 	vm_pageout_worker((void *)(uintptr_t)0);
2081 }
2082 
2083 /*
2084  * Perform an advisory wakeup of the page daemon.
2085  */
2086 void
2087 pagedaemon_wakeup(int domain)
2088 {
2089 	struct vm_domain *vmd;
2090 
2091 	vmd = VM_DOMAIN(domain);
2092 	vm_domain_pageout_assert_unlocked(vmd);
2093 	if (curproc == pageproc)
2094 		return;
2095 
2096 	if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2097 		vm_domain_pageout_lock(vmd);
2098 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2099 		wakeup(&vmd->vmd_pageout_wanted);
2100 		vm_domain_pageout_unlock(vmd);
2101 	}
2102 }
2103